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Th~ problem of LWO moving bodies inleraCllng through a Weber·lile force i~ 
presellled. Trajectories arc oblained analylically onc~ relalivblic and 'luanlie 
con~jdera!ions arC n~glcclcd. The main resuhs arc tbat in Ihe ca.e Llf limited 
trajectories. in general, Lhey ~re noL closcd and in the c~.e of open Iraj~cLOrie5, 
the deflection angles ~rc not Ihe ~ame for similar rarticl~s wILh given encrllie, 
and angular momenta bUI oppo.il~ pOLentials. This last fC~lurc .uggem lhe 
po,sibilily of a direct verification .,f the validIty 01' Wcb~r'~ law of force for 
ele~lromagnelic inLera~Lions. 

1. INTRODUCTION 

The two-body problem is a classical onc in physics; its resolution 
depends on the interacting force between the two bodies. A dassical example 
is the case of central forces depending on the inverse square of the distance 
between the two bodies. Kepler's laws and Rutherford's differential scatter­
ing cross section are widely known results (Symon, 1978). However, it is 
also widely acceptcd that inverse square laws are strictly valid only when 
the bodies are not in relative motion with respect to each other. In elec­
tromagnetism, for example, if we want to treat the problem of two charged 
bodies in motion, retarded potentials should be used. This implies that in 
order to solve exactly the problem, all the previous history of motion should 
be known, and the conclusion is that the problem cannot be solved exactly; 
we can only approximate the solution in certain cases. This is due to the 
fact that we do not know what Gauss called "the keystone of electrody­
namics" (Gauss, 1867), Le., the true law of interaction between two moving 
charges. 
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A possible law orinteraction between two moving charges was proposed 
by Weber (1846). Weber's law of force has some interesting features: it 
reduces to Coulomb's law when the charges are at rest; it satisfies Newton's 
action and reaction principle; it can be derived from a velocity-dependent 
potential; it is completely relational, since it depends on the relative distance, 
velocity, and acceleration of the moving charges, so it has the same value 
for any observer; Faraday's law can be derived from it; and also Ampere's 
law for the force between two current elements (Ampere, 1825) can be 
derived from it. 

In spite of the renewed interest in Weber's law (Ass is. 1989a,b; Assis 
and Clemente, 1990; Wesley, 1987a) and experimental verifications of 
Ampere's law versus Grasmann's/Biot-Savart law for current elements 
(Graneau, 1982, 1983, 1985, 1989a,b; Graneau and Graneau, 1985; Moys­
sides and Pappas, 1986; Nasilowski, 1985; Pappas, 1983; Wesley, 1987b), 
the two-body problem for Weber-like interactions has not been considered 
in the literature. 

Recently, we considered the unidimensional problem of twoJ;:harges 
interacting through a Weber-like force (Assis and Clemente, 1990), finding 
implications on the limiting velocity of the charges. Here, we want to treat 
the bidimensional problem of two moving bodies interacting through a 
Weber-like potential. 

It will be shown that the problem can be solved analytically once 
nonrelativistic or quantic considerations are included. The results show 
differences with the classical problem of two bodies interacting through a 
Coulomb-like potential. The main results are the possibility of perihelion 
precession for limited trajectories and the difference in deflection angles 
between scattering of particles with the same energies and impact parameters 
but opposite potential energies. This last result suggests the possibility of 
performing some experiment to directly check the validity of Weber's law. 

It is worth noting that the necessity of performing classical scattering 
calculations based on force laws different from Coulomb's was already 
pointed out by Abdelkader (1968). O'Rahilly (1965) in his famous book 
already found corrections to Rutherford's formula by using Ritz's law of 
force (Ritz, 1911). Other force laws are available (Brown, 1955; Moon and 
Spencer, 1954; Warburton, 1946); we have considered Weber's, since it 
allows for quite simple calculations. 

2. TWO-BODY PROBLEM 

Let us consider, from a classical point of view, two point bodies of 
masses m1,2, located at rl.l(t), interacting through a Weber-like force (cgs 



Gaussian units will be used throughout): 

, ( ..., ) r rr r 
FI2=-F21=-UUI 1+---'2--, . . r c 2c 

(t) 

where Uo is a constant (UO=QIQ2 if electromagnetic interaction is con­
side red), c is the velocity of light, r = Irl - r21, ; = (r I - (2)1 r, and the over­
dOl signifies dldf. Here F'.I represents the force that particle j exerts on 
particle i. 

Without loss of generality the motion of the two bodies can be studied 
in the center-of-mass frame by introducing a fictitious particle of reduced 
mass Jl- = m,m11(m.+ m2). Since Fu is a central force, in the center-of-mass 
fram~ the angular momentum will be conserved. Introducing in the plane 
of motion a polar coordinate system r, 0, with origin at the center of mass, 
the conserved angular momentum can be expressed as 

L=W1iJ (2) 

In this work we will restrict ourselves to L T- 0, since L = 0 was already 
considered in another work (Assis and Clemente, 1990). 

The energy of the reduced-mass particle in the center-of-mass frame 
will also be conserved during interaction. It can be shown that the Weber 
force can be deduced from a potential (Wesley, 1987a) and the following 
expression for the conserved energy arises: 

(3) 

where the first term on the rhs is the kinetic energy and the second is Weber's 
generalized potential energy. 

Introducing Xl = 1 - K I r with K = U.,j J-I.c: [here the re'tri~·tlOn U'--: 

Jl-C~( 1 + c2L~/2Uol), arising from the vanishing of the potcntl.J1 enef~n \\ hen 
i = .Jic, is necessary in order to keep X2 > OJ, it results from (JJ u,ing 12) lhat 

where 

dx _ ± I [(' ')(' x')]'" dO- 2X2 xl-x X-2 

KU [ ( 2 WL') '''] xi.z=I+J-I. L2 0 I± 1+ p.U
0
2 

(4) 

(5) 

Xi.2 represent possible turning points for x; if we assume that at least one 
of them exists, the condition W~ -JLUo

2/2L2 has to be fulfilled. 
In order to integrate equation (4), it is worth noting to distinguish two 

situations as follows. 
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2.1. Uo<O. Attractive Force 

In this case x" 2: 1. If -JLUo
2/2L2$ W<O-+x;2>1 this means that 

the trajectory will be limited between the two radii r~pres;nted by xi .• , i.e., 
x~:S X 2

$ x~. If W = 0 ..... x:> 1 and x~ = 1, the trajectory is open with 1 $X
2

::; 

x;. If W> 0-+ xi > I and x~ < 1, this means an open trajectory with I :::;: x 2
'S: 

x~. In all cases x~ represents the radius of closest approach and if we take 
8 = 0 when x 2 = xi it is possible to find 

f
~' dXXl 

O .... =±2 x ((x;_X 2)(X1_xi}]1/1 ±2ix,iE(¢, k) (6) 

where £(1), k) is the incomplete elliptic integral of the second kind, 
argument 

and parameter • 
k~ -'--' (

X'-x')'" 
xi 

2.2. Vo>O. Repulshe Force 

In this case Xl '5. l. If W < 0 ..... X~.2> I, then no physical motion is 
possible, since .e<O. If W=O-Jox;> 1 and xi= I, the only possibility is 
that the bodies are at rest at an infinite distance. If W> 0 ..... x;> I and 
x~< I, this means an open trajectory with x~::s:x~::s: I once the restriction 
W::s: p..c l

( 1+ cl L~/2 VOl) is imposed in order to avoid negative values of xi. 
The x~ will represent the point of closest approach. and if we take 0 = 0 
when x2 

"" xL it is possible to obtain 

OR = ±2 f' dxx' 
x, [(xi-X2)(X2_X;)Jl!2 

±2ix,i[E(k) - E(.p, k)] (7) 

where E( cp, k) represents the incomplete elliptic integral of the second kind, 
cP and k being the same as above, and E(k) is the complete elliptic integral 
of the second kind. 

Expressions (6) and (7) formally solve the problem of the trajectory 
of two bodies interacting through a Weber-like force. It is worth noting that 
classical results due to a Coulomb-like force can be recovered by properly 
taking the limit c ..... co in formulas (6) and (7). In this case Ixll ..... I and k ..... 0 
in such a way that E( CPo k) ..... cp and £(k) ..... 1"(/2. 



"" 
J, DISCUSSION ANO CONCLUSIONS 

It is convenient to divide the discussion inlo two parts, limited and 
open trajectories 

3.1. Limited Trajectory 

This occurs when the force is altrac{ive and W < O. Excluding the 
.~pecial case in which x; = x~, which represents a circular orbit perfectly 
equivalent to the case of simple CouJomb~like interaction, in general, the 
orbit will be comprised between two turning radii defined by x;.~. Such 
radii afC the same, fOf given energy and angular momentum, as in the case 
of Coulomb-like interaction. What is different is that Ihe trajectory is not 
a closed ellipse. In Ihis respect it is interesting to calculate the angle described 
by the trajectory when the reduced"mass particle goes from the perihelion, 
reaches the aphelion, and returns to the perihelion. Such an angle is 

(8) 

It is always greater than 2-rr. Assuming r'.2 = a{ I =F E) the perihelion and 
aphelion radii (a and E can be interpreted as the semimajor axis and 
eccentricity of the ellipse approximating the orbit) ,the shift in the perihel ion 
of the orbit after one cycle can be easily calculated in the limit of small IK I: 

(9) 

This result was already obtained by Assis (1989b), where a Weber-like 
law for gravitational interaction was proposed in order to explain inertia, 
by solving the linearized equations of motion instead of linearizing the 
exact solution. The correspondence with the motion of the perihelion of 
Mercury, in accordance with general relativity, is obtained when Vo= 
-Om,m2 (0 being the universal gravitational constant) and c2 in equation 
(I) is replaced by c2 j6. It is worth noting that 61l-2-rr. with All given by 
(8), represents the perihelion shift to all orders in IKI. 

3.2. Open Trajectory 

This occurs when W2:0, independent of the sign of Un. In analogy 
with the classical Rutherford sca!tering problem, where the angle of deflec­
tion a of a reduced-mass particle with a given energy W = j.tvolj2 and 
impact parameter s, such that L = j.tvus, is given by 

(10) 
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where 52 = 4 W 2s 1 j Uo 
2

, we calculate the corresponding deflection angle a ~ 
for the attractive case as 

, I I' 4E(¢',k) 
a =4x1 E(r/J ,k)-7T"""{l_esin2¢*)1!2 (II) 

where sinl tjJ* = (xi - 1 )/(x; - x;) and e = (xi - xi)/ xi. Analogously, for 
the repulsive case, 

R E(k)-E(.p*, k) 
a = 1T-4 

(1_ e sin2 ¢*)1/2 
(12) 

where rJ>* and k are the same as for a A
• It can be seen that a A and a R are 

functions of 52 (through 4>* and k 2) and Vr//c2 (through k 2), and they do 
not coincide. This is perhaps the most interesting feature; while in Ruther­
ford scattering there is no difference in a when the sign of Uo is reversed, 
for Weber-like interactions two different deflection angles result. Moreover, 
while aR.:s; 77", as is the case for a, erA has no limit; it diverges wh!1P 5 2 

.... °, 
since 4>*--0- 1T/l and e--o-l. The difference a A 

- a R is an increasing function 
of vo2

/C
2
• As an example, we show in Figure 1 a A and a R as functions of 

S2 for the case of vo2
/ c2 = 0.2; a has not been shown, .since it is too close 

to a R in order to appreciate the difference. 
It is also interesting to compare the resulting scattering differential 

cross sections 

du 21Tsds 

dn 21Tsinada 

In terms of S2 we have in the Rutherford case 

du V. I 2dS' I V. (. ,a)-' 
dO = 16W1 d(cos a) = 16W2 sIn "2 

For the Weber attracting case: 

(
du)A V. I 2dS' I 
dO = 16 W 2 d(cos aA) 

and for the Weber repulsive case: 

( du)' V. I 2 dS' I 
dO =16W~ d(cosa R

) 

(13) 

(14) 

li5) 

In Figure 2, expressions (13)-(15) have been plotted in U(//16 WI units 
as functions of the deflection angle and v~/ c2 

= 0.2. As can be seen, a small 
difference exists between expressions (13) and (I5), but expression (14) 
strongly differs from the other at a close to 1T. In the Weber attracting case 
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Fig. 1. Deflection angles as a function of 51 = 4 W 1 s'j Uu' for vo' / f1 = 0.2 and Weber repulsive 
(curve l) and attractive (curve 2) interactiuns. 

the pole in the differential scattering cross seclion always exists al a = 7T; 

the departure from the other curves is an increasing function of v,~/c'. 
In conclusion, the problem of two bodies interacting through a Weber­

like force has been solved analytically from a classical point of view. As 
for Coulomb-like interactions, limited and open trajectories have been found 
depending on the energy of the system. Limited trajectories occur in the 
case of attractive force and negative energy; they differ from common 
ellipses since in general they are not closed curves. In this respect an 
expression for the precession of the perihelion has been obtained. 

For open trajectories, perhaps the most interesting feature is that, once 
the energy and the impact parameter are assigned, the deflection angle is 
not the same for attractive and repulsive forces, as was the case in Rutherford 
scattering. In attractive scattering the deflection angle is not limited when 
s 4 0, while in the repulsive case it tends to 7T as in the Rutherford case. 
This implies strong differences in the differential scattering cross sections, 



du 
dQ 

3 

2 

2 

Clemente ud AsIiI 

3 

a 
FIlii:. Z. Differential scantring cross sections in Uo' /16 W' units as a function of the deflection 
angle and Vo' I r' '" 0.2. Curve I represents the Rutherford case, curves 2 and 3 the Weber 
repulsive and allraClive case, respectively. 

which increase when the energy increases. This aspect suggests the possibility 
of an experimental check of the validity of Weber's law for electromagnetic 
interactions; perhaps it would be possible to detect Ihe difference in scatter­
ing angle of electron and positron beams interacting with some blanket. 
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