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Abstract 
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We correct some misconceptions in the literature regarding Weber's law and 
show: (A) with it Ampere's law of force between current elements can be de
rived with the modern current element, (B) what are the correct expressions 
for the relative velocity and acceleration between point charges, (C) why the 
acceleration terms in Weber's law are essential and so we have arguments 
to show that Ritz's law is untenable, and (D) how to develop the energy of 
interadion between two modern current elements. 
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In the last 10 years there has been a revival of interest in Ampere's law 
of force between current elements [1-6] and in Weber's law of force between 
point charges [7-9]. The main reason for this fact is that some recent exper
iments with a single circuit can only be explained by Ampere's law and not 
by Grassmann's law of force (sometimes known as Biot-Savart's law) [1-9]. 
Ampere's law states that the force which a usual current element hdl2 

exerts in another current element fIdlI is given by [10] 

(1) 

where f = (Tl - T2)/ITt - T21, r = ITt - r21. 
Historically Weber's law appeared twenty years after this law. 'Veber's 

goal was to derive this law based in a law of force between point charges 
like Coulomb's, but modified when the charges have a relative velocity and 
acceleration. In this respect he was following the suggestion that Gauss 
gave in a letter to him [ll]_ Following also Fechner's hypothesis on the 
nature of the electric current, according to which it consists of a current of 
positive electricity in one direction combined with an exactly equal current of 
negative electricity in the opposite direction (equal as respects the quantity 
of electricity in motion and the velocity with which it is moving), Weber 
arrived at the formula [12]: 

qlq2 f [ i
2 Trl F---- 1--+-

- 471"Eo r2 2c2 c2· 
(2) 

In this formula i :::: drjdt, r:::: d2r/dt2 , F is the force that q2 exerts on 
ql, and c is a constant (the ratio between electromagnetic and electrostatic 
units of charge) with the same magnitude as the velocity of light, as Weber 
determined experimentally_ With this equation and Fechner hypothesis We
ber derived Eq. (1). 

Nowadays one knows that Fechner's assumption regarding the nature 
of electric currents is wrong. In fact we have positive ions fixed in the lattice 
of a metal and only electrons are responsible for the current. Our aim is to 
show that even with this present model for the current we can derive Eq. 
(1) with Weber's force, Eq. (2). In this way we want to clear up some mis
understandings regarding Weber's law as this one expressed by P. Graneau 
in an excellent review article [13]: "Weber argued the forces on the cbarges 
were passed on to the metal but failed to explain how, at the same time, the 
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charges could move freely through the conductor. This inconsistency and 
the subsequent discovery of the immobility of the lattice ion made Weber's 
current element untenable". As we will see, what is untenable is Fechner's 
current element, but not Weber's law. 

In order to do so we first of all write each neutral current element in 
the form 

I 1dl1 = q1+'ll1+ + ql-'llI- = ql+ (1'1+ - 1'1_) , ) 

(3) 

hdl2 = q2+ 'll2+ + q2-'ll2- ::::: q2+ (1'2+ - 1'2_ ) . 

In these expressions we assumed qi- = -q.+ because we are considering 
only neutral current elements. Since 1'1+ and 1'2+ are arbitrary, Fechner 
hypothesis corresponds to a special case ('llj+ = -Vi_), and now it can 
also be shown that Ampere's law can be applied to plasma physics where 
usually one has a neutral fluid with electrons and ions moving relative to 
the laboratory. Anyway, if we wish to particularize to metallic currents, we 
only need to put 1'1+ = 1'2+ = o. 

According to "'.,Teber the net force of 12dl2 on 11dl1 will be given by a 
sum of four terms: the force of q2- on ql+ and q1-, plus the force of q2+ 
on ql+ and q!_. Since 

f ::::::: 

(4) 

f = 

we have that the force of one of the charges q2 on one of the charges ql 
(according to Eq. (2)), will be given by, 

F ~ 
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(r, - r,) . a, - (r. VI)' + (r . vI)(r . V,) - (r . v,)'] }. (6) 

When we add F of q2+ on q1+ with F of q2+ on ql- we get: 

(7) 

Adding F of q2- on q1+ with F of q2- on q1- yields: 

F -

(8) 

Adding Eqs. (7) and (8) yields 

dF = qI+q,. r { 3 [~ ( ] [~ ( )] "7-'-'-'-- -r' '01+-'01_) (r· '02+-'02_ -
411"Eo r2 c2 

(9) 

Using (3) we can see straight away that Eq.(9) reduces to Eq. (1). As we let 
"1+ and 1.'12+ completely arbitrary this completes the proof that Weber's 
law yields Ampere's law even without Fechner assumptions. 

Some remarks must be made at this point. When deducing Weber's 
law from Ampere's law (the opposite path we followed in this paper) Maxwell 
supposed constant in magnitude velocities (that is IVil = constant), [14}. As 
we showed here, this restriction is not necessary. 
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It should be remembered here that when Weber derived Eq. (1) from 
Eq. (2), he assumed in the beginning Fechner hypothesis, namely, Vl_ = 
-Vl+ and V2_ = -V2+. The same procedure was utilized by Maxwell, [14], 
and Whittaker, [15], p. 201. Then, when in their works we make V2+ = 0, 
we will also have V2_ = 0 because they imposed Fechner's hypothesis in the 
beginning, and so there will be no force between the current elements in 
this case according to them. But this will not happen in Eq. (9) because 
we don't need to impose Fechner's hypothesis. If we make vl+ = V2+ ::::; 0 
in (9), keeping Vl_ and V2_ arbitrary, we still obtain Eq. (1) where now 
Ildll ::::; ql_Vl_ ::::; -ql+Vl- and 12dh ::::; q2-v2- ::::; -Q2+V2_' This shows 
how careful we must be when arriving at some conclusions based on old 
works due to the implicit hypothesis they used. Fechner's current element 
was the most simple and natural one to be introduced at that time (1845) 
when the internal nature of a current was unknown. Nowadays we know it 
is untenable. Even so from Weber's law we still get Ampere's law using (3) 
and without Fechner's hypothesis, as we've shown. 

Another aspect worth to note is that in the final expression, Eq. (9), 
the accelerations ofthe charges don't appear. Although each charge can have 
arbitrary acceleration, at the end this won't matter, in so far as Ampere's 
law is concerned. This is the reason why Gauss' law {14] can also yields 
Ampere's law, as it only differs from Weber's law in the acceleration terms: 

F 
qlq2 r [ (Vt- V2)'(VI-V2) 3 i2l G ---- 1+ ---

aUSS - 411"£0 r2 c2 2 c2 • 
(10) 

Using Eqs. (4) and (5) in Eq. (2) we can show that Weber's law is equivalent 
to Gauss' law with (rl - r2)' (a1 - U2)/C2 inside the square brackets of Eq. 
(10). As is well known, [14], despite this success Gauss' law is untenable 
because it is not consistent with the principle of conservation of energy and 
also because we can't derive Faraday's law of induction with it. To derive 
this induction law and to conserve energy the acceleration terms of Weber's 
law are essen tia!. 

With this in mind we can understand why Ritz's law [16, 17] is also 
untenable. The main reason is that Ritz's law for the force that q2 exerts on 
ql depends only on the acceleration of Q2, but not at all on the acceleration 
of ql. As we showed in another paper, [8J, the acceleration of ql or m1 in 
Weber's law is essential in order to derive an equation of motion similar to 
Newton's second law and the proportionality between inertial and gravita
tional masses, so that we need it in order to implement Mach's principle. 

It is important to emphasize once more that Eq. (1) is the correct 
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expression for the force between two neutral current elements. This was the 
scope of Ampere's experiments (he worked only with neutral metallic cur
rents). When we derived Eq. (1) from Weber's force, Eq. (2), we supposed 
q1- ::;::: -ql+ and q2- = -q2+ so that the net charge of each current element 
was zero. This shows that we cannot apply Eq. (1) as being the correct 
expression for the force between two charges in motion. An expression for 
the force in this case (electric charges in motion) is given by Weber's law, 
Eq. (2), and another expression is Lorentz's force law together with the 
Lienard - Wiechert retarded potentials. For instance, the force between two 
electrons in motion in the laboratory is given by (2) but not by (1), because 
each electron has a net charge so that they cannot be considered neutral 
current elements. 

\Ve should mention here another misconception regarding \\Teber's 
law, this time related to the relative velocity and acceleration between two 
charges. The correct expressions are those given by Weber, Eqs. (4) and (5). 
These are truly relational quantities as they have the same value for any ob
server, even for noninertial observers. On the other hand some authors, for 
instance see [18, 19], when discussing Weber's law and some modifications 
of it talk of the relative velocity between two charges as 

(11) 

But this is not the correct expression for the relative velocity in We
ber's sense because the value of u depends on the observer. To see it, 
consider two charges at rest in the laboratory separated by a distance r, one 
of them being at the origin and the other on the x axis. To an observer at 
the origin spinning with a constant angular velocity WZ, the values he will 
find are: r::;::: T12' Vl2 ::::: 0 as in the laboratory frame, but U::::: !V12! ::::: wr 
while in the laboratory frame u ::::: O. This simple example illustrates the 
relational character of r while it shows that !V1 - V2! has not always the 
same value for any observer. Concerning the relative acceleration, the cor
rect expression is that given by Eq. (5), which, in general, is different from 
T' (al - a2) and also from jal - a2J. 

Another aspect to be touched upon refers to Ampere's law, Eq. (1). It 
is often claimed that Ampere's law has a weakness because it doesn't predict 
a torque between two current elements (as it is a central force). For instance, 
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in \Vhittaker's classical book one reads [15], p. 86: The weakness of Ampere's 
work evidently lies in the assumption that the force is directed along the line 
joining the two elements; for in the analogous case of the action between 
two magnetic molecules, we know that the force is not directed along the line 
joining the molecules". And in the next page (p. 87): "Helmholtz assumes 
that the intemction between two current elements is derivable from a poten
tial, and this entails the existence of a couple in addition to a force along 
the line joining the elements". In our opinion, this is not a fair statement 
relative to Ampere's law. Each current element I dl has, besides its location 
in space, a special direction, namely, that of the electric current. As such it 
has a vectorial character and is not a scalar quantity. So, even when a force 
between two current elements is directed along the line joining them we can 
have a torque between the current elements. This can be seen from Eq.(I) 
which involves the angle between the current elements and also the angle 
between each current element and the line joining them. This torque has re
ceived a special name by P. Graneau, namely: Alpha-torque forces, [20]. Its 
action has been seen in many experiments performed by Graneau. He states 
the origin of these torques in this way: "If the stored energy changes when 
one of the circuits is rotating with respect to the other, then there must exist 
a mutual torque between the circuits"'. Another way of understanding the 
origin of these torques is to remember that each current element cannot be a 
material point since it has a direction in space. So, we can imagine each one 
of them with a linear dimension dl (small but not negligible). In this view 
the torque arises because the force on the tip of the current element will be 
different from the force on the tail of it and so a torque can be produced. 

There is an important point which should be discussed here related 
with the conduction of current in metals. As has been correctly pointed 
out by Graneau more than once, Ampere's force, Eq. (1), ads on the fixed 
lattice of the metal (straining atomic bonds, etc). On the other hand when 
we derive Eq. (1) from Eq. (2) we need to take into account the force of 
the electrons on the positive ions of the lattice and vice-versa, as well as the 
force of the positive ions on one another and the force of the electrons on 
one another. In order to make these two approaches compatible it would be 
necessary a transfer of momentum from the electrons to the lattice, so that 
Ampere's force would act between conductor atoms and not between con
duction electrons. It is not clear how this transfer of momentum can happen 
because in the modern theory of conduction the electrons in metals are said 
to drift freely in the "Fermi sea". We can only suspect that this happens 



- 448-

through the friction wl1ich makes the electrons flow at a constant drift speed 
when there is an applied constant voltage in the metallic wire (voltage due to 
a battery, for instance). The imperfections in the lattice cause this friction 
which blocks the free motion of the electrons and these, in their turn, accord
ing to Newton's third law, make an opposite force on the lattice. This would 
be the origin of the ponderomotive force on the lattice. That is, this force 
is exerted indirectly through the currents. Anyway it should be emphasized 
here that this problem is not restricted to Weber's law, but is implicit in 
any theory which derives the force between current elements based in a gen
eralization of Coulomb's law. For instance, if we begin with Lorentz's force 
law, together with the Lienard - Wiechert retarded potentials, and follow a 
procedure like the one presented here, adding the force of q2~ on ql+ and 
ql-, plus the force of q2+ on ql+ and ql-, we end with Grassmann's law (see 
[16], pp. 518 - 523). Puting aside the controversy surrounding Ampere's 
force law versus Grassmann's force law, the same problem of the mechanism 
responsible for the transfer of momentum between the mobile electrons and 
the fixed ions appears here in Lorentz's force law yielding Grassmann's law, 
as with Weber's law yielding Ampere's law. A correct understanding of this 
problem is greatly desirable but has not been supplied up to now. 

It is also of interest here to generalize, without making resort to Fech
ner's assumptions, the energy of interation between two current elements 
according to Weber's law. The mutual energy of two moving charges is, 
according to Weber: 

u- qlqZ 1-.!....-. ( ., ) 
- 47r£OT 2c2 ' 

(12) 

Weber showed that his force law, Eq. (2), could be derived from this velocity 
- dependent potential energy and that it was consistent with the principle 
of conservation of energy. As in the derivation of Ampere's law we must 
add four terms to get the mutual energy between i1dlt and 12dl2, namely 
U2+,H, U2+,l-, U2-,H and UZ-,l-. Neglecting the energy of formation of 
each current element (the self-energy) we get for this mutual energy: 

dU = po hI, (f. dl,)(f . dl,), 
4r. T 

(13) 
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where I 1dl1 and hdl2 are given by (3). If we put Va = V2+ = 0 this 
result will remain valid. It must be emphasized that this is not the same 
energy as that given by F. Neumann [15], which is 

(14) 

But it has been proved elsewhere that these two expressions give the same 
result when integrated round either closed circuit [15], p. 233. The same 
considerations are valid for the vector potential which in Neumann's and 
Weber's theories are given by, respectively, [15J: 

(15) 

where hd12 in Weber's case is given by (3). 
This completes the revision of Weber's law and its correct interpreta

tion and use. 
In conclusion, we can say that even with the modern current element 

(fixed positive ions and free electrons being the responsible for the current), 
we can derive Ampere's law from \Veber's law. Also the mutual energy be
tween two current elements, Eq. (13), can be obtained with this modern 
current element, expression (3). To do so we only need to use the correct 
relative velocity and acceleration between two point charges, Eqs. (4) and 
(5). 
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