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Potential, electric field and surface charges for a
resistive long straight strip carrying a constant current
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Abstract

We consider a long resistive straight strip carrying a constant current. We calculate
the potential and clectric field everywhere in space and also the density of surface
charges along the strip. We compare the calculations with experimental results.

1 The Problem

Here we consider a case which has not yet been treated in the literature: a resistive straight
strip with a constant current lowing over its surface. The strip is in the y = 0 plane localized
in the region —¢ < z < ¢ and —¢ < z < £, such that £ > « > 0. The medium around
the strip 15 taken to be air or vacuum. The constant currente I flows uniformly along the
positive z dircetion with a surface current density given by K= 12/2a.

Our goal is to find the potential ¢ and the electric field E cverywhere in space and the
surface charge distribution o along the strip which creates this electric field. The problem
can be solved by finding the solution of Laplace’s equation VZ¢ = ( in empty space and
applying a linear potential along the strip as a boundary condition.

2 The Solution

Due to the symmetry of the problem it is convenient to utilize elliptic-cylindrical coordinates
(n.¢, z) [1, page 17|, defined by:

r = acoshncosy,
y = asinhnsinp, (1)
z = z
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The solution of Laplace’s equation for the electric potential ¢ in thesc coordinates is
given by é(n, ¢, 2) = H(n)®(yp)Z(z), where the funcions H, ® and Z satisfy the following
general equations (with os and o3 constants):

H" — (o + aza® cosh® ) H =

Q" + (o + aza® cos p)P =
ZH -+ Q’gZ =

(2)

o oo

In the case of a long straight strip being considered herc, it is possible to neglect border
effects near z = £ and z = —£: the potential must be a linear function of z not only over
the strip but also all over space [2], which means that @3 = 0. As the potential along the
strip doesn’t depend on z, it mustn’t depend on ¢ as well. This gives us also ey = 0. The
solution to this problem becomes:

o(m, z) = (A — Az)(Asz — Ag), (3)

where 77 = tanh™! \/(3:2 —y?—a?+0)/ 222 Q = \/(TZ + y? + a?)? — 4a?2? and A; are con-
stants, with i =1...4.
The clectric field can be obtained from the electric potential by calculating the gradient:

Bo_a |z| /22 -~ 4% — a® + Q:?; |m|1;\/§
- /20 2?2 —y2— a2+ Q1

@) (4432 — .(4{‘1) = _/113 (!‘11'}? - 4"‘12) z.
(4)

The surface charge density o can be obtained from Gauss’ Law §c E - did = Q)/ep, where
ep 18 the vacuum permittivity, d@ is a surface area element pointing outwards normal to the
surface in each point and ¢ is the total charge inside the closed surface S. It is then found

to be given by:

o(z.2) = _260_41(4:432 - A4)' (5)

al — x2

3 Discussion and Conclusion

In the planc y = 0 the current in the strip will create a magnetic field B pointing along
the positive (negative) y direction for z > 0 {z < 0). The magnetic field will act on the
conduction clectrons moving with drifting velocity 7, with a force given by ¢y x B. This will
cause a redistribution of charges along the r direction, with negative charges concentrating
along the center of the strip and positive charges at the extremities z = +a. In the steady-
state situation this redistribution of charges will create an electric field along the x direction,
E, which will balance the magnetic force. In this work we are disregarding this Hall electric
field as it is usvally much smaller than the electric field giving rise to the current, {4].
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A particular cage is the electric potential calculated very close to the strip, near its center.
In this case we have a2 > r> = 22 + 2, Q ~ a® + y? — 22 + 22%9%/a® and 1 = |y|/a, such
that:

, 1
o~z (fl] % — Az) (‘432’ — 1’14). (6)

This coincides with a simpler case we had considered before, [3]. Another case of interest
is the clectric potential very far from the strip, 72 > a?:

= (_-41 In g — Ag) (Asz — Ay). (7)

This is in agreement with Eq. (8) of [4], as it should. A plot of the electric field lines
for the electric feld (4) and clectric potential (3} are presented in Figures 1 and 2, overlaid
on the experimental results of Jefimenko [5, Plate 6] and Jefimenko, Barnett and Kelly [6],
respectively.

In the first experiment, Jefimenko mapped the lines of electric field in the plane of
the strip by spreading grass seeds above and around the two dimensional conducting strip
painted on glass plates. The seeds arc polarized in the presence of an electric field and align
themselves with it. The sccond experiment shows the equipotential lines around a rectangular
hollow chamber with electrodes for end walls and semi-conducting side walls carrying uniform
currents. They applied 80 volts to the clectrodes and mapped the equipotential hnes utilizing
a radioactive alpha-source to lonize the air at the points where the field was to he measured.

Figure 1: Theoretical electric field lines overlaid on Jefimenko’s experiment of a conducting
plate with constant current. Grass seeds align themselves along the electric field lines.
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QOur theorctical results represent well the results obtained experimentally by Jefimenko
and co-authors. This work shows the existence of electric fields outside the conductors, and
complements Jefimenko’s experiments.

Figure 2: Bquipotentials of a conducting strip overlaid on Jefimenko’s experiment which
measured the electric potential on a conducting chamber.
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