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ABSTRACT 

The propagation of electromagnetic waves in 
plasma, bounded by a · cylindrical conducting wall 
two-fluid theory, with the pressure term 

a uniform magnetized 
is studied using the 
included. Taking the 

cylindrical coordinates and perturbation 
f(r)exp<ikz-in8-iwt) we obtain a sixth order 
electric field component E (r). Its solution is 

of the form 
equation for the 
a sum of three 

z 

Bessel's or modified Bessel's functions. With appropriate boundary 
conditions, we obtain the dispersion relation which is solved 
numerically. The main result of this study is that the pressure term 
causes the mode conversion of a backward wave to another backward 
wave. The backward waves are modes which propagate in a frequency 
r~j,ge between the plasma and upper-hybrid frequencies. 

1. INTRODUCTION 

In this paper we study the global modes of electromagnetic 
oscillation in a cylindrical waveguide. This is an important research 
topic not only for practical purposes (fusion devices) but also for 
basic research in electromagnetic theory [11 We include the electron 
temperature in the Trivelpiece and Gould problem [2,3], and our model 
is not restricted to the slow wave cases Cw

2
/k

2 « c
2

) so that a 
greater number of modes is analysed. One important result is that we 
generalize the dispersion relation of Ghosh and Pal [41 

II. THE MODEL AND DISPERSION RELATION 
In our model the plasma is treated as 

which the ions are at rest (approximation valid 
limit, w » w. and w » w.). We include 

an adiabatic fluid in 
in the high frequency 
a constant external 

p1. C1. 

magnetic field, B, along the waveguide. We apply a linearization 
o 

process in the form f(~) = f 0 + fCr) expCikz-im8-iwt), where k is 

the wave number, n is an integer, w is the angular frequency of the 
electromagnetic field, and where we utilize cylindrical coordinates 
Cthe z axis of the coordinate system is the waveguide axis). In the 

absence of an equilibrium electrostatic fielc, E = 0, and of an 
o 

electron drift velocity, 

solved are (equations 
Haxwell's equations): 

.. 
u 

o 
0, the first order equations to be 

of continuity, of momentum transfer and 

iwp, = nomU
2 

\}. tt" 

- - -\}X HI = - iWfo EI -Hoe u" 

1/2 4 
no' m, U(=CykBTo/m) ), y, kB, To' u

1
, -e, and 

e 
o 

are, respectively, the perturbed pressure, fluid density, 

electron mass, electron thermal velocity, ratio of specific heats 
(usually y 5/3), Boltzmann's constant, electron temperature, 
perturbed fluid velocity, electron charge, perturbed electric and 
magnetic fields, vacuum magnetic permeability and vacuum dielectric 
cO'lstant. To obtain these equations we assumed also that the electron 
collision frequency is much smaller than the wave frequency w. 

Assuming that B = B i we get from these equations [5-7]: 
o 0 

where 

and 

_ (W2 -w~ _ 2)t 
k. - U2 k 



nd k k k are analytic functions of b
1

, b
2 

and b~, obtained by 
a 1'2'3 ~ 
Cardan's formula [8J. All other field components can be obtained in 
term of E (r). 

z 
The solution of this equation is 

where J (x) is the n-th-order Bessel function of first kind. Applying 
n 

the boundary conditions E z (R) = Ee(R) = 0, and u (R) = 0, where R is 
I' 

the radius of the waveguide, we obtain 
relation given by [5-7]: 

the general dispersion 

n2[FI(L2 - L3) + F2(L3 - Ld + F3(LI - L2)] + n[PI(F3 - F2) - QI(L3 - L2)] 
JI(Rk ) ]J~(Jl.k2) 

x_n __ 1 + n[P2(FI - F3) - Q2(LI - L3) J (Rk ) 
In(Rk l ) n 2 1 (Jl.k ) 

J' (Rk3) J~(RkdJn -2 
+ n[P3(F2 - FI) - Q3(L2 - LI)] J:(rk3) + (Q I P2 - PIQ2) I n(RkdJn(Rk2) 

J~(Jl.k2)J~(Rk3) p J~(Jl.k3)J~(Rkl) = 0, 
+ (QzP3 - PZQ3) I

n
(Rkz)Jn(Rk

3
) + (Q3 P

l - 3QI) In(Rk3)Jn(Rkd 

where 

UZ[k~(k~ - kJ) + (k! - kJ)(k: - kJ)l 
Fj = Rk(c2 _ U2) , 

and where j = 1,2 or 3. 

III. NUMERICAL RESULTS 
In figure 1 we show the dispersion relation for a magnetized 

plasma waveguide with radius R=0.085 m, plasma frequency w = 
p 

1.2.1010 
S -1, electron cyclotron frequency w= 

c 

10 -1 
1.5.10 s , electron 

temperature To = 40. eV and azimuthal wav,enumber n=1. The figure shows 

the mode conversion pattern for values of the wave number k around 
1/R. 'We also see the mode conversion for kR '" 4. It is interesting to 
observe the occurence of the mode conversion at a low temperature. 
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