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Abstract. \Ve compare the self-inductance formulae of0reumann, Weber, Maxwell and Graneau. To 
this end we present exact and algebraic formulae for the self-inductance of solenoid~, bi-dimensional 
rings and coaxial cables. We show that these four formulas agree exactly with one another for 
closed circuits. 

PACS llmnber(s): 03.50.De, 41.20.Gz, 41.90.+e, 84.90.+a 

1 Introduction 

We IOhall utilize in this work a powerful method of calculating inductances. With this method 
one can obtain exact and algebraic results, instead of approximation formulae that are pre
sented i~ most situations. Vle have recently prcsented this method[I]. Although Sommerfeld 
had preHented a similar formula in hi~ book ([2], p. 105), he dealt only with Neumann's 
expression. In thi~ work, and in the preceding one [1], we extend the method for the induc
taJl(~e formulae of Weber, Maxwell and Graneau. Let us first discuss briefly their hi~torical 
appcarancc. 

Consider flo frame of reference S with origin 0 and two current elements I,d£, and IJdC~ 
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located relative to S at r;, and ~, respectively. In 1826 Ampere obtained the force exerted 
by J on~, d2~" as ([3], Chapter 4): 

(Ll) 

where Po = 411" X 1O-7kgmC-2 il> the vacuum permeability, r'J = Ir:.-~I and i,) = (r.-f;)/r'F 

When we integrate this exprel>sion over the two closed circuits C. and C) the force can 
be written as: 

~ 110 1 i i dl, x (d£; x f,,) 
Fc,c. = 4~ .1) 2 

1r C. c, 7'" 
(12) 

In 1845 F. Neumann introduced the coefficient of mutnal inductance MN I>howing that 
this force betwe€n two rigid dosed circuits might be written as 1,1, V MN, where 

MN = Jf·o J J dl,.d1~. 
411" Ie, Ie, r" (1.3) 

In 1846 W. Weber introduced a force law from which he could derive as special cas€l:l 
Coulomb's force and Ampere's force (1.1). [3]' Chapter 3. In 1848 he introduced a potential 
energy d?Uw between two point charges dq, and dq) from which he could derive his force as 

d'UW = dq,d% ~ ( _ i~J) 
. 'J 1 _?' 

41rC:o T'J 2G-

where Co = 8.85 X 1O-12C2 N- 1m-2 is the permittivity of free space, C = 

1Q8ms-l and i'J = dr"tJ/dt_ 

(1.4) 

1/ JfLoco = 3 x 

Cow;idering the neutral current clements a~ being composed of positive and negative 
charges (dq_, = -dq+t and dq_) = -dq+)) and adding the energy of interaction beb .... een 
the positive and negative charf',es of one current element interacting with the positive and 
negative dwrgcs of the other current clement yieldH: d2U,~ = IJ,d2 JvI,~v, where 

(1.5) 

Here it was utilized I,de. = dq+,(v+, - v_,) and IJd£; = dq+,(v+) - v-J), where Va is the 
velocity of the charge dqa relative to S, see [3], Section~ 4.2 and 4.6. 

Maxwell worked with an expression for lvi which was half Neumann'~ expression plus half 
-'Neber's expres~ion. Nowadays the simplest way to derive Maxwell's formula is to work with 
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Darwin's lagrangian. Accordingly the energy of interaction between the charge~ dq, and dqJ 
moving with velocitier; ii, and vJ it! given by ([3], Section 6.8; [4], Section 12.7, pp. 593-595): 

(1.6) 

Adding this expre8r;ion for the positive and negative charge of one current element in
teracting with the por;itive and negative charge of the other current element as we did for 
Weber'r; law yields Maxwell's exprer;r;ion rJ7-U,~ = I,IJ d2 J.H,~, where 

(1.7) 

More recently P. Graneau introduced a fourth formula to calculate the mutual energy 
or mutual inductance between two current clementr; froUl whidl he could derive directly 
Ampere's force (1.1), namely ([5], p. 212): 

(1.8) 

All ther;e four expressions for d2 M can be summarized in a ~ingle formula, namely: 

(1.9) 

where if k = 1, -1,0 or - 5 we obtain, respectively, the formulas of Neumann. Weber, 
Maxwell and Graneau. 

It has been known for a long time that all these formulas agree with one another when 
we calculate the mutual inductance between any two dosed circuits. Only recently we have 
been able to prove that the same is also valid for the self-inductance of a ~iIlgle closed circuit 
of arbitrary form, [6]. In this work we ill1.llitrate this equivalence calculating exaetly with the 
four formula;; presented above the r;elf-indudance of a solenoid and bi-dimenr;ional ring, as 
thil>· detailed comparir;on had never been done before. 

For filiform circuit~ the integration of Eq. (1.9) yields infinite result~. To avoid thir; we 
generalized thir; expretlsion for current flowing over the surface of bi-dimenr;ional conductors, 
namely ([1]): 

(LlO) 
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where f. is the unit vector indicating the direction of the current flow, w is the width (trans
verse to £) of the conductor and da is an element of area in the conductor (see Figure 1 for 
an example). 

/ 
do , 

- W, r!, - i 
I 

, 

r,.' 
w, 

'---', 

t I , 
0 

jii 

Figure 1: Bi-dimensional circuit illm;trating the meaning of w, £ and da. 

2 Solenoids and Bi-Dimensional Rings 

The self-inductance of the solenoid and of the ring will be calculated with the geometry 
presented in Fig. 2. The cylinder has a length e and radius n., in which flows an uniform 
~urface poloidal current density K given by (I/P)~, where 1> is the unit vector in cylindrical 
coordinates (p, rp, z). Here I is the total current flowing through the length g, 

[ 

Figure 2: Cylinder with surface poloidfoll current density. 

On replacing in Eq. (1.10): £, = ¢" CJ = 1), da.,. = adz,d¢>" da] = adz]d¢>J) w, = WJ = £, 
r, = ap, + 0 = a PJ + zJz and the limits of integration yields 
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(2.1) 

where p == 2a/f!., q == p/(1 +p2)1/2, K and E are, respectively, the complete elliptic integrals 
of the first and second kinds[7]' pp. 907-908. The first to obtain the self-inductance with 
this geometry in terms of elliptic integrals was Lorenz [8]' p. 142. He worked only with 
Neumann's formula.. Here we obtained for the first time in the literature the same result 
with the other formulae. This is a highly non trivial result. 

The result in (2.1) is independent of k, so it hM the same value for the formulae of 
Neumann, \Veber, Maxwell and Graneau. It is also exact and presented as an analytically 
simple expression. As it was obtained without restrictions on f. and a, it is valid either for 
the self-inductance of a long solenoid of length fi. and radius a (f.» a), obtained by winding 
N turns of wire on a cylindrical form, or for the self-inductance of a bi-dimensional ring 
(fi.« a). 

The expansions of Eq. (2.1) for the two li:mits cited above (f. » a anci f. « a) are, 
respectively: 

(2.2) 

(2.3) 

In most textbooks we find a result for the solenoid with N turns valid for f. » a (see, for 
instance, [9]' p. 442). The method utilized in the textbooks is given by L = dift/dI1 , where 
<I> is the magnetic flux over the circuit, and 11 is the current in each turn. This method is 
only useful in highly symmetrical situations in which we can easily calculate <1>. The result 
they obtain is given by 

, 
L tertbooks -" N 2 ~ 

poloidal - ,....oJr fi. . 

Eq. (2.2) presents this result with corrections of higher orders. 

(2.4) 

The difference in the factor N 2 is only a matter of definition. In the textbooks the 
magnetic energy of this system is given by Llr /2, with L given by (2.4), as they concentrate 
their analysis in the current h in eadl turn. If we concentrate on the total current I = N h 
over the whole length f. of the cylinder, the magnctic energy will be given by LI2/2, with L 
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given by (2.2), so that the rne(i.'illI(l.ble ~elf energy agrees with the previous value. However, 
this ia.::lt approach is preferable in some respects as it preserve~ the idea of L depending only 
on the geometry of the system. In the solenoid when we change the number of turns N, 
keeping IJ constant, the geometry (length £ and radius a. of the cylinder) is not modified, so 
that L should remwn the same. This happens with (2.2) but not with (2.4). 

3 Coaxial Cable 

In Fig. 3 we present the geometry for calculating the tielf-indllctance of the coaxial cable. 
There are two coaxial cylinders of radius a and b, and length f.. The surface current denfjity 
K flows uniformly along the z direction on the outer cylinder and -z on the inner one. 

/ 

-
( ! \ 

~ 
b 

T\ To -K. z - :v 

\ 
Figure 3: Two concentrical cylinder:; making a coaxial cable, with oppooite currents flowing 
along the axial direction. 

The self-inductance of the coaxial cable is given by: La + Lb + 2M".I,. Here La (Lo) is the 
self-inductance of the cylinder with radius a (b), and IvI,,/> is the mutual inductance between 
the two cylinders. For La we ::;ubstitute in (1.10)· i, = i) = Z, da, = adz,drp" daJ = adzJd¢'J, 
w, = wJ = 27ra, ~ = ap, + z.,z, ij = apJ + zJz and the limits of integration to obtain: 

(3.1) 
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For the coaxial cable we are just interested in the result of Eq. (3.1) for the limit £ » a. 
Considering this approximation we obtain: 

",e [ (2£) (k-3) 2a la' 1 L. ~ ~ In - + ~- + --(3 - k) + --(k - 2) . 
2'Ir a 2 'Ir£ 2£2 

(3.2) 

Analogously: 

LbRj~ In - + ~- +--(3-k)+--(k-2) . ",e [ (") (k-3) 2b Iii' 1 
211" b 2 'Ir£ 2(1 

(3.3) 

For calculating the mutual inductance between the two cylinders of Fig. 3 we substitute 
in (1.10): e, = -fJ = Z, da, = adz,d</>., daJ = bdzJdr/lJ, w, = 2'Ira, WJ = 21fb, ~ = ap, + z,.z, 
'0 = bpJ + zJz and the limits of integration: 

AI ab = /io 3 r21f 
d</>, r21r 

d¢J t dz, t dZJ 161f)0 )0 )0 )0 

[(
1+ k) 1 

x ~2- [a2 + b2 2abcos(¢, ¢J) + (z, ZJ)2P/2 

(l-k) (Z,-ZJ)2 1 
+ ~2- [n.2 + b2 2abcos(¢, ¢J) + (z, zJ)2]* 

~ _p, [In (") -In,+ (k-3) + (3- k)~ll_'IE( 2i.,ft) 
21f a 2 1f f. 11 - 1"1 

+ (k ~ 2) (1 + 1"2) ;:], (3.4) 

where i = A is the imaginary unit, 1" =::; b/a > 1 and we have considered R.» b > a. 

Finally, aI:J L""a:r;mi = La. + Lb + 2Mab , from (3.2) to (3.4) we obtain: 

(3.5) 

In [10]' VoL 2, pp. 24-1 to 24-3, we find the self-inductance of a coaxial eable analogous 
to that of Fig. 3. It was obtained utilizing U = L[2/2, where U is the magnetic energy 
calculated through J J J B 2dV/(2J.4j) (B being the magnitude of the magnetic field). The 
result they obtained (HllppOHing £» b > a) was: 

InT". (3.6) 

This result is exactly the zeroth approximation order of Eq. (3.5). 
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4 Conclusions 

In t1m; work we have obtained analytically exact expression for the self-inductance of It 

solenoid or a bi-dimensional ring, Fig. 2 and Eq. (2.1), using a powerful method of inductance 
calculation [1]. With this method we have also calculated the self-inductance for the coaxial 
cable, Fig. 3, in the limit of its length being much greater than its outer radiuo;, Eq. (3.5). 

For the cylinder with closed poloida.l linC'ii of current, Fig. 2, we have obtained an exa<"t 
equivalence between the formulac of Neumann, Weber, Maxwell and Granea.ll, see Eq. (2.1). 
This exact equivalence is the main rcs\llt of this paper. 

On the other hand, for the cylindero; with open axial lines of currcnt, Fig. 3, we havc not 
obtained this equivalence as the final expression depends on k, see Eqs. (3.2) to (3.5). Thi'l 
dependence on k will disappear if we cOlll;ider dosed lines of current (taking· into accolmt, 
for ino;tance, the radial currents at the lids in the two extremities of the coaxial cable of Fig. 
3) [6]. This means that this dependence on k is not important for any experiment involving 
only closed circuits a.s it will disappear and will not be detected by any experimental means. 

For a general proof that the self indudance of a closed circuit of arbitrary form h; the 
~a.me with aU these expressions, see [6J. In this work we ha.ve been concerned in showing this 
complete equivalence in specific examples which allowed exact integrations, as was the ca.'ie 
of the solenoid and bi-dimensional ring. 
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