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Electric potential for a resistive toroidal conductor carrying a steady azimuthal current
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In this work we treat a resistive toroidal conductor carrying a steady azimuthal current. We calculate the
electric potential everywhere in space. We also present the electric field inside and outside the toroid and the
surface charge distribution along the conductor. We compare our theoretical result with Jefimenko’s experi-
ment.
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I. INTRODUCTION

In the past few years there has been a renewed intere
the electric field inside and outside Ohmic conductors ca
ing steady currents. The analytical cases known in the lite
ture include coaxial cables~Ref. @1#, pp. 125–130!, ~Ref. @2#,
pp. 318 and 509–511!, @3,4#, ~Ref. @5#, pp. 336–337!, and
@6#; a long solenoid with azimuthal current~Ref. @2#, p. 318!
and @7#; transmission lines~Ref. @8#, p. 262! and with more
detail in @9#; a long straight wire@10#; and conductor plates
carrying steady currents@11#. Sometimes this problem i
referred to as Merzbacher’s puzzle@12# and ~Ref. @5#, pp.
336–337!.

Here we consider a case not yet solved in the literatu
namely, to find the electric field inside and outside a resis
toroidal conductor carrying a steady azimuthal current.
have three goals in mind. The authors who analyzed l
straight conductors found that the potential and surf
charge density are linear functions of the longitudinal va
able z @13#. As pointed out by Griffiths~Ref. @5#, pp. 336–
337!, this is a peculiar result since the answer depends on
geometry of the circuit, that is, on the return conductor a
on the location of the battery. So our first goal in order
avoid the ambiguity of the return conductor is to utilize
toroidal conductor where the battery is clearly localized. O
second goal is to find a solution for the potential due to
current distributed in a finite volume of space, clearly cre
ing an electric field outside the Ohmic conductor. The a
thors above who obtained an electric field outside the c
ductor considered normally infinite straight conductors. T
exception are Jefimenko and Heald, who dealt with a cur
conductor~Ref. @2#, p. 318! and@7#. But their solution is also
idealized because the cylindrical resistive sheet with a
muthal current had an infinite length. The only author w
completely solved a problem with the current bounded i
finite volume is Jackson@3#, who considered a coaxial cab
of finite length. But as he considered a return conducto
zero resistivity, he obtained an electric field only inside t
cable, with no electric field outside it. Our third goal is
obtain a solution that can be compared with a known exp

*Electronic address: julioher@ifi.unicamp.br
†Electronic address: assis@ifi.unicamp.br;

URL: http://www.ifi.unicamp.br/;assis
1063-651X/2003/68~4!/046611~10!/$20.00 68 0466
in
-

a-

e,
e
e
g
e
-

he
d

r
a
t-
-
-

e
d

i-

a

f
e

i-

mental result@14#. This will be discussed in the final sectio
of the paper.

II. DESCRIPTION OF THE PROBLEM

Consider a stationary toroidal Ohmic conductor~greater
radiusR and smaller radiusr 0) with a steady currentI, con-
stant over the length of the conductor. We assume that
conductor has uniform resistivity, and the current is in t
azimuthal direction, flowing along the circular loop. The to
oid is centered on the planez50, z being its axis of symme-
try. There is a battery located atw5p rad maintaining con-
stant potentials at its extremities; see Fig. 1. We initia
idealize the battery as of negligible thickness. Later on
consider the battery occupying a finite volume. The medi
outside the conductor is supposed to be air or vacuum.

Our goal is to find the electric potentialf everywhere in
space, using the potential at the surface of the conductor
boundary condition. The problem treated here can be app
to two cases:~a! the toroid is a full homogeneous solid an
the battery is a disk; see Fig. 2~a!; ~b! the toroid is hollow
and the battery is a circle; see Fig. 2~b!. The symmetry of our
problem suggests the approach of toroidal coordina
~h,x,w! ~Ref. @15#, p. 112!, defined by

FIG. 1. A toroidal Ohmic conductor with symmetry axisz,
smaller radiusr 0 (m), and greater radiusR (m). A thin battery is
located atw5p rad, maintaining constant potentials~represented as
the ‘‘1’’ and ‘‘ 2’’ signs! in its extremities. A steady current flow
azimuthally in this circuit loop in the clockwise direction, from
w51p to 2p rad.
©2003 The American Physical Society11-1
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x5a
sinhh cosw

coshh2cosx
, y5a

sinhh sinw

coshh2cosx
,

z5a
sinx

coshh2cosx
, ~1!

wherea is a constant that gives the radius of a circle in t
z50 plane described byh→` ~that is, whenh→` we have
x5a cosw, y5a sinw, and z50). The values assumed b
the toroidal coordinates are 0<h,`, 2p<x<p rad, and
2p<w<p rad. The inverse transformations are given b

h5arctanh
2aAx21y2

x21y21z21a2 ,

x5arctan
2za

x21y21z22a2 , w5arctan
y

x
. ~2!

For the present work, it is convenient to present the exp
sions for coshh and for cosx:

coshh5
x21y21z21a2

A~x21y21z22a2!214a2z2
, ~3!

cosx5
x21y21z22a2

A~x21y21z22a2!214a2z2
. ~4!

The surface of the toroid is described by a constanth0 .
The internal~external! region of the toroid is characterize
by h.h0 (h,h0). The greater radiusR and the smaller
radius r 0 are related to h0 and to a by R
5a coshh0 /sinhh0 and r 05a/sinhh0; see Fig. 1#.

Laplace’s equation for the electric potential¹2f50 can
be solved in toroidal coordinates with the method of sepa

FIG. 2. The two cases being considered here:~a! a full solid
resistive toroidal conductor, with an azimuthal volume current d

sity JW (A/m2) through the cross section;~b! a hollow resistive tor-

oidal conductor, with an azimuthal surface current densityKW (A/m)
through the perimeter 2pr 0 of the hollow toroidal shell.
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tion of variables~by a procedure known asR separation!,
leading to a solution of the form~Ref. @15#, p. 112!

f~h,x,w!5Acoshh2cosxH~h!X~x!F~w!, ~5!

where the functionsH, X, andF satisfy the general equation
~with j5coshh, andp,q constants!

~j221!H912jH82@~p221/4!1q2/~j221!#H50,
~6!

X91p2X50, ~7!

F91q2F50. ~8!

III. GENERAL SOLUTION

The solutions of Eqs.~7! and ~8! for pÞ0 andqÞ0 are
linear combinations of the general formsXp(x)
5Cpx cos(px)1Dpx sin(px) and Fq(w)5Cqw cos(qw)
1Dqw sin(qw), respectively, whereCpx , Dpx , Cqw , andDqw

are constants. Whenp5q50 the solutions reduce to, respe
tively, X0(x)5C0x1D0xx andF0(w)5C0w1D0ww. Equa-
tion ~6! is Legendre’s equation, whose solutions are
associated Legendre functionsPp21/2

q (coshh) and
Qp21/2

q (coshh), known as toroidal Legendre polynomia
~Ref. @16#, p. 173!.

The solution must be periodic inw, that is,f~h,x,w12p!
5f~h,x,w!, and inx, that is,f~h,x12p,w!5f~h,x,w!. This
condition implies thatD0w50, D0x50, q51,2,3,. . . , and
p51,2,3, . . . .

The functionsQp21/2
q are irregular inh50 ~which corre-

sponds to thez axis, or to great distances from the toroid!.
For this reason we eliminate them as physical solutions
this problem in the region outside the toroid~that is, h
,h0). Our general solution consists of linear combinatio
of all possible regular solutions ofPp21/2

q (coshh), Xp(x),
andFq(w):

f~h<h0 ,x,w!5Acoshh2cosx (
q50

`

@Cqw cos~qw!

1Dqw sin~qw!# (
p50

`

@Cpx cos~px!

1Dpx sin~px!#Pp21/2
q ~coshh!. ~9!

We used the fact that sin 050 and cos 051 to sum up from
p5q50 to `. Here Pp21/2

0 (coshh)[Pp21/2(coshh) are the
Legendre functions~Ref. @17#, p. 724!.

IV. PARTICULAR SOLUTION FOR A STEADY
AZIMUTHAL CURRENT

The surface of the toroid is described by a constanth0 .
Here we study the case of a steady current flowing in
azimuthalw direction along the Ohmic toroid. For this rea
son we suppose that the potential along the surface of
toroid is linear in w, f(h0 ,x,w)5A1Bw. This potential

-

1-2



tia

a
th
t

da

o

fi
is

d

i-

h

lid

ms

of

to

to

ELECTRIC POTENTIAL FOR A RESISTIVE TOROIDAL . . . PHYSICAL REVIEW E 68, 046611 ~2003!
can be expanded in a Fourier series inw:

f~h0 ,x,w!5A1Bw5A12B(
q51

`
~21!q21

q
sin~qw!.

~10!

Figure 3 shows the Fourier expansion of the poten
along the conductor surface as a function ofw. The oscilla-
tions close tow56p rad are due to a Fourier series with
finite number of terms. The overshooting is known as
Gibbs phenomenon, a peculiarity of the Fourier series a
simple discontinuity~Ref. @17#, pp. 783–7!.

We assume that the potential inside the full solid toroi
Ohmic conductor~that is, forh.h0) @see Fig. 2~a!# is also
given by Eq.~10!, namely,

f~h.h0 ,x,w!5A1Bw. ~11!

The electric field inside the solid toroid can be expressed
cylindrical coordinates (r,w,z) simply as

EW 52“f52
B

r
ŵ. ~12!

This electric field does not lead to any accumulation
charges inside a full solid conductor because“•EW 50.

These are reasonable results. The potential satis
Laplace’s equation¹2f50, as expected. The electric field
inversely proportional to the distancer5Ax21y2 from thez
axis. This was to be expected as we are assuming a con
tor of uniform resistivity. The difference of potentialDf cre-
ated by the battery atw5p rad can be related to the az
muthal electric field by a line integral:

Df52E
w5p

2p

EW •d,W 52Ew2pr. ~13!

Herer is the radius of a circular path centered on thez axis
and located inside or along the surface of the toroid. T
shows thatEw should be inversely proportional tor, as found
in Eq. ~12!. Comparing Eqs.~12! and ~13! yields B
5Df/2p.

FIG. 3. Fourier expansion of the potential along the conduc
surface as a function of the azimuthal anglew, Eq. ~10!, with A
50 andB5f0/2p. The overshootings at the extremities are due
the Gibbs phenomenon~Ref. @17#, p. 783–787!.
04661
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By Ohm’s lawJW5gEW , whereg is the uniform conductiv-
ity of the wire, we can see thatJW is also inversely propor-
tional to the distancer from the z axis inside a full solid
homogeneous toroidal conductor.

We now consider the solution outside the conductor, va
for the cases of a solid and a hollow toroid.

We calculate Eq.~9! with h5h0 and use Eq.~10! as a
boundary condition of our problem. As we do not have ter
with cos(qw) in Eq. ~10!, this means thatCqw50 for q
51,2,3, . . . . Comparing the resulting Eq.~9! at h5h0 with
Eq. ~10! yields two equations connectingA andB to theC’s
andD’s, namely,

A5C0wAcoshh02cosx (
p50

`

@Cpx cos~px!

1Dpx sin~px!#Pp21/2~coshh0!, ~14!

B5
qDqw

2~21!q21 Acoshh02cosx (
p50

`

@Cpx cos~px!

1Dpx sin~px!#Pp21/2
q ~coshh0!. ~15!

We now isolate the term 1/Acoshh02cosx in Eqs. ~14!
and ~15!, expanding it in Fourier series, that is,

1

Acoshh02cosx

5
1

2p (
p50

`

~22d0p!F E
2p

p cos~px8!dx8

Acoshh02cosx8
Gcos~px!

5
&

p (
p50

`

~22d0p!Qp21/2~coshh0!cos~px!, ~16!

wheredwp is the Kronecker delta, which is zero forwÞp
and 1 forw5p, and we used an integral representation
Qp21/2(coshh) ~Ref. @16#, p. 156!.

As in Eq. ~16! we do not have terms of sin(px), this
means thatDpx50 in Eqs. ~14! and ~15!. Using Eq. ~16!
with Eq. ~14! yields ~for p50,1,2,. . . )

Ap[C0wCpx5
A~22d0p!

2pPp21/2~coshh0!
E

2p

p cos~px8!dx8

Acoshh02cosx8

5
&A~22d0p!

p

Qp21/2~coshh0!

Pp21/2~coshh0!
. ~17!

Using Eq.~16! with Eq. ~15! yields

Bpq[DqwCpx5
B~21!q21~22d0p!

qpPp21/2
q ~coshh0!

E
2p

p cos~px8!dx8

Acoshh02cosx8

5
2&B~21!q21~22d0p!

qp

Qp21/2~coshh0!

Pp21/2
q ~coshh0!

. ~18!

The final solution outside the toroid is given by

r

1-3
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f~h<h0 ,x,w!

5Acoshh2cosxF (
p50

`

Ap cos~px!Pp21/2~coshh!

1 (
q51

`

sin~qw! (
p50

`

Bpq cos~px!Pp21/2
q ~coshh!G ,

~19!

where the coefficientsAp andBpq are given by Eqs.~17! and
~18!, respectively.

For the region inside the hollow toroid~that is,h.h0),
Fig. 2~b!, we have Pp21/2

q (coshh→`)→`, while
Qp21/2

q (coshh→`)→0. For this reason we eliminat
Pp21/2

q (coshh) as physical solutions for the region inside t
hollow toroid. The potential is then given by

f~h.h0 ,x,w!5A1Acoshh2cosx (
q51

`

sin~qw!

3 (
p50

`

Bpq8 cos~px!Qp21/2
q ~coshh!, ~20!

where the coefficientsBpq8 are defined by

Bpq8 [
B~21!q21~22d0p!

qpQp21/2
q ~coshh0!

E
2p

p cos~px8!dx8

Acoshh02cosx8

5
2&B~21!q21~22d0p!

qp

Qp21/2~coshh0!

Qp21/2
q ~coshh0!

. ~21!

Note that the potential inside the solid toroid, Eq.~11!, and
the potential inside the hollow toroid, Eq.~20!, are different.
This happens because the discontinuous boundary cond
Eq. ~10! applies for anyh.h0 inside the solid toroid,
particularly for w→p (f→A1Bp) and w→2p (f→A
2Bp), where the disk battery is located@see Fig. 2~a!#. This
does not happen to the hollow toroid, where the battery
circle, and the potential must be continuous inside the hol
toroid @see Fig. 2~b!#.

We now analyze the potential outside the toroid for t
regions far away from the toroid, close to the origin, a
along thez axis.

For great distances from the toroid~that is, r
5Ax21y21z2@a), Eqs. ~2!–~4! yield h'2aAx21y2/r 2

→0, coshh'112a2(x21y2)/r4→1, and cosx'122a2z2/r4

→1. This means thatAcoshh2cosx'a&/r→0. For coshh
'11e, where 0,e!1, we have the following expansio
~Ref. @16#, pp. 163 and 173!:
04661
on
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Pp21/2
q ~11e!'

G~p1q11/2!

2q/2q!G~p2q11/2!
eq/2

3H 11eF p221/4

2~11q!
2

q

4G J . ~22!

The electric potential, for great distances from the toroid
given, in spherical coordinates (r ,u,w), by

f~r @a,u,w!'
a&

r (
p50

`

cosS p
2a cosu

r D
3FAp1Bp1S p22

1

4D a

r
sinw sinuG , ~23!

so thatf(r→`)→0, as expected.
The potential close to the origin~that is, r !a) can be

calculated in the same manner. We have coshh'112(x2

1y2)/a2 and cosx'2112z2/a2, so thatAcoshh2cosx'&.
The potential is then given by

f~r !a,u,w!'&(
p50

`

cosS p
2r cosu

a D
3FAp1Bp1S p22

1

4D r

a
sinw sinuG . ~24!

Along thez axis we haveAx21y250. From Eqs.~2!–~4!
we have h50, coshh51, cosx5(z22a2)/(z21a2), and
Acoshh2cosx5aA2/(z21a2). The potential along thez
axis can be written

f~r 5Ax21y21z25uzu,u,w!

5aA 2

z21a2 (
p50

`

Ap cosS p arccos
z22a2

z21a2D . ~25!

We plotted the equipotentials of a full solid toroid on th
plane z50 in Fig. 4 with A50 and B5f0/2p. Figure 5
shows a plot of the equipotentials of the full solid toroid
the planex50 ~perpendicular to the current!.

V. ELECTRIC FIELD AND SURFACE CHARGES

In toroidal coordinates the gradient is written as

“f5
1

a
~coshh2cosx!S ĥ

]f

]h
1x̂

]f

]x
1

ŵ

sinhh

]f

]w D .

~26!

The electric field can then be calculated byEW 52“f,
whose components for the region outside the toroidh
,h0) are given by
1-4
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Eh52
sinhhAcoshh2cosx

a

3 (
p50

`

cos~px!H ApF1

2
Pp21/2~coshh!

1~coshh2cosx!Pp21/28 ~coshh!G
1 (

q51

`

sin~qw!BpqF1

2
Pp21/2

q ~coshh!

1~coshh2cosx!Pp21/2
q 8 ~coshh!G J , ~27!

FIG. 4. Equipotentials for a resistive full solid toroidal condu
tor in the planez50. The bold circles represent the borders of t
toroid. The current runs in the azimuthal direction, fromw51p to
2p rad. The thin battery is on the left~w5p rad!. We have used
h052.187.

FIG. 5. Equipotentials in the planex50 for a resistive full solid
toroidal conductor carrying a steady azimuthal current, Eq.~19!,
with A50 andB5f0/2p. The bold circles represent the conduct
surface. We have usedh052.187.
04661
Ex52
Acoshh2cosx

a (
p50

` Fsinx cos~px!

2

2p~coshh2cosx!sin~px!GFApPp21/2~coshh!

1 (
q51

`

sin~qw!BpqPp21/2
q ~coshh!G , ~28!

Ew52
~coshh2cosx!3/2

a sinhh (
q51

`

q cos~qw!

3 (
p50

`

Bpq cos~px!Pp21/2
q ~coshh!, ~29!

where Pp21/2
q8 (coshh) are the derivatives ofPp21/2

q (coshh)
relative to coshh. The electric field inside the full solid tor
oid (h.h0) is given simply by

Eh50, Ex50, Ew52
coshh2cosx

a sinhh
B52

B

Ax21y2
.

~30!

The surface charge distribution that creates the elec
field inside~and outside! the conductor, keeping the curren
flowing, can be obtained by Gauss’s law~by choosing a
Gaussian surface involving a small portion of the conduc
surface! for the full solid toroid, Fig. 2~a!:

s~h0 ,x,w!5«0@EW ~h,h0!•~2ĥ !1EW ~h.h0!•ĥ#h0

5
«0 sinhh0

a H A1Bw

2
1~coshh02cosx!3/2

3 (
p50

`

cos~px!FApPp21/28 ~coshh0!

1 (
q51

`

sin~qw!BpqPp21/2
q8 ~coshh0!G J . ~31!

VI. THIN TOROID APPROXIMATION

Suppose that the toroid is very thin, with its radii d
scribed by an outer radiusR5a coshh0 /sinhh0'a and an
inner radiusr 05a/sinhh0, such thatr 0!R ~see Fig. 1!. The
surface of the toroid is described byh0@1, and consequently
coshh0@1. The Legendre function of the second kin
Qp21/2(coshh0), that appears in Eqs.~17! and ~18! for the
coefficientsAp andBpq can be approximated utilizing~Ref.
@16#, p. 164!

Qp21/2~coshh0!'
ApG~p11/2!

2p11/2p! coshp11/2h0
, ~32!

whereG is the gamma function~Ref. @17#, p. 591!.
Because Eq.~32! has a factor of cosh2p21/2h0!1, we can

neglect all terms withp.0 in Eq. ~19! compared with the
1-5
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term withp50. The potential inside the full solid thin toroi
is given by Eq.~11!, while the potential outside the full solid
thin toroid (h0@1) is

f~h<h0 ,x,w!

5Acoshh2cosx

coshh0
FA

P21/2~coshh!

P21/2~coshh0!

12B(
q51

`
~21!q21

q
sin~qw!

P21/2
q ~coshh!

P21/2
q ~coshh0!

G . ~33!

It is interesting to find the expressions for the poten
and electric field outside but in the vicinity of the conduct
~that is, h0.h@1). A series expansion of the function
P21/2

q (j) and P21/2
q8 (j) aroundj→` gives as the most rel

evant terms~Ref. @16#, p. 173!

P21/2
q ~j!'

A2/p

G~1/22q!

ln~2j!2c~1/22q!2g

Aj
,

P21/2
q8 ~j!'

A2/p

G~1/22q!

1

j3/2F12
ln~2j!2c~1/22q!2g

2 G ,
~34!

where c(z)5G8(z)/G(z) is the digamma function, and
g'0.577 216 is the Euler gamma. The potential just outs
the thin toroid, Eq.~19!, can then be written in this approx
mation far from the battery as

f~h0>h@1,x,w!5~A1Bw!
ln~8 coshh!

ln~8 coshh0!
. ~35!

The potential inside the hollow thin toroid, Eq.~20!, can
be written in this approximation far from the battery as

f~h>h0@1,x,w!5A1Bw. ~36!

The surface charge distribution in this thin toroid appro
mation is given by

s~h0@1,x,w!'
«0 sinhh0

a ln~8 coshh0!
~A1Bw!

5
e0~A1Bw!

r 0 ln~8a/r 0!

[sA1sBw. ~37!

We definedsA andsB by this last equality. We obtained tha
the surface charge density far from the battery is a lin
function of the azimuthal anglew in the case of a thin toroid

We can calculate the total chargeqA of the thin toroid as
a function of the constant electric potentialA. For this, we
integrate the surface charge densitys in x and w ~in the
approximation coshh0@1):
04661
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r

qA5E
2p

p

hx dxE
2p

p

hw dw s~x,w!

5
4p2«0Aa

ln~8 coshh0!
5

4p2«0Aa

ln~8a/r 0!
, ~38!

wherehh5hx5a/(coshh2cosx) and hw5a sinhh/(coshh
2cosx) are the scale factors in toroidal coordinates@18#.
Notice that from Eq.~38! we can obtain the capacitance
the thin toroid~Ref. @19#, p. 127!:

C5
qA

A
5

4p2«0a

ln~8 coshh0!
5

4p2«0a

ln~8a/r 0!
. ~39!

The potential along thez axis is given, from Eq.~25! in
the thin toroid approximation, by

f~r 5Ax21y21z25uzu,u,w!5
qA

4p«0

1

Az21a2
. ~40!

Equation ~40! coincides with the Coulombic result for
charged thin toroid of radiusa in the z50 plane and with
total chargeqA .

It is useful to define a new coordinate system:

l85aw, r85A~Ax21y22a!21z2. ~41!

We can interpretl8 as a distance along the toroid surfa
in the w direction, andr8 as the shortest distance from th
circle x21y25a2 located in the planez50. Whenh0.h
@1 ~that is, r 0,r8!a), Eqs.~41! and ~3! result in coshh
'a/r8 and coshh0'a/r0, so that the potential just outside th
thin toroid, Eq.~35!, can be expressed as

f5S A1B
l8

a D ln~8a/r8!

ln~8a/r 0!
. ~42!

Equation~42! can be written in a slightly different form
Consider a certain piece of the toroid between the anglesw0
and 2w0 , with potentials in these extremities given byfR
5A1Bw0 andfL5A2Bw0 , respectively. This piece has
length of,52aw0 . The potential can then be written as

f5S A1
2Bw0

,
l8D ln~,/r8!2 ln~,/8a!

ln~,/r 0!2 ln~,/8a!

'S fR1fL

2
1

fR2fL

,
l8D ln~,/r8!

ln~,/r 0!
, ~43!

where in the last approximation we neglected the te
ln(,/a), utilizing the approximationr 0,r8!a ~so that,/r 0
.,/r8@,/8a). The electric field can be expressed in th
approximation as

EW 52S fR1fL

2
1

fR2fL

,
l8D ĥ

r8 ln~,/r 0!

2
fR2fL

,

ln~,/r8!

ln~,/r 0!
ŵ. ~44!
1-6
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Equations~43! and~44! can be compared to Eqs.~12! and
~13! of Assis, Rodrigues, and Mania@10#, reproduced below
as Eqs.~45! and ~46!, respectively. They studied the case
a long straight cylindrical conductor of radiusr 0 carrying a
constant current, in cylindrical coordinates (r8,w,z) ~note
that the conversions from toroidal to cylindrical coordina
in this approximation areĥ'2 r̂8 and ŵ' ẑ). In their case,
the cylinder has a length, and radiusr 0!,, with potentials
fL andfR in the extremities of the conductor, andRI5fL
2fR :

f~r>a!5S fR1fL

2
1

fR2fL

,
zD ln~,/r8!

ln~,/r 0!
, ~45!

EW ~r8>a!5S fR1fL

2
1

fR2fL

,
zD r̂8

r̂8 ln~,/r 0!

2
fR2fL

,

ln~,/r8!

ln~,/r 0!
ẑ. ~46!

Our result for the potential in the region close to the th
toroid coincides with the cylindrical solution, as expected

VII. CHARGED TOROID WITHOUT CURRENT

Consider a toroid described byh0 , without current but
charged to a constant potentialf0 . Using A5f0 andB50
in Eqs.~19!, ~11!, and~20!, we have the potential inside an
outside the toroid, respectively:

f~h>h0 ,x,w!5A5f0 , ~47!

f~h<h0 ,x,w!5Acoshh2cosx (
p50

`

Ap cos~px!

3Pp21/2~coshh!, ~48!

where Pp21/2(coshh0) are the Legendre functions, and th
coefficientsAp are given by Eq.~17!. This solution is already
known in the literature~Ref. @20#, p. 239!, ~Ref. @21#, p.
1304!.

It is also possible to obtain the capacitance of the toro
by comparing the electrostatic potential at a distancer far
from the origin, Eq.~23!, with the potential given by a poin
chargeq, f(r @a)'q/4p«0r :

f~r @a,u,w!'
a&

r (
p50

`
&f0~22d0p!

p

Qp21/2~coshh0!

Pp21/2~coshh0!

5
q

4pe0r
. ~49!

The capacitance of the toroid with its surface at a cons
potentialf0 can be written asC5q/f0 . From Eq.~49! this
yields~Ref. @20#, p. 239!, ~Ref. @22#, pp. 5–13!, ~Ref. @23#, p.
9!, ~Ref. @24#, p. 375!

C58«0a(
p50

`

~22d0p!
Qp21/2~coshh0!

Pp21/2~coshh0!
. ~50!
04661
s

,
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Utilizing the thin toroid approximationh0@1, one can ob-
tain the capacitance of a circular ring, Eq.~39!.

Another case of interest is that of a charged circular w
discussed below, which is the particular case of a toroid w
r 0→0. With h0@1 and coshh0@1 we haveR'a. Keeping
only the term withp50 in Eqs.~17! and ~48! yields

f~h<h0 ,x,w!5f0Acoshh2cosx

coshh0

P21/2~coshh!

P21/2~coshh0!

5
qA

4p&«0a
Acoshh2cosx

3P21/2~coshh!, ~51!

where in the last equation we combined Eq.~38!. Expressed
in spherical coordinates (r ,u,w), the potential for the thin
toroid becomes

f~r ,u,w!5
qA

4p«0

1

@~r 22a2!214a2r 2 cos2 u#1/4

3P21/2S r 21a2

A~r 22a2!214a2r 2 cos2 u
D .

~52!

From Eqs.~47! and ~38! we can see that the consta
electrostatic potential along the thin toroid expressed
terms of its total chargeqA is given by

f~r 0!R,u,w!5
qA/2pa

2p«0
ln

8a

r 0
. ~53!

Even when the linear charge densityqA/2pa remains con-
stant, we can see from this expression that the potentia
verges logarithmically whena/r 0→`.

We can expand Eq.~52! on r , /r . , wherer , (r .) is the
lesser~greater! of a and r 5Ax21y21z2. We present the
first three terms:

f~r ,u,w!'
qA

4p«0
H 1

r .
2

113 cos~2u!

8

r ,
2

r .
3

1
3

512
@9120 cos~2u!135 cos~4u!#

r ,
4

r .
5 J .

~54!

Equations~51!–~54! can be compared with the solutio
given by Jackson~Ref. @25#, p. 93!. Jackson gives the exac
electrostatic solution of the problem of a charged circu
wire ~that is, a toroid with radiusr 050), in spherical coor-
dinates (r ,u,w):

f~r ,u,w!5
qA

4p«0
(
n50

` r ,
2n

r .
2n11

~21!n~2n21!!!

2nn!
P2n~cosu!,

~55!
1-7
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whereqA is the total charge of the wire. Equation~55! ex-
panded ton52 yields exactly Eq.~54!. We have checked
that Eqs.~52! and ~55! are the same for at leastn530.

We plotted both Eqs.~51! and ~55! in Fig. 6. They yield
the same result, as expected. It is worthwhile to note tha
spherical coordinates we have an infinite sum, Eq.~55!,
while in toroidal coordinates the solution is given by a sing
term, Eq.~51!. The agreement shows that Eqs.~51! and~55!
are the same solution only expressed in different forms.

Figure 7 shows the potential as function ofr ~in cylindri-
cal coordinates! in the planez50. Equations~51! and ~55!
give the same result.

VIII. DISCUSSION AND CONCLUSION

Figure 4 can be compared with the experimental re
found by Jefimenko~Ref. @14#, Fig. 3!, reproduced here in
Fig. 8 with Fig. 4 overlaid on it. Jefimenko painted a circu
conducting strip on a glass plate utilizing a transparent c
ducting ink. A steady current flowed in the strip by conne
ing its extremities with a battery. By spreading grass se
on the glass plate he was able to map the electric field l
inside and outside the strip~in analogy with iron filings map-
ping the magnetic field lines!. The equipotential lines ob

FIG. 6. Equipotential lines on the planex50 ~perpendicular to
the toroid! for the charged thin wire without current. Both Eqs.~51!
and ~55! coincide with one another. We utilizedh0538(coshh0

51.631016) and a51. Notice the difference between this figu
and Fig. 5: the left and right sides of the conductor here posses
same charge signs, while in Fig. 5 they have opposite signs.

FIG. 7. Normalized potential as function ofr ~distance fromz
axis! on the planez50. Equations~51! and ~55! give the same
result. We utilizeh0538(coshh051.631016) anda51.
04661
in
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tained here are orthogonal to the electric field lines. Ther
a very reasonable agreement between our theoretical r
and the experiment.

In order to have a better fit to his data we should consi
an extended battery. As we can see from his experiment
painted two sections of his strip with a conducting ink
much smaller resistivity than the remainder of the str
These sections located at2w j,w,2w i and w i,w,w j
were charged to opposite potentials. Considering these
tions as of zero resistivity, we can model analytically t
potential inside and along the surface of the toroid as

f~h>h0 ,x,w!55
2B

w i~p1w!

~p2w j !
, 2p,w,2w j ,

2Bw i , 2w j,w,2w i ,

Bw, 2w i,w,w i ,

Bw i , w i,w,w j ,

B
w i~p2w!

~p2w j !
, w j,w,p.

~56!

Notice that the potential described by Eq.~56! no longer has
a discontinuity atw5p rad. The potential is linear betwee
w52w i and w5w i , constant for2w j,w,2w i and w i
,w,w j , and linear for2p rad,w,2w j and for w j,w
,p rad. The boundary condition Eq.~10! is now replaced
by

f~h0 ,x,w!52B(
q51

`
sin~qw!

q2 Fsin~qw j !

p2w j
1

sin~qw i !

w i
G .
~57!

The potential from Eq.~57! is represented in Fig. 9 with the
values w i59p/1052.83 rad and w j517p/1852.97 rad.

he

FIG. 8. Jefimenko’s experiment~Ref. @14#, Fig. 3! in which the
lines of electric field were mapped using grass seeds spread o
glass plate. There is a circular conducting strip carrying a ste
current. Figure 4 has been overlaid on it—the equipotential lines
orthogonal to the electric field lines.
1-8
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The equipotentials in the planez50 are plotted in Fig. 10.
Figure 11 represents Jefimenko’s experiment with Fig.
overlaid on it. The agreement is now even better than
Fig. 8.

Despite this agreement, it should be mentioned that J
menko’s experiment has a conducting strip painted on a g
plate. On the other hand, our theoretical results presente
Figs. 4 and 10 represent an equatorial slice through a th
dimensional toroid. In another experiment Jefimenko, B
nett, and Kelly succeeded in measuring directly the equi
tential lines inside and outside a hollow rectangu
conductor carrying a steady current@26# and ~Ref. @2#, pp.

FIG. 9. Fourier expansion of the potential along the conduc
surface as a function of the azimuthal anglew, Eq. ~57!, with B
5f0/2w i . Comparing this figure with Fig. 3 we can observe th
the oscillations, as well as the overshooting, no longer appear, a
potential is now continuous for 0<w<2p rad. We have usedw i

59p/1052.83 rad andw j517p/1852.97 rad.

FIG. 10. Equipotentials in the planex50 for a resistive toroidal
conductor carrying a steady azimuthal current, using Eq.~57! as
boundary condition andB5f0/2w i . The bold circles represent th
conductor surface and the bold straight lines represent the an
w56w i569p/1052.83 rad andw56w j5617p/1852.97 rad.
We have usedh052.187.
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300–301!. They utilized a radioactivea source to ionize the
air at the point where the field was to be measured. Tha
source acquired the same potential as the field at that p
and the potential was measured with an electrometer c
nected to thea source. If one day a similar experiment
performed with a toroid, it will be possible to obtain a bett
comparison with our theoretical results.

Our solution inside and along the surface of the full so
toroid yields only an azimuthal electric field, namely,uEwu
5Df/2pr. But even for a steady current we must have
component ofEW pointing away from thez axis, Er , due to
the curvature of the wire. Here we are neglecting this co
ponent due to its extremely small order of magnitude co
pared with the azimuthal componentEw . To show this, con-
sider a conducting electron of charge2e and massm
moving azimuthally with drift velocityvd in a circle of ra-
diusr around thez axis. In a steady state situation there w
be a redistribution of charges along the cross section of
toroid, creating an electric fieldEr , which will exert a cen-
tripetal force on the conduction electrons. By Newton’s s
ond law of motion the forceeEr results in a centripetal ac
celeration such thateEr5mvd

2/r. Suppose we have a 14
gauge copper wire (r 058.1431024 m) of 1 m length bent
in a circle of radiusR5r5(1/2p)51.5931021 m carrying
a current of 1 A. The drift velocity is given byvd53.55
31025 m/s, the resistance of the wire is 8.1331023 V, and
the potential difference created by the battery isDf58.13
31023 V. This yields Ew58.1331023 V/m and Er54.5
310220 V/m. That is, Er!Ew , which justifies neglecting
the Er component of the electric field.

It has been pointed out elsewhere@10# that a stationary
conductor carrying a steady current uniform over its cro
section generates a charge distribution inside the condu
This charge distribution creates a radial electric field ins
the conductor. There is then an electric force on the cond
tion electrons that counteracts the radial magnetic force
arises due to the movement of the conduction electrons. T
is known as the radial Hall effect. However, this electric fie
is rather small (1025 smaller than the electric field that main

r

t
the

les

FIG. 11. Jefimenko’s experiment~Ref. @14#, Fig. 3! with Fig. 10
overlaid on it—the equipotential lines are orthogonal to the elec
field lines.
1-9
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tains the current flowing, on a typical copper conductor w
1 mm diameter and 431023 m/s drift velocity; see@10#! and
has been neglected in the present work.

The problem of a stationary toroidal conductor with
steady current has never been solved in the literature. H
we have obtained the electric potential, the electric field,
the surface charges, respectively, Eqs.~19! and ~27!–~31!.
The beautiful experimental result of Jefimenko showing
electric field outside the conductor is complemented by
present theoretical work, with excellent agreement, Figs
and 11. The electric potential and electric field of the th
toroid approximation with a steady current, respectively, E
~43! and ~44!, agree with the known case of a long straig
cylindrical conductor carrying a steady current, Eqs.~12! and
~13! of @10#. The electric potential of the thin toroid approx
mation without current agrees with the known result for
charged wire~Ref. @25#, p. 93!.

The other theoretical solutions known in the literatu
usually considered an infinite or very long straight conduc
or coaxial cable~Ref. @1#, pp. 125–33!, ~Ref. @5#, pp. 336–
7!, @10,6,11#. The only cases of an analytical solution in
curved conductor are those of Jefimenko and Heald, w
considered a solenoid of infinite length carrying a stea
-

, I

d.

nd
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azimuthal current~Ref. @2#, p. 318! and@7#. The only known
solution for the potential due to a closed steady current flo
ing in a bounded volume is that of Jackson@3#, who consid-
ered a coaxial cable of finite length. However, as he con
ered the external return conductor of zero resistivity,
electric field outside his cable was found to be zero. Here
the other hand, we obtained a theoretical solution for
potential due to a steady azimuthal current flowing in a t
oidal resistive conductor which yielded an electric field n
only inside the toroid but also in the space surrounding
Our solution showed a reasonable agreement with Jefim
ko’s experiment, which proved the existence of this exter
electric field due to a resistive steady current.
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