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Electric potential for a toroidal ring carrying a
constant current
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Abstract

In this work we treat a conducting toroidal ring carrying a constant current. We
calculate the clectric potential everywhere in space. We compare our theoretical resulg
with Jefimenko’s experiment.

1 Description of the problem

Consider a stationary toroidal ring conducting a coustant current f, uniformly distributed
over the cross section of the conductor. The ring is centered on z = 0, being z the symmetry
axis of the ring. Our goal is to find the electric potential everywhere in space, using the
potential in the surface of the conductor as a boundary condition.
The svmmetry of our problem suggests the approach of toroidal coordinates (7,8, ) [1,
page 112], defined by:
sinh 77 cos sinh 77 sin ¢ sin f
T =0——"=, y=0———————-—7, z=0q—7". (1)
cosh 57 — cosd coshn — cos @ coshn — cos @
Laplace’s equation for the electric potential outside the conductor ring, V¢ = 0, can be
solved in toroidal coordinates with scparation of variables, leading to a solution of the form:

¢(n,8,¢) = y/coshn — cos 0H (n)O(0)®(¢), (2)

where the functions H, © and ® satisfy the general equations (with £ = cosh 7, and p and ¢
arc constants):
(82— VH"+26H — [(p* - H+ g5 H = 0,
0"+ p?6 = 0, (3)
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2 Discussion of the Equations and Solution

The equation for the function H is Legendrc’s equation, so A is Legendre’s function with
semi-integer indices: P’ 1 and Q. /20 known as toroidal Legendre polynomials, [2].

As the solutions f01 Legendre’s equation Qg_uz are irregular on n = 0 (that is, for the
z axis and for great distances from the ring), we eliminate them as physical solutions for
this problem. Our general sohition cousists of a linear combination of all possible regular
solutions of H, & and .

In particular, we consider the potential along the ring surface fo be lincar with ¢. The
ring surface is described by a constant . Therefore, this potential can be expanded in
Fourier series, [3]:

LA ’ sin(g). (4)

0
g=1
We use this equation as a boundary condition to our problem viclding as final solution:

5(n, 8, ) = /coshn — (OQHZ‘%IH(QQ ZAMP 1 s2{cosh9) cos(pt). (5)

The cocfficients 4, are given by, for p = 0 and p > 0, respectively:

(;DI(T;"(M 93 ‘1‘9) =

A = go(—1)7" T df (6)
O 2?r?gP_qu2(cosh mo) J-n Jeoshny — cosf’

—1yet m cosh(p8)dd .

qu _ ¢50( ) (;D ) (()

w2qP; | jp{coshng) J-r \/coshny — cos

We plotted the cquipotentials on the plane of the ring in Figure 1. This Figure can then
be compared with the experimental result found by Jefimenko, [4, Figure 3] reproduced here
in Figure 2. There is a very reasonable agreement between our theoretical result and the
experiment.

3 Thin Charged Wire without Current

We do the same calculations as above, but for a charged ring without current (constant
potential on the ring surface). We then make an approximation for a thin ring, np > 1, and
we obtain:

, . jcoshn — cosf P_qpp(coshn)
) = ¢ ) 8
(. 9) ('30\/ coshng  P_yp(coshp) (8)

This expression can be compared with that given by Jackson, [5, p. 93}, in spherical coordi-

nates (r, 8, ¢): |
o(r.0) =q) ;)\+1 = gf:\\!_ L -1%3(cos 6, (9)
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Figure 1: On the left are the equipotentials on the planc z = 0. On the right,; the potential
along the ring surface (should be a linear function of ). Note the inevitable oscillations due
to Fourier cxpansion [8, p. 836].

where 7. (r-) is the lesser (greater) between r and «. a is the radius of the ring, and ¢ is
the total charge of the ring. We plotted both Eq. (8) and (9) in Figure 3 and we obtained
the same result for both. We should stress though that in spherical coordinates we have an
infinite sum, Eq. (9), while in toroidal coordinates, the solution is given by a single term,
Eq. (8). The agreement shows that Eqgs. (8) and (9) are the same solution only expressed in
different forms.

References

[1] P. Moon and D. E. Spencer. Field Theory Handbook. Springer, Berlin, 2nd cdition, 1988.

[2] M. Abramowitz and J. A. Stegun. Handbook of Mathematical Functions. John Wiley &
Sons, New York, 10th cdition, 1972.

[3] M. A. Heald. Electric fields and charges in elementary circuits. Am. J. Phys. 52:522-526,
1984.

[4] O. Jefimenko. Demonstration of the Electric Fields of Current-Carrying Conductors.
Am. J. Phys. 30:19-21, 1962.

[5] 1. D. Jackson. Classical Electrodynamics. John Wiley, New York, 2nd edition, 1975.

6] G. B. Arfken and H. J. Weber. Mathematical Methods for Physicists. Academic Press,
London, 1995.



P-115 4

Figure 2: Lines of electric field mapped using grass seeds above painted glass plates, [4].
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Figure 3: On the left are the equipotentials on the plane ¥ = 0 (perpendicular to the ring)
for the charged thin wire without current. Both Eq. (8) and (9) coincide. On the right, we
have the electric potential as a [uoction of the axial distance in the plane of the ring. We
utilize 7y = 38 (coshny = 1.6 x 10'%), ¢g = 1/@(r = 0) and @ = 1. Once more Eqs. (8} and
(9) coincide.



