
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. PART I. VOL. 47. :-';0. L JANUARY 2000 63 

Transactions Briefs ___________ --'-,,-__ 

Surface Charges and Fields in a Resistive Coaxial Cable 
Carrying a Constant Current 

A. K. T. Assis and J. 1. Cisneros 

Abstract~We calculate the surface charges, potentials, and fields in a 
long cylindrical coaxial cable with inner and outer conductors of finite con
ducti\'ities and finite areas carrying a constant current. It is show-n that 
there is an electric field outside the return conductor. 

Index Terms-----Classical electrodynamics, coaxial cable, Surface charges. 

L INTRODUCTION 

In the study of dr and low frequency ot circuits, the following sub
jects are seldom analyzed in electromagnetic books: electric fields out
side the conductors. surface charges on the wires, and energy flow from 
the sources to the conductor.; where energy is dissipated. There are two 
main reasons for this: I) The scalar electric potential is the solution of 
Laplace's equation with frequently complicated boundary conditions; 
and 2) the solution of elementary circuits, based on Ohm's law, is ob
tained by the application of Kirchhoff's rules. As these rules utilize 
only the values of current and potential inside the conductors, the dis
cussion of the subjects listed above is unnecessary. However. some au
thors have treated these topics in the past few years (see fll-[3] and 
references therein). The case of a long coa;>;:ial cable has been treated 
by Sherwood, [3J, Marcus, [4], Sommerfeld, [5] (German original from 
1948), Griffiths, [6]. and a few others. All of these works considered 
an equipotential return CondUClOr either with an infinite area or with 
an infinite conductivity. Our goal in this work is to generalize these 
assumptions considering a return conductor with finite area, finite con
ductivity, and a variable electric potential along it~ length. We first dis
cussed our work at the International Conference on Relativistic Physics 
and Some of Its Applications in 1998[7J. We calculate at all points in 
space the scalar and vector potentials. the electric and magnetic fields 
and analyze the energy now by means of the Poynting vector. We also 
calculate the surface electric charges. To our knowledge the only one 
who has considered these generalizations before has been Jefimenko. 
[2]. However. he restricted his analysis 10 the fields inside the cable. 
He did not calculate or mention the electric field outside the cable and 
this is our main contribution here. We show that Ihis electric field has 
not only a longitudinal component parallel to the cable but also a radial 
component due to surface charges distributed along the outer surface 
of the resistive relllrn conductor, even for constant currents. 

The geometry of the problem is that of Fig. I. A constant current 
I nows uniformly in the:;; direction along the inner conductor (radius 
(/ and conductivitY!Jl). returning uniformly along the outer conductor 

.-, (internal and external radii Ii and c, respectively, and conductivity lj3). 

The conductors have uniform circular cross sections and a length ( » 
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Fig. I. Geometry of the problem. 

c > II > II centered on:c = O. The medium outside the conductors 
is considered to be air or vacuum with '0' = '0" = 8.85 X 10- 12 C l 

N- 1 m-2. The potentials at the top extremities (:c = (/2) of the inner 
and outer conductors are maintained at the constant values O __ l and ° H, 

respectively. The potentials at the bottom extremities (~ = -(/2) of 
the outer Ul!d inner conductors are maintained at the constant values 
0(" and OJ), respectively. 

In the previous works quoted above (with the exception of that by 
Jefimenko), the authors considered only a particular case: an equipo
tential outer conductor (¢(' = OB = 0) with an infinite area (Som
merfeld, ( ..... x) or with an infinite conductivity (Griffiths, !J:s .... xl. 
We are interested in calculating the potentials and fields in a point 
r = ((I. y.~) such {hat ( » p and I » I~I, so that we can neglect 
border effects (fi . .p and ~ are the cylindrical coordinates). AI! ~olutions 
presented here were obtained in this approximation. With this appro;>;:
imation and geometry we then have the potential as a linear function 
of ~. [8]. In order to have uniform currents nowing in the :c direction 
along the inner and outer conductors, with a potential satisfying the 
given values at the extremities, we have 

O",-(,'Iv 01+0J) 
O(p::; 0.<;,:;;) = :c+ -' 2 (1) 

OR-O(" O("+OB 
?(b:Sp:Sc,y,~)= ( ~+ 2 (2) 

where. by Ohm's law (R I and R:I being the resistances of the inner and 
outer conductors, respectively) 

(3) 

(4) 
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Inthefourregions(p < o,a < p < b,b < p < c,andc < p) 

the potential 0 satisfies Laplace's equation y- 2 o = O. By (I) and (2) 
we have the value of 0 in the first and third regions, which also supply 
the boundary conditions at p = a and at p = b in order to find 0 in the 
second region. To fmd m in the fourth region we need another boundary 
condition. in addition to the value of oat p = c, which is given by (2). 
We then impose the foliowing boundary condition: 

O(p=C.,;-.::)=O. (5) 

This is the main nontrivial boundary condition for this problem. It 
says that the potential goes to zero at a radial distance p = ( so that 
the length l of the cable appears in the solution. The usual condition 
o(p -+ oc. 'i'.;;) = (1 does not work in the situation considered here. 
We first tried this last condition, but could not obtain a correct solu
tion for the potentiaL We only discovered (5) working backward. That 
is, from the work of Russell we knew that, in general, the density of 
the surface charges on a system of long parallel homogeneous conduc
tors in steady-state (as is the case of the coaxial cable being considered 
here) varies linearly with distance along the direction of their common 
axis [8]. That is, if d represents u. /) or c. the surface charge densities at 
these surfaces must be given by I)" d(::) = A.d:: + B,I. with the constants 
• .,La and Bd characterizing each surface. We then obtained the potential 
at all points in space by 

0(7) = _1_ 
.IT.o 0 

(6) 

Here the sum goes over the three surfaces p = i!, b, and r. extending 
from:: = -(/2 to:: == £/2. After solving these integrals we discov
ered that 6 went to zero, not at infinity, but at p = [. Although this 
difference is important mathematically in order to arrive at a working 
solution, physically we can say that the potential going to zero at p = ( 
is equivalent to it going to zero at infinity. As we are supposing { » 
(' > IJ > a, we are essentially imposing that the potential goes to 
zero at a large distance from the cable, which is reasonable. 

Here we are reversing the arguments, as this is more straightforward. 
That is. we are beginning with the boundary conditions for o. obtaining 
the solutions of Laplace'~ equation, the electric field t = - y- cp and 
then IJ by Gauss's law. 

The boundary conditions are then the values of & at p = a, p = IJ, 
p = c. and p = £. They are given by (1), (2) and (5). The solutions 
of Laplace's equation ,,20 = 0 for a :$ p :$ b and for c $ pin 
cylindrical coordinates satisfying these boundary conditions yield 

o(a$p$b,'i',::) = [
0."1 - ¢D + ({J(' - OR _ 

( " 

+ OA+({JO-OC-dJ13]ln(b/P) 
2 In(b/a) 

[
6B-OC _ or+&B] 

+ ( - + 2 

[ CO"R'-o-[~"OC~ Oc + OR] 6(c:$p.",.::)= - ,;.+ 2 

lllU/p) 
. InU/t)' 

The electric fiele): f' = .-y-0 is given by 

t(p < OD - 0."1 
a . .;.::) = ( 

(7) 

(8) 

(9) 

f(a < p < b . .,:;.::) = 

1 P 

[OA-Of)~Or-OR :: 

+ OA + OD - 0(" - OR] 
2 lu(b/a) p 

+ [or 7 OB + Ou - OA ~ OR - 6c 

In(ll/p)] , 
lu(b/a) -

i'I Oc - OR 
l:-(b < p < c..;.::) = _ 

f(c < p . .,:'.::) = 

+0('-01> 

~ + 0('; OR] 

lnU/p) " 
lllU/C) ::. 

(10) 

(11) 

1 P 
lnU/e) p 

(12) 

Equations (7) and (10) had been obtained by Jefimenko, [2], who also 
discussed the flow of energy in this system. He considered 0(' = O. 
OD = 1-,0,4 - OR = RI. OF; - iJJ(' = RbI. OD - OA = RaI. 
I = l'/(Ra + Rb + Rl and his:: isequaJ to our:: plus (/2. Here 
Ra is the resistance of the inner conductor, Eo is the resi~tance of the 
outer one, 1" is the constant voltage maintained by a battery, and R 
is an external resistance between A and B. With these replacements 
in our (7) and (10) we recover his solutions. The main aspect to be 
emphasized here are our solutions (8) and (12). They were nO! obtained 
by lefimenko (who did not study the fields outside the cable). They 
show the existence of an electric field out~jde the resistive cable, even 
when it is carrying a constant current. 

Assis discussed elsewhere another kind of electnc field outside con
ductors carrying constant currents [9], [10]. It is usually called motional 
electric field and is proportional to second order in I'd/C. where Cd is 
the drifting velocity of the electrons and c = 3 x 10" m/s. However, its 
order of magnitUde is much smaller than this one considered here (pro
portional to the potential difference along the cable, or to its current or 
to the drifting velocity of the conduction electrons). For this reason we 
do not need to take it into account here. 

The surface charges densities IJ along the inner conductor (p = a. 
IJ a (::») and along the inner and outer surfaces of the return conductor 
(p = b. IJdz) and p = c. !lc(::)) can be obtained easily utilizing 
Gauss's law 

fj t·dil= ~ 
'0 

5 

(13) 

where dil is the surface element pointing nonnally outward the 
closed surface S and Q is the net charge inside S. This yields 
I)"o(z) = ::oE2p(p -+ a.::), IJb(.~) = -::oE2p(p -+ b.z), and 
(Te(::) = ::aE4r(P -+ c.::) where the subscripts 2p and 4p mean the 
radial component of t in the second and fourth regions, a < p < b 
and r < p, respectively. This means that 

1 
In(IJ/n) 

[OA-¢LJ~Or-OB :: 

+ OA+OV-O('-¢FJ] 
2 

1 [OB-OC oc;:-os]. 
-In-(l-/-c) ( :: + c: 

(14) 

(15) 

(16) 

' .. 
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Once more, lefimenko could obtain only IT" and (1/, but not (J" which 
has been calculated here. 

An alternative way of obtaining () and i i~ to begin with the surface 
charges as given by (14)-( 16). We then calculate the electric potential 
o (and E = -\:"u) through (6). 

We checked our results with this procedure. To this end we needed 
essentially the following integral (with .II and .Y constants and where 
d can represent the rddii II, Ii, or (.) 

I,,=~l 1"" to 
--I",,, ",=0 _",=_,/~ 

(_II :., + .Yld 11.,:, ,,~., 
(7) 

With ( 'j> p. ( 'j> d and ( 'j> I~I this yields, for p ::; d and p ~ d. 
respectively 

d(JL + _Y) 
[l(('~d)= _ 

--." 

I 
In -

" 
I 

In -. 
p 

(18) 

(19) 

We can calculate the vector potential utililing this integral in the usual 
expreSSIOn 

i( 1"') ,fl" 

11 1:"11 
(20) 

where II" = --liT x 10- 7 kg m C'~ and ,/1- 1 is a volume element. With 
the approximation above and uniform current densities in the inner and 
outer conductor.; we obtain 

X(P:So . .,;.~) 
11,,[ 
:b-

X(" :S /' ::; ('. ,:'. :) 
= '!..d [("~lll((-II'i 

1;r ,.-' Ii' 

(21 ) 

(23) 

(24) 

The magnetic tield can be obtained eilher through the magnetic cir
cuital law :p' jj . (Ir = 11,,[. or through jj = '\ x .-1. Both approaches 

._. yield the same result:,.namely II,,! p 
E(p:S 'I.,:'.~) = 1;r II" ,:' (25) 

- --I='!..d B(h:S/,:S,·,..·_ 'J 

-" 
(2 _ 1/ ;: 
,.~ -I)~ Ii 

(26) 

(27) 

This completes the solution of this problem. Jt should be stressed once 
more that all these equations are valid at a point r =. (fl . .;. :) such Ihat 
( » p and ( 'j> 1:1. . 

II. THE SYMMETRICAL CASE 

We now consider two equal batteries symmetrically located on both 
ends. such that Of) = -0 .. \ == 01 and OJ-j = -0(' == 0,). In this case. 
the potential is simply proportional to ~ without any additive constant. 
We can then write it in tenns ofthe currents and conductivities as given 
by 

0«(1 

I, 
o(p::; II) = ----, 

KgI"-

o(li:Sf'-::c)== 
"[13«·2 

(29) 

(30) 

(31) 

(32) 

A plot of o( p) versus fl is given in Fig. 2. In order to obtain this plot we 
utilized the following data; rI = O.DOlO m. Ii = D.OO-IO m. (' = ().\)O-li" 
m, [= _:i0 A, tIl = 'J,T x IO" m- I n- I 

. .'tl = 1 x 10" m- I [1-; 

and I = I I}1. There are two curves, one for: = ().OO;~ m and another 
for: = ().{J()[j m. We see that the potential is constant for 0 :S II :S iI. 

increases between (! and I" is conSlant between /), and ,'. decreasing for 
P > ('. As we saw before, it goe~ to lerO at I' = I. As E = - '\ u. 

the: component of i is given by E, = -o(I'J/:. The point where 
oUi) == 0 is f! = C where., "-2 

.'JIII-In(rI)+'tl(r·--1i lln{!!) 
~=('XjJ ., 'I" . (33) 

.'I,II-+!J-l/('- I-j 

Sommerfeld orGriftiths 's solutions are recovered laking .'tl {('" -1,'- ) -
X,suchlhat~----.!!,IT,(~)-().l(" > b)-(),andu{f,~II)-O 
for any :. The opposite solution when the current flows in an inner 
conductor of infinite conductivity, returning in an outer conductor of 
finite area and finite conductivity is also easily obtained fwm above 
yielding~ --+ 1/,£(1' < ") - (J. and n(,! :S II) --+ o for any :. In 
Fig. 3 we plotted the equipotentials with the same data as above, in 51 
units. The values of the surface charges at ~ = 0.001 m obtained from 
(l4H16) are; iJ" == -G .. J-Il T--I x lO-u Cm- 2

, ITI, = 2.GIGTO X 

lO-ll C m- 2 , and iJ,. = --I.--1DO::!i" x 10- [:1 C m-~. As the surface 
charges vary linearly with .:, it is easy to find their values at any other 
distances from the center of the cable. 

From Fig. 3 we can see that the equipotentials for p > (' are 
inclined relative to the: -f' axis. indicating once more the existence of 
longitudinal and mdial components of the external electric field. 

In order to illustrate an asymmetric ca.~e, we plotted in Fig. 4 the 
equipotentials for 0,4 = -l.lJ V, OR = 1.-3 V,o(' = (J.O V and 
(1) == 1.0 V. They were obtained from (l)---{8). The values of u, 
b. (", and 1 are the same a.~ above, .'/1 = ·J.-;-O X 10(' m- I n- I and 
!I:l = 1.23 x 1(/' m- I 

[1-1. As we obtained algebraic ~olutions for 
the fields. potentials, and surface charges. it i~ easy to apply them for 
commercial cables. In this way we can know the orders of magnitude 

(28) of these quantities for several standard cables. 
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III. DISCUSSION 

The distribution of charges given by (14)-(16) are equivalent to equal 
and opposite charges in the facing surfaces. That is, the charge at the 
position p = a . .;. in a length d;;. dqa (;;) = 2rrad;;(T a (;;) is equal and 
opposite to the charge at the position p = b. ;;. in the same length 
d:;: dtfb(:;) = :brb d:;(!b(:;) = -dq,,(;;). The electric field outside the 
coaxial cable depends then only on the surface charges at the external 
wall of the return conductor, rr r(:;) 

, , 
Q(c:::; p . .p.:;) = - (Te(:;) In -. (34) 

- P 
The flux of energy from the Poynting vector 5 = E x jj It'o is also 
represented in Fig: J. That is, the lines of the Poynting flux lie in the 
equipotential surfaces, as" had been pointed out by [1] and [3]. The 
classical view is that the energy comes from the batteries (not repre
sented in Fig. I). In Fig. 3 it would come from the top of the graph 

moving downwards toward decreasing values of:. along the equipo
tential lines. It would then enter the conductors and move radially in 
them. In the inner conductor it would dissipate as heat while moving 
radially from p = II to P = O. while in the outer conductor it also 
moves radially from I' = b to (! = c. being completely dissipated a~ 
heat along this journey. The only region where the lines of Poynting 
flux do not follow the equipotential surfaces is for (! > c. In this re
gion there is no magnetic field. Although we have obtained an electric 
field and equipotential lines here. the Poynting vector goes to zero. 

Our analysis was restricted to constant currents and voltage~. Despite 
this fact it can also be applied to low-frequency 17(" circuits. A detailed 
study of the range of validity of this type of analysis for alternating 
currents ha~ been given by Jackson [3J so we will nO! repeat it here. 
His main conclusion is that it should be applicable for frequencies .... 
such that ... "T, <t: 1 and ..v'T~ « 1. where 'I and ,~ are the inductive 
and capacitive relaxation limes given by TI = L I R and 72 = Re. L 
and R being the inductance and resistance of the circuit. When these 
conditions arc satisfied, the skin effect is negligible. For constant CUf
rents and voltages, the surface densities of charge, the potentials and 
the fields will also be constant quantities in time. In the low-frequency 
regime, the equations obtained in this work for these quantities will 
remain valid replacing a constant 1 by 1" ,.,ill ~·t. The displacement 
current will also be negligible in this case. 

Beyond the generalizations of the previou~ works, the main non
trivial conclusion of this analysi~ are (12). (24) and (28). They show 
that although there is no vector potential nOf magnetic field outside a 
coaxial cable, the electric field will not be zero when there is a finite 
resistivity in the outer conductor. As the previous works quoted above 
considered only the case of a return conductor with zero re~i~tivity. 
this aspect did not appear. To our knowledge the first to mention this 
external electriC field outside a re~istive coaxial cable was Russell in 
his important paper of 1983 [IIJ. Our work presents a clear analytical 
calculation of this field, which Russdl could only estimate. Our paper 
mighl be considered the quantitative implementation of his insights. 
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