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Front Cover:

Top left: Car at rest relative to the ground with two horizontal springs, a vessel partially filled
with liquid and a pendulum supporting a test body.

Top right: There are some visible effects when a car is uniformly accelerated relative to the
ground (for instance, with an acceleration of a = 5 m/s® to the right): horizontal springs are
deformed, a pendulum remains inclined to the vertical and the free surface of water in a
vessel remains inclined to the horizontal.

What would happen with these bodies if it were possible to accelerate uniformly the set of
galaxies relative to the ground, in the opgaosite direction, with the same magnitude (for
instance, with an acceleration of a = -5 m/s” to the left), while the car and the internal bodies
remained at rest in the ground?

Bottom left: Nothing would happen to the bodies according to newtonian mechanics. The
springs should remain relaxed, the water horizontal and the pendulum vertical.

Bottom right: According to relational mechanics, on the other hand, the same visible effects
should take place in all these bodies. The deformable bodies should behave as in the top right
configuration. That is, the springs should be deformed, the water should be inclined to the
horizontal and the pendulum should be inclined to the vertical. The kinematic situation now
is the same as that of top right configuration, with equal relative acceleration between these
bodies and the set of galaxies. Therefore, the same dynamic effects should appear.
Phenomena like these are discussed at length in this book.
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Preface

This book presents Relational Mechanics. This is a new mechanics which opposes not only Newton’s classical
mechanics, but also Einstein’s special and general theories of relativity. It answers several questions which
have not been clarified by the theories of Newton and Einstein. In this new mechanics several concepts
which formed the basis of newtonian theory do not appear, such as absolute space, absolute time and
absolute motion. Other classical concepts do not appear as well, such as inertial mass, inertial force, inertia
and inertial systems of reference. Only when relational mechanics is compared with newtonian mechanics
can we obtain a clear understanding of these old concepts.

Relational mechanics is a quantitative implementation of the ideas of Leibniz, Berkeley and Mach utilizing
Weber’s force for gravitation. It is based only on relational concepts such as the distance between material
bodies, the relative radial velocity between them and the relative radial acceleration between them. Several
scientists took part in its development, including Wilhelm Weber himself and Erwin Schrédinger. The goal
of this book is to present the properties and characteristics of this new physics, together with the main
aspects related to its historical development after Newton. In this way relational mechanics can be seen in a
broad perspective. After this presentation it becomes easy to make a comparison with the old worldviews,
namely, newtonian and einsteinian mechanics.

A great emphasis is given to Newton’s bucket experiment. When a bucket partially filled with water
remains stationary in the ground, the water surface is observed to remain horizontal. When the bucket and
the water rotate together relative to the ground around the bucket’s axis with a constant angular velocity,
the surface of the water is observed to become concave, higher at the sides of the bucket than along the
its axis. This is one of the simplest experiments ever performed in physics. Despite this fact no other
experiment had so deep and influential consequences upon the foundations of mechanics. We place it at the
same level Galileo’s experimental discovery that all bodies fall freely towards the ground with a constant
acceleration, no matter their weights or chemical compositions. The explanation of these two facts without
utilizing the concepts of absolute space or inertia, but taking into account the gravitational influence exerted
by the distant galaxies in these two experiments, is one of the major achievements of relational mechanics.

In order to show all the power of relational mechanics and to analyze it in perspective, we first present
newtonian mechanics and Einstein’s theories of relativity. We address the criticisms of Newton’s theory
made by Leibniz, Berkeley and Mach. We present several problems connected to Einstein’s theories of
relativity. We then present relational mechanics and show how it solves mathematically all the problems
and negative aspects of classical mechanics with a clarity and simplicity unsurpassed by any other model.
The detailed history of relational mechanics is also presented, emphasizing the achievements and limitations
of all major works along these lines of reasoning. In addition, we present several notions which are beyond
the scope of newtonian theory, such as the precession of the perihelion of the planets, the anisotropy of
the effective inertial mass, the adequate mechanics for high velocity particles, etc. Experimental tests of
relational mechanics are also outlined.

This book is an improved version of some earlier works, such as On Mach’s principle (1989), On the
absorption of gravity (1992), Mecdnica Relacional (1998), Relational Mechanics (1999), Uma Nova Fisica
(1999) and The principle of physical proportions (2001 to 2011).3 A Portuguese version of this work was
published in 2013 under the title Mecdnica Relacional e Implementa¢ao do Principio de Mach com a Forga
de Weber Gravitacional.* Several improvements have been made in comparison with these works, namely:

e The is a much larger number of figures. Moreover, we tried to emphasize the material body (Earth,
stars or galaxies) relative to which the motion of the test body is being described.

e The explanations are more didactic and clear.

3[Ass89a), [Ass92f], [Ass98], [Ass99a], [Ass99b], [AssO1], [Ass03a], [Ass04] and [Ass11b| with German translation in [Ass13a].
4[Ass13b].
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The phenomena connected with the rotation of the Earth, in relation to the set of fixed stars, were
separately analyzed in the frame of the fixed stars and in the Earth’s frame of reference.

The field concept has been avoided (gravitational field, electric field or magnetic field). The field
concept is utilized only in connection with the conceptual framework of Faraday, Maxwell and Lorentz.
In order to avoid the many problems associated with the field concept, in this book we utilize the
concepts of force per unit mass, force per unit charge or force per unit magnetic pole.

We tried to indicate clearly in all equations of relational mechanics the influence of the mean density
of gravitational mass of the universe in the appropriate phenomena.

We presented a detailed discussion related to the conceptual and experimental distinction between
relative motion and absolute motion. This has been made not only when the bodies are spinning
(relative to the set of distant galaxies or relative to absolute space), but also when they are linearly
accelerated (in relation to the set of galaxies or in relation to absolute empty space).

Several new phenomena have been considered.
The quotation of original works and the number of references have been greatly enlarged.

An Appendix has been included indicating several alternative ways of calculating Weber’s force exerted
by an spherical shell and acting on an internal body. This calculation presents the main result distin-
guishing relational mechanics not only from newtonian mechanics, but also from Einstein’s theories of
relativity.

This book is intended for physicists, mathematicians, engineers, philosophers and historians of science.

It is also addressed to teachers of physics at university or high school levels and to their students. Those
who have taught and learned newtonian mechanics know the difficulties and subtleties related to its basic
concepts (inertial frame of reference, proportionality between inertial and gravitational masses, fictitious
centrifugal force, etc.) Above all, it is intended for young unprejudiced people who have an interest in the
fundamental questions of physics, namely:

e Is there an absolute motion of any body relative to empty space? Or is there only a relative motion of

this body in relation to other material bodies?

How to distinguish experimentally these two completely opposite conceptions of motion? Can we prove
experimentally that a certain body is accelerated relative to empty space? Or the only thing that can
be proved experimentally is that a certain body is accelerated in relation to other bodies?

What is the meaning of inertia? What is the meaning of inertial force?
Why the inertial mass of a test body is proportional to the gravitational mass of this test body?
Is there any material body responsible for the inertial force acting on another test body?

Why two bodies of different weight, shape and chemical composition fall freely in vacuum with the
same acceleration towards the Earth’s surface?

When a bucket partially filled with water is at rest relative to the ground, the surface of the water
remains flat and horizontal. Newton rotated the bucket together with the water around the bucket’s
axis, with a constant angular velocity relative to the ground. He observed that the surface of the
water became concave, higher towards the sides of the bucket and lower around its axis. What was the
material agent responsible for this behavior of the water? This concave shape of the water’s surface
was due to the rotation of the water relative to some material body? Was it due to the rotation of
the water relative to the bucket? Or relative to the Earth? Or relative to other material bodies, such
as the stars of our galaxy? Or relative to the frame of distant galaxies? Is this curvature due to the
rotation of the water in relation to empty absolute space, as Newton believed? Or is this curvature
due to the rotation of the water in relation to the distant astronomical bodies, as Mach suggested?

When the bucket and water are at rest relative to the ground, the surface of the water remains flat
and horizontal. If it were possible to rotate quickly all other astronomical bodies around the bucket’s
axis (like 1 turn per second), would the surface of the water remain flat and horizontal? Or would it
become concave, higher towards the sides of the bucket and lower along its axis?



e It is known that the Earth is flattened at the poles, with the North-South axis smaller than the East-
West, diameter. Newton was the first to predict this effect and to calculate its magnitude, relating it
with the diurnal rotation of the Earth around its North-South axis. Is this flattening of the Earth due
to its diurnal rotation in relation to empty space, as Newton believed? Or is this flattening due to the
diurnal rotation of the Earth in relation to the other astronomical bodies, as Mach believed?

e What would be the shape of the Earth if all other astronomical bodies were annihilated and the Earth
remained alone in the universe? Would it remain flattened at the poles?

e Suppose that it were possible to annihilate all astronomical bodies around the Earth, in such a way
that it remained alone in the universe. Is there any philosophical meaning to speak about the rotation
of the Earth? Rotation relative to what? Would it be possible to detect or to measure any effect due
to this hypothetical rotation?

e Foucault observed that the plane of oscillation of a pendulum does not remain fixed in relation to the
Earth’s surface, except when it is located at the Equator. The plane of oscillation of a Foucault’s
pendulum located at the geographic North pole of the Earth follows the motion of the stars and
galaxies around the Earth. That is, it precesses 360° in one sidereal day. Is there any physical relation
or connection between these two phenomena, as Mach suggested? Or is this only a coincidence?

e If it were possible to stop the rotation of the stars and galaxies around the Earth, what would be the
motion of the plane of oscillation of a Foucault’s pendulum located at the North pole? Would it sill
precess relative to the ground during its oscillations? Or would the plane of oscillation remain at rest
relative to the ground?

e What are the possible experiments which can be made in order to distinguish Mach’s points of view
from those of Newton?

e Newton believed that there are measurable effects when bodies are absolutely accelerated relative to
empty space. Mach, on the other hand, argued that all these empirical effects pointed out by Newton
were in fact due to the relative acceleration between this body and the distant astronomical bodies.
How to test in the laboratory these two opposite worldviews?

In this book we show the answer to all these questions from the point of view of relational mechanics. We
show that these answers are much simpler and more philosophically sound and appealing than in Einstein’s
theories of relativity.

Nowadays the majority of physicists accept Einstein’s theories as correct. We show this is untenable and
present an alternative theory which is much clearer and more reasonable than the previous ones. We know
that these are strong statements, but we are sure that anyone with a basic understanding of physics will
accept this fact after reading this book with impartiality and without prejudice. With an understanding of
relational mechanics, we enter a new world, viewing the same phenomena with different eyes and from a new
perspective. It is a change of paradigm, considering this word with the meaning given to it by Kuhn in his
important work.® This new formulation will help put physics on new rational foundations, moving it away
from the mystifications of this century.

We hope physicists, engineers, mathematicians and philosophers will adopt this book in their courses of
mechanics, mathematical methods of physics and history of science, recommending it to their students. We
believe the better way to create critical minds and to motivate the students is to present to them different
approaches for the solution of the same problems, showing how the concepts have been growing and changing
throughout history and how great scientists viewed equivalent subjects from different perspectives.

In this book we utilize the International System of Units. When we define any physical concept we utilize
“=" as a symbol of definition. We utilize symbols with a double subscript with some different meanings.
Examples: m;; is the inertial mass of body 1, ﬁji is the force exerted by particle j on particle i, ¥,,g is the
velocity of particle m relative to the frame of reference S, and a2 = d; — d2 is the acceleration of particle
1 relative to a certain frame of reference minus the acceleration of particle 2 relative to the same frame of
reference. In the text we clarify which meaning we are employing in each case.

Andre Koch Torres Assis®

5[Kuh62].
6Institute of Physics, University of Campinas — UNICAMP, 13083-859 Campinas, SP, Brazil, e-mail: assis@ifi.unicamp.br
— homepage: <www.ifi.unicamp.br/~assis>.
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Classical Mechanics






Chapter 1

Newtonian Mechanics

1.1 Introduction

The branch of knowledge which deals with the equilibrium and motion of bodies is called mechanics. In the
last three hundred years this area of physics has been taught based on the work of Isaac Newton (1642-1727),
being called classical or newtonian mechanics. His main work is called Mathematical Principles of Natural
Philosophy, usually known by its first Latin name, Principia.' This book was originally published in 1687.
It is divided in three parts, Books I, IT and III.

The other main work of Newton is his book Opticks, originally published in 1704. While the Principia
was written in Latin, the Opticks was published in English, being later on translated to Latin and other
languages.?

Newtonian mechanics as presented in the Principia is based on the concepts of space, time, velocity,
acceleration, weight, mass, force, etc. This formulation is presented in Section 1.2.

Since long before Newton there has been a great discussion between philosophers and scientists about the
distinction between absolute and relative motion.?> Absolute motion is conceived as the motion of a body in
relation to empty space. Relative motion, on the other hand, is conceived as the motion of a body in relation
to other bodies. In this book we consider only Newton and other scientists following him. The reasons for
this choice are the impressive success achieved by newtonian mechanics as regards the phenomena observed
in nature and the new standard introduced by Newton in this whole discussion with his dynamic arguments,
as distinguished from kinematic arguments, in favour of absolute motion. In particular, we can cite his
famous bucket experiment and the flattening of the Earth. These are some of the main topics of this book.

1.2 Laws of Motion

In this Section we present classical mechanics in Newton’s words. Moreover, we will also introduce some
modern algebraic formulas which synthetize his formulation in mathematical language utilizing vectorial
magnitudes and the International System of Units.

The Principia begins with eight definitions. The first definition is “quantity of matter,” which is also
called “body” or “mass.” Newton defined it as the product of the density of the body by the volume it
occupies:*

Definition I: The quantity of matter is the measure of the same, arising from its density and bulk
conjointly.

Thus air of a double density, in a double space, is quadruple in quantity; in a triple space,
sextuple in quantity. The same thing is to be understood of snow, and fine dust or powders, that
are condensed by compression or liquefaction, and of all bodies that are by any causes whatever
differently condensed. I have no regard in this place to a medium, if any such there is, that freely
pervades the interstices between the parts of bodies. It is this quantity that I mean hereafter

![New34], [New52a], [New90], [New99], [New08b| and [New10b].

2[New52b], [New79] and [New96].

3[Jam57], [Jam11], [Dug88|, [Evo88], [BX89], [Bar89], [Jam93], [Jam10] and [Evo94].
4[New34, p. 1] and [New90, p. 1].



4 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

everywhere under the name of body or mass. And the same is known by the weight of each
body, for it is proportional to the weight, as I have found by experiments on pendulums, very
accurately made, which shall be shown hereafter.

In the Principia Newton spoke of only one kind of mass, namely, the quantity of matter in the body.
After Newton, it has been usual to call this magnitude by the name inertial mass, in order to distinguish it
from the mass which appears in the law of universal gravitation, which is called nowadays as gravitational
mass. These two mass concepts will be discussed in Subsection 1.3.2.

Representing the quantity of matter (that is, the inertial mass) of a homogeneous body by m;, its volume
density of inertial mass by p; and its volume by V', we have:

As will be seen in Section 14.4, Ernst Mach (1838-1916) correctly criticized this definition, as Newton did
not specify nor define previously the density of the body. Newton did not present as well an experimental
procedure to measure the density of the body which would be independent from another procedure to measure
its inertial mass. According to Mach, it was necessary to have a definition of inertial mass which did not
depend on the density of the body. The density of a homogeneous body would be then defined as the ratio of
the inertial mass of the body by its volume. Mach’s alternative definition of inertial mass will be discussed
in Section 14.4.

After this first definition, Newton introduced the concept of “quantity of motion” of a body, defining it
as the product of the quantity of matter with the velocity of the body:?

Definition II: The quantity of motion is the measure of the same, arising from the velocity and
quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts; and therefore in a body double
in quantity, with equal velocity, the motion is double; with twice the velocity, it is quadruple.

Representing the vectorial velocity by ¢ and the quantity of motion by p we have:

7=mt . (1.2)

In the sequel we will see that to Newton this velocity should be understood as the velocity of the body
in relation to absolute space and measured by absolute time.

Newton then defined the equivalent expressions wvis insita or vis inertiae. The first expression can be
translated as innate force of matter, inherent force of matter, inner force, essential force, internal force of a
body, or as a force inherent to the body.® The second expression can be translated as inertial force, force of
inertia, inertia, or as a force of inactivity. Newton’s words:”

Definition III: The vis insita, or innate force of matter, is a power of resisting, by which every
body, as much as in it lies, continues in its present state, whether it be of rest, or of moving
uniformly forwards in a right line.

This force is always proportional to the body whose force it is and differs nothing from the
inactivity of the mass, but in our manner of conceiving it. A body, from the inert nature of
matter, is not without difficulty put out of its state of rest or motion. Upon which account, this
vis insita may, by a most significant name, be called inertia (vis inertiae) or force of inactivity.
But a body only exerts this force when another force, impressed upon it, endeavors to change its
condition; and the exercise of this force may be considered as both resistance and impulse; it is
resistance so far as the body, for maintaining its present state, opposes the force impressed; it is
impulse so far as the body, by not easily giving way to the impressed force of another, endeavors
to change the state of that other. Resistance is usually ascribed to bodies at rest, and impulse to
those in motion; but motion and rest, as commonly conceived, are only relatively distinguished;
nor are those bodies always truly at rest, which commonly are taken to be so.

5[New34, p. 1] and [New90, p. 2].
6[Coh80, pp. 190 and 257] and [Coh99, Section 4.7, pp. 96-101].
7[New34, p. 2] and [New90, p. 2].
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His fourth definition is that of “impressed force:”®

Definition IV: An impressed force is an action exerted upon a body, in order to change its state,
either of rest, or of uniform motion in a right line.

[.]

The fifth definition is that of “centripetal force:”"

Definition V: A centripetal force is that by which bodies are drawn or impelled, or any way tend,
towards a point as to a centre.

[

Then follow definitions of the absolute quantity of a centripetal force, of the accelerative quantity of a
centripetal force and the motive quantity of a centripetal force.

After these definitions, there is a very famous Scholium with the definitions of absolute time, absolute
space and absolute motion.'® It is worthwhile quoting its main parts:'!

Scholium

Hitherto I have laid down the definitions of such words as are less known, and explained the sense
in which I would have them to be understood in the following discourse. I do not define time,
space, place, and motion, as being well known to all. Only I must observe, that the common
people conceive those quantities under no other notions but from the relation they bear to sensible
objects. And thence arise certain prejudices, for the removing of which it will be convenient to
distinguish them into absolute and relative, true and apparent, mathematical and common.

1. Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without
relation to anything external, and by another name is called duration: relative, apparent, and
common time, is some sensible and external (whether accurate or unequable) measure of duration
by the means of motion, which is commonly used instead of true time; such as an hour, a day, a
month, a year.

II. Absolute space, in its own nature, without relation to anything external, remains always
similar and immovable. Relative space is some movable dimension or measure of the absolute
spaces; which our senses determine by its position to bodies; and which is commonly taken
for immovable space; such is the dimension of a subterraneous, an aerial, or celestial space,
determined by its position in respect of the Earth. Absolute and relative space are the same in
figure and magnitude; but they do not remain always numerically the same. For if the Earth, for
instance, moves, a space of our air, which relatively and in respect of the Earth remains always
the same, will at one time be one part of the absolute space into which the air passes; at another
time it will be another part of the same, and so, absolutely understood, it will be continually
changed.

III. Place is a part of space which a body takes up, and is according to the space, either absolute
or relative. |[...]

IV. Absolute motion is the translation of a body from one absolute place into another; and
relative motion, the translation from one relative place into another. [...]

Then come his three “Axioms, or Laws of Motion” and six corollaries, namely:!2

Axioms, or Laws of Motion

Law I: Every body continues in its state of rest, or of uniform motion in a right line, unless it is
compelled to change that state by forces impressed upon it.

[

8[New34, p. 2] and [New90, p. 3].

9[New34, p. 2] and [New90, p. 3].

10[Bar93].

1 [New90, pp. 6-8].

12|New34, pp. 13-20] and [New90, pp. 15-23].
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Law II: The change of motion is proportional to the motive force impressed; and is made in the
direction of the right line in which that force is impressed.

[.]

Law III: To every action there is always opposed an equal reaction: or, the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.

[.]

Corollary 1: A body, acted on by two forces simultaneously, will describe the diagonal of a paral-
lelogram in the same time as it would describe the sides by those forces separately.

[.]

Corollary 4: The common centre of gravity of two or more bodies does not alter its state of motion
or rest by the actions of the bodies among themselves; and therefore the common centre of gravity
of all bodies acting upon each other (excluding external actions and impediments) is either at
rest, or moves uniformly in a right line.

[.]

Corollary 5: The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without any circular
motion.

[.]

His first law of motion is usually called the law of inertia.
His second law of motion can be written as:
. dp d
F=—=—(m7) . 1.3
Here we have used F for the resultant force acting on the body, also called the net force. If the inertial
mass m; is constant, then this law can be written in the simple and well known expression given by:

ﬁ = mid’, (14)

where @ = dv//dt is the acceleration of the body in relation to absolute space, figure 1.1. Absolute space
has been identified with the paper in which this figure has been drawn due to the fact that, according to
Newton, it has no relation to anything external. Therefore, this acceleration @ should not be understood as
the acceleration of the body relative to the ground, relative to the stars belonging to our galaxy, nor relative
to the frame of distant galaxies. Newton’s absolute space is then equivalent to empty space or equivalent to
the vacuum.

\'

Wmi
a

Figure 1.1: Body of inertial mass m; moving with velocity ¥ and acceleration @ in relation to Newton’s
absolute space.

Suppose there are N bodies interacting with one another. Let p be one of these bodies, with p =1, ..., N.
Its inertial mass will be represented by m;;, and suppose it is moving in absolute space with acceleration a,.

Let k be another body belonging to these N bodies. We will represent the force exerted by p on k as Fyy.
In this case equation (1.4) for body k can be written as:

N
Z Fpk = mikdk . (15)
p=1
pF#k

In classical mechanics the trajectories of bodies in absolute space are obtained through this equation of
motion. Some special cases need the application of equation (1.3), such as a rocket utilizing fuel and ejecting
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gases, a load truck loosing sand during its motion, etc. These situations of variable mass can also be solved
utilizing equation (1.4), provided that each component of the problem is considered separately (the rocket
and the ejected gases, or the truck and the lost sand, etc.) For this reason it is possible to consider equation
(1.4) as the fundamental basis of newtonian mechanics.

Newton’s third law of motion is usually called the law of action and reaction. Representing the force
exerted by body A on another body B by Fp and the force exerted by B on A by Fg A, the third law can
be written as:

ﬁAB:—ﬁBA- (1.6)

Whenever Newton utilized the third law, the forces between the bodies were directed along the straight
line connecting them, as in the law of gravitation.

His first corollary is called the law of the parallelogram of forces.

His fifth corollary introduces the concept of inertial frames of reference or inertial systems. That is,
frames of reference which are at rest or which move along a straight line with a constant velocity in relation
to absolute space. These reference frames are discussed in Section 1.7.

In this book we will call “test body” to the body whose motion is being studied. The “source bodies,” on
the other hand, will represent the bodies exerting forces on the test body.

1.3 Universal Gravitation

1.3.1 Modern Formulation of the Law of Gravitation

In order to apply his formulation of mechanics, Newton needed expressions for the forces acting on the
bodies. The most important and famous force is his law of universal gravitation, presented by Newton in the
third book of the Principia. This law can be expressed nowadays with the following words: Each particle
of matter attracts any other particle with a force which is proportional to the product of the gravitational
masses of these bodies and which is inversely proportional to the square of the distance between them. These
forces of attraction are considered along the straight line connecting each pair of particles.

Algebraically Newton’s law of gravitation can be written as follows:

Foy = GO = s (1.7)

In this equation ﬁgl is the force exerted by the gravitational mass mg> on the gravitational mass mgi, G is
a constant of proportionality, r is the distance between the point bodies, 7 is the unit vector pointing from
2 to 1, while Fi is the force exerted by mg1 on mgs, figures 1.2 and 1.3.

r

A

T
[ ] —— [ ]
mgl mgz

Figure 1.2: Two bodies separated by a distance r.

*——p 4o

1 Fyy Fio 2
Figure 1.3: Force 1321 exerted by 2 on 1 and force 1312 exerted by 1 on 2.

In the International System of Units the constant G, usually called the constant of universal gravitation,
is given by:
3

kgs? -~

G =6.67x10"" (1.8)
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Consider an inertial frame of reference S with origin O. Let 1 = 212 + 19 + 212 be the position vector
of gravitational mass mg; relative to the origin O of S, while 7 = 2@ + Y29 + 222 is the position vector of

mgo separated by a distance 1 = /(21 — 22)% + (y1 — y2)? + (21 — 22)?, figure 1.4.

S
m,
I'z 7
r
/ 0
A
I
X y
.
L
m,

Figure 1.4: Gravitational masses mg1 and mge located at the position vectors i and 7% in relation to the
origin O of a reference frame S and separated by a distance r.

In this case the unit vector 7 pointing from 2 to 1 can be written as # = (7, — 72)/r.

1.3.2 Inertial Mass and Gravitational Mass

The masses which appear in equation (1.7) are called “gravitational masses” in order to distinguish them
from the “inertial masses.” The inertial masses are the masses which appear in the definition of quantity of
matter, in the definition of linear momentum and in Newton’s second law of motion, equations (1.1), (1.2)
and (1.4).

Gravitational masses are sometimes called by some authors “gravitational charges,” due to the great
analogy between them and the electrified bodies (also called electric charges). An electric charge generates
and feels electric forces. That is, it acts upon other charges, accelerating them, and it is also affected by the
presence of other charges, being accelerated by them. Likewise, the bodies containing gravitational masses
generate and feel gravitational forces. That is, they accelerate other bodies with gravitational masses and
are simultaneously accelerated by them. Moreover, the electrostatic force between electrified bodies has the
same form as Newton’s law of gravitation, as will be seen in equation (2.12). That is, it is proportional to
the product of the two interacting charges, q1¢2, and varies inversely as the square of the distance between
them. Moreover, it is also a central force, acting along the straight line connecting the two point charges.
For these reasons it can be seen that the gravitational masses have a much greater analogy with the electric
charges than with the inertial masses.

In this book we will keep this conceptual distinction between the inertial masses — which appear in
equations (1.1), (1.2) and (1.4) — and the gravitational masses — which appear in equation (1.7). These
two masses will be represented by different symbols, namely, m; and my, respectively. In any event it should
be mentioned that Newton himself introduced only one mass concept in the Principia, namely, that which
has been called inertial mass in Section 1.2.

The gravitational masses are usually measured with a balance. They are proportional to the weight of
the body or to the gravitational force exerted by the Earth on this body near the surface of the Earth. That
is, if a balance is utilized to measure the weights Fy; and Fjo of bodies 1 and 2 at the same location of the
Earth, the ratio of their gravitational masses is defined by the following relation:

mor _ For (1.9)
mgg Fgg

Suppose, for instance, that with an equal arm balance five bodies are found having the same weight. Let
us represent the weight of each one of the bodies by W4 and the gravitational mass of each one of them by
mga. Moreover, let us suppose that there is another body B which, when placed in one pan of this balance,
equilibrates all other five bodies placed together at the other pan of the balance. In this case we say that
the weight of B, Wg, is five times the weight of A. That is, Wg = 5W 4, in such a way that:

mgA Wy 1
= — =-. 1.10
mgpB WB 5 ( )
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A discussion of how to build balances and measure weights can be found in the book Archimedes, the
Center of Gravity and the First Law of Mechanics: The Law of the Lever.'3

1.3.3 Newton’s Original Formulation of the Law of Gravitation

Nowhere in the Principia did Newton express the law of gravitation in the form of equation (1.7). In
Subsection 1.3.1 we presented a short formulation of this law in the following words: Each particle of matter
attracts any other particle with a force which is proportional to the product of the gravitational masses of
these bodies and which is inversely proportional to the square of the distance between them.

Newton did not utilize these words, but we can find similar statements in several passages of the Principia:
Book I, Propositions 72 to 75 and Proposition 76, especially Corollaries 1 to 4; Book III, Propositions 5,
7 and 8; and in the General Scholium at the end of Book III. For instance, in Book I, Proposition 76,
Corollaries 1 to 4, Newton was referring to isotropic distributions of matter, that is, with mass densities of
each spherical body depending only upon the distances 1 and rs to the centers of each body, like p;(r1) and
p2(r2). Moreover, he considered that each material point attracted with a force varying inversely with the
square of the distance:'*

Corollary 1. Hence if many spheres of this kind, similar in all respects, attract each other, the
accelerative attractions of each to each, at any equal distances of the centres, will be as the
attracting spheres.

Corollary 2. And at any unequal distances, as the attracting spheres divided by the squares of
the distances between the centres.

Corollary 3. The motive attractions, or the weights of the spheres towards one another, will be
at equal distances of the centres conjointly as the attracting and attracted spheres; that is, as
the products arising from multiplying the spheres into each other.

Corollary 4. And at unequal distances directly as those products and inversely as the squares of
the distances between the centres.

Proposition 7 of Book III stated:'®

That there is a power of gravity pertaining to all bodies, proportional to the several quantities of
matter which they contain.

That all planets gravitate one towards another, we have proved before; as well as that the force of
gravity towards every one of them, considered apart, is inversely as the square of the distance of
places from the centre of the planet. And thence (by Proposition 69, Book I, and its Corollaries)
it follows that the gravity tending towards all the planets is proportional to the matter which
they contain.

Moreover, since all the parts of any planet A gravitate towards any other planet B; and the
gravity of every part is to the gravity of the whole as the matter of the part to the matter of the
whole; and (by Law III) to every action corresponds an equal reaction; therefore the planet B
will, on the other hand, gravitate towards all the parts of the planet A; and its gravity towards
any one part will be to the gravity towards the whole as the matter of the part to the matter of
the whole. Q. E. D.

This last paragraph is very important. It shows the key role played by the law of action and reaction in
the derivation of the fact that the force of gravity is proportional to the product of the masses of the two
bodies (and not, for instance, proportional to the sum of these masses, or proportional to the product of
the masses squared, or to their product cubed, etc.). French presented a detailed and critical discussion of
Newton’s arguments to arrive at the law of gravitation, emphasizing the importance of the law of action and
reaction. 6

In the General Scholium at the end of the book we read:!”

13[Ass08], [Ass10a] and [Ass1lal.

14[New34, p. 199] and [New90, p. 228].

15[New34, pp. 414-415] and [New08b, pp. 203-204].
16[Fre89).

17[New34, p. 546] and [New08b, p. 331].
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Hitherto we have explained the phenomena of the heavens and of our sea by the power of gravity,
but we have not yet assigned the cause of this power. This is certain, that it must proceed
from a cause that penetrates to the very centres of the Sun and planets, without suffering the
least diminution of its force; that operates not according to the quantity of the surfaces of the
particles upon which it acts (as mechanical causes used to do), but according to the quantity of
the solid matter which they contain, and propagates its virtue on all sides to immense distances,
decreasing always as the inverse square of the distances.

In the System of the World written by Newton, first published in 1728, we can also see the importance
of the law of action and reaction in order to reach the conclusion that the gravitational force is proportional
to the product of the masses. We quote here from Section 20 of Newton’s book, soon after the Section in
which Newton discussed his pendulum experiments which showed the proportionality between weight and

18

[20.] The agreement of those analogies.

Since the action of the centripetal force upon the bodies attracted is, at equal distances, pro-
portional to the quantities of matter in those bodies, reason requires that it should be also
proportional to the quantity of matter in the body attracting.

For all action is mutual, and (by the third Law of Motion) makes the bodies approach one to
the other, and therefore must be the same in both bodies. It is true that we may consider one
body as attracting, another as attracted; but this distinction is more mathematical than natural.
The attraction resides really in each body towards the other, and is therefore of the same kind
in both.

1.4 The Forces Exerted by Spherical Shells

1.4.1 Force Exerted by a Stationary Spherical Shell

In Section 12 of Book I of the Principia, Newton proved two extremely important theorems related with the
force exerted by a spherical shell on internal and external point particles. He supposed forces which vary
inversely with the square of the distance between the interacting particles, as is the case with his gravitational
force, equation (1.7), and also with the electrostatic force. In the first theorem Newton proved the following
result:?

Section 12: The attractive forces of spherical bodies.

Proposition 70. Theorem 30: If to every point of a spherical surface there tend equal centripetal
forces decreasing as the square of the distances from these points, I say, that a corpuscle placed
within that surface will not be attracted by those forces any way.

That is, if a body is placed anywhere inside the spherical shell (not only on its center), the resultant

force exerted by the shell on the body is zero. This situation is represented in figure 1.5, in which there is a
spherical shell of gravitational mass M, radius R and center C', with a corpuscle of gravitational mass m,
located in an arbitrary location inside the shell, at a distance r from the center of the shell.

M,

Figure 1.5: The spherical shell exerts no resultant force on a particle located anywhere inside the shell.

Newton’s result can be expressed mathematically as follows:

18|New34, p. 568] and [New08a, Section 20, p. 354].
19New34, p. 193] and [New90, p. 221].
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F=0, if r<R. (1.11)

By symmetry it might had been concluded that the net force would be zero if the corpuscle were located
exactly at the center of the shell. If it were not on its center, as represented in figure 1.5, the only conclusion
that could be drawn based upon arguments of symmetry, is that the net force acting on the particle must be
along the line connecting it to the center of the shell. No argument of symmetry would lead to the conclusion
that this force must be zero. It is possible to show that this net force is zero only when the force between
the particles is inversely proportional to the square of the distance between them. If the force between the
particles had another behavior (if it varied as the inverse of the distance cubed, for instance), then the result
given by equation (1.11) would no longer be valid.

With theorem 31 Newton proved the following result:2%

Proposition 71. Theorem 31: The same things supposed as above, I say, that a corpuscle placed
without the spherical surface is attracted towards the centre of the sphere with a force inversely
proportional to the square of its distance from that centre.

That is, a particle placed outside the spherical shell is attracted as if the shell were concentrated at its
center. This is represented in figure 1.6, in which there is a spherical shell of gravitational mass M, radius
R and center C, with a corpuscle of gravitational mass m, located outside it in an arbitrary location, at a
distance r from the center of the shell. The net force on this particle points towards the center of the shell
and its magnitude varies inversely as the square of the distance between the corpuscle and the center of the
shell.

Mg
F
<—eo
Mg

Figure 1.6: The spherical shell exerts an attractive force on an external corpuscle. The force points towards
the center of the shell and its magnitude is inversely proportional to the square of the distance between this
center and the particle.

Utilizing Newton’s law of universal gravitation, equation (1.7), together with his Proposition 71, Theorem
31 of the Principia, we obtain that a spherical shell of gravitational mass M, and radius R exerts a force F
on a particle of gravitational mass my located at a distance r > R from the center of the shell given by:

Mymyg

F=-0—%

7

. if r>R. (1.12)

Here 7 represents an unit vector pointing radially outwards from the center of the shell towards the location
of mg, that is, pointing from C' towards the particle.

Let us now consider the situation when the corpuscle of gravitational mass m, is exactly over the surface
of the spherical shell of radius R and gravitational mass My, as in figure 1.7.

My

Figure 1.7: The spherical shell exerts an attractive force on a corpuscle located exactly over the surface of
the shell. This force points towards the center of the shell.

20[New34, p. 193] and [New90, p. 222|.
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Integration of Newton’s law, equation (1.7), yields the following net force F exerted by the shell on the
particle:

Fe_ Q Mgmy 7
2 RZ? ’
Propositions 70 and 71 of Book I of the Principia are nowadays presented as follows. Suppose we have a
spherical shell of gravitational mass M, and radius R centered on O figure 1.8. Let us suppose a reference
frame at rest relative to the spherical shell, with its origin located over the center of the shell. Let 7 represent
the position vector pointing from the center of the shell towards an arbitrary material point.

if r=R. (1.13)

(a) (b)
Figure 1.8: Spherical shell.

An element of gravitational mass dmgo located at 7 over the surface of the shell is given by dmgs =
ogodas = 0,oR?*dQs = 0.oR%sinbydfadps, where 0,0 = M,/4wR? is the surface density of gravitational
mass distributed uniformly over the surface of the shell, d)5 is the element of spherical angle, #; and - are
the polar and azimuth angles of spherical coordinates, 6 varying from 0 to 7w rad, and @9 varying from 0 to
2w rad. The gravitational force exerted by this element of gravitational mass on a test particle mg; located
at 7 is given by equation (1.7):

— m 1dm 2
— g g ~
dFy (1) = —G——5——"12 , (1.14)
12
where 719 = 7 = 71 — 7 is the vector pointing from dmgo to mg1, ri2 = |Fi2| = r is the distance between

dmge and mg1, while 712 = 712/r12 = 7 represents the unit vector pointing from dmgs to mg1. Appendix B
shows how to perform the integration of this force utilizing spherical coordinates. After integration, the net
force exerted by the shell on mg; is given by (utilizing that 1 = |71| and 71 = 71 /r1):

—GMgmglfl/T% , ifry >R
F(f) =1 —GMgmgi1/2R?), ifri=R - . (1.15)
0 s if r < R

That is, if the particle is outside the shell, it will be attracted as if the shell were concentrated at O. If
the particle is anywhere inside the shell, it will not feel any net force exerted by the shell. And if it is over
the surface of the shell it will be attracted towards the center of the shell with a force which is the arithmetic
mean between the values of the force when the particle is slightly outside and slightly inside the shell.

As Newton’s law of gravitation does not depend upon the velocity nor upon the acceleration of the bodies,
equation (1.15) will remain valid no matter the velocity or acceleration of the particle in relation to absolute
space or in relation to the spherical shell. This equation will also remain valid no matter the velocity or
acceleration of the shell in relation to absolute space or in relation to the particle.

Utilizing Newton’s law of universal gravitation, equation (1.7), and his Proposition 71, Theorem 31 of
the Principia, it is possible to obtain easily the force on an external particle exerted by a spherical body
with a volume density of gravitational mass which depends only upon the distance to the center of the shell,
pg(r), but which does not depend upon the polar and azimuth angles § and ¢. That is, the spherical body
will attract the external particle as if its whole mass were concentrated on the center of the sphere.
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In the case of the Earth, neglecting the small effects due to its form being not exactly spherical, the force
it exerts on an external particle of gravitational mass m, located at a distance r from the center of the Earth
is given by:

F(r> Rp) = ~G 2Bz (1.16)

2

r
where M g is the gravitational mass of the Earth, Rg its radius and 7 is the unit vector pointing radially
away from the center of the Earth towards the test particle mg. This force is usually called the weight of
the body, being represented by W, by myg or by Fjy:

-, —GM,
F,=m, (T(]Er) =myg , (1.17)
where
- F_:g GMgE ~
== =— . 1.18
gir) = = (118)

Here g(r) is the force exerted by the Earth, by the unit of gravitational mass. It is also called the gravitational
field of the Earth. As will be seen shortly, ¢ has the same value as the downward acceleration of bodies
falling freely in vacuum towards the center of the Earth. By this equation it can be observed that the force
per unit mass depends upon the distance between the test body and the center of the Earth. The magnitude
of the weight, |ﬁq|, can be represented by W, by mg,g or by F.

In the International System of Units the gravitational mass of the Earth is given by: M,r = 5.98x10%* kg.
If the test body is close to the surface of the Earth, then » ~ Rg, where Rg = 6.37 x 10 m is the mean
radius of the Earth. Close to the surface of the Earth the magnitude of this acceleration of free fall, |G(Rg)|,
is given by:

9(Re) = |g(RE)| =

GM(]E
2

~0.83 = (1.19)
% s

This value needs to be corrected due to two main factors: (i) The flattened shape of the Earth at the poles
and enlarged at the Equator, and (ii) the diurnal rotation of the Earth in relation to the frame of distant
stars. These two factors affect the measured value of the terrestrial gravitational force per unit mass, in such
a way that it depends upon the latitude. At the poles its value is close to 9.83 m/s?, at the Equator its
value is 9.78 m/s?, while at a latitude of 50° this force per unit mass has a value of 9.81 m/s? (values at sea
level). That is, if we have a balance at sea level, at rest relative to the ground, a body with a gravitational

mass of 1 kg will weight 9.83 N at the poles, 9.81 N at 50° latitude and 9.78 N at the Equator.

1.4.2 Force Exerted by a Linearly Accelerated Spherical Shell

Suppose a spherical shell of radius R and gravitational mass M, is moving relative to absolute space with a
linear acceleration /_1', figure 1.9.

(a) (b)
Figure 1.9: Linearly accelerated spherical shell.

What is the force exerted by this spherical shell on a gravitational mass mgy; located inside or outside
the shell? Let 7 be the position vector of this particle in relation to the center of the shell. As Newton’s
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law of gravitation does not depend upon the velocity nor upon the acceleration between the bodies, equation
(1.15) remains valid no matter the value of the acceleration A, that is:

—GMgmglfl/T% , ifri >R
Faccelerated shell(Fl) - :GMgmglfl/(2R2) 3 if ™ = R . (120)
0, ifry <R

Moreover, this result remains valid no matter the velocity ¥ and acceleration d@; of the test particle mg;
relative to absolute space.

1.4.3 Force Exerted by a Spinning Spherical Shell

Suppose a spherical shell of radius R and gravitational mass M, is spinning relative to absolute space with
an angular velocity O around an axis passing through the center of the shell, figure 1.10.

z

M Q

m
.
a
X

Figure 1.10: Spinning spherical shell.

What is the force exerted by this spherical shell on a particle of gravitational mass mg; located inside
or outside the shell? Let 7; be the position vector of this particle in relation to the center of the shell.
As Newton’s law of gravitation does not depend upon the velocity nor upon the acceleration between the
interacting bodies, equation (1.15) remains valid no matter the value of Q, that is:

—Gquglfl/T‘%, ifri >R
Fspinning shell (Fl) = jGquqlfl/(2R2) ’ if = R . (121)
0, ifri <R

Moreover, this result remains valid no matter the velocity #; and acceleration a@; of the particle with
gravitational mass mg; in relation to absolute space.

1.4.4 Cosmological Implications from the Fact that a Spherical Shell Exerts No
Force on Internal Bodies

Newton was completely aware of the cosmological implications of his Proposition 70, Theorem 30, of Book
I of the Principia, discussed in Subsection 1.4.1. In this Proposition Newton proved that the gravitational
force exerted by a spherical shell on a test body located anywhere inside the shell has a zero net value.

He presented this consequence in the second Corollary of Proposition 14, Theorem 14 (The aphelions and
nodes of the orbits of the planets are fixed), of Book III of the Principia:?*

Corollary 1. The fixed stars are immovable, seeing they keep the same position to the aphelion
and nodes of the planets.

Corollary 2. And since these stars are liable to no sensible parallax from the annual motion of
the Earth, they can have no force, because of their immense distance, to produce any sensible
effect in our system. Not to mention that the fixed stars, everywhere promiscuously dispersed in
the heavens, by their contrary attractions destroy their mutual actions, by Proposition 70, Book
L.

21[New34, p. 422] and [New08b, p. 211].
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The main implication of Proposition 70 is that we can essentially neglect the gravitational influence
exerted by the set of fixed stars upon the planetary motions and upon experiments conducted with test
bodies moving on the Earth. Their joint influence can be neglected due to the fact that the stars are
randomly scattered in all directions in the sky, neglecting here the concentration of stars in the Milky Way.
This means that the net force exerted by the set of stars upon the Sun, upon the planets of the solar system,
and upon terrestrial bodies is essentially null. That is, this net force can be neglected when compared with
the magnitude of the other forces which usually act upon terrestrial bodies, upon the planets or upon the
Sun. Therefore, we can neglect the influence of the gravitational force exerted by the set of fixed stars on
terrestrial bodies and on the dynamics of the solar system.

Although Newton was not aware of the existence of galaxies, the same conclusion can be drawn applied
to them. The galaxies are spread more or less uniformly in all directions of space. Therefore, the net
gravitational force exerted by the galaxies which are around the Milky Way, acting on any body belonging
to the Milky Way, is essentially zero. Even when this force is not exactly zero, it will be much smaller than
the usual forces acting on this body due to the other bodies which belong to the Milky Way.

The sets of stars and galaxies do not exert resultant forces on any body of the solar system, no matter
the velocity nor the acceleration of this body in relation to absolute space. This result is valid not only in the
frame of absolute space and in all inertial frames which move with constant velocities in relation to absolute
space, but also in all frames which are accelerated in relation to absolute space. In these non-inertial frames
the sets of stars and galaxies can be seen with translational accelerations along a straight line, or rotating
together around a test body. Despite this fact, the sets of stars and galaxies, accelerated or spinning, will
remain exerting zero net forces on this test body. This zero net force is due to the fact that Newton’s law of
gravitation does not depend upon the velocity or acceleration between the interacting bodies.

It will be seen in Subsection 16.3.2 that this Proposition 70, Theorem 30, remains valid in Einstein’s
special theory of relativity. This null result, on the other hand, is no longer valid with a Weber’s force
for gravitation, as will be seen in Subsection 17.5.1. This is one of the crucial points in which relational
mechanics differs from newtonian mechanics and also from Einstein’s theories of relativity. This new result of
relational mechanics will lead to a new vision of the world. The interpretation offered by relational mechanics
to the majority of simple phenomena of physics is completely different from the interpretations offered by
classical mechanics and by Einstein’s theories of relativity. Relational mechanics presents a new paradigm
for physics.

1.5 The Mean Density of the Earth

Usually the textbooks mention that the gravitational constant G was first measured by H. Cavendish (1731-
1810) in 1798 in his experiment with a torsion balance. As a matter of fact, Newton and Cavendish did
not write down the gravitational force with a constant G, as given by equation (1.7). Moreover, they never
mentioned the constant G. Cavendish’s paper is called “Experiments to determine the density of the Earth.”2?
He obtained that the mean density of the Earth is 5.48 times larger than the density of water.?

In order to obtain the mean density of the Earth, Cavendish compared the gravitational force exerted by
the Earth on a sphere with gravitational mass m,, with the gravitational force exerted between two spheres
with gravitational masses M, and mg, with their centers separated by a distance r. In order to perform this
last measurement, which yields a value much smaller than the gravitational attraction exerted by the Earth,
he utilized a torsion balance. This is a very sensitive instrument which can detect tiny forces. Knowing how
many times the density of the sphere with mass M, was larger than the density of water, and utilizing the
known values of the distance r and the Earth’s radius Rg, Cavendish could then determine the mean density
of the gravitational mass of the Earth.

It should be remarked that Newton had a very good idea of the mean density of the Earth 100 years
before Cavendish. For instance, in Proposition 10 of Book III of the Principia he wrote:24

But that our globe of Earth is of greater density than it would be if the whole consisted of water
only, I thus make out. If the whole consisted of water only, whatever was of less density than
water, because of its less specific gravity, would emerge and float above. And upon this account,
if a globe of terrestrial matter, covered on all sides with water, was less dense than water, it would
emerge somewhere; and, the subsiding water falling back, would be gathered to the opposite side.

22[Cav98] and [Clo87].
23[Cav98, p. 284] and [Cav98, Gravitation, Heat and X-Rays, pp. 100-101 and 143].
24[New34, p. 418] and [NewO08b, pp. 207-208].
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And such is the condition of our Earth, which in a great measure is covered with seas. The Earth,
if it was not for its greater density, would emerge from the seas, and, according to its degree of
levity, would be raised more or less above their surface, the water of the seas flowing backwards
to the opposite side. By the same argument, the spots of the Sun, which float upon the lucid
matter thereof, are lighter than that matter; and, however the planets have been formed while
they were yet in fluid masses, all the heavier matter subsided to the centre. Since, therefore, the
common matter of our Earth on the surface thereof is about twice as heavy as water, and a little
lower, in mines, is found about three, or four, or even five times heavier, it is probable that the
quantity of the whole matter of the Earth may be five or six times greater than if it consisted
all of water; especially since I have before shown that the Earth is about four times more dense
than Jupiter. [...]

That is, Newton estimated 5puater < pE < 6pwater and Cavendish obtained 100 years later pg =
5.48pwater- This is only a small example of how far ahead of his time Newton was. Modern measurements
of the mean density of the Earth yield a value of 5.52 times the mean density of water, that is, pg =
5.52 x 10% kg/m?3.

1.6 The Measurements of Inertial Mass, Time and Space

1.6.1 Measurement of Inertial Mass

As seen in Section 1.2, Newton defined the quantity of matter or mass of a body as given by the product
of its density by the volume occupied by the body. This newtonian mass is called nowadays inertial mass.
However, as a matter of fact, Newton did not utilize this definition in order to measure the value of the
inertial mass of any body. As he himself mentioned in the first definition of the Principia:?®

It is this quantity that I mean hereafter everywhere under the name of body or mass. And the
same is known by the weight of each body, for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shown hereafter.

In Sections 7.2 and 8.3 we will discuss Newton’s experiments on pendulums. With these experiments
he showed that the inertial mass of a body is proportional to its weight. With this proportionality Newton
obtained an operational precise procedure to determine the inertial mass of any body. To this end it was
only necessary to weight it with a balance. Let m;; and m;2 be the inertial masses of two bodies with weights
Fy1 and Fgyo, respectively. From his pendulum experiments, Newton obtained that the ratio of the inertial
masses of these bodies was given by the ratio between their weights, with these weights determined at the
same location of the Farth. Algebraically this proportionality can then be expressed as follows:

mi _ fq1 (1.22)
mi  Fyo

Newton obtained that this proportionality between inertial mass and weight was valid for all bodies, no
matter their shapes, densities or chemical compositions. Therefore, he did not need to utilize the density
of the body in order to obtain its inertial mass, as it was only necessary to weight it with a balance. That
is, although he presented a definition of inertial mass which can be expressed mathematically by equation
(1.1), he did not utilize it in his mechanics. Whenever he needed to estimate the inertial mass of a body, he
would simply weight it. He would then obtain its inertial mass by equation (1.22).

1.6.2 Measurement of Time

As seen in Section 1.2, according to Newton we should utilize in his mechanics only the absolute time in
order to estimate the motion of any body. However, absolute time, in his own words, flows equably without
relation to anything external. Therefore, to measure absolute time we could not utilize the motion of any
body. We could not utilize a pendulum clock, a water clock, a mechanical clock, the diurnal rotation of the
Earth relative to the set of fixed stars, the annual translation of the Earth around the Sun relative to the
frame of fixed stars, etc. This fact generates a problem, because it is necessary to measure absolute time in

25[New34, p. 1] and [New90, p. 1].
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order to describe the phenomena utilizing Newton’s laws of motion, in order to test theoretical models, in
order to make predictions of future events, etc.

Despite this statement, Newton always considered the diurnal rotation of the Earth relative to the frame
of fixed stars as being the appropriate measure of absolute time which should be utilized in his mechanics.
He wrote a very important text, The System of the World, first published posthumously in 1728.26 This is
a non mathematical work which he intended to publish as the last portion of the Principia. Later on he
changed his mind and published the same subject as Book III of the Principia, but now with a complete
mathematical treatment: Book III: The System of the World (in mathematical treatment).?” In Section 35
of the book published in 1728, Newton was very explicit about the utilization of the rotation of the planets
relative to the frame of fixed stars as an excellent measure of absolute time:?8

[35.] The planets rotate around their own axes uniformly with respect to the stars; these motions
are well adapted for the measurement of time.

While the planets are thus revolved in orbits around remote centres, in the meantime they make
their several rotations about their proper axes: the Sun in 26 days; Jupiter in 9" 56™; Mars
in 24%*‘; Venus in 23"; and that in planes not much inclined to the plane of the ecliptic, and
according to the order of the signs, as astronomers determine from the spots or maculae that by
turns present themselves to our sight in their bodies; and there is a like revolution of our Earth
performed in 24"; and those motions are neither accelerated nor retarded by the actions of the
centripetal forces, as appears by Corollary 22, Proposition 66, Book I; and therefore of all others
they are the most uniform and most fit for the measurement of time; but those revolutions are to
be reckoned uniform not from their return to the Sun, but to some fixed star: for as the position
of the planets to the Sun is non-uniformly varied, the revolutions of those planets from Sun to
Sun are rendered non-uniform.

That is, we should consider as uniform the sidereal days, but not the solar days. For instance, the time
interval necessary for the set of fixed stars to complete a whole cycle around the Earth in 14th of January
should be considered equal to the time interval necessary for a whole cycle of the fixed stars around the Earth
in 23rd of April, in 10th of October or in any other epoch of the year. The solar day (time interval necessary
for the Sun to complete a whole cycle around the Earth), on the other hand, in 14th of January should not
be considered equal to the solar day in 23rd of April, nor equal to the solar day in 10th of October.

Proposition 17, Theorem 15, of Book III of the Principia presents the equivalent to this Section 35 of
The System of the World published in 1728:2°

Proposition 17. Theorem 15

That the diurnal motions of the planets are uniform, and that the libration of the Moon arises
from its diurnal motion.

The Proposition is proved from the first Law of Motion, and Corollary 22, Proposition 66, Book
I. Jupiter, with respect to the fixed stars, revolves in 9" 56™; Mars in 24" 39™: Venus in about
23"; the Earth in 23" 56™; the Sun in 25 1/2%, and the Moon in 27 7" 43™. These things appear
by the Phenomena. [...]

In Proposition 19, Problem 3 of Book III of the Principia Newton gave a more precise value for the period
of rotation of the Earth in relation to the frame of fixed stars, namely, 23 hours, 56 minutes and 4 seconds.
We will adopt this value here for the sidereal day, namely, 86,164 seconds. A second is defined in such a way
that the period of rotation of the Earth in relation to the Sun, averaged over the year, the mean solar day,
is exactly 24 hours = 86,400 seconds.

Let then this time interval of 86,164 seconds be the time necessary for the Earth to spin 27 rad around
its axis, relative to the frame of fixed stars. This is also the interval of time necessary for the set of fixed
stars to make a complete turn around the North-South axis of the Earth, rotating together relative to the
ground. When the Earth rotates an angle 6, measured in radians, relative to the fixed stars, the time interval
t, measured in seconds, is then given by:

26[New34, pp. 549-626] and [New08a].

27[New34, pp. 397-547] and [NewO8b].

28|New34, pp. 579-580] and [New08a, pp. 364-365].
29|New34, p. 423| and [New08b, pp. 212-213].
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t(s) _t(s) _ O(rad)

23h56md4s 86,164s 27 rad (1.23)

That is, the time ¢ which appears in newtonian mechanics can be obtained from a measurement of the
angle of rotation of the Earth relative to the frame of fixed stars. Newton had stated that absolute time flows
equably without relation to anything external. Despite this statement, the measure of absolute time which
he employed in the Principia was related to external bodies. In particular, absolute time was determined by
the angle of rotation of the Earth in relation to the set of fixed stars.

1.6.3 Measurement of Space

As seen in Section 1.2, in newtonian mechanics absolute space should be utilized as the frame of reference
(also called a coordinate system) in relation to which the position and motion of any body should be
described. This generates a practical problem due to the fact that, according to Newton, absolute space is
without relation to anything external. Therefore, in order to describe the motion of any body we could not,
in principle, utilize the Earth, the frame of fixed stars, the frame of distant galaxies, nor any other frame
which is defined by the presence of a material body. How is then possible to describe the motions of bodies
in relation to absolute space when this space is invisible and is not related to anything material? Newton
solved this problem in Book III of the Principia utilizing a hypothesis:3°

Hypothesis 1
That the centre of the system of the world is immovable.

This is acknowledged by all, while some contend that the Earth, others that the Sun, is fixed in
that centre. Let us see what may from hence follow.

Proposition 11. Theorem 11
That the common centre of gravity of the Earth, the Sun, and all the planets, is immovable.

For (by Corollary 4 of the Laws) that centre either is at rest, or moves uniformly forwards in
a right line; but if that centre moved, the centre of the world would move also, against the
Hypothesis.

That is, by this hypothesis, Newton adopted the center of gravity of the solar system as being at rest
relative to absolute space.

In the System of the World Newton presented the same point of view as follows:3!
[28.] The common centre of gravity of the Sun and all the planets is at rest and the Sun moves
with a very slow motion. Ezplanation of the solar motion.

Because the fixed stars are quiescent one in respect of another, we may consider the Sun, Earth,
and planets, as one system of bodies carried hither and thither by various motions among them-
selves; and the common centre of gravity of all (by Corollary 4 of the Laws of Motion) will either
be quiescent, or move uniformly forwards in a right line: in which case the whole system will
likewise move uniformly forwards in right lines. But this is an hypothesis hardly to be admitted;
and, therefore, setting it aside, that common centre will be quiescent: and from it the Sun is
never far removed. |...]

After postulating that the center of gravity of the solar system is immovable relative to absolute space,

Newton concluded in Book III of the Principia that the fixed stars are not only at rest relative to one another,

but are also at rest relative to absolute space:32

30[New34, p. 419] and [NewO08b, pp. 208-209)].
31|New34, p. 574] and [New08a, pp. 359-360].
32|New34, p. 422| and [NewO08b, p. 211].
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Proposition 14. Theorem 14
The aphelions and nodes of the orbits of the planets are fized.

The aphelions are immovable by Proposition 11, Book I; and so are the planes of the orbits, by
Proposition 1 of the same book. And if the planes are fixed, the nodes must be so too. It is
true that some inequalities may arise from the mutual actions of the planets and comets in their
revolutions, but these will be so small, that they may be here passed by.

Corollary 1. The fixed stars are immovable, seeing they keep the same position to the aphelion
and nodes of the planets.

[.]

In the beginning of the System of the World Newton said that the idea of the heliocentric system was
very old, arising since the beginning of philosophy. When he described this idea we can perceive once again
his own conception that the set of fixed stars was at rest with respect to absolute space, although here he
did not utilize this expression, mentioning only that the fixed stars were immovable “in the highest parts of
the world:"33

[1.] The matter of the heavens is fluid.

It was the ancient opinion of not a few, in the earliest ages of philosophy, that the fixed stars
stood immovable in the highest parts of the world; that under the fixed stars the planets were
carried about the Sun; that the Earth, as one of the planets, described an annual course about
the Sun; while by a diurnal motion it was in the meantime revolved about its own axis; and
that the Sun, as the common fire which served to warm the whole, was fixed in the centre of the
universe.

It can be concluded that in order to describe the motions of bodies Newton could then utilized the frame
of distant stars, instead of referring these motions to absolute space, which is invisible. For instance, when
describing the orbits of the planets around the Sun, the orbits of the Moons around their planets, or the
laws of planetary motion due to Kepler (1571-1630), Newton always presented these orbits in relation to the
frame of fixed stars, considering them at rest relative to absolute space.

We quote here two examples of this fundamental role played by the fixed stars, namely, when Newton
described in Book IIT of the Principia the orbits of Jupiter’s satellites, and the orbits of the five primary
planets around the Sun:3*

Phenomena

Phenomenon I

That the circumjovial planets, by radit drawn to Jupiter’s centre, describe areas proportional to
the times of description; and that their periodic times, the fixed stars being at rest, are as the %th
power of their distances from its centre.

[

Phenomenon IV

That the fized stars being at rest, the periodic times of the five primary planets, and (whether
of the Sun about the Earth, or) of the Earth about the Sun, are as the %th power to their mean
distances from the Sun.

[

Soon after these statements, Newton presented?® the “periodic times, with respect to the fized stars,” of the
planets and Earth revolving about the Sun, in days and decimal parts of a day. For the Earth, in particular,

33[New34, p. 549] and [New08a, p. 335].
34|New34, pp. 401-404] and [New08b, pp. 189-193].
35[New34, p. 404] and [NewO08b, pp. 192-193].
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he presented the annual period taken for the Earth to complete its orbit around the Sun as 365.2565 days.
In other portions of the Principia and in the System of the World this annual period is presented as being
365 days, 6 hours and 9 minutes.?® This period is the time interval for the Earth to complete a whole orbit
around the Sun, with respect to the frame of fixed stars, returning to the same initial position it had.

In this way Newton had something material, real and visible, namely, the frame of fixed stars, in relation
to which he could describe the trajectories of the bodies he was studying.

1.7 Inertial Frames of Reference

In Newton’s second law of motion, equations (1.3) and (1.4), there is a velocity and an acceleration (supposing
a constant inertial mass). According to Newton, this velocity and this acceleration of the test body should
be considered in relation to absolute space, measured by absolute time. According to his fifth corollary,
presented in Section 1.2, it also possible to refer the motion of this body to any system of reference which
moves in absolute space along a straight line with a constant velocity. If the resultant force acting on a body
is zero, it will remain at rest or moving along a straight line with a constant velocity, not only in absolute
space, but also in relation to any other frame of reference which moves relative to absolute space with a
constant velocity. That is, whenever Z%}c F_"pk, it can be concluded from equation (1.5) that:

dr =0, thatis, @ = constant in time . (1.24)

Nowadays these frames of reference in which Newton’s laws of motion are valid in the form of equations
(1.3) and (1.4) are called®” inertial frames of reference, or inertial systems. In the next Chapters the motion
of bodies will be described with respect to an inertial frame of reference.

There are then three main ways of characterizing an inertial frame of reference, namely:

e An inertial frame is Newton’s absolute space or any system of reference which moves along a straight
line with a constant velocity in relation to absolute space.

e Any system of reference in which Newton’s laws of motion are valid in the form of equations (1.3) and
(1.4).

e Any system of reference in which a particle remains at rest or moves along a straight line with a
constant velocity when there is no net force acting on in, equation (1.24).

1.8 Material Frames of Reference: The Earth, the Set of Fixed
Stars, and the Universal Frame of Reference Defined by the
Set of Galaxies

The concept of absolute space was introduced by Newton by saying that it had no relation to anything
external, Section 1.2. The inertial frames of reference were defined in Section 1.7. In principle absolute
space and the inertial frames of reference have no relation to material objects like the Earth, the set of fixed
stars or the set of galaxies. But in practice it is known that the Earth, the set of fixed stars and the set of
galaxies are good inertial frames of reference in many situations which will be discussed in this book. The
relation between these material frames of reference and the inertial frames of reference is one of the main
topics which is discussed in this book.

In practice it is known that the Earth may be considered as a good inertial system for motions taking
place close to it, provided these motions have small dimensions compared with the radius of the Earth, and
provided these motions last for a short time compared with the diurnal period of rotation of the Earth with
respect to the frame of fixed stars. The Earth is called the terrestrial frame of reference, terrestrial system
of reference or laboratory frame. It is represented in figure 1.11 by the letter T" from the word “terrestrial.” It
is possible, for instance, to study the free fall acceleration @ of an apple of mass m in relation to the ground,
as in figure 1.11. In this case any frame of reference which has a rectilinear motion with constant velocity
relative to the ground may also be considered a good inertial frame.

36[New34, pp. 441, 459 and 590], [New08b, pp. 230 and 246] and [New08a, p. 374].
37[Fre71, pp. 163, 174 and 494], [Gol80, p. 2|, [Nus81, pp. 110-111], [Sym71, pp. 271-273, 502, 508ff and 576], [Sym82, pp.
304 and 549| and [SJ04, p. 111].
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Figure 1.11: Terrestrial frame of reference T' at rest relative to the ground. Test body moving with velocity
¥ and acceleration @ relative to the Earth.

A Detter inertial frame is that of the fixed stars belonging to our galaxy, the Milky Way. The frame in
which the fixed stars are seen at rest is represented in this book by the letter F'. This is a better inertial
frame than the laboratory frame when the conditions specified in the previous paragraph are not satisfied,
or when we want to study the diurnal rotation of the Earth, or its annual translation around the Sun, or the
orbit of any planet around the Sun, etc. This is called the frame of the fized stars, the system of reference of
the fized stars, or simply the fized stars, represented by the letter F' in figure 1.12. Although the Moon, the
Sun, the planets and comets are moving with respect to the background of fixed stars, there is essentially
no motion of any specific star with respect to the other stars. The sky seen nowadays with its constellations
of stars is essentially the same sky described by the old Egyptians and Greek scholars. Although the set of
stars rotates as a whole with respect to the Earth, one star almost does not move with respect to any other
star. For this reason the set of stars is usually called the set of “fixed” stars. Any frame of reference which is
moving along a straight line with a constant velocity with respect to the fixed stars may be also considered
a good inertial frame to study, for instance, the diurnal rotation of the Earth around its axis, or the orbital
motion of a planet around the Sun.

Figure 1.12: Reference frame F' of the fixed stars. Test body moving with velocity ¥ and acceleration @
relative to F'.

Aristarchus of Samos (310-230 B.C.) proposed a heliocentric system in antiquity. According to this model,
the Sun is considered at rest in relation to the fixed stars, with the Earth orbiting around the Sun with a
period of one year and spinning around its axis with a period of one day. Due to the annual motion of the
Earth, a stellar parallax should be observed, that is, one specific star which is close to the Earth should
move or change its position in relation to the distant stars. However, the first observation of this parallax
was made only in 1838 by F. W. Bessel (1784-1846). In 1924 Edwin P. Hubble (1889-1953), after discovering
Cepheid variables in some nebulae seen in the sky, showed that these nebulae are very far away from our
own systems of stars. Since then it has been clear that the set of stars seen in the sky represents only one
set between millions of other similar systems of stars, with each set being very far away from the other sets.
These sets of stars have been called galaxies. Our own galaxy is called the Milky Way.

When we need to study the motion of the stars of the Milky Way among themselves, or the rotation
of the galaxy as a whole relative to the other galaxies, or the translation of the Milky Way in relation to
other galaxies, then it is necessary another frame of reference. The best inertial system known nowadays is
the frame of reference in which the set of distant galaxies is seen at rest, without translational acceleration
and without rotation as a whole. In this book we will call this last frame the universal frame of reference
or universal system of reference. It is represented by the letter U in figure 1.13. Obviously there should
exist motion of the galaxies in relation to one another, but these motions are so small compared with other
ordinary motions in our own galaxy that they can be usually neglected. The universal frame is the system
of reference in which the average velocity of all galaxies goes to zero. Any other system of reference which is
moving along a straight line with a constant velocity in relation to the universal frame may also be considered
a good inertial frame.

This universal frame of reference can also be defined by other means, which seem to be compatible and
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Figure 1.13: Test body moving with velocity ¢ and acceleration a relative to the universal frame of reference
U in which the set of distant galaxies is at rest.

equivalent with one another, as discussed by Wesley.?® Although Wesley utilized these physical properties
to define what he called “absolute space,” we will utilize the same physical properties presented by Wesley
to define what we are calling here the “universal frame of reference.” We prefer this last name, instead of
Wesley’s “absolute space,” in order to avoid confusion with Newton’s “absolute space.” Newton’s absolute
space, in his own words, “in its own nature, without relation to anything external, remains always similar
and immovable.” Our universal frame of reference, on the other hand, is totally related to external material
galaxies.

Therefore, following Wesley and this change of name, the physical properties defining the universal frame
of reference can be defined as follows:3°

e The frame of reference in which the set of distant galaxies is seen at rest, without translational accel-
eration and without rotation as a whole.

e The space in which the material universe appears isotropic in the large, that is, in which distant galaxies
appear to be uniformly distributed.

e The space in which the sum of the redshifts of distant galaxies is zero.

e The space in which the 2.7 K cosmic background radiation is isotropic.

According to Wesley, the frame U of distant galaxies is also the frame in which the oneway velocity of
energy propagation of light in vacuum is fixed as c.

In this book we will discuss the relation between the material frame of reference defined by the set of
galaxies, that is, the universal frame U, and the inertial frames of reference defined in Section 1.7. We will
discuss how this material frame U is an excellent inertial frame. In particular, the universal frame U has
also the following properties:

e The space in which linear momentum is conserved for the universe as a whole and in which the total
linear momentum is a zero minimum. That is, it is the space in which the sum of the linear momenta
of all of the bodies in the universe is a zero minimum.

e The space in which angular momentum is conserved for the universe as a whole and in which the total
angular momentum is a zero minimum.

e The space in which energy is conserved for the universe as a whole.

e The space in which newtonian mechanics without fictitious forces is valid for the universe as a whole.

In the figures presented in this book the terrestrial frame will be represented by the Earth itself, by a line
indicating the ground, or by the letter 7. The frame of the fixed stars will be represented by some stars at
rest relative to one another, or by the letter F'. The universal frame of reference will be represented by some
galaxies at rest relative to one another, or by the letter U. That is, instead of representing bodies moving in
relation to the white sheet of paper, as indicated in figure 1.1 and as usually done in the textbooks, we will
try to emphasize the material bodies which form the background relative to which the motion of the test
body is observed and measured.

38 Wes91, Section 1.16: “Definitions” of Absolute Space, pp. 32-33], [Wes02, Chapter 1: Evidence for Absolute Space] and
[WMO06, Chapter 1: Light in Absolute Space].

39|Wes91, Section 1.16: “Definitions” of Absolute Space, pp. 32-33], [Wes02, Chapter 1: Evidence for Absolute Space] and
[WMO06, Chapter 1: Light in Absolute Space].
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We call “particles” to bodies with negligible dimensions compared with the lengths and distances involved
in the problem under consideration. In general we can neglect the internal properties of these particles,
representing them by material points. That is, a particle will be characterized by its inertial mass. In order
to specify its location, three coordinates will be utilized to indicate its position: z, y, z. These coordinates
are fixed in relation to some inertial frame. In practice these coordinates will be usually fixed in relation
to the ground, in relation to the fixed stars, or in relation to the universal frame of reference. We are here
interested in studying the motion of particles in simple and important situations.
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Chapter 2

Other Forces of Interaction between
Material Bodies

Beyond the gravitational force acting between gravitational masses, there are several forces of other nature
acting between material bodies. We present some of these forces in this Chapter, always in the International
System of Units and with modern algebraic formulas expressed in vector notation.

2.1 Buoyant Force Exerted by a Fluid

Archimedes (287-212 B.C.) obtained in his work On Floating Bodies the upward force exerted by the sur-
rounding fluid on a body immersed in it. His definition of a fluid and the fundamental principle of this work
were presented as follows:!

Let it be granted that the fluid is of such a nature that of the parts of it which are at the same
level and adjacent to one another that which is pressed the less is pushed away by that which is
pressed the more, and that each of its parts is pressed by the fluid which is vertically above it, if
the fluid is not shut up in anything and is not compressed by anything else.

The definition of fluid presented by Newton in Book II of the Principia was the following:?

Section 5

The density and compression of fluids; hydrostatics

The definition of a fluid

A fluid is any body whose parts yield to any force impressed on it and, by yielding, are easily
moved among themselves.

Nowadays a fluid is defined as a substance which will support no shearing stress when in equilibrium.3

When Archimedes supposed that a solid was lighter or heavier than a fluid, he was referring to the specific
weight or specific gravity, that is, if the weight per volume of the solid was smaller or higher than the weight
of a fluid occupying the same volume as the solid body. Archimedes then proved three important theorems
concerning the buoyancy, or loss of weight, of bodies immersed in fluids:*

Proposition 5: Any solid lighter than a fluid will, if placed in the fluid be so far immersed that
the weight of the solid will be equal to the weight of the fluid displaced.

[

1[Dij87, pp. 373 and 379], [Napa], [Napb] and [Ass08, p. 26].
2[New34, p. 290] and [New08b, Section 5, p. 71].

3[Luc80, pp. 369-375], [Sym71, p. 247] and [Sym82, p. 278].
4[Arc02, pp. 257-258] and [Ass96].

25



26 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

Proposition 6: If a solid lighter than o fluid be forcibly immersed in it, the solid will be driven
upwards by a force equal to the difference between its weight and the weight of the fluid displaced.

Proposition 7: A solid heavier than a fluid will, if placed in it, descend to the bottom of the fluid,
and the solid will, when weighed in the fluid, be lighter than its true weight by the weight of the
fluid displaced.

[

These theorems are known nowadays by the name principle of Archimedes. The upward force exerted
by the fluid on an immersed body is called buoyancy or buoyant force. It will be represented in this book
by the symbol Fy. Let F; = mgg be the weight in vacuum of a homogeneous body of gravitational mass m,
and volume V. Let V; be the volume of the submerged part of the body. The buoyant force acts vertically
upwards, against the weight F,; of the body. Let F,; be the weight of the fluid occupying this submerged
volume V;. Utilizing equation (1.17), theses theorems by Archimedes can be written as:

Fy = Fyp =mgpg = pesVsg (2.1)

where my¢ is the gravitational mass of the fluid occupying the submerged volume V; and pg¢ is the density
of gravitational mass of the fluid.

Let Fy;, be the apparent weight of the body, that is, the measured value of its weight (utilizing a spring
balance or dynamometer) when the body has a submerged volume V. According to Archimedes’s theorems,
the value of Fy), is given by:

Fop=Fyg—Fy=Fy— Foy =Fyg —mgrg = Fyg — pgsVsg . (2.2)

Nowadays the buoyant force is related to the gradient of pressure acting on the body immersed in a fluid.
This fact is illustrated qualitatively® in figure 2.1. We remove the upper and lower covers of a cylindrical
vessel made of transparent plastic. We close these covers with elastic bladder discs, fixed tightly to avoid
the entrance of water. A flexible tube with open ends is inserted in the side of the cylindrical vessel. This
apparatus is inserted in a vessel filled with water, with the upper extremity of the flexible tube above the
surface of water. Due to the open tube, the pressure inside the vessel is that of the atmosphere. When the
vessel is horizontal, both discs are equally deformed inwards. However, when the vessel is vertical, we can
then observe that the lower disc is more deformed towards the center of the cylinder than the upper disc.
There is a higher pressure exerted by the water on the lower side of the vessel than at the upper side.

ﬂ

Figure 2.1: Relation between the buoyant force and the gradient of pressure.

Let an infinitesimal body of inertial mass dm;, gravitational mass dm, and volume dV immersed in a
fluid be in equilibrium at rest relative to the ground. Let dFy be its weight in vacuum and the buoyant force
acting on it be represented by dFy, figure 2.2.

Let p(z, y, z) be the pressure in an arbitrary point (z, y, z) of the fluid. The buoyant force dﬁb acting
on an infinitesimal body is given by:

. op, Op. Op, _

Here Vp is called the pressure gradient in a fluid in the region occupied by the element of volume.

5[DGa05].
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Figure 2.2: Body immersed in a fluid.

2.2 Elastic Force Exerted by a Spring

The expression for the law of elastic force was obtained by Robert Hooke (1635-1703) in 1660, being published
in 1678. He expressed himself as follows:®

The theory of springs, though attempted by divers eminent mathematicians of this age has
hitherto not been published by any. It is now about eighteen years since I first found it out, but
designing to apply it to some particular use, I omitted the publishing thereof.

About three years since His Majesty was pleased to see the experiment that made out this theory
tried at White-Hall, as also my spring watch.

About two years since I printed this theory in an anagram at the end of my book of the descrip-
tions of helioscopes, viz., ceiiinosssttuu, id est, ut tensio sic vis; that is, the power of any spring
is in the same proportion with the tension thereof: That is, if one power stretch or bend it one
space, two will bend it two, and three will bend it three, and so forward. Now as the theory is
very short, so the way of trying it is very easie.

Take then a quantity of even-drawn wire, either steel, iron, or brass, and coyl it on an even
cylinder into a helix of what length or number of turns you please, by one of which suspend
this coyl upon a nail, and by the other sustain the weight that you would have to extend it,
and hanging on several weights observe exactly to what length each of the weights do extend it
beyond the length that its own weight doth stretch it to, and you shall find that if one ounce, or
one pound, or one certain weight doth lengthen it one line, or one inch, or one certain length,
then two ounces, two pounds or two weights will extend it two lines, two inches, or two lengths;
and three ounces, pounds, or weights, three lines, inches, or lengths; and so forwards. And this is
the rule or law of nature, upon which all manner of restituent or springing motion doth proceed,
whether it be of rarefaction, or extension, or condensation and compression.

Figure 2.3 represents this experiment.

3mgg

@) (b) (c)
Figure 2.3: Representation of Hooke’s experiment.

In figure 2.3 (a) there is a spring with its upper extremity connected to a rigid support which is at rest
relative to the ground. Its lower extremity is free to move relative to the ground. The length between these

6[Hoo78], [Gun31, pp. 333-334] and [Hoo35].
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two extremities when the spring supports only its own weight is £,. In figure 2.3 (b) this spring supports a
weight F; = mgyg, being stretched with a length ¢; between its two extremities. In figure 2.3 (c) the spring
is even more stretched, supporting a weight 3F; = 3mgg. These weights Fj; = myg and 3F; = 3myg were
determined with an equal arm balance. The length between its two extremities in this case is 3. Hooke’s
experimental result can be expressed mathematically as follows:

l3—40, 3F, 3

6h—t, F, 1° (24)

It is possible to introduce an elastic constant k for a spring by utilizing a standard weight F, which it
supports vertically. With this procedure the elastic force F, of a stretched spring can be expressed as follows:

Fo=—-k({—4{,)=—-F;,=—myg . (2.5)

The negative sign in front of k(¢ — ¢,) indicates that when the spring is stretched, ¢ > ¢,, the elastic force
acts upwards, balancing the weight Fy, exerted by the Earth on the suspended body. In this case we are
considering as positive the downward force, being negative the upward force.

Figure 2.4 (a) represents Hooke’s experiment. Figure 2.4 (b) presents the forces acting on the body of
gravitational mass m, in Hooke’s experiment. There is a downward gravitational force exerted by the Earth
(its weight F, = myg) and the upward elastic force F, = —k({ — {,) exerted by the stretched spring. Figure
2.4 (c) presents the forces exerted on both extremities of the spring. There is a downward force exerted
by the suspended body on the lower extremity of the spring. This is the weight F, of the body which is
transmitted to the spring. There is an upward force T' exerted by the support on the upper extremity of the
spring. Let us consider only the situation when the stretched spring is in equilibrium, at rest relative to the
ground. In this situation the net force exerted on it is zero. This means that T = —Fj,.

T

(a) (b) ()

Figure 2.4: (a) Hooke’s experiment with a stretched spring supporting a weight F, = mg,g. (b) Upward
elastic force F, and downward gravitational force F, acting on the gravitational mass m,. (c) Equal and
opposite forces T' and F}; acting on the two extremities of the stretched spring when it is in equilibrium, at
rest relative to the ground.

Whenever the spring is at rest relative to the ground with a total length ¢ greater than its natural length
{,, we say that the spring is stretched. In this situation there are equal and opposite forces acting on its
extremities, with these forces along its length, pointing away from the center of the spring. On the other
hand, whenever the spring is at rest relative to the ground with a total length ¢ smaller than its natural
length /,, we say that the spring is compressed. In this situation there are equal and opposite forces acting
on its extremities, with these forces along its length, pointing towards the center of the spring.

In figure 2.5 there is a horizontal spring on an ideal table without friction, at rest relative to the ground.
Here are some examples in which the spring is stretched (¢ > ¢,) by forces of different nature. In (a) there
are downward gravitational forces exerted by the Earth on the two gravitational masses m, connected to
the spring. These forces are transmitted to the extremities of the spring by contact forces, stretching it. In
(b) electric forces of repulsion between the two bodies electrified with charges of the same sign stretch the
spring. We are supposing that the spring is an ideal insulator. In (c) there are magnetic forces of repulsion
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between the two magnets connected to the extremities of the spring. We are supposing that the spring is
made of a non ferromagnetic material.

(@) (b) (©

Figure 2.5: Horizontal springs at rest relative to the ground, being stretched by (a) gravitational, (b) electric,
and (c) magnetic forces.

Figure 2.6 presents the equal and opposite forces F' acting on the extremities of the springs of figure 2.5.

0000000000 —+>
F F

Figure 2.6: Equal and opposite forces F' acting on the extremities of the springs of figure 2.5.

Let us suppose that ¢, is the relaxed length of a horizontal spring. By connecting one of its extremities
to a body of inertial mass m;, keeping the other extremity fixed relative to the ground, and compressing or
stretching it up to a length /¢, the spring exerts a force F' on this body, figure 2.7.

F

- !
0 X
Figure 2.7: Stretched spring.

Let z = (£ — ¢,) and let & be the unit vector pointing horizontally along the direction of the stretched
spring. In this case the force F' exerted by the spring on the body connected to it is usually expressed as
follows:

F=—k(l—10,)2 =—kai (2.6)

where k is called the elastic constant of this spring, or the spring constant. This mathematical expression is
usually called Hooke’s law.

2.3 Frictional Force Exerted by a Fluid

When a body moves in a fluid like water or air, the fluid exerts a resistive drag on this body. This force
tends to decrease the motion of the body relative to the fluid. It is called drag force, frictional force or force
of friction.

In the General Scholium at the end of Section 6 of Book II of the Principia, soon after Proposition 31,
Theorem 25, Newton presented several experiments with pendulums oscillating in air, water and mercury.”
In the Scholium at the end of Section 7 of Book II, soon after Proposition 40, Problem 9, Newton presented
several experiments with bodies falling in water and air.?

Let us suppose that the body is moving relative to the ground with a velocity ¢ and that the fluid around
the body is moving with respect to the ground with a velocity v, figure 2.8.

The relative velocity of the body with respect to the fluid around it may be represented by v, being
defined by:

7[New34, pp. 316-326] and [NewO08b, pp. 98-108].
8[New34, pp. 355-366] and [NewO08b, pp. 137-147].




30 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force
VL
Vf
m

S S S S S

Figure 2.8: Body moving relative to the ground with velocity ¥, while the fluid around it is moving with
velocity Uy with respect to the ground.

U, =0 — Uy . (2.7)

The area of cross section of the body should be considered perpendicular to its velocity relative to the
fluid, that is, orthogonal to the direction of v,.. In the case of a sphere of radius r, this area of cross section
is given by A = mr2.

From his experiments Newton concluded that there were three main components of the resistive force
exerted by the fluid on a sphere of radius r when there was a relative motion between them. He distin-
guished these three components by different names.® The first component was the resistance arising from
the “tenacity” of the fluid. This component did not depend upon the relative velocity between the body and
the fluid. The second component was the resistance arising from the “attrition” or “friction” of the fluid.
This component was proportional to the radius of the sphere and to the relative velocity between the body
and the fluid. The third component was the resistance arising from the “density,” “inertia” or “inactivity”
of the fluid. This component was proportional to the density of inertial mass of the fluid, to the square of
the radius of the sphere and to the square of its relative velocity with respect to the fluid.’® Let pf be the
density of inertial mass of the fluid. The general expression for the force of friction F exerted by the fluid
on spherical bodies of radii » moving relative to it can be written as:

F = —(bo + birv, + bapsr®o?)i, | (2.8)

where bg > 0, b; > 0 and b2 > 0 are constants which do not depend upon the radius of the sphere, upon
the density of the fluid, nor upon the relative velocity between the body and the fluid. Moreover, we are
utilizing the following definitions: v, = |/ — U¢| and 0, = ¥,/v,. This force tends to decrease the relative
velocity between the body and the fluid around it.

If a body of inertial mass m; is interacting only with this fluid, his equation of motion can be obtained
combining equations (1.4) and (2.8):

—(bo + byrv, + bgpfrzvf)ﬁT = m,a . (2.9)

Newton obtained from his experiments that in a great number of situations the main component of this
resistive force was proportional to the density ps of the fluid, to the area A of cross section of the body
and to the square of the relative velocity between the body and the fluid. Algebraically this force F can be
written as follows:

- 1
F = —§CpfAv3’[)r , (2.10)

where C is a dimensionless positive constant which is called “drag coefficient.” Its value is usually between
0.5 and 1.0, depending upon the shape of the body. This force points towards —0,., tending to decrease the
relative velocity v, between the body and the fluid.

In other situations this drag force is well represented by a force proportional to the relative velocity v,
namely:

F = —civ,.0, = —c10, , (2.11)

9[New34, pp. 244, 280-281, 316-326 and 354-366] and [New08b, pp. 21, 59-60, 98-108 and 132-147] and [New96, p. 268].
10|New79, Query 28, pp. 362-370] and [New96, p. 268].
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where ¢; is a positive constant. For a sphere moving in a fluid, this force is usually proportional to the radius
r of the sphere. This means that ¢; may be written as byr, where b; is a positive constant independent of
the radius of the sphere and also independent of the relative velocity v, between the fluid and the body.

To Newton it was very clear that this frictional force depended upon the relative velocity between the
body and the fluid. In the case of the drag force in a fluid, it is not relevant the absolute velocity of the
body relative to absolute space, relative to the ground, nor relative to an inertial frame of reference. What
matters is the velocity of the body with respect to the fluid around it and with which it is interacting. For
instance, in Section 7 of Book II of the Principia, he discussed the resistance encountered by bodies moving
in a fluid. In Proposition 37, Theorem 29, he discussed the resistance encountered by a cylinder moving in
a fluid. In Lemmas 5 and 7 after this Proposition he discussed the situation in which the cylinder was at
rest relative to the ground, while water was flowing with respect to the ground, considering how this body
hindered the passage of the water. In this discussion it is clear that only the relative velocity between the
body and the fluid is relevant as regards the mutual force of resistance exerted between them:!?

Lemma 5

If a cylinder, a sphere, and a spheroid, of equal breadths be placed successively in the middle of
a cylindric canal, so that their axes may coincide with the axis of the canal, these bodies will
equally hinder the passage of the water through the canal.

[.]

Lemma 6

The same supposition remaining, the fore-mentioned bodies are equally acted on by the water
flowing through the canal.

This appears by Lemma 5 and the third Law. For the water and the bodies act upon each other
mutually and equally.

Lemma 7

If the water be at rest in the canal, and these bodies move with equal velocity and in opposite
directions through the canal, their resistances will be equal among themselves.

This appears from the last Lemma, for the relative motions remain the same among themselves.

That is, what matters in the drag force is only the relative velocity of the body with respect to the
fluid around it. It is not relevant the absolute velocity of the body relative to absolute space, relative to
the ground, nor relative to an inertial frame of reference. According to Newton, only the relative velocity
between the test body and the fluid will be relevant as regards the force of interaction between them.

2.4 Electrostatic Force between Electrified Bodies

Augustin Coulomb (1738-1806) obtained in 1785 the law of force between two bodies electrified with charges
q1 and gs separated by a distance r which was large compared with the diameters of the bodies. He presented
his results in two papers of 1785, published in 1788.12 He called these electrified bodies by different names,
namely, “electrical masses,” “electrified molecules,” or “densities of electric fluids.”!3

In the case of bodies electrified with charges of the same sign, Coulomb expressed himself as follows:!4

Fundamental Law of Electricity

The repulsive force between two small spheres charged with the same sort of electricity is in the
inverse ratio of the squares of the distances between the centers of the two spheres.

For bodies electrified with charges of opposite signs, Coulomb concluded that:'°

11 [New34, pp. 345-351].

12[Cou85al, [Cou85b], [Pot84] and [Cou35al.
13[Gil71b] and [Gil71a, pp. 190-192].

14[Cou85a, p. 572], [Pot84, p. 110] and [Cou35a).
15[Cou85b, p. 572|, [Pot84, p. 123] and [Cou3ba].
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We have thus come, by a method absolutely different from the first, to a similar result; we may
therefore conclude that the mutual attraction of the electric fluid which is called positive on
the electric fluid which is ordinarily called negative is in the inverse ratio of the square of the
distances; just as we have found in our first memoir, that the mutual action of the electric fluid
of the same sort is in the inverse ratio of the square of the distances.

Up to now Coulomb mentioned only how the electric force varied with the distance between the electrified
bodies. It was only in the final section of his second memoir, when he recapitulated the major propositions
that resulted from his researches, that he mentioned that this force was proportional to the product between
the charges:'6

Recapitulation of the subjects contained in this Memoir

From the foregoing researches, it follows that:

1. The electric action, whether repulsive or attractive, of the two electrified spheres, and therefore
of two electrified molecules, is in the ratio compounded of the densities of the electric fluid of the
two electrified molecules and inversely as the square of the distances; |...|

Gillmor pointed out correctly that Coulomb did not specifically prove that the electric force law was
proportional to the product of the charges.!” He only implied this proportionality in q;¢2, although he did
not consider it important to demonstrate this result experimentally.

Let us suppose two electrified particles or point bodies at rest relative to one another, separated by a
distance r, with 7 being the unit vector pointing from 2 to 1, figure 2.9.

°
q, S0
Figure 2.9: Two bodies electrified with charges g1 and ¢a separated by a distance 7.

The force F; exerted by g2 on ¢; is written as follows in the International System of Units and in vector
notation:

Fy = — =—Fi2. (2.12)

Here ¢, = 8.85 x 10712 A%s%/kgm? is a constant called vacuum permittivity, or permittivity of free space,
while 1312 is the force exerted by ¢ on ¢o.

This force is very similar to Newton’s law of gravitation, equation (1.7). Both force laws are directed
along the straight line connecting the bodies, they follow the law of action and reaction, and vary as the
inverse square of the distance between the bodies. Moreover, the electric force is proportional to the product
of the two charges, while the gravitational force is proportional to the product of the two gravitational
masses. It seems that Coulomb arrived at his force law more by analogy with Newton’s law of gravitation
than by his doubtful few measurements with the torsion balance.'®

The similarity between equations (1.7) and (2.12) indicates that the gravitational masses play the same
role as the electric charges. That is, a gravitational mass m,; generates a force on another gravitational
mass mg2 and feels a force exerted by mge, in such a way that they will accelerate one another relative to
absolute space if they are free to move. Likewise, an electric charge q; generates a force on another charge
g2 and feels a force generate by g2, in such a way that they will accelerate one another relative to empty
space if they are free to move. The behavior of these interactions, or the algebraic expression of these forces,
is essentially the same for gravitational masses and for electric charges.

16[Cou85b, p. 611], [Pot84, p. 146] and [Gil71a, pp. 190-191].
17[Gil71b] and [Gil71a, pp. 190-192].
18[Hee92].
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2.5 Force between Magnetic Poles

In order to describe the magnetic interaction between magnets, or the magnetic interaction between a
magnet and the Earth, Coulomb proposed in 1785 an expression describing the force between magnetic
poles considered as concentrated on particles or material points.!® Coulomb called these poles “magnetic
densities.”?? Nowadays these poles are called North pole of the magnet and South pole of the magnet, with
the North pole being considered positive, by convention. The unit of magnetic pole in the International
System of Units is Am.

Coulomb expressed himself in the following words:?!

The magnetic fluid acts by attraction or repulsion in a ratio compounded directly of the density
of the fluid and inversely of the square of the distance of its molecules.

The first part of this proposition does not need to be proved; let us pass to the second. [...]

Let p; and ps be the intensities of two magnetic poles (magnetic pole-strengths) separated by a distance
r, with 7 being the unit vector pointing from 2 to 1, figure 2.10.
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Figure 2.10: Two magnetic poles p; and py separated by a distance r.

The force 1321 exerted by the magnetic pole po on the magnetic pole p; is expressed as follows in the
International System of Units and with vector notation:

By =ePP2s R, (2.13)
7I

Here p, = 47 x 1077 kgm/(A?s?) is a constant called vacuum permeability, or permeability of free space,
while 1312 is the force exerted by 1 on 2.

Gillmor pointed out correctly that Coulomb did not prove experimentally that the force between two
magnetic poles was proportional to the product of the pole-strengths.?? Coulomb only implied that this
force was proportional to the product pip2, although he did not perform experiments to test this statement.
According with his words just quoted, he did not consider it necessary to prove experimentally this aspect
of the law. This statement of Coulomb does not seem correct to us. It would be necessary to verify
experimentally this essential aspect of the force between two magnetic poles, before one could reach the
conclusion that this was a law of nature. The same happens with the electric force being proportional to the
product of the two charges.

The concept of a magnetic pole is an idealization, as up to now no one succeeded in isolating a magnetic
pole. The basic magnetic entity with which we can make measurements is called a magnetic dipole. It can
be considered as a North pole concentrated on a point, py, separated by a fixed distance ¢ from a South
pole of the same intensity, ps = —pn, concentrated on another point. Let { be an unit vector pointing from
the South pole to the North pole of this dipole, figure 2.11.
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Figure 2.11: A magnetic dipole.

19[Cou85b], [Pot84] and [Cou35b].

20[Gil71b] and [Gil71a, pp. 190-192].

21[Cou85b, p. 593|, [Pot84, p. 130] and [Cou35b].
22[Gil71b] and [Gil71a, pp. 190-192].
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The magnetic moment 1 of this dipole is defined by the following expression:

m = pn /L. (2.14)

Let us consider two magnetic dipoles of lengths ¢; and ¢ with their centers separated by a distance r,
figure 2.12.

Px2
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Figure 2.12: Two magnetic dipoles separated by a distance 7.

Suppose the center of dipole 1 is located at the position vector 7y = x1% + y19 + 212 relative to the
origin O of an inertial frame of reference S, while the center of dipole 2 is located at the position vector
o = Tol + Yo + 222, figure 2.13.

Figure 2.13: Magnetic dipoles 1 and 2 with their centers located at the position vectors 7} and 7 relative
to the origin O of a reference frame S and separated by a distance r. Their magnetic moments are 1, and
My, respectively, while 7 is the unit vector pointing from the center of dipole 2 to the center of dipole 1.

The force between these two dipoles can be obtained from equation (2.13) by taking into account the
forces exerted by each magnetic pole of one dipole acting on each magnetic pole of the other dipole. For
instance, the net force Fhy exerted by dipole 2 on dipole 1 is the vector sum of four terms, namely, the force
of pny2 on pn1, the force of pyo on pgi, the force of pgo on py1, and the force of pgs on pgy. The sum of
these four forces for the situation of figure 2.13 is given by:

3o
47

=3 N 5(m1 . F)(’IT’IQ . F)F =
Fo = 2

(T?Ll . F)T?LQ + (mg . F)T?Ll + (T?Ll . T?lQ)T - = —F12 5 (215)

where 7 = 7] — 75 is the vector pointing from the center of dipole 2 to the center of dipole 1 and Fis is the
net force exerted by dipole 1 on dipole 2. This relation is valid when the distance r between the centers of
the dipoles is much larger than their lengths, that is, when r > ¢; and r > /5.

Likewise we can obtain the torque exerted by dipole 2 on dipole 1 by considering the torques exerted by
poles pn2 and pgo acting on poles py1 and pg.

Similarly it is possible to obtain the magnetic force and torque exerted by the Earth on a magnetic
needle by considering separately the magnetic forces and torques exerted by the Earth on each magnetic
pole composing the compass.

2.6 Ampére’s Force between Current Elements

André-Marie Ampére (1775-1836) worked between 1820 and 1827 with the interaction between current
carrying conductors. The two portions of his first paper on electrodynamics were published in 1820.2% He

23|Amp20a], [Amp20b], [Amp65a], [CA07], [CA09] and [AC11, Chapters 23 and 24, pp. 295-345].
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obtained the final expression for the law of force describing the interaction between two current elements in
1822.24 His main worked on electrodynamics was published in 1826.%°

Let ¢; and i be the electric current intensities in two circuits. They represent the amount of charge
flowing through the cross section of each circuit in the unit of time. Let dfy and dfy be two oriented
segments in each circuit, with infinitesimal lengths |d171| and |d172|, pointing along the direction of the current
in each point of circuits 1 and 2, respectively. We will suppose two current elements ildzl and Z'ngg separated
by a distance r connecting their centers, with 7 being the unit vector pointing from the center of element 2
to the center of element 1, figure 2.14.

r
\ A /i:dli2

Figure 2.14: Two current elements separated by a distance 7.

Ampeére’s force d21321 exerted by igdfg on z’lel is expressed as follows in the International System of

Units and in vector notation:2%
A2 Fy, = _%1'12'2% [2(d[1 cdly) — 3(7 - dBy) (7 - dly)| = —d?Fyy (2.16)
Y
where d2F} is the force exerted by 1 on 2. The constant i, appearing here is the same constant of equation

(2.13).

Ampeére’s expression, equation (2.16), is a central force. It varies inversely as the square of the distance
between the interacting bodies and satisfies the principle of action and reaction. Moreover, it points along
the straight line connecting the two interacting current elements. The same behavior happens with Newton’s
law of gravitation, equation (1.7), with the electrostatic force between point charges, equation (2.12), and
with the force between magnetic poles, equation (2.13).

Ampeére’s force, on the other hand, presents a new aspect which is not present in the forces between
gravitational masses, electric charges and magnetic poles. This novelty is that it depends on the angle
between the two current elements through the term with dly - d[g, and it also depends on the angle of each
current element with the straight line connecting them through the terms with 7- dfy and 7- dly. The reason
for this new behavior is that each current element cannot be considered as concentrated in a point, as it is
orientated in space, pointing along the direction of the electric current flowing in each element. Each current
element must then be considered as an orientated segment of infinitesimal length.

Ampeére’s procedure to arrive at this expression was brilliant, although tortuous and very difficult to
follow. The approach which he followed has been described in detail, with different emphasis, in several
works.?”

Newton’s influence on Ampére was very great. In order to arrive at his expression, Ampére explicitly
assumed that the force should be proportional to the product between i1d¢; and iodf>. He also postulated
that it should obey the law of action and reaction, with the force pointing along the direction connecting the
two current elements. These facts did not come from any experiment. In any event, as it happened with the
electrostatic force law, Ampére’s force was also extremely successful in explaining several electrodynamics
phenomena. The electrostatic force also explained extremely well several electric phenomena, although not
all aspects of this law were obtained experimentally. As was seen in Section 2.4, Coulomb assumed that this
force was proportional to the product ¢1q2. He did not consider relevant to test this aspect of the law. He
did not perform any experiment to test this property.

Wilhelm Weber (1804-1891) was the first to test and confirm experimentally, in 1846, that the force
between two current carrying wires was proportional to the product ijis of the two current intensities.?
To this end he first specified how to measure current intensities without utilizing the force between current
carrying wires. He then controlled the current in each current carrying wire and measured the force between
them by a dynamometer, showing that in fact this force was proportional to i1is.

24|Amp22a], [Amp22b] and [Amp85].

25[Amp26], [Amp23], [Amp65b], [Cha09] and [AC11].

26[Ass92b, Chapter 3], [Ass94, Chapter 4], [Ass95b, Chapter 3|, [BA98, Chapter 5|, [BAO1, Chapter 5|, [AHO07, Chapter 1],
[AHO09, Chapter 1] and [AH13, Chapter 1].

27[Blo82], [Gra85], [Gra94], [Hof96], [GGI6], [Dar00], [Ste03], [Ste05], [Cha09] and [AC11].

28[Web46], translated to English in [Web07].
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We present here some statements by Ampére indicating the great influence exerted by Newton and his

gravitational force law upon his work. They come from his may work summarizing his researches: On the
Mathematical Theory of Electrodynamic Phenomena, Experimentally Deduced. This work begins as follows:2?

The new era in the history of science marked by the works of Newton, is not only the age of
man’s most important discoveries in the causes of natural phenomena, it is also the age in which
the human spirit has opened a new highway into the sciences which have natural phenomena as
their object of study.

Until Newton, the causes of natural phenomena had been sought almost exclusively in the impul-
sion of an unknown fluid which entrained particles of materials in the same direction as its own
particles; wherever rotational motion occurred, a vortex in the same direction was imagined.

Newton taught us that motion of this kind, like all motions in nature, must be reducible by
calculation to forces acting between two material particles along the straight line between them
such that the action of one upon the other is equal and opposite to that which the latter has
upon the former and, consequently, assuming the two particles to be permanently associated,
that no motion whatsoever can result from their interaction. It is this law, now confirmed by
every observation and every calculation, which he represented in the last of the three axioms at
the beginning of the Philosophie naturalis principia mathematica. But it was not enough to rise
to the conception, the law had to be found which governs the variation of these forces with the
positions of the particles between which they act, or, what amounts to the same thing, the value
of these forces had to be expressed by a formula.

Newton was far from thinking that this law could be invented from abstract considerations,
however plausible they might be. He established that this law must be deduced from observed
facts, or preferably, from empirical laws, like those of Kepler, which are only the generalized
results of a great number of particular observations.

To observe first the facts, varying the conditions as much as possible, to accompany this with
precise measurement, in order to deduce general laws based solely on experience, and to deduce
therefrom, independently of all hypothesis regarding the nature of the forces which produce the
phenomena, the mathematical value of these forces, that is to say, to derive the formula which
represents them, such was the road which Newton followed. This was the approach generally
adopted by the learned men of France to whom physics owes the immense progress which has
been made in recent times, and similarly it has guided me in all my research into electrodynamic
phenomena. I have relied solely on experimentation to establish the laws of the phenomena and
from them I have derived the formula which alone can represent the forces which are produced; I
have not investigated the possible cause of these forces, convinced that all research of this nature
must proceed from pure experimental knowledge of the laws and from the value, determined solely
by deduction from these laws, of the individual forces in the direction which is, of necessity, that
of a straight line drawn through the material points between which the forces act. |[...]

His explanation of how he obtained his formula describing the force between current elements was pre-

sented in the following words:3°

I will now explain how to deduce rigorously from these cases of equilibrium the formula by which
I represent the mutual action of two elements of voltaic current, showing that it is the only force
which, acting along the straight line joining their mid-points, can agree with the facts of the
experiment. First of all, it is evident that the mutual action of two elements of electric current
is proportional to their length; for, assuming them to be divided into infinitesimal equal parts
along their lengths, all the attractions and repulsions of these parts can be regarded as directed
along one and the same straight line, so that they necessarily add up. This action must also be
proportional to the intensities of the two currents. |...]

These quotations indicate the enormous influence of Newton’s law of gravitation on Ampére’s reasoning.
Ampére postulated that the force acted along the straight line connecting the current elements, that is,
pointing along the direction of the unit vector 7. Moreover, he assumed that this force was proportional to

29|Amp26, pp. 3-5], [Amp23, pp. 175-177], [Amp65b, pp. 155-156] and [AC11, pp. 366-367].
30[Amp26, p. 27], [Amp23, p. 199], [Amp65b, p. 172] and [AC11, pp. 383-384].
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the product of the two current intensities, 7142, and also proportional to the product of their lengths, df;dls.
He then deduced from his experiments that this force varied with the inverse square of the distance between
the elements, being proportional to r~2. Although he obtained this distance dependence experimentally
at the end of his researches, he had assumed theoretically this distance behavior since the beginnings of
his electrodynamic works in 1820. His major work was to deduce from his experiments and mathematical
reasoning that the force law between two current elements was proportional to a function of the angles given

By integrating this force over a closed circuit Cs of arbitrary shape, Ampére obtained the force dFp
exerted by this circuit on a current element i1dfy which did not belong to this closed circuit. Nowadays
Ampeére’s result can be expressed mathematically as follows:

Lo iadls X T

dﬁQl = &illéf % [3(7: . d[l)(f . dEQ) — 2(d[1 . d@)} = Z.ldzl X f (217)
47 Cs r

Cs 4 T2
That is, this force is always orthogonal to the current element z‘lel, no matter the shape of the closed circuit
2.

Integrating this force over a closed circuit C7, we obtain the force Fb, exerted by the closed circuit 2 on
the closed circuit 1 as given by:

o o . . r . - - - -
F21 = 5—2122% % —2 |:3(T . dﬁl)(’l” . dég) — 2(6%1 . déz)
m cy JCy T

0. . dly x (dly x # o Al - di>)# .
e M—legf % # — _u_lll2% % ( 1 . 2)T = [ . (218)
47T c,JCy T 47T c,JCs T

Here ﬁlg is the force exerted by the closed circuit 1 on the closed circuit 2.

An important case of interaction between two closed circuits is the situation in which two small closed
loops are separated by a great distance between their centers. Let a1 and as represent the areas of these two
loops, 71 and 2 the current intensities, while the unit vectors normal to these loops are represented by 71
and ng, respectively, figure 2.15. These loops may be considered small compared with the distance r between
their centers when r > /a1 and r > \/as.
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Figure 2.15: A closed loop of area aj, current intensity 4; and unit normal vector 7n; interacting with another
closed loop of area as, current intensity 72 and unit normal vector ns.

The magnetic moment 17 of each one of these loops is defined by:

m = ian . (2.19)

This magnetic moment is orthogonal to the area of each loop.

2.7 Force between a Magnetic Dipole and a Current Carrying Wire

In 1820 H. C. Oersted (1777-1851) observed the deflection of a compass due to the presence in its neighbor-
hood of a long straight wire carrying a constant current. He wrote a short work of 4 pages describing his
observations, in Latin, which he sent to several scientists.?! This work gave rise to the science of electromag-
netism, that is, the systematic study of the relation between electric and magnetic phenomena. This word
electromagnetism was also coined by Oersted.??> In 1820 Oersted observed also the opposite phenomenon,
namely, the torque exerted on a current carrying coil due to a magnet fixed in the laboratory.??

31[0er20], [Oer65], [Drs86], [Drs98b] and [Drs98al.
32|@rs98c, p. 421], [Drs98d, p. 426], [GGI0, p. 920] and [GGI1, p. 116].
33 [@rs98c].
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Ampeére continued these researches also observing the forces of action and reaction between a magnet
and a current carrying wire. He also observed the torques of action and reaction between a magnet and a
current carrying wire. Moreover, he succeeded in reproducing the interactions between two magnets through
equivalent interactions between two current carrying conductors. To achieve this goal, he replaced each
magnet by a wire coiled in a plane spiral in which a constant current flowed, or by a helix with a constant
current. He could also reproduce the torque exerted by the Earth on a magnetic compass by replacing the
compass by a large coil carrying a steady current. He could explain all these electromagnetic interactions
supposing the existence of microscopic electric currents flowing around the atoms and molecules of any
magnetic material like a compass needle. These microscopic currents are called nowadays molecular currents
or ampérian currents.

Let 1 and mi2 be the magnetic moments of two infinitesimal dipole magnets, that is, dipoles such that
their lengths ¢; and ¢ are much smaller than the distance r between their centers, {1 < r and {5 < T,
figure 2.12. Ampére showed theoretically that the forces and torques exerted by dipole 1 on dipole 2 can be
reproduced replacing dipole 1 by a closed loop of area a; in which flows a constant current iy, provided the
normal 77 of this loop is along the direction of the magnetic dipole 1, n; = 21, and also provided that they
have equivalent magnetic moments given by:

myp = |’Iﬁl| = legl = ilal . (220)

In this case we are supposing that coil 1 is also infinitesimal, that is, in such a way that its typical size
given by y/a, is much smaller than its separation to dipole 2, /a; < r, figure 2.16.
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Figure 2.16: A current carrying loop of area ai, current intensity ¢; and unit normal vector 77 interacting
with a magnetic dipole of magnetic moment 17is.

It is also possible to replace dipole 2 by a closed loop of area ap in which flows a constant current i,
provided the normal 715 to this coil is along the direction ¢5 of the dipole 2, s = £, and provided also that
this coil 2 and dipole 2 have equivalent magnetic moments given by:

mo = |’IT’L2| = pN2£2 = i2a2 . (221)

In this case we would have the situation represented in figure 2.15. That is, the force and torque exerted
by loop 1 on loop 2 of figure 2.15 will have the same values of the force and torque exerted by dipole 1 on
dipole 2 of figure 2.12, provided equations (2.20) and (2.21) are valid. In order to have this equivalence, it
is also necessary that the unit normal vectors of these loops, 1 and 72, point along the directions of the
magnetic moments of the two dipoles, that is, n, = fl and 7o = ég.

In this way Ampére succeeded in reducing the magnetic phenomena (interactions between two magnets
or the interaction between a magnet and the Earth) and also the electromagnetic phenomena (interaction
between a magnet and a current carrying wire) in terms of electrodynamic phenomena (interaction between
two current carrying wires). That is, the forces and torques exerted between magnets, the forces and torques
exerted between a magnet and the Earth, and the forces and torques exerted between a magnet and a current
carrying wire, can be explained only in terms of the forces and torques exerted between current carrying
conductors.

2.8 Weber’s Force between Electrified Bodies

Wilhelm Eduard Weber (1804-1891) was one of the main scientists of XIXth century. He was contemporary
of Maxwell and worked together with Gauss (1777-1855) at Gottingen University. His main works were
published in 6 volumes between 1892 and 1894.3* He wrote eight major Memoirs between 1846 and 1878
under the general title Elektrodynamische Maassbestimmungen (this title can be translated as Electrodynamic
Measurements; Determination of Electrodynamic Measures or Electrodynamic Measure Determinations).3

34| Web92b], [Web92a], [Web93], [Web94b], [WW93] and [WW94].
35[Web46], [Web52b]|, [Web52a], [KW57], [Web64], [Web71], [Web78] and [Web94a].



Ch. 2: Other Forces of Interaction between Material Bodies 39

The eighth Memoir was published only posthmously in his complete works. Three of these 8 major Mem-
oirs have already been translated to English, namely, the first, Determinations of electrodynamic measure:
Concerning a universal law of electrical action;*6 the sixth, Electrodynamic measurements—Sixzth Memoir,
relating specially to the principle of the conservation of energy;>” and the eighth, Determinations of electro-
dynamic measure: Particularly in respect to the connection of the fundamental laws of electricity with the
law of gravitation.3® In 1848 it was published an abridged version of the first Memoir,3? which has also been
translated into English, On the measurement of electro-dynamic forces.*® In 2010 it was published a list
with all his works translated to English.*!

In 1846 Weber proposed*? a force law with which he could unify electrostatics, equation (2.12), with
electrodynamics, equation (2.16), together with the law of induction of 1831 obtained by Faraday (1791-
1867). Weber’s force can be applied not only for charges at relative rest, but also when the charges are
moving relative to one another. As there are many works discussing Weber’s electrodynamics,*? we will
present only its main aspects in this book.

In the International System of Units and in vector notation Weber’s force Fhy exerted by the point body
2 electrified with charge g2 and acting on the point body 1 electrified with charge ¢; is given by:

N .9 . ~ -2 s
Ay = D2 7 (1 U rr) _ Q192 12 (1 _ m+m) = —Fps . (2.22)

dme, 12 2¢2 2 dme, 2 2¢2 c?
12

Here ﬁlg is the force exerted by ¢; on g2, 7 = 712 is the distance between the charges, # = 715 is the unit
vector pointing from g2 to q1, 7 = dr/dt = 712 = dri2/dt is the relative radial velocity between them, and
P =dr/dt = d?r/dt? = P19 = di1a/dt = d*r12/dt? is the relative radial acceleration between the charges.

The constance ¢ which appears in equation (2.22) is the ratio of electromagnetic and electrostatic units of
charge. Tts experimental value was first determined by Weber and R. Kohlrausch (1809-1858) between 1854
and 1856.4* Several authors discussed their extremely important and pioneering work.*> In the International
System of Units this magnitude can be written as:

1
vV Ho€o

Let us suppose charges ¢q; and ¢o located at 7y = 212 4+ y19 + 212 and 75 = z2Z + Y2 + 222, respectively,
in relation to the origin O of an arbitrary reference frame S, figure 2.17. This arbitrary frame or coordinate
system does not need to be inertial. That is, it can be accelerated relative to the universal frame U of distant
galaxies.

Cc =

=2.998 x 108 % . (2.23)

Figure 2.17: Point charges ¢; and ¢2 located at the position vectors #; and 75 in relation to the origin O
of a reference frame S and moving in this frame with velocities ¢7 and ¥5 and accelerations d; and ds,
respectively.

36 Web07].

37[Web72].

38 Web08].
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40[Web66].
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42[Web46], translated to English in [Web07].

43See, for instance, [Wie60], [Wie67], [Ass92b], [Ass94], [Ass95b]|, [Fuk03], [AHOT7], [AH09], [AW11] and [AH13], and the works
quoted in these books.

44|Webb5], [WK56], translated to English in [WKO03] and translated to Portuguese in [WKO08], [KW57] and [WK68].

45[Kir57], [Ros57], [Woo68], [Woo81], [Wis81], [Ros81], [Har82], [JM86, Vol. 1, pp. 144-146 and 296-297] and [Hec96].
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The unit vectors &, § and Z point along the positive directions of the x, y and z axes of this coordinate
system. The velocities and accelerations of these charges in this frame of reference S are given by: o =
dry/dt = @12 + 19 + 12, To = diy/dt = Gof + 127 + 222, @1 = d?7 /dt? = dv /dt = §12 + §19 + %12 and
Gy = d?ry /dt? = diiy/dt = FoF + ij21) + Z22.

The position vector pointing from g2 to ¢; will be defined by 715 = 7 — 75 = 7. We also define in this
reference frame the relative vector velocity v12 and the relative vector acceleration a2 by:

—

=T=7 -T2 = (11— 22)T + (y1 — y2)7 + (21 — 22)2 = X128 + Y129 + 2122, (2.24)

dr dr
o= -2 =T Ty = (Z1 =912 + (Y1 — 92)9 + (31 — £2)2 = @128 + Y120 + £122 (2.25)

and

dt — dt2 dt?
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12 _ B G- = (Z1 — 22)T + (§1 — §2)§ + (21 — 22)2 = T12@ + §120 + 2122 . (2.26)
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The two point charges are separated by a distance r12 = r given by:

rig = |Fie| =7 = |7 = |7 =7 = [(21 — 22)° + (1 — 12)* + (21 — 22)°] V2 = ol +yd + 2 . (227)

The unit vector pointing from g5 to ¢; is given by:

12

(2.28)
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The radial relative velocity 715 = 7 and the relative radial acceleration 712 = 7 are defined by, respectively:

_drig _ . dr mio®ip +yie¥i2 + 212812 Ti2 U2 L
TrMeo=——"=7r=— = = =T12 V12, (229)
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With these results Weber’s force given by equation (2.22) can be written as follows:

= 7192 T12 1/, N S =
Fy = yP—n [1 + = ('U12 U2 — 5 (P12 - Ti2)” + 712 - a12)] =—Fiz. (2.31)
TEG T c 2
With this force law Weber succeeded in unifying electrostatic phenomena (interactions between charges
which are at rest relative to one another), electrodynamic phenomena (interactions between current elements)
and Faraday’s law of induction.

2.8.1 Weber’s Planetary Model of the Atom

It is relevant to mention here the connection of Weber’s electrodynamics with nuclear physics. Weber
developed in the second half of the XIXth century a planetary model of the atom in which a nucleus
composed of positive charges was surrounded by negative charges describing elliptical orbits around the
nucleus. The motion of the charges was considered with respect to an inertial frame of reference. The most
interesting aspect of his model was that the nucleus was held stable by purely electromagnetic forces, without
the necessity of postulating strong nor weak nuclear forces. In modern physics, on the other hand, nuclear
forces are postulated in order to stabilize the nucleus. Weber’s model was developed before the discovery of
the electron, proton and neutron. It was also created before the works of Rutherford and Bohr, being almost
forgotten nowadays.

Weber’s indissoluble molecule (that is, the positive nucleus of this ponderable molecule) would represent
the modern nuclei of the atomic elements. In Weber’s model there was no particle corresponding to the
neutron. On the other hand, it has the amazing advantage of being stable and held together by purely electric
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interactions, without the necessity of postulating independent forces like the weak and strong nuclear forces
of modern physics. To our knowledge this is the only model ever proposed of a positive nucleus stabilized
by purely electric interactions. Figure 2.18 illustrates a particular example of his planetary model of the
atom with two positive charges composing the nucleus and two negative charges moving in elliptical orbits
around this nucleus. The two positive charges of the nucleus orbit around one another in a very small region
of space, being accelerated relative to one another.

&

Figure 2.18: Weber’s planetary model of the atom with two positive charges orbiting around one another
and composing the nucleus, while two negative charges orbit around the nucleus in elliptical orbits, with
respect to an inertial frame of reference.

Weber could only succeed in obtaining this feature due to a unique property of his force law, equations
(2.22) and (2.31). This property is related to the fact that his force law depends not only upon the distance
between the interacting particles, but also upon their relative radial acceleration. The coefficient multiplying
this acceleration is proportional to p,qi1g2/r. It has the same unit as that of inertial mass, namely, kg.
Moreover, this coefficient is proportional to the product of the two interacting charges, q1¢2, and is inversely
proportional to their distance r12 = r. When they are very close to one another, this coefficient can have a
magnitude greater than the mechanical inertial mass of any of these particles. These charges can then behave
as if they had an effective inertial mass which is a function of the distance separating them. Moreover, this
effective inertial mass can be positive or negative, depending upon the sign of g1¢2. In particular, charges of
the same sign moving relative to one another inside a sphere of diameter p will behave as having an effective
negative inertial mass. This magnitude p may be called “molecular distance” or “critical distance.” It is given
in the International System of Units by the following expression:

mi m2

_Q1Q2(1 1)1_Q1Q2m1+m21
pP=— + -

— = _— 2.32
4meg 2 Admeg mimo 2’ ( )

where m, and mo are the usual inertial masses of particles 1 and 2, respectively.

Consequently, when r < p, instead of repelling one another as usually observed at macroscopic distances,
charges g1 and ¢o will attract one another, as they will behave as if they had negative inertial masses!

This is one of the most fascinating and unique properties of Weber’s electrodynamics, which does not
happen in any other electromagnetic theory ever proposed.46

A detailed discussion of Weber’s planetary model of the atom, with many relevant quotations and refer-
ences, can be found in a book published in 2011.47

46| Ass93a, [Ass94] and [Ass99a).
AT[AW11].
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Chapter 3

Maxwell’s Equations and the Force
Acting on an Electrified Body based
upon Electromagnetic Fields

3.1 Multiple Definitions of the Field Concept

In this book we will deal essentially with the direct interaction between gravitational masses or between
electric charges. Despite this fact and in order to compare the treatment presented here with the presentation
of this subject found in most textbooks, we will also present some examples utilizing the field concept
(gravitational, electric and magnetic fields). This concept is due to Faraday, Maxwell (1831-1879), Lorentz
(1853-1928) and other scientists. The main difficulty arising with this formulation is the polysemy associated
with the field concept, that is, it has several meanings. These multiple meanings associated with the field
concept appear not only in the works of Faraday and Maxwell, but also in modern textbooks. Moreover,
these several meanings are usually contradictory with one another, although the authors do not seem to be
aware of these contradictions. We list here some of these definitions, meanings and properties associated
with the field concept:!

e The field is a region of space around gravitational masses, around electric charges, around magnetic
poles, around magnets, and around current carrying wires.

e A field is a real physical entity filling the space.

e The field is a vector quantity (with magnitude and direction).

e The electromagnetic field propagates in a material medium according to Maxwell.
e The electromagnetic field propagates in empty space according to Einstein.

e The field stores energy, linear momentum and angular momentum.

e The field mediates the action between gravitational masses, between electric charges, between magnetic
poles, between magnets, and between current carrying wires.

e Field is a magnitude with dimensions.
e The field as the lines of force taken together.
e The field as a state of the space.

e The field is generated or produced by source bodies like gravitational masses, electric charges, magnetic
poles, magnets and electric currents.

L[O’R65, Vol. 2, Chapter 13, Section 4: The ‘Field’, pp. 645-661], [Lar82], [Gar04], [KS05], [And], [SKO07], [KS08], [Rib0g],
[RVAOS8], [ARV09] and [AC11].
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The field due to source bodies generates or produces a force on other test bodies like gravitational
masses, electric charges, magnetic poles, magnets and electric currents.

A field can be transformed into another field.

A field changing in time can produce or induce another field.
e Condensations of the electromagnetic field are the elementary particles of matter.

e Etc.

In this Section we discuss some of these definitions.

The Field Is a Region of Space Around Gravitational Masses, Electric Charges, Magnetic
Poles, Magnets, and Current Carrying Wires

Faraday utilized the word “field” for the first time in November 7, 1845, in his Diary.2 But much before this
time he already utilized analogous expressions such as “magnetic curves,” “lines of magnetic force,” or “lines
of force.” In a paper published in 1851 he defined the field as a region of space around the bodies he was
investigating:3

2806. I will now endeavour to consider what the influence is which paramagnetic and diamagnetic
bodies, viewed as conductors (2797), exert upon the lines of force in a magnetic field. Any portion
of space traversed by lines of magnetic power, may be taken as such a field, and there is probably
no space without them.

The same concept was adopted by Maxwell, as can be observed from his definition of the electric field in
his Treatise:*

44.] The electric field is the portion of space in the neighbourhood of electrified bodies, considered
with reference to electric phenomena.

Maxwell presented in the Treatise a similar definition of the magnetic field when interpreting Oersted’s
discovery of the deflection of a compass placed in the neighborhood of a long wire carrying a steady current,
our emphasis:®

476.] It appears therefore that in the space surrounding a wire transmitting an electric current
a magnet is acted on by forces depending on the position of the wire and on the strength of
the current. The space in which these forces act may therefore be considered as a magnetic field,
and we may study it in the same way as we have already studied the field in the neighbourhood
of ordinary magnets, by tracing the course of the lines of magnetic force, and measuring the
intensity of the force at every point.

In his article of 1864-1865 containing a dynamical theory of the electromagnetic field he had already
expressed similar views:5

(3) The theory I propose may therefore be called a theory of the electromagnetic field, because it
has to do with the space in the neighbourhood of the electric and magnetic bodies, and it may
be called a dynamical theory, because it assumes that in that space there is matter in motion, by
which the observed electromagnetic phenomena are produced.

(4) The electromagnetic field is that part of space which contains and surrounds bodies in electric
and magnetic conditions.

This definition was also followed by J. J. Thomson (1856-1940). After describing the basic triboelectric
phenomena he said:”

2[Nota 17] nersessian89.

3[Far52, §2806, p. 690].

4[Max54, Vol. 1, §44, p. 47].

5[Max54, Vol. 2, §476, p. 139)].
6[Max65, p. 460] and [Max65a, p. 527].
7[Tho21, p. 1].
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The sealing-wax and the flannel are said to be electrified, or to be in a state of electrification, or
to be charged with electricity; and the region in which the attractions and repulsions are observed
is called the electric field.

James H. Jeans (1877-1946) also followed the definitions of Faraday and Maxwell:3

30. The space in the neighbourhood of charges of electricity, considered with reference to the
electric phenomena occurring in this space, is spoken of as the electric field.

Several other authors presented a similar definition of the field, as quoted by O’Rahilly.”
Heilbron combined these definitions as follows:!°

Field in general signifies a region of space considered in respect to the potential behaviour of test
bodies moved about in it; the electricians of 1780 lacked the word but not the concept, which
they called ‘sphere of influence’, sphaera activitatis, or Wirkungskreis. |...]

Later on authors presented other definitions for the field concept, some of which are presented in the
sequence.

A Field Is a Real Physical Entity Filling the Space

Many modern physicists consider the field as some real physical entity filling the space. Einstein, for instance,
said the following:!!

“If we pick up a stone and then let it go, why does it fall to the ground?” The usual answer to this
question is: “Because it is attracted by the Earth.” Modern physics formulates the answer rather
differently for the following reason. As a result of the more careful study of electromagnetic
phenomena, we have come to regard action at a distance as a process impossible without the
intervention of some intermediary medium. If, for instance, a magnet attracts a piece of iron, we
cannot be content to regard this as meaning that the magnet acts directly on the iron through
the intermediate empty space, but we are constrained to imagine—after the manner of Faraday—
that the magnet always calls into being something physically real in the space around it, that
something being what we call a “magnetic field.” [...] The effects of gravitation also are regarded
in an analogous manner.

Feynman, Leighton and Sands expressed themselves as follows:!2

We can write the force F on a charge ¢ moving with a velocity v as

F=¢(E-+vxB). (11

We call E the electric field and B the magnetic field at the location of the charge.

[...] Tt is precisely because E (or B) can be specified at every point in space that it is called a
“field.” A “field” is any physical quantity which takes on different values at different points in
space.

According to Griffiths:!3

What exactly is an electric field? I have deliberately begun with what you might call the “min-
imal” interpretation of E, as an intermediate step in the calculation of electric forces. But I
encourage you to think of the field as a “real” physical entity, filling the space in the neighbor-
hood of any electric charge.

8[Jeadl, p. 24].

9[O’R65, Vol. 2, p. 651].
10[Hei81, p. 187].

1[Ein20b] and [Ein20a, p. 74].
12|FLS64, pp. 1-2 and 1-4].
13[Gri89, p. 64].
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Field Is a Vector Quantity (with Magnitude and Direction)

Most authors consider the field as a vector quantity, having magnitude and direction. The gravitational
field is normally represented nowadays by g or g, the electric field by E or E, while the magnetic field is
represented by B or B.

Maxwell emphasized this point as follows in his Treatise:'

Let e be the charge of the body, and F' the force acting on the body in a certain direction, then
when e is very small F' is proportional to e, or

F = Re,

where R depends on the distribution of electricity on the other bodies in the field. If the charge
e could be made equal to unity without disturbing the electrification of other bodies we should
have F' = R.

We shall call R the resultant electromotive intensity at the given point of the field. When we
wish to express the fact that this quantity is a vector we shall denote it by the German letter €.

_ Instead of Maxwell’s €, nowadays the electric field is normally represented by the symbol E. The force
F' acting on a charge e would then be written as

F =¢E . (3.1)

Maxwell also considered the magnetic field as a vector. For instance, Chapter II of Volume 2 of his
Treatise on FElectricity and Magnetism, devoted to the magnetic force and magnetic induction, has the
following statement:!'®

The three vectors, the magnetization ¥, the magnetic force $, and the magnetic induction B, are
connected by the vector equation

B=9+473. (7)

Nowadays this equation connecting the field B (called magnetic field, magnetic induction or magnetic
flux density), the field M (called magnetic dipole moment per unit volume) and the auxiliary field H (called
magnetic intensity by some authors, while other authors call it magnetic field), in the cgs-Gaussian system
of units and in the International System of Units, is written as, respectively:'6

B=H+47M , (3.2)

and
B = poH + poM . (3.3)

The Electromagnetic Field Propagates in a Material Medium According to Maxwell

Maxwell presented his electromagnetic theory of light in Chapter 20 of his book Treatise of FElectricity and
Magnetism of 1873. He defended the existence of a material medium, the ether, existing in the space between
material bodies. This was an elastic medium that had a finite density of matter. According to Maxwell light
would be an electromagnetic perturbation in this medium, propagating relative to it:'”

781.] In several parts of this treatise an attempt has been made to explain electromagnetic
phenomena by means of mechanical action transmitted from one body to another by means of
a medium occupying the space between them. The undulatory theory of light also assumes the
existence of a medium. We have now to shew that the properties of the electromagnetic medium
are identical with those of the luminiferous medium.

[

14 [Max54, Vol. 1, §44, p. 48].

15|Max54, Vol. 2, §400, p. 25].

16[Jac75, p. 188], [Gri89, p. 258] and [HM95, p. 26].
17[Max54, Vol. 2, §781, p. 431].
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But the properties of bodies are capable of quantitative measurement. We therefore obtain the
numerical value of some property of the medium, such as the velocity with which a disturbance
is propagated through it, which can be calculated from electromagnetic experiments, and also
observed directly in the case of light. If it should be found that the velocity of propagation of
electromagnetic disturbances is the same as the velocity of light, and this not only in air, but in
other transparent media, we shall have strong reasons for believing that light is an electromagnetic
phenomenon, and the combination of the optical with the electrical evidence will produce a
conviction of the reality of the medium similar to that which we obtain, in the case of other kinds
of matter, from the combined evidences of the senses.

The Electromagnetic Field Propagates in Empty Space According to Einstein

In his paper of 1905 introducing the special theory of relativity, Einstein made the ether superfluous and
considered that light and the electromagnetic waves propagate in empty space, our emphasis:'®

Examples of this sort, together with the unsuccessful attempts to discover any motion of the
Earth relatively to the “light medium,” suggest that the phenomena of electrodynamics as well
as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest
rather that, as has already been shown to the first order of small quantities, the same laws
of electrodynamics and optics will be valid for all frames of reference for which the equations
of mechanics hold good. We will raise this conjecture (the purport of which will hereafter be
called the “Principle of Relativity”) to the status of a postulate, and also introduce another
postulate, which is only apparently irreconcilable with the former, namely, that light is always
propagated in empty space with a definite velocity ¢ which is independent of the state of motion
of the emitting body. These two postulates suffice for the attainment of a simple and consistent
theory of electrodynamics of moving bodies based on Maxwell’s theory for stationary bodies. The
introduction of a “luminiferous ether” will prove to be superfluous inasmuch as the view here to
be developed will not require an “absolutely stationary space” provided with special properties,
nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take
place.

Later on Einstein and Infeld expressed themselves as follows:?

Our only way out seems to be to take for granted the fact that space has the physical property
of transmitting electromagnetic waves, and not to bother too much about the meaning of this
statement.

The Field Stores Energy, Linear Momentum and Angular Momentum

There is a density of energy in the electromagnetic field.2® We can say that the electric field stores electric
energy, that is, it contains energy. Likewise, the magnetic field stores magnetic energy.
J. J. Thomson, for instance, expressed himself as follows:2!

If, as I do, we believe with Faraday and Clerk Maxwell that the properties of charged bodies are
due to lines of force which spread out from them into the surrounding ether, we must place the
energy of the electron in the space outside the little sphere which is supposed to represent the
electron.

According to Einstein:??

For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the
magnet an electric field with a certain definite energy, producing a current at the places where
parts of the conductor are situated.

18|Ein52c, pp. 37-38] and [Ein78c, p. 48].

9[EI38, p. 159].

20[O’R65, Vol. 1, Chapter 8, Section 4: Localized energy, pp. 281-290], [Gri89, Section 7.5: Energy and momentum
in electrodynamics, pp. 320-333, and Subsection 8.2.2: Energy and momentum of electromagnetic waves, pp. 358-360],
[HMO95, Section 4.6: Energy in the electromagnetic field, pp. 143-147, and Section 14.12: Energy-momentum tensor of the
electromagnetic field, pp. 522-527] and [CS02, Section 23.5: Energy and momentum in electromagnetic radiation, pp. 854-859].

21|Tho29, p. 12| and [O’R65, Vol. 1, p. 281].

22[Ein05], [Ein52¢c, p. 37] and [Ein78c|.
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There is also a density of momentum in the electromagnetic field.??

J. J. Thomson expressed himself as follows:

24

To take an example, according to Newton’s third law of motion, action and reaction are equal and
opposite, so that the momentum in any direction of any self-contained system is invariable. Now,
in the case of many electrical systems there are apparent violations of this principle; thus, take
the case of a charged body at rest struck by an electric pulse, the charged body when exposed
to the electric force in the pulse acquires velocity and momentum, so that when the pulse has
passed over it, its momentum is not what it was originally. Thus, if we confine our attention to
the momentum in the charged body, i. e., if we suppose that momentum is necessarily confined
to what we consider ordinary matter, there has been a violation of the third law of motion, for
the only momentum recognized on this restricted view has been changed. The phenomenon is,
however, brought into accordance with this law if we recognize the existence of momentum in the
electric field; for, on this view, before the pulse reached the charged body there was momentum in
the pulse, but none in the body; after the pulse passed over the body there was some momentum
in the body and a smaller amount in the pulse, the loss of momentum in the pulse being equal
to the gain of momentum by the body.

Jackson expressed himself as follows:2>

[...] electromagnetic fields can exist in regions of space where there are no sources. They can
carry energy, momentum, and angular momentum and so have an existence totally independent
of charges and currents.

Griffiths expressed himself as follows:?

6

When a charge undergoes acceleration, a portion of the field “detaches” itself, in a sense, and
travels off at the speed of light, carrying with it energy, momentum, and angular momentum.
We call this electromagnetic radiation. Its existence invites (if not compels) us to regard
the fields as independent dynamical entities in their own right, every bit as “real” as atoms or
baseballs.

The Field Mediates the Action between Gravitational Masses, Electric Charges, Magnetic
Poles, Magnets, and Current Carrying Wires

This has been the point of view expressed by Maxwell, against the theories of action at a distance.

27

This idea has also been presented by Griffiths as follows:2®

The Field Formulation of Electrodynamics

The fundamental problem a theory of electromagnetism hopes to solve is this: I hold up a bunch
of electric charges here (and maybe shake them around)—what happens to some other charge,
over there? The classical solution takes the form of a field theory: We say that the space around

”

an electric charge is permeated by electric and magnetic fields (the electromagnetic “odor,” as
it were, of the charge). A second charge, in the presence of these fields, experiences a force; the
fields, then, transmit the influence from one charge to the other—they “mediate” the interaction.

Field Is a Magnitude with Dimensions

In the International System of Units, for instance, the unit of the gravitational field g is that of acceleration,
m/s®. The unit of the electric field E is that of V/m = kgmC~1s™2 = kgmA~'s73. The unit of the

magnetic field B is that of T = Wm™2 = kgC~ts™! = kgA—1s72.

23|O’R65, Vol. 1, Chapter 8, Section 5: Electromagnetic momentum, pp. 291-304], [Gri89, Section 7.5: Energy and momentum
in electrodynamics, pp. 320-333, and Subsection 8.2.2: Energy and momentum of electromagnetic waves, pp. 358-360],
[HMO95, Section 4.6: Energy in the electromagnetic field, pp. 143-147, and Section 14.12: Energy-momentum tensor of the
electromagnetic field, pp. 522-527| and [CS02, Section 23.5: Energy and momentum in electromagnetic radiation, pp. 854-859).

24|Tho04, pp. 24-25] and [O’R65, Vol. 1, p. 294].

25p. 3] jacksonT5.

26|Gri89, p. 4].

27[Max54, Vol. 1, Preface to the first edition, pp. v-xii, Vol. 2, §§641-646, pp. 278-283 and Chapter 23, §§846-866, pp.

480-493).

28[GrigY, p. 4].
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The Field as the Lines of Force Taken Together

Einstein and Infeld presented a definition of the field as the lines of force taken together:2
The Field as Representation

[...]| We know that two particles attract each other and that this force of attraction decreases with
the square of the distance. We can represent this fact in a new way, and shall do so even though
it is difficult to understand the advantage of this. The small circle in our drawing represents

an attracting body, say, the Sun. Actually, our diagram should be imagined as a model in space
and not as a drawing on a plane. Our small circle, then, stands for a sphere in space, say, the
Sun. A body, the so-called test body, brought somewhere within the vicinity of the Sun will be
attracted along the line connecting the centres of the two bodies. Thus the lines in our drawing
indicate the direction of the attracting force of the Sun for different positions of the test body.
The arrow on each line shows that the force is directed toward the Sun; this means the force is an
attraction. These are the lines of force of the gravitational field. For the moment, this is merely
a name and there is no reason for stressing it further. There is one characteristic feature of our
drawing which will be emphasized later. The lines of force are constructed in space, where no
matter is present. For the moment, all the lines of force, or briefly speaking, the field, indicate
only how a test body would behave if brought into the vicinity of the sphere for which the field
is constructed.

Later on in the same book:3°

In this way, the lines of force, or in other words, the field, enable us to determine the forces acting
on a magnetic pole at any point in space.

The Field as a State of the Space

According to Einstein, the field might be considered a particular state of the space:3!

If we are here going to talk about the ether, we are not, of course, talking about the physical or
material ether of the mechanical theory of undulations, which is subject to the laws of newtonian
mechanics, to the points of which are attributable a certain velocity. This theoretical edifice has,
I am convinced, finally played out its role since the setting up of the special theory of relativity.
It is rather more generally a question of those kinds of things that are considered as physically
real, which play a role in the causal nexus of physics, apart from the ponderable matter that
consists of electrical elementary particles. Therefore, instead of speaking of an ether, one could
equally well speak of physical qualities of space. Now one could take the position that all physical
objects fall under this category, because in the final analysis in a theory of fields the ponderable
matter, or the elementary particles that constitute this matter, also have to be considered as
‘fields’ of a particular kind, or as particular ‘states’ of the space.

The Field Is Generated or Produced by Source Bodies Like Gravitational Masses, Electric
Charges, Magnetic Poles, Magnets and Electric Currents

Some scientists assume that “field” is a magnitude which is generated or produced in space by certain bodies.
The bodies producing the fields are called “source bodies.” Gravitational source masses, for instance, are
supposed to generate or produce gravitational fields. Electrified bodies or electric charges generate electric
fields. Moving electric charges, magnetic poles, magnets or current carrying wires generate magnetic fields.

29[EI38, pp. 129-131].
30[EI38, p. 135].
31[Ein24] and [Ein91, p. 13].
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We present here some quotations presenting this point of view.
Landau and Lifshitz expressed themselves as follows:32

The interaction of particles can be described with the help of the concept of a field of force.
Namely, instead of saying that one particle acts on another, we may say that the particle creates
a field around itself; a certain force then acts on every other particle located in this field.

Feynman, Leighton and Sands expressed this idea as follows:?3
We then have two rules: (a) charges make a field, and (b) charges in fields have forces on them
and move.

The Field Due to Source Bodies Generates or Produces a Force on Other Test Bodies like
Gravitational Masses, Electric Charges, Magnetic Poles, Magnets and Electric Currents

The fields due to source bodies can affect other bodies called “test bodies.” Gravitational test masses, for
instance, are affected be gravitational fields due to other source masses. This field generates or produces a
force on these test masses, accelerating them relative to an inertial frame if they are free to move. Likewise,
test charges are affected by electric fields due to other source charges. Moving charges, magnetic poles,
magnets or current carrying wires are affected by magnetic fields due to other sources, being accelerated by
these fields if these test bodies are free to move relative to an inertial frame of reference.

This idea has been expressed clearly by Feynman, Leighton and Sands:3*

More was discovered about the electrical force. The natural interpretation of electrical interaction
is that two objects simply attract each other: plus against minus. However, this was discovered
to be an inadequate idea to represent it. A more adequate representation of the situation is to
say that the existence of the positive charge, in some sense, distorts, or creates a “condition” in
space, so that when we put the negative charge in, it feels a force. This potentiality for producing
a force is called an electric field. When we put an electron in an electric field, we say it is “pulled.”

A Field can be Transformed into Another Field

Sometimes people say that an electric field may be transformed into a magnetic field and vice-versa. As
will be seen in Subsection 15.5.4, Einstein, for instance, argued in his paper of 1905 on the special theory
of relativity, that an electric field E might generate or be transformed into a magnetic field B through a
change of reference between two inertial systems. Likewise, the magnetic field B might be transformed into
an electric field E.3

This einsteinian idea has been adopted by many scientists.36

A Field Changing in Time can Produce or Induce Another Field

In order to explain Faraday’s law of induction, the textbooks usually state that a magnetic field changing in
time produces an induced electric field.?”
Textbooks also state that an electric field changing in time produces an induced magnetic field.?®
Einstein and Infeld expressed these ideas as follows:?°

The electric and magnetic field or, in short, the electromagnetic field is, in Maxwell’s theory,
something real. The electric field is produced by a changing magnetic field, quite independently,
whether or not there is a wire to test its existence; a magnetic field is produced by a changing
electric field, whether or not there is a magnetic pole to test its existence.

32[LL75, p. 46].

33[FLS63, p. 2-5].

34[FLS63, p. 2-5].

35[Ein05], [Ein52c] and [Ein78c].

36[Jac757 Section 11.10, pp. 552-556: Transformation of electromagnetic fields|, [Gri89, Section 10.3.2, pp. 491-499: How the
field transform| and [HM95, Section 14.6, pp. 508-510: Transformation properties of the field tensor].

37|Gri89, Section 7.2: Faraday’s law, pp. 284-291], [HM95, Section 4.2, pp. 130-132] and [CS02, Section 22.1: Changing
magnetic fields and curly electric fields, pp. 804-807].

38[Gri89, Section 7.3: Maxwell’s equations, pp. 304-314], [HM95, Section 4.3, pp. 132-135] and [CS02, Section 23.1, pp.
842-845].

39[EI38, p. 151].
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Condensations of the Electromagnetic Field Are the Elementary Particles of Matter

Einstein presented this view in an address delivered on May 5th, 1920, in the University of Leyden, as
follows: 49

Since according to our present conceptions the elementary particles of matter are also, in their
essence, nothing else than condensations of the electromagnetic field, our present view of the
universe presents two realities which are completely separated from each other conceptually,
although connected causally, namely, gravitational ether and electromagnetic field, or—as they
might also be called—space and matter.

He expressed the same point of view in other publications:*!

In the present situation we are de facto forced to make a distinction between matter and fields,
while we hope that later generations will be able to overcome this dualistic concept, and replace
it with a unitary one, such as the field theory of today has sought in vain.

Likewise, in his book The Evolution of Physics there are similar statements:*2

Field and Matter

[.]

We have two realities: matter and field. There is no doubt that we cannot at present imagine
the whole of physics built upon the concept of matter as the physicists of the early nineteenth
century did. For the moment we accept both the concepts. Can we think of matter and field as
two distinct and different realities? Given a small particle of matter, we could picture in a naive
way that there is a definite surface of the particle where it ceases to exist and its gravitational
field appears. In our picture, the region in which the laws of field are valid is abruptly separated
from the region in which matter is present. But what are the physical criterions distinguishing
matter and field? Before we learned about the relativity theory we could have tried to answer this
question in the following way: matter has mass, whereas field has not. Field represents energy,
matter represents mass. But we already know that such an answer is insufficient in view of the
further knowledge gained. From the relativity theory we know that matter represents vast stores
of energy and that energy represents matter. We cannot, in this way, distinguish qualitatively
between matter and field, since the distinction between mass and energy is not a qualitative
one. By far the greatest part of energy is concentrated in matter; but the field surrounding the
particle also represents energy, though in an incomparably smaller quantity. We could therefore
say: Matter is where the concentration of energy is great, field where the concentration of energy
is small. But if this is the case, then the difference between matter and field is a quantitative
rather than a qualitative one. There is no sense in regarding matter and field as two qualities
quite different from each other. We cannot imagine a definite surface separating distinctly field
and matter.

The same difficulty arises for the charge and its field. It seems impossible to give an obvious
qualitative criterion for distinguishing between matter and field or charge and field.

[.]

We cannot build physics on the basis of the matter-concept alone. But the division into matter
and field is, after the recognition of the equivalence of mass and energy, something artificial and
not clearly defined. Could we not reject the concept of matter and build a pure field physics?
What impresses our senses as matter is really a great concentration of energy into a comparatively
small space. We could regard matter as the regions in space where the field is extremely strong. In
this way a new philosophical background could be created. Its final aim would be the explanation
of all events in nature by structure laws valid always and everywhere. A thrown stone is, from
this point of view, a changing field, where the states of greatest field intensity travel through
space with the velocity of the stone. There would be no place, in our new physics, for both field
and matter, field being the only reality. This new view is suggested by the great achievements of

40[Ein22, p. 22] and [O’R65, Vol. 2, p. 655].
41[Ein24] and [Ein91].
42[E138, pp. 255-258].
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field physics, by our success in expressing the laws of electricity, magnetism, gravitation in the
form of structure laws, and finally by the equivalence of mass and energy. Our ultimate problem
would be to modify our field laws in such a way that they would not break down for regions in
which the energy is enormously concentrated.

But we have not so far succeeded in fulfilling this programme convincingly and consistently. The
decision, as to whether it is possible to carry it out, belongs to the future. At present we must
still assume in all our actual theoretical constructions two realities: field and matter.

Etc.

There are many other meanings associated with the field concept. But we stop here as the previous meanings
are the most common and frequent ones in the literature.

3.2 These Different Field Definitions Contradict One Another

Several definitions and properties of the fields presented in Section 3.1 contradict one another. They are also
against the basic definitions of Faraday and Maxwell. This Section presents some of these contradictions
and the many problems introduced in physics after the advent of the field concept.

A Real Physical Entity Filling the Space Cannot be Identified with Space Itself

Faraday, Maxwell and the creators of the field concept defined it as a region of space in the neighborhood
of source bodies like a gravitational mass, an electrified body, a magnet or a current carrying wire. That is,
field was equated with space. Einstein and many modern scientists, on the other hand, maintained that the
field is a real physical entity filling the space. That is, Einstein considered the field as something real in the
space. This is obviously a contradiction. The basic concepts we have are those of matter and empty space.
Matter is something that has physical properties (it can be hard or soft, it can be hot or cold, it can be solid
or liquid, it interacts with other matter, etc.) Space, on the other hand, has none of these properties. A
body can occupy a region of space. It can also move from one region of space to another. But matter is not
identical to space and should not be identified with it.

Therefore, if field is a region of space, as defined by Faraday and Maxwell, it cannot be a real physical
entity. If, on the other hand, field is a real physical entity filling the space, then it cannot be identified with
space itself. These two concepts exclude one another.

How Is it Possible for a Region of Space to Propagate in Space?

The basic definition of field according to Faraday, Maxwell and many other scientists, is that it in general
signifies a region of space considered in respect to the potential behavior of test bodies moved about in it.
According to Einstein, electromagnetic waves propagate in empty space. How is it possible for a region of
space to propagate in space? This has never been explained by Einstein nor by any other person.

How Is it Possible for a Region of Space to Have Magnitude and Direction?

The usual conception of space is that it is a vacuum or empty region between material bodies. Faraday and
Maxwell defined field as a region of space in the neighborhood of electrified bodies, magnets and current
carrying wires. Maxwell, Einstein and most scientists argued that field is a vector quantity, with magnitude
and direction. How is it possible for a region of empty space to have magnitude and direction?

How Is it Possible for a Region of Space, Something Immaterial, to Interact with a Material
Body?

Faraday and Maxwell defined field as a region of space around source bodies. Textbooks normally argue that
a test body like a gravitational mass suffers a force when it is in the presence of a gravitational field. This
test mass can, for instance, be accelerated relative to the ground due to this gravitational field. An electrified
test body, likewise, would feel the presence of an electric field, while a magnet and a current carrying wire
would feel the presence of a magnetic field. How is it possible for something immaterial, like a region of
space, to act on a material body?
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How Is it Possible for a Region of Space to Have Dimensions Different from Length, Area or
Volume?

If a field is a region of space, as defined by Faraday, Maxwell and many other scientists, it should have
dimension of “space.” That is, in the International System of Units, the unit of a field should coincide with
that of length, m, area, m?, or volume, m3.

But this is not what happens with the ordinary fields. The gravitational field g has the unit of acceleration,
m/s2, the electric field E has the unit V/m = kgmC~'s~2 = kgmA~'s~3, while the magnetic field B has
the unit Tesla, T = Wm™2 = kgC~1s71 = kgA~1s72. All these units are different from the units of length,
area and volume. Therefore, it is not possible to identify any of these “fields” with “space.”

As we have just seen, several problems with the field concept are related with its definition as “a region
of space.” This has been the basic definition of field according to Faraday and Maxwell. If we drop this
definition in order to avoid the previous problems, than we should no longer call it the “electromagnetic
theory of Faraday and Maxwell,” or the “Faraday-Maxwell field theory.” After all, this will be a new model
not compatible with the reasonings and concepts presented by Faraday and Maxwell. Those following this
new approach would be no longer following their ideas and should begin with a completely new conceptual
framework.

In any event, there are many other problems and contradictions also related with the other meanings
associated with the field concept presented in Section 3.1. Some of these problems are discussed in the sequel.

Maxwell Argued that an Electromagnetic Wave Propagates in a Material Medium Filling
All Space, the Ether. Einstein, On the Other Hand, Argued that an Electromagnetic Wave
Propagates in Empty Space

These are two completely different conceptions. Faraday and Maxwell believed strongly in a material medium
filling all space. Maxwell called it an ether.*> As he said in the Preface of his Treatise on Electricity and
Magnetism:**

For instance, Faraday, in his mind’s eye, saw lines of force traversing all space where the mathe-
maticians saw centres of force attracting at a distance: Faraday saw a medium where they saw
nothing but distance: Faraday sought the seat of the phenomena in real actions going on in the
medium, they were satisfied that they had found it in a power of action at a distance impressed
on the electric fluids.

In Maxwell’s electromagnetic theory of light, the electromagnetic wave propagates in this material
medium, the ether.#> The relevant quotation was presented in Section 3.1.
He finished his book with the following statement:4

[...] Hence all these theories lead to the conception of a medium in which the propagation takes
place, and if we admit this medium as an hypothesis, I think it ought to occupy a prominent
place in our investigations, and that we ought to endeavour to construct a mental representation
of all the details of its action, and this has been my constant aim in this treatise.

Einstein, on the other hand, made the ether superfluous in his special theory of relativity and argued that
the electromagnetic wave propagates in empty space:*” The relevant quotation was presented in Section 3.1.

These are two completely opposite points of view. Therefore, it is wrong to say that Einstein’s theories
of relativity are compatible with Maxwell’s electrodynamics. These are completely different conceptual
frameworks. It does not make sense to keep Maxwell’s equations, removing the material substance giving
support to it, while at the same time arguing that the new theory agrees with Maxwell’s points of view. To
state the opposite, as has been done by Einstein, is to confuse everybody.

43|Max54, Vol. 1, Preface to the first edition, pp. v-xii, Vol. 2, §§641-646, pp. 278-283 and Chapter 23, §§846-866, pp.
480-493].

44[Max54, Vol. 1, p. ix].

45Max54, Vol. 2, §781, p. 431].

46|Max54, Vol. 2, §866, p. 493].

47[Ein52c, pp. 37-38] and [Ein78c, p. 48].
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The Dimensions of ¢, E and B are Different from One Another. This Means that They Are Not
Magnitudes of the Same Kind. Therefore, They Could Not Receive the Same Denomination
as that of “Field,” as They Are Magnitudes of Different Species

In physics there are several kinds of energy. We have, for instance, kinetic energy, gravitational potential
energy, elastic potential energy, electric potential energy, magnetic energy, nuclear energy, thermal energy
etc. All of these magnitudes have the same unit, Joule, represented by J. These different kinds of energy
can be converted or modified into one another. For instance, when we release a rock it falls to the ground.
We say that its initial gravitational potential energy is being transformed into kinetic energy as it falls to
the ground. It is also possible to compare two energies, saying which one is greater than the other.

We also have several kinds of force: gravitational force, electromagnetic force, elastic force, nuclear force,
frictional force, etc. All of these magnitudes have the same unit, Newton, represented by N. These forces, by
acting simultaneously in the same body, can combine their effects. An example is the law of the parallelogram
of forces which Newton presented in the first Corollary after his three laws of motion in the beginning of the
Principia, as quoted in Section 1.2. When a block of matter remains at rest in the ground we say that the
its downward weight is balanced by the upward normal force exerted by the floor. A force can be added or
subtracted from another force, it is possible to say how many times a certain force is greater than another
force etc.

The same behavior does not happen with g, E and B. In the International System, for instance, the
unit of the gravitational field § is that of acceleration, m/s?. The unit of the electric field E is that of
V/m = kgmC~1s72 = kgmA~1s73. The unit of the magnetic field Bisthat of T = Wm™2 = kgC~ts™1 =
kgA~'s~2. That is, these three magnitudes have different units. This means that they represent different
kinds of magnitude. Therefore, it does not make sense to classify them into the same category, namely, that
of “field.” They should receive different names. The magnitude ¢ should receive the name acceleration or
zxx. The magnitude E should receive the name yyy. The magnitude B should receive the name zzz. We
then would have a gravitational acceleration or a gravitational zxx, an electric yyy and a magnetic zzz.

By calling g, E and B by the same generic name, field, creates only confusion and misunderstandings.

An Electric Field Can Not be Transformed into a Magnetic Field As They Have Different
Dimensions

Many problems of physics can be considered from the point of view of energy. For instance, it is possible
to utilize the energy concept in the study of free falling bodies, pendulums or bodies rolling down inclined
planes, etc. In these situations physicists normally say that the potential energy of the body has been
transformed into a kinetic energy. When there is a battery connected to a resistor in an electric circuit, it is
usual to study this problem considering the chemical energy stored in the battery being transformed into the
thermal energy dissipated in the resistor. If there is a charged capacitor being discharged through a resistor
connected with an inductor, we can study this problem considering the conversion of electric energy into a
thermal energy plus a magnetic energy. All of these studies make sense, as we are considering magnitudes
of the same kind, namely, different species of energy.

The same procedure cannot be applied to E and B. In the International System, for instance, an electric
field E has a unit different from that of a magnetic field B. Therefore E cannot be transformed into B.
Einstein, on the other hand, as will be seen in Subsection 15.5.4, argued in his paper of 1905 on the special
theory of relativity, that an electric field E is transformed into a magnetic field B and vice-versa under a
Lorentz transformation from one inertial frame of reference to another.*®

The Time Variation of a Magnetic Field Has a Dimension Different from That of an Electric
Field. Therefore, a Changing Magnetic Field Cannot Induce an Electric Field

-1

In the International System the time variation of a magnetic field, OB /Ot, has unit T/s = Wm™2s
kgC~1s72 = kgA~=1s73. The electric field, on the other hand, has unit V/m = kgmC~1s72 = kgmA~1s73.
As these units are different from one another, it is not possible to say that a changing magnetic field induces
an electric field, as is normally stated in order to explain Faraday’s law of induction. A changing magnetic
field can only induce something of the same kind, namely, something with unit given by T//s = Wm 257! =
kgC1s™2 = kgA—1s73.

48[Ein05], [Ein52c] and [Ein78c|.
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The Time Variation of an Electric Field Has a Dimension Different from That of a Magnetic
Field. Therefore, a Changing Electric Field Cannot Induce a Magnetic Field

In the International System the time variation of an electric field, E /¢, has unit V/(ms) = kgmC~1s—3 =
kgmA~'s~%. The magnetic field, on the other hand, has unit T = Wm™2 = kgC~'s™! = kgA~'s72. As
they are different from one another, it is not possible to say that a changing electric field induces a magnetic
field, as is normally stated in order to explain Maxwell’s displacement current and his electromagnetic theory
of light. A changing electric field can only induce something of the same kind, namely, something with the
unit given by V/(ms) = kgmC~1s73 = kgmA~1s™4.

How Is it Possible to Have Action and Reaction Between a Field and a Material Body?

Usually Newton’s third law of motion, the principle of action and reaction, is applied for the interaction
between two material bodies. The force that a body A exerts on another body B is equal and opposite
to the force exerted by B on A. This force can have several origins, namely, gravitational, elastic, electric,
magnetic, etc. If bodies A and B are initially at rest relative to an inertial frame of reference, being free to
move, their mutual interaction will cause them to be accelerated in this frame, moving in opposite directions.

Nowadays, on the other hand, this fact is described utilizing the field concept. Physicists then argue that
the field produced by body A propagates in space, normally at light velocity. When this field reaches body
B at a later time, the field interacts with B. How should we understand action and reaction in this field
formulation? Body B, for instance, is accelerated relative to an inertial frame of reference by this interaction.
What happens during this interaction with the field generated by A7 Is this field accelerated relative to an
inertial frame of reference? Is there a force acting on this field and being generated by body B?

The Condensation of a Field Cannot Be an Elementary Particle of Matter

Einstein said that condensations of the electromagnetic field are elementary particles of matter.*?
As O’Rahilly put it:%°

The field started as the humble offspring, the shadowy penumbra surrounding a charge; it ends
by destroying not only electricity but matter!

This point of view presented by Einstein has been followed by many modern scientists.? However, this
point of view does not make sense. What does it mean a condensation of the electromagnetic field? Is it
the electric field per unit volume, dE /dV or d|E |/dV? Is it the magnetic field per unit volume, dB /dV or
|dB|/dV? And what did Einstein mean by an elementary particle of matter? Was he meaning its inertial
mass m;? Or its gravitational mass my? Or was he meaning its electric charge g7 None of these choices
make sense, after all these magnitudes (d|E|/dV, d|B|/dV, m and ¢) have different dimensions. They cannot
be identified with one another. Therefore, it is incorrect to say that the elementary particles of matter are
in their essence nothing else than condensations of the electromagnetic field.

Etc.

We could present many more examples showing the mutual contradictions between the several meanings
associated with the field concept. But these are enough in order to indicate the logical problems associated
with the present day field theories.

3.3 Maxwell’s Equations

In classical electromagnetism it is usually considered that a volume charge density p (charge per unit volume)
and a volume current density J (current per unit area perpendicular to the direction of flow) generate the
electric and magnetic fields E and B , respectively. Maxwell presented a set of equations describing the fields
produced by these sources. Supposing the sources in vacuum, these differential equations in the International
System of Units and in vector notation are given by:

49[Ein22, p. 22|, [Ein24], [Ein91] and [EI38, pp. 255-258].
50[O’R65, Vol. 2, p. 655].
51[O’R65, Vol. 2, Chapter 13, Section 4: The ‘Field’, pp. 645-661] and [Hob13].
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v E=2, (3.4)

€o

. 10E
B =y, , .
V x pol + ==~ (3.5)
V-B=0, (3.6)
and

. 0B

VxE=-—. (3.7)

The integral form of these equations are given as:

ﬂE da—///vpdV (3.8)
fcé-di_uo//J da+—2£//E da (3.9)

#é-dﬁ:o, (3.10)
S

j{cﬁ dZ:——//B da . (3.11)

Physicists usually suppose that these fields produced by the source charges and currents propagate at
light velocity in empty space. When these fields reach test charges and currents, they act on them. The
fields can, for instance, accelerate test charges relative to an inertial frame of reference.

The electric field E and the magnetic field B can also be written in terms of the scalar vector potential
¢ and the magnetic vector potential A through the following equations:

and

_ 0A
E=-Vo——, (3.12)
and
B=VxA. (3.13)

3.4 Force Acting on an Electrified Body based on Electromagnetic
Fields

Newton presented the universal law of gravitation in terms of a force acting between material bodies. Nowa-
days the gravitational force is usually expressed in terms of a gravitational field § generated by a source
gravitational mass M,. when this field reaches another test gravitational mass mg, it generates a force F' on
this mass given by:
F=m,q . (3.14)
Analogously, the force F acting on an electrified body which has a charge ¢ in the presence of an electric
field E and a magnetic field B is given by:

S o - A _
F:qE—l—qUxB:—qub—qE—l—qUxB. (3.15)

The history of this force and the meaning of the velocity ¥ which appear in this equation will be discussed
in Section 15.5.



Chapter 4

Other Topics of Classical Mechanics

4.1 Conservation of Linear Momentum

Let us suppose a system of N particles interacting with one another in the absence of external forces acting
on this system. Let S be an inertial frame of reference with origin O. Let 7, be the position vector of
particle p with inertial mass m;, relative to the origin O of frame S, with p =1,..., N. Let ¢, = d,/dt and
a, = dv,/dt = d*7,/dt? be the velocity and acceleration of p in frame S, figure 4.1.

V4
S
—
ap
—
Vp
—
'p Mip
9 y
2
! 3
N

X

Figure 4.1: Position vector, velocity and acceleration of a particle p relative to an inertial frame of reference

S.
The total linear momentum p; of this system of particles is defined by:
N
Pr= Y mipl, . (4.1)
p=1

Supposing constant inertial masses and applying Newton’s second law of motion in the form of equation
(1.5), the time derivative of the total linear momentum is given by:

N N N N
LU R— =S ot SO S
—t = Mipap =my;1a1 +myeaz2 + ... + mynan = Fpl + Fp2—|—+ FpN

dt
= S 5
= (ﬁgl +ﬁ31 + ... +ﬁN1) + (ﬁlg + ﬁ32 + ...+ ﬁNQ) + ...+ (ﬁ1N +ﬁ2N + ... -‘1-131\[_17 N) . (4.2)

We now suppose that the forces between each pair of particles p and ¢ satisfy the principle of action and
reaction, equation (1.6):

ﬁpq = Iy . (4.3)

o7
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Equation (4.3) applied into equation (4.2) yields a zero value. This means that

Py = constant in time . (4.4)

That is, there is conservation of the total linear momentum of a system of particles when no external
force is acting on the system and when the force between each pair of particles satisfies the principle of action
and reaction given by equation (1.6).

4.2 Conservation of Angular Momentum

Let us continue with the same situation described in Section 4.1. The total angular momentum Ly of this
system of N particles is defined by:

N
Z (MmipUp) . (4.5)

Utilizing that v, x ¥, = 0 and supposing constant inertial masses, the time derivative of Et yields:

st
E T‘p mlpap =77 X M;1a1 + T2 X Mol + ... + 'n X M;NAN - (46)

Utilizing equation (4.6) together with equation (1.5) yields the following relation:

dL
dtt 71 X (F21+F31+ +FN1)+T‘2X(F12+F32+ +FN2)+ +TNX(F1N+F2N+ +FN 1, N) .
(4.7)
Utilizing 7,y = 7, — 7y and equation (4.3) in equation (4.7) yields the following relation:
dL, . 4 . = . .
EZTBXFM + 73 X F31 4. +7Nv_1, N X Fy, No1 . (48)

We now suppose that the forces between each pair of particles p and ¢ satisfy the principle of action and
reaction in the strong form. That is, the force Fj, exerted by particle p on particle g is not only equal and

opposite the force ﬁqp exerted by ¢ on p, equation (4.3), but is also along the direction connecting p and g,
namely:

F,, points along 7, . (4.9)

Each term on the right hand side of equation (4.8) goes to zero with the supposition given by equation
(4.9). This means that

L; = constant in time . (4.10)

That is, the total angular momentum of a system of particles is conserved in time when there are no
external forces acting on the system and when the force between each pair of particles satisfies the principle
of action and reaction in the strong form given by equations (1.6) and (4.9).

4.3 Center of Mass

Consider the system of IV particles presented in Section 4.1. The position vector 7, which locates the center
of mass relative to the origin O of the inertial system S and its velocity ¥.,, relative to this frame S are
defined by the following equations, respectively:

N -
— MipTp
cm — ) 411
=2 ()

and
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dr. Y i
— _ cm 1pUp
o = =y Dt 4.12
v dt Z ™Mt ( )

where m;; = Z;V:l m;p, is the total inertial mass of the system.
With these definitions the total linear momentum p; of this system of particles given by equation (4.1)
can be written as:

N

. . dr, .
Pt = pzl MipUp = Myt —d;m = MitVem - (4.13)

4.4 Energy

Newton based his mechanics in the concepts of force and acceleration. There is another formulation of
mechanics based on the concept of energy. This formulation was due originally to Huygens and Leibniz,
although it has been later on incorporated in newtonian mechanics. The unit of energy in the International
System is the Joule, represented by J. This Section presents the main aspects related with the concepts of
potential and kinetic energies.

4.4.1 Kinetic Energy

The basic concept of energy is that of kinetic energy T'. Let us suppose that we are in an inertial frame of
reference S and that a particle of inertial mass m; moves relative to this reference frame S with a velocity
¥. In this situation its kinetic energy T is defined by:

m;v? v-U
2~ T
This kinetic energy is an energy of pure motion in classical mechanics. That is, it is not connected with
any kind of interaction (gravitational, electric, magnetic, elastic, nuclear, etc.). As such, it depends on the
system of reference, because the same body, at the same moment of time, can have different velocities relative
to different inertial systems. This means that his kinetic energy relative to each one of these reference frames
can have a different value.

The total kinetic energy T; of a system of IV particles is defined by:

T

(4.14)

al mipvz% z Up - Up
T,=> L= > mip 5 (4.15)
p=1 p=1

where m;;, is the inertial mass of particle p and %, is the velocity of this particle relative to the inertial frame
of reference S, with p =1, ..., V.

4.4.2 Potential Energy

The other kinds of energy are based on how the test particle interacts with other bodies. In this Subsection
we consider some kinds of potential energy.

Gravitational Potential Energy

The gravitational potential energy U, between two point bodies having gravitational masses mg4; and mgo
separated by a distance r is given by:

(4.16)

If the body mg; is outside the Earth at a distance r; from its center, this equation may be integrated
replacing mga by dmg2, where dmgo means an infinitesimal quantity of gravitational mass in each point
inside the Earth and along its surface. Let us now suppose an isotropic distribution of gravitational mass
over the body of the Earth. Integration of this energy for all elements of mass dmg2 belonging to the Earth
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and interacting with an external point gravitational mass mg; yields the gravitational potential energy U,
of mg1 interacting with the Earth as given by:
mag1 M,
U, = —-G—2—9% (4.17)
4 N
where My represents the gravitational mass of the Earth.
Suppose the test body is located at a distance h from the surface of the Earth, r1 = Rg + h, where Rg
represents the Earth’s radius. By supposing h < Rg, equation (4.17) can be approximated as follows:

mglMgE - _GmglMgE
Rp+h REg
where ¢ = GM,p/R% ~ 9.81 m/s? is the value of the gravitational force per unit of gravitational mass

acting at the surface of the Earth. Besides the constant term —Gmg1 Myg/REg, this equation shows that the
gravitational potential energy close to the Earth is given by mgigh.

Ug=— + mgigh , (4.18)

Elastic Potential Energy

Consider a spring of elastic constant k fixed horizontally relative to the ground. Let ¢, be its normal relaxed
length and ¢ its length when it is compressed or stretched. Suppose one extremity of this spring is fixed
relative to the ground, while a body of inertial mass m; is fixed at the other extremity of the spring. Let
x = {—/{, be the displacement of the body relative to the equilibrium position of the spring, as in figure 2.7.
The elastic potential energy Uy of this inertial mass interacting with this spring is given by:

Up=—. (4.19)

Electrostatic Potential Energy

The electrostatic potential energy U, describing the interaction between two point bodies electrified with
charges ¢; and g9 separated by a distance r is given by:

I
dme, r

e (4.20)
Here ¢, = 8.85 x 10712 A2s*/kgm? is the constant called vacuum permittivity.

This expression is analogous to equation (4.16) describing the potential energy between two gravitatinal
masses.

Magnetostatic Potential Energy

The magnetostatic potential energy U,, describing the interaction between two magnetic poles p; and po
separated by a distance r is given by:

_ Ho P1p2
Adr r

Un (4.21)
Here ji, = 47 x 1077 kgm/(A%s?) is the constant called vacuum permeability.

As mentioned in Section 2.5, a magnetic pole has never been isolated in nature. The basic, fundamental or
smallest magnetic entity found in nature is a magnetic dipole. Consider two magnetic dipoles with magnetic
moments 17, and 17s. Each magnetic dipole j, with j = 1, 2, is composed of a North pole py; and a South
pole ps; of the same intensity, ps; = —pn;, separated by a distance ¢;. Let éj be a unit vector pointing
from the South pole to the North pole of each dipole. The magnetic moment m; of each dipole was defined
by equation (2.14), namely, m,; = pNjMAj. The magnetic potential energy U, describing the interaction of
two magnetic dipoles 11 and iy separated by a distance r, as represented in figure 2.12, is given by:

. &T?Ll T?LQ—?)(’IT’Ll f)(ﬁQf)
4w r3

Here 7 is the unit vector pointing from the center of dipole 2 to the center of dipole 1. This relation is valid
when the distance r between the centers of the dipoles is much larger than their lengths, that is, when r > ¢
and r > {o.

U (4.22)
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Electrodynamic Potential Energy

Let (7 and C3 be two closed electric circuits carrying steady currents ¢; and i3, respectively. Let z‘lel be a
current element of circuit C; located at the position vector 7 relative to the origin O of an inertial system S.
The infinitesimal length of this current element is df; = |le| and it points along the direction of the current
i1 in each point of circuit 1. Analogously igd[g is an infinitesimal current element of circuit Cy located at
7, of length dly = |d172| and pointing along the direction of the current i in each point of circuit 2. The

electrodynamic potential energy U describing the interaction between two closed circuits C; and Cs is given
by:

where M is called the coefficient of mutual inductance between the two circuits. It is defined by:

Mz&f f (T‘dél)(Tdfg) :&% % dﬂldég ' (424)
47T c,JCs T 47T Ccy JCs T

Here 7 = 7| — 7% is the vector pointing from igd@ to ildzl, r = || is the distance between the two current
elements and 7 = 7/r is the unit vector pointing from igd@ to ildgl.

Let us consider the particular case in which there are two small closed loops of areas a; and as carrying
currents ¢; and 2. Let n; and 72 be the unit vectors normal to these areas, figure 2.15. Moreover, let r
be the distance between the centers of these two loops and 7 be the unit vector pointing from the center of
loop 2 to the center of loop 1. Let us suppose, moreover, that the distance r between these loops is much
larger than their typical sizes, that is, r > /a1 and r > ,/az. In this case the electrodynamic potential
energy between these two loops is given by equation (4.22) with the magnetic moment m; of loop j given
by equation (2.19), that is, m; = ija;n; with j =1, 2.

Magnetic Potential Energy between a Magnetic Dipole and a Small Current Loop

Consider now a magnetic dipole of length ¢ and magnetic moment given by equation (2.14) which is inter-
acting with a small loop of area a carrying a current i and having a magnetic moment given by equation
(2.19), figure 2.16. The magnetic potential energy describing their interaction is also given by equation
(4.22), provided they are separated by a large distance r, such that r > ¢ and r > \/a.

Weber’s Potential Energy

Weber’s potential energy Uy describing the interaction between two point bodies electrified with charges ¢;
and ¢ located at 7, and 75, respectively, was introduced by him in 1848.! In the International System of
Units it is given by:

1 qe i 1 qige 1o
Uw = — |1-=— | = — (1-== . 4.25
w dme, T 2¢? 4dme, 112 2¢? ( )
Here r15 = |4 — 72| = r is the distance between ¢; and g2, while 715 = dri2/dt = 7 = dr/dt is the relative
radial velocity between them.
As discussed in Section 2.8, the constant ¢ which appears in equation (4.25) is the ratio of electromagnetic

and electrostatic units of charge. Its experimental value was presented in equation (2.23), namely, ¢ =
2.998 x 10% m/s.

4.4.3 Relation between Force and Potential Energy

A conservative force F and the corresponding potential energy U are related through the gradient or direc-
tional derivative, namely:

ou ou ou A) (4.26)

1[Web48], with English translation in [Web66].
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In this equation F is the force acting on a particle located at 7= z& + yy + zZ, while U is the total energy
describing its interaction with all other bodies around it. The gradient of U is considered as acting at the
position of the test particle.

This relation is especially useful when the potential energy and the force depend only on the positions
of bodies. One example of this situation happens when the force between two bodies is central, satisfies the
principle of action and reaction, and depends only on the distance r between them. In this case the force
ﬁgl exerted by 2 on 1 can be obtained from the mutual potential energy U between these bodies utilizing
the following expression:

_, du , _,
F21 = —W’F = —F12 5 (427)

where Fis is the force exerted by 1 on 2, while 7 is the unit vector pointing from 2 to 1.

Suppose there is a system of N particles interacting with one another through conservative forces. Let p
and g be two of these bodies, p=1,...,N and ¢ = 1,..., N, with ¢ # p. Let U, be the potential energy for
each pair of particles p and g. The total potential energy U, of this system of particles is defined by:

1 N N
=5 ZZUM SN Uy (4.28)
P=l =l

The factor 1/2 in the central term of this expression is due to the fact that U,y = Ugp. Therefore (Upq +
Ugp)/2 = Upq for all p and for all ¢ # p. The factor 1/2 guarantees that the energy of interaction of each
pair of particles is counted only once in the total energy of the system.

Let k be a particle located at 7y = xxZ + yr¥y + 2xZ in relation to the origin O of an inertial system S,
with £k =1,..., N. The force F} acting on k and being due to all N — 1 particles of the system is given by:

L _(oU,.  OU,.  OU, .
Fp,=-V, U = (8Ikx+ 8yk Y+ D2 ) . (4.29)

4.4.4 Conservation of Energy

In this formulation of mechanics the basic equation of motion is the equation for the conservation of energy,
instead of Newton’s three laws of motion. The theorem for the conservation of energy is utilized in the case
of conservative systems. Suppose there are N particles interacting with one another. Let U, represent the
potential energy of interaction between particles p and ¢, with p =1,..., N and ¢ = 1,..., N. Let U, be the
total potential energy of this system of particles given by equation (4.28), while T} is the total kinetic energy
of this system of particles given by equation (4.15). The total energy E} of this system of particles is defined
by:

B =U+T = Z Z Upg + Z gy Up : (4.30)

1 q¢=1
p a#p

where m;), is the inertial mass of particle p moving with velocity @), relative to an inertial frame of reference
S.

The theorem of the conservation of energy for a conservative system states that the total energy (sum
of potential energies with the kinetic energies of all the particles of this system) is a constant in time.
Mathematically this theorem can be written as follows:

E—ZZUm+me

=1 g=1
a#p

—_

= constant in time . (4.31)

[\

4.5 Numerical Values of Terrestrial, Planetary and Cosmological
Magnitudes

This Section presents the approximate numerical values of several magnitudes connected with the Earth, the
solar system, our galaxy and the universe as a whole.
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Mean radius of the Earth: R = 6.37 x 10% m. Radius of the Moon: Ry = 1.74 x 105 m. Radius of the
Sun: Rg = 6.96 x 108 m. Mean Earth-Sun distance, also called an astronomical unit, AU: dgs = 1 AU =
1.50 x 10! m. Distance from the Sun to the center of the Milky Way: dsarw = 2.5 x 1020 m.

There is still a cosmological distance R, which can be defined by the following relation connecting Hubble’s
constant H, and light velocity ¢ in vacuum, namely:

c
R, = — . 4.32

- (432)

This constant R, is sometimes called Hubble’s radius, Hubble’s length or Hubble’s distance. There is a great
uncertainty in the value of Hubble’s constant H,. Nowadays its value is estimated between 50 kms ! Mpc~!

and 100 kms~'Mpc~!, that is:?

1.6x107® st < H,<32x 10718 571 . (4.33)
Equations (4.32) and (4.33) yield:

9.8 x 10 m < R, < 1.9 x 10* m . (4.34)

Sometimes physicists mention that R, would be the radius of the known universe. But it should be
emphasized here that Edwin Hubble himself preferred a cosmological model in which the universe extended
indefinitely in all directions of space and also in time. It was infinite in space and in time. His preferred model
was that of an universe without expansion, homogeneous in large scale.?> This means that for Hubble himself
there was no radius of the universe, as the universe would extend itself indefinitely in all directions, having
an infinite size. In any event, after clarifying this aspect, as the constant R, was defined by equation (4.32)
utilizing Hubble’s constant H,, it makes sense to call R, Hubble’s length or Hubble’s distance, provided this
is not associated with the size of the universe.

Earth’s gravitational or inertial mass: Mg = 5.98 x 10%* kg. Moon’s mass: Mjy; = 7.36 x 10?2 kg. Sun’s
mass: Mg =1.99 x 10%° kg. Mass of the Milky Way galaxy: Maw ~ 4 x 10* kg.

Mean volume density of gravitational or inertial mass of the Earth: pr = 5.52x 10% kg/m?3. Moon’s mean
volume density of mass: pys = 3.33x 103 kg/m3. Sun’s mean volume density of mass: pg = 1.41x 103 kg/m3.
Mean volume density of mass of the Milky Way near the Sun: paw ~ 0.2Ms/parsec® ~ 1.4 x 10729 kg/m?>.

It is usual in cosmology to define a theoretical magnitude called the critical mass density, represented by
pe, through the following equation:

_ 3H;
Pe = .

381G
The value of p. depends upon the value of Hubble’s constant H,.
The value of the average volume density of visible gravitational mass of the universe is still uncertain.
Let us represent this magnitude by pgo. The uncertainty in its value is connected with the uncertainty in the
determination of the distances between the galaxies and the Earth. Normally these distances are determined
utilizing Hubble’s law of redshifts. The value of py, depends on the assumed value of Hubble’s constant H,,
being in particular proportional to H2. The value of p,,/pc, on the other hand, does not depend upon the
assumed value of Hubble’s constant. Modern observations indicate that the value of this ratio is between

0.1 and 0.3, namely:*

(4.35)

Pgo
C

Equations (4.33), (4.35) and (4.36) yield the following limits for pge:

01<52 <03. (4.36)

k
< Pgo < 5.5 x 10727 m—% . (4.37)

kg

4.6 x 107*° —
m

The mass of a hydrogen atom is 1.67 x 10727 kg. Accordingly, equation (4.37) can also be expressed as
follows:

8 hydrogen atoms hydrogen atoms

0.2 < Pgo < 3.3 (4.38)

m3 m3

2[Bor88, Section 2.2: The Hubble Constant H, - How Big is the Universe?].
3See [ANSO08], [ANS09] and [ANS13] for the relevant references and quotations.
4[Bor88, Section 2.3, see especially pp. 69, 71 and 74].
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Consider a sphere of radius given by Hubble’s distance R, and having the mean mass density pg, of
visible matter observed in the universe. Its mass M, will be given by Mg, = 4mpg,R3/3. Equations (4.34)
and (4.37) yield the following limits for this mass:

1.8 x 10°! kg < My, < 1.6 x 10°3 kg . (4.39)

The Earth spins daily around its axis, relative to the fixed stars, with a period of one sidereal day
(Tiay = 8.6164 x 10* 5), or with an angular velocity given by waay = 27/Tuay = 7.29 x 1075 rad/s. The
Earth describes an orbit around the Sun, relative to the background of fixed stars, with a period of one
vear (Tyear = 3659 6" 9™ = 3.156 x 107 s), or with an angular velocity given by Wyear = 2T/ Tyear =
2.0 x 1077 rad/s. The solar system describes an orbit around the center of our galaxy, relative to the
background of distant galaxies, with a period Tyaiazy given by Tyurasy = 2.5 x 10% years = 7.9 x 10'° s, or
with an angular velocity Wyalazy = 27/ Tyatazy =~ 8.0 x 10716 rad/s. Therefore:

Tqalawy > Tyear > Tday ’ (440)

and

Wyalazy < Wyear < Wday - (441)

The free fall acceleration of a heavy body near the ground at 50° latitude, relative to an inertial frame
of reference, is given by a = g = 9.81 m/s?, figure 4.2. The free fall acceleration gjp; near the surface of the
Moon, relative to an inertial frame of reference, has approximately 1/6 of this value, namely: g; = 1.6 m/s2.

.

Figure 4.2: Acceleration of free fall near the Earth.

A particle located in the Equator of the Earth, at rest relative to the ground, is not accelerated relative
to the Earth. But the Earth itself spins once a day around its North-South axis in relation to the frame of
the fixed stars. This means that this particle has a centripetal acceleration in the frame of the fixed stars,
describing a circular orbit around the axis of the Earth, figure 4.3.
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Figure 4.3: Centripetal acceleration, a, of a particle located at the terrestrial Equator, at rest relative to the
ground, due to the diurnal rotation of the Earth in relation to the frame of distant stars. (a) Situation seen
along a Meridian plane. (b) Situation in the equatorial plane, seen from the North pole.

The value of this centripetal acceleration due to the diurnal rotation of the Earth relative to the fixed
stars is given by (utilizing equation (9.8) which will be presented in Section 9.1):
QAdaily centripetal = REwsay ~ 3.4 X 1072 m/52 . (442)

The Earth describes an elliptical orbit around the Sun, relative to the fixed stars, with a period of one
year. This orbit is almost circular, as the eccentricity of this ellipsis is very small. This means that the
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x

Figure 4.4: Earth’s centripetal acceleration, a, relative to the fixed stars, due to its annual orbit around the
Sun.

Earth-Sun distance is almost constant along the year. The Earth itself has a centripetal acceleration relative
to the fixed stars, figure 4.4.

The centripetal acceleration of the Earth, relative to the fixed stars, due to its annual translation around
the Sun, is given by:

2 -3 2
Qannual centripetal = dESwyear ~ 6.0 x 10 m/S . (443)

Nowadays it is known that the solar system is not at the center of our galaxy, the Milky Way. Moreover,
the solar system describes an orbit, relative to the background of distant galaxies, around the center of our
galaxy. This means that the solar system has a centripetal acceleration, relative to the frame of distant
galaxies, due to its orbit around the center of our galaxy, figure 4.5.

Figure 4.5: Centripetal acceleration a of the solar system, relative to the background of distant galaxies, due
to its orbit around the center of our galaxy.

This centripetal acceleration of the solar system relative to the universal frame of distant galaxies is given
by:

Ogalazy centripetal = ASMW Wagiagy = 2.5 X 1027(8.0 x 10719)? ~ 1.6 x 1071 m/s> . (4.44)

Therefore:

g > Qdaily centripetal > Gannual centripetal > Qgalaxy centripetal - (445)

It can be defined an acceleration a, utilizing Hubble’s constant H, and Hubble’s length R, = ¢/H, by
the following expression:

ao = RoH? = cH, . (4.46)

Utilizing the limits given by equation (4.33), we can obtain the following boundaries for the value of a,
from equation (4.46):
m

48x 107100 <a, < 9.6 x 107102 (4.47)
S S
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Applications of Newtonian Mechanics
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Chapter 5

Bodies at Rest Relative to the Ground

We initially consider the Earth as a good inertial frame of reference. Consider a body of inertial mass m;
at rest relative to the ground. If there is no resultant force acting on it, equation (1.4) indicates that it will
remain at rest.

5.1 Body at Rest

Figure 5.1 presents a block of inertial mass m; and gravitational mass m, at rest relative to the ground.
In this situation the weight ﬁg = myg of the body, which is the downward force exerted by the Earth on
it, is balanced by the upward normal force F, = N exerted by the ground on the body. This normal force
prevents the body from penetrating the surface. Although the normal force acts in the region of contact
between the body and the ground, it is being represented in this figure as acting on the center of the body
in order illustrate more clearly the equilibrium of the two forces.

Figure 5.1: Body at rest relative to the ground. The downward weight m g exerted gravitationally by the
Earth is balanced by the upward normal force IV exerted by the contact with the ground.

5.2 Body Suspended by a String or Spring

According to Newton’s law of gravitation, equation (1.17), the force exerted by the Earth on a particle
outside it varies with the square of the distance between this particle and the center of the Earth. Let rq
be the initial distance from the particle to the center of the Earth and ry its final distance. If 7o = r1 + h,
with h < r1, then this force may be considered as essentially constant. This is illustrated in figure 5.2. In
situation (a) there is a normal equal arm balance which is in equilibrium with two equal weights which are
at the same distance from the ground. In situation (b) one of these weights was placed at another pan of the
balance. After releasing the balance, it remains in equilibrium, with its arms horizontal and at rest relative
to the ground.! This experiment indicates that close to the ground the weight of a body changes very little
by changing the height of the body above the ground.

1[Ass08, pp. 147-148], [Ass10a, pp. 153-154] and [Asslla, pp. 137-138].
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¥

(@) (b)

Figure 5.2: (a) Equal arm balance in equilibrium with two equal weights. (b) The balance remains in
equilibrium by placing one body at a higher pan of the balance.

Only extremely sensitive balances might indicate a difference in situations (a) and (b) of figure 5.2. Let
us suppose that we begin with the equilibrium configuration of figure 5.2 (a). The body on the right hand
side is then placed at a higher pan, as in figure 5.2 (b), with the balance released from rest. If the balance
were extremely sensitive, it would no longer remain in equilibrium in this new situation. The body closer to
the ground would move towards the Earth, while the higher body would move away from it.

There is another procedure which indicates that in practical situations the weight of a body does not
depend upon its height above the ground, if the body is close to the Earth. This is shown in figures 5.3
and 5.4. In figure 5.3 (a) there is a spring with elastic constant k and relaxed length ¢, when its superior
extremity is fixed in a support at a distance d from the ground, with d > £,. In situation (b) the upper
extremity of this spring is fixed at a height D above the ground, with D > d > ¢,. The relaxed length of the
spring remains the same, namely, ¢,. We are here supposing D < Rpg, that is, with D much smaller than

the Earth’s radius.
EO} %
EO} % D

(a) (b)

Figure 5.3: The same spring suspended vertically at different heights above the ground.

The same procedure is repeated, but now suspending a body of gravitational mass m, and inertial mass
m; in the lower extremity of this spring. After the body and spring reach equilibrium, remaining at rest
relative to the ground, the spring acquires a stretched length ¢, figure 5.4 (a).

(a) (b)

Figure 5.4: The same spring suspended vertically at different heights above the ground, now with a body
fixed in its lower extremity.

The forces acting on the body are its weight F;, = mgyg pointing downwards due to its gravitational
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interaction with the Earth, and the elastic force F' pointing upwards due to its interaction with the stretched
spring. As we are considering the equilibrium situation when the body and spring are at rest relative to the
ground, these two forces must balance one another. According to equation (2.6), the stretched length ¢ of
the spring is given by:

Fy mgg

— by = — = . 1
-1 . . (5.1)

Suppose now this spring is fixed at a higher distance D above the ground and supports the same gravi-
tational mass my, in its lower extremity, with the equilibrium situation being represented by figure 5.4 (b).
The stretched length ¢ of this spring is the same as the stretched length of the spring of figure 5.4 (a), being
given by equation (5.1). This length does not depend upon the values of d nor D, provided D < Rg.

This fact indicates once more that close to the surface of the Earth the weight of a body is essentially
independent of its height h above the ground.

Instead of suspending the body by a spring, we can also suspend it by an ideal inextensible string, figure
5.5.

Figure 5.5: Body suspended by an inextensible ideal string of length /.

Once more the downward weight F,; = mgg of the body is balanced by the upward tension 7" exerted by
the stretched string:

T=Fg=mygg . (5.2)

The only difference of this case in comparison with the situation of the spring is that the tension in the
string cannot be visualized by a change in its length, as we are considering an ideal inextensible string. In
order to measure this tension it would be necessary a dynamometer connected to this string.

5.2.1 String Inclined to the Vertical when a Horizontal Force Acts on the Sus-
pended Body

Figure 5.6 presents several situations in which the string supporting a body is inclined to the vertical. The
ideal inextensible string has a fixed length /. It supports a body of gravitational mass mg, and inertial mass
m;. In all cases considered here there is no motion relative to the ground. This inclination at an angle 6 to
the vertical is caused by a horizontal force F' acting on the body supported by the string.

01 01
(a) (b) (c) (d)

Figure 5.6: Strings inclined to the vertical due to horizontal forces of several origins, namely, (a) gravitational,
(b) elastic, (c) electric and (d) magnetic.

In figure 5.6 (a) there is a second body of gravitational mass mgo supported at the lower extremity
of a second string, while the upper extremity of this second string is fixed horizontally to the first body
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of gravitational mass mgy. The weight of this second body is transmitted to the first body by the second
stretched string, inclining the string supporting the first body. In situation (b) there is a stretched horizontal
spring with its extremities connected to the body and to a wall. The elastic force exerted by this spring
inclines the string. In situation (c) we suppose that the body supported by the string made of an insulating
material has been electrified. This electrified body is electrically attracted by a horizontal force exerted by
another electrified body fixed close to it. This electric force inclines the string. In situation (d) we suppose
that the body supported by the string is a magnet which is being attracted by a second magnet fixed close
to it. This magnetic force inclines the string to the vertical.

Let F' be the magnitude of this horizontal force acting on the body of gravitational mass mg, while
Fy = mgyg is the downward gravitational force exerted by the Earth and T is the force exerted by the
stretched string. This tension T points along the direction of the string. Figure 5.7 presents these three
forces acting on the body.

Figure 5.7: Forces acting on the body supported by the inclined string.

In equilibrium the body remains at rest relative to the ground, in such a way that these three forces
balance one another. Utilizing the angle 8 presented in figure 5.7 yields:

Tsing=F, (5.3)
and

Tcosf=F, . (5.4)

These two equations yield the angle # as a function of the weight F;; = myg and the horizontal force F,
namely:

F F
tanf = — = . (5.5)
g Mgg
The tension T in the string is obtained from equations (5.3) and (5.4), namely:
T = \/F2 +F2 = \/F2 + (myg)? . (5.6)

This tension can be measured utilizing a dynamometer connected to the string.

This tension can also be visualized replacing the string by a spring of elastic constant & and relaxed length
£,. We will suppose that the inertial and gravitational masses of the spring are negligible in comparison
with the inertial and gravitational masses of the body connected to the spring. Therefore we can neglect
the weight of the spring in comparison with the weight of the body connected to it. We can also neglect the
variation in the length of the spring when it changes from a horizontal to a vertical position, in comparison
with its change of length by placing the test body which is being considered here connected to the spring.
The tension T in the spring is given by k(¢ — ¢,), where ¢ represents its stretched length. We can then write:

T =k~ ) = \/F? + F? = VF? + (mg9)? (5.7)

Therefore, a greater change of length ¢ — ¢, of the spring will indicate a greater tension 7.

5.3 Vessel at Rest Filled with a Fluid

Figure 5.8 presents a vessel at rest relative to the ground, partially filled with a liquid. In our figures we will
suppose the vessel to be cubic or in the shape of a parallelepiped, although its form is not so relevant. The
free surface of the liquid remains horizontal.
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Figure 5.8: Vessel at rest relative to the ground partially filled with a liquid. The downward gravitational
force dF} is balanced by the upward buoyant force dFs.

We will consider this problem in newtonian mechanics considering an ideal incompressible fluid. Water,
milk and oil behave reasonably well as incompressible fluids. We will consider an infinitesimal element of
liquid with inertial mass dm;, gravitational mass dm, and infinitesimal volume dV'. In this case the weight
dﬁg = dmyg of this element, which is a force exerted gravitationally by the Earth, is balanced by the buoyant
force dF;, exerted on this element by the remainder of the fluid around it.

Application of Newton’s second law of motion, equation (1.4), yields:

dF, + dFy = dm;a =0 . (5.8)

We will consider a rectangular coordinate system with the xy plane horizontal and the vertical z axis
pointing upwards, with its origin at the free surface of the fluid. Utilizing § = —|§|Z = —g2, the weight of
this element can be written as dﬁg =dmgyg = —dmgygZ. In order to obtain the pressure anywhere inside the
fluid we utilize equations (1.17), (2.3) and (5.8), yielding:

. (Op. Op. Op, =

This equation yields dp/0x = 0 and dp/dy = 0. Therefore the pressure p does not depend on x nor on
y. It remains only the z dependence, in such a way that the partial derivative can be written as a total
derivative, yielding:
dp dmg
@ = _ 5.10
dz~  av 7= P9 (5.10)
where the volume gravitational mass density of the fluid, dmg,/dV, has been represented by p,. Representing

the pressure at the free surface of the liquid by p, = 1 atm = 760 mm Hg = 1 x 10> N/m?, equation (5.10)
yields:

p(2) = po — pygz - (5.11)

This equation indicates that the pressure changes linearly with the depth of the liquid.
A constant pressure surface is called an isobaric surface. Equation (5.11) indicates that the surfaces with
p(z) = p1 = constant, are horizontal planes parallel to the fluid’s free surface located at a height z; given by:

o= Lo P (5.12)
Pg9

This procedure completes the solution of the problem.
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Chapter 6

Bodies in Rectilinear Motion with
Constant Velocity Relative to the
Ground

Suppose there are no external forces acting on a particle or that the resultant force acting on it is zero.
According to Newton’s second law of motion, equation (1.4), there will be no acceleration of this particle
relative to absolute space nor relative to any inertial frame of reference moving along a straight line with
a constant velocity relative to absolute space. Therefore the particle will move with a constant velocity ¢/
relative to any inertial frame of reference. It will move in rectilinear motion with constant velocity. This
result is compatible with Newton’s first law of motion.

In this situation equation (1.4) leads to the following results:

a=0, (6.1)
7= 9 _ tant (6.2)
v = dt = constant , .
and
=17, + Ut . (6.3)

Here 7, is the initial position vector of the particle relative to the origin O of an inertial system of
reference, while 7(¢) represents its position in time ¢. The constant velocity ¥ represents the velocity of the
particle relative to Newton’s absolute space or relative to an inertial frame of reference.

In this Chapter we will consider the Earth as a good inertial frame. This means that this velocity ¢ may
be considered to represent the velocity of the particle relative to the ground.

6.1 Body Sliding Relative to the Ground while Connected to a
Spring

Consider a block of inertial mass m,; sliding horizontally in an ideal air track, which removes friction with
the ground, figure 6.1. The downward gravitational force exerted by the Earth is balanced by the upward
normal force exerted by the ground. In this situation there is no net force acting on the body. It will move
in rectilinear motion with a constant velocity relative to the ground.

>V

Figure 6.1: Block sliding with a constant velocity when there is no net force acting on it.
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The analogous situation of an isolated celestial body in rectilinear motion, moving relative to the fixed
stars belonging to our galaxy with a constant velocity, is represented in figure 6.2.
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Figure 6.2: Celestial body moving with a constant velocity relative to the frame of fixed stars.

The analogous situation of an isolated celestial body in rectilinear motion, moving with a constant velocity
relative to the background of distant galaxies, is represented in figure 6.3.
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Figure 6.3: Celestial body moving with a constant velocity relative to the frame of distant galaxies.

The direction and magnitude of this velocity remain constant in time. This result, conclusion or prediction
only makes sense if we know when (or in which conditions) a particle is free from external forces, without
utilizing Newton’s first law of motion. We also need to obtain an inertial frame of reference without utilizing
Newton’s first law of motion, in order to avoid vicious circles. Nothing of this is simple or trivial.!

Consider now two bodies having the same inertial mass m; inside a frictionless wagon of a train. Each
body is connected to a horizontal spring of relaxed length ¢, when the wagon is at rest relative to the ground,
figure 6.4 (a).

A force is applied to the wagon in order to give it a velocity relative to the ground. We now consider the
observed situation when the wagon is moving relative to the ground along a straight line with a constant
velocity v. After the situation has been stabilized, each spring is found to remain relaxed with its normal
length £,, figure 6.4 (b). The cylinder represents an external body at rest relative to the ground.

€, mj m; €, €, i m; €, v z 8

Figure 6.4: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant velocity relative to
the ground.

1[Chi99).



Ch. 6: Bodies in Rectilinear Motion with Constant Velocity Relative to the Ground 77

6.2 Body Suspended by a String or by a Spring while It Slides
Relative to the Ground

Consider a body of gravitational mass my and inertial mass m; suspended by an ideal string of inextensible
length /¢, as in figure 5.5. Its downward weight F,; = mgg is balanced by the upward tension 7" exerted by
the stretched string.

Suppose now the upper extremity of this string is fixed to the ceiling of a wagon. A force is applied to the
wagon to remove it from rest. Consider that the wagon is now moving along a straight line with a constant
velocity v relative to the ground, with no longer an external force applied to it. We are supposing a closed
wagon, in such a way that we can neglect wind effects. After the situation stabilizes, the string is observed
to remain vertical, figure 6.5.

Figure 6.5: Wagon moving along a straight line with a constant velocity relative to the ground. The string
remains vertical.

Consider a vertical spring of elastic constant k£ and relaxed length ¢, when it is in the vertical orientation
with its upper extremity fixed to a support, without any body in its lower extremity. When a body of
gravitational mass mg and inertial mass m; is suspended by this spring, it acquires a stretched length £ in
equilibrium, when there is no motion relative to the ground, as in figure 2.4. Its downward weight F;; = mgg
is balanced by the upward elastic force F. = k(¢ — ¢,) exerted by the stretched spring.

Suppose now this spring is fixed at the ceiling of a closed wagon. A force is applied to the wagon to
remove it from rest, until it reaches a linear velocity v relative to the ground. After the situation stabilizes
and it moves with a constant velocity v relative to the ground, the spring is seen vertical and having the
same stretched length ¢ it had when the wagon was at rest relative to the ground, figure 6.6. This length /¢
is given by equation (5.1) not only when the wagon is at rest, but also when it is moving along a straight
line with a constant velocity v relative to the ground.

Figure 6.6: Spring sliding with a constant velocity relative to the ground supporting a body in its lower
extremity.

6.3 Vessel Sliding Relative to the Ground Partially Filled with Lig-
uid

Figure 6.7 shows a vessel partially filled with a liquid. It is moving along a straight line with a constant
velocity relative to the ground. In this situation we observe that the free surface of the liquid remains flat
and horizontal, as it happened when the fluid was at rest relative to the Earth. This situation is observed
ordinarily in transatlantic flights. The airplane can be traveling with a constant velocity of, for instance,
700 km/h relative to the ground. Despite this high velocity, the water in the glass of a passenger remains
flat and horizontal.

It is easy to solve this problem in newtonian mechanics utilizing the same procedure adopted in Section
5.3. We then conclude once again that the pressure of the liquid varies linearly with depth according to
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Figure 6.7: Vessel moving with a constant velocity relative to the ground, partially filled with liquid.

equation (5.11). The isobaric surfaces are once more horizontal planes parallel to the free surface of the fluid.
All of these aspects present the same behavior as when the liquid was at rest relative to the ground.

6.4 Galileo and Newton on the Ship Experiment

Figure 6.8 summarizes what we saw in this Chapter. There are two horizontal springs connected to the
wagon resting on a frictionless surface. Their free extremities are connected to test bodies which can move
relative to the wagon. There is a vertical string connected to the ceiling with its lower extremity supporting
a test body. There is also a vessel partially filled with a liquid. By observing test bodies inside a closed room
we cannot detect if the wagon is at rest or moving uniformly along a straight line with a constant velocity
v relative to the ground. For instance, there are no observable effects in deformable or elastic bodies which
might depend on the value of this velocity v.

Figure 6.8: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant linear velocity v

é L L

v
E— i — [E— [ —

(] C C

(a) (b)

relative to the ground.

Galileo Galilei (1564-1642) in his 1632 book Dialogue Concerning the Two Chief World Systems discussed

a fact similar to what we are discussing in this Section:?

Shut yourself up with some friend in the main cabin below decks on some large ship, and have
with you there some flies, butterflies, and other small flying animals. Have a large bowl of water
with some fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath it.
With the ship standing still, observe carefully how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in all directions; the drops fall into the vessel
beneath; and, in throwing something to your friend, you need throw it no more strongly in one
direction than another, the distances being equal; jumping with your feet together, you pass equal
spaces in every direction. When you have observed all these things carefully (though doubtless
when the ship is standing still everything must happen in this way), have the ship proceed with
any speed you like, so long as the motion is uniform and not fluctuating this way and that. You
will discover not the least change in all the effects named, nor could you tell from any of them
whether the ship was moving or standing still. In jumping, you will pass on the floor the same
spaces as before, nor will you make larger jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite the fact that during the time that you are in the
air the floor under you will be going in a direction opposite to your jump. In throwing something
to your companion, you will need no more force to get it to him whether he is in the direction
of the bow or the stern, with yourself situated opposite. The droplets will fall as before into the
vessel beneath without dropping toward the stern, although while the drops are in the air the
ship runs many spans. The fish in their water will swim toward the front of their bowl with no

2[Gal53, pp. 186-187].
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more effort than toward the back, and will go with equal ease to bait placed anywhere around the
edges of the bowl. Finally the butterflies and flies will continue their flights indifferently toward
every side, nor will it ever happen that they are concentrated toward the stern, as if tired out
from keeping up with the course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air. And if smoke is made by burning some incense, it
will be seen going up in the form of a little cloud, remaining still and moving no more toward one
side than the other. The cause of all these correspondences of effects is the fact that the ship’s
motion is common to all the things contained in it, and to the air also. That is why I said you
should be below decks; for if this took place above in the open air, which would not follow the
course of the ship, more or less noticeable differences would be seen in some of the effects noted.
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Newton mentioned the ship experiment in Corollary V after his 3 laws of motion (presented in Section

1.2):3

Corollary 5

The motions of bodies included in a given space are the same among themselves, whether that
space is at rest, or moves uniformly forwards in a right line without any circular motion.

For the differences of the motions tending towards the same parts, and the sums of those that
tend towards contrary parts, are, at first (by supposition), in both cases the same; and it is
from those sums and differences that the collisions and impulses do arise with which the bodies
impinge one upon another. Wherefore (by Law II), the effects of those collisions will be equal
in both cases; and therefore the mutual motions of the bodies among themselves in the one case
will remain equal to the motions of the bodies among themselves in the other. A clear proof of
this we have from the experiment of a ship; where all motions happen after the same manner,
whether the ship is at rest, or is carried uniformly forwards in a right line.

Galileo and Newton mentioned that the motion of a test body relative to the Earth, or the motion of one
test body relative to one another test body, is the same no matter if the ship is at rest or moving linearly
with a constant velocity relative to the ground. In this Chapter we considered similar effects relative to
deformable bodies (springs, the free surface of water in a vessel or the inclination of a pendulum to the
vertical). That is, no matter if the vessel is at rest or moving linearly with a constant velocity relative to the
ground, there is no visible deformation in these bodies, as indicated in figure 6.8. In the next Chapter we
will see that when the vessel is accelerated relative to the ground, deformations arise in these elastic bodies.

3[New34, pp. 20-21].
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Chapter 7

Bodies in Rectilinear Uniformly
Accelerated Motion Relative to the
Ground

Equation (1.4) can be easily integrated when a constant force F acts on a body of inertial mass m;. This
body acquires a constant acceleration @ relative to an inertial frame of reference, moving along a straight
line in this frame of reference. This constant acceleration is given by:
i F
d = — = — = constant . (7.1)
dt m;
The velocity ¥ relative to this frame of reference and the position vector 7 of the test body relative to
the origin O of this inertial frame are given by, respectively:

7=, +at, (7.2)
and
F:FO+UOt+a7 : (7.3)

Here v, represents the initial velocity of the body and 7, its initial position vector.
We will suppose that the Earth is a good inertial frame in order to describe the motion of bodies along
its surface.

7.1 Galileo’s Free Fall Experiments

7.1.1 A Body in Free Fall Moves with a Constant Acceleration Relative to the
Ground

Galileo was the first scientist to conclude that bodies near the surface of the Earth fall towards the ground
with constant accelerations when the resistance of the medium can be neglected. Some of his main exper-
imental and theoretical researches related to mechanics were made between 1600 and 1610. But only in
1638 did he publish the results of his experiments in the book Two New Sciences. He defined uniformly
accelerated motion as follows:!

A motion is said to be uniformly accelerated, when starting from rest, it acquires, during equal
time-intervals, equal increments of speed.

Let v; be the body’s velocity in time ¢;. If vy —v3 = vo — vy when t4 — t3 = t2 — t1, no matter the values
of these time intervals, the motion of this body is called uniformly accelerated. A motion can also be said
to be uniformly accelerated when the acquired velocities are to one another as the time intervals, namely:

1[Gal54, p. 162] and [Gal85, p. 127].
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Galileo then proved the following theorem:
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Theorem II, Proposition 1T

The spaces described by a body falling from rest with a uniformly accelerated motion are to each
other as the squares of the time-intervals employed in traversing these distances.

can then be expressed algebraically as follows:

di ()’
dy  \t2 '

(7.4)

Let d; be the distance traversed in time ¢;, while ds is the distance traversed in time t5. This theorem

(7.5)

The definition of uniformly accelerated motion and this theorem are theoretical results. In order to know

if nature behaves according to this rule, Galileo performed experiments with balls rolling down inclined
planes. His results were as follows:>

[...] So far as experiments go they have not been neglected by the Author; and often, in his
company, I have attempted in the following manner to assure myself that the acceleration actually
experienced by falling bodies is that above described.

A piece of wooden moulding or scantling, about 12 cubits long, half a cubit wide, and three finger-
breadths thick, was taken; on its edge was cut a channel a little more than one finger in breadth;
having made this groove very straight, smooth, and polished, and having lined it with parchment,
also as smooth and polished as possible, we rolled along it a hard, smooth, and very round bronze
ball. Having placed this board in a sloping position, by lifting one end some one or two cubits
above the other, we rolled the ball, as I was just saying, along the channel, noting in a manner
presently to be described, the time required to make the descent. We repeated this experiment
more than once in order to measure the time with an accuracy that the deviation between two
observations never exceeded one-tenth of a pulse-beat. Having performed this operation and
having assured ourselves of its reliability, we now rolled the ball only one-quarter the length of
the channel; and having measured the time of its descent, we found it precisely one-half of the
former. Next we tried other distances, comparing the time for the whole length with that for the
half, or with that for two-thirds, or three-fourths, or indeed for any fraction; in such experiments,
repeated a full hundred times, we always found that the spaces traversed were to each other as
the squares of the times, and this was true for all inclinations of the plane, i. e., of the channel,
along which we rolled the ball. We also observed that the times of descent, for various inclinations
of the plane, bore to one another precisely that ratio which, as we shall see later, the Author had
predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of water placed in an elevated position;
to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of water, which
we collected in a small glass during the time of each descent, whether for the whole length of the
channel or for a part of its length; the water thus collected was weighed, after each descent, on
a very accurate balance; the differences and ratios of these weights gave us the differences and
ratios of the times, and this with such accuracy that although the operation was repeated many,
many times, there was no appreciable discrepancy in the results.

Consider an inclined plane of length ¢, height A and angle of inclination to the horizontal given by 6

figure 7.1. Galileo utilized ¢ = 12 cubits and h = 1 or 2 cubits. When h = 1 cubit, the angle of inclination
was 01 = 4.78° =~ 5°. When h = 2 cubits, 65 = 9.59° =~ 10°.

down inclined planes are examples of uniformly accelerated motions.

The results of Galileo’s experiments were in agreement with equation (7.5). Therefore spheres rolling

Galileo also considered planes of the same height but with different inclinations to the horizon. Consider

two inclined planes having the same height h. Let ¢1 and /5 be their lengths, while their angles of inclination
to the horizontal are 6, and 65, respectively, as in figure 7.2.

2|Gal54, p. 174] and [Gal85, p. 136].
3|Gal54, pp. 178-179] and [Gal85, pp. 140-141].
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Figure 7.2: Planes having the same height and different inclinations to the horizontal.

Galileo proved the following result:*

Theorem III, Proposition III

If one and the same body, starting from rest, falls along an inclined plane and also along a
vertical, each having the same height, the times of descent will be to each other as the lengths of
the inclined plane and the vertical.

[

Corollary

Hence we may infer that the times of descent along planes having different inclinations, but the
same vertical height stand to one another in the same ratio as the lengths of the planes. |...]

Let ¢t; and ¢ be the time intervals required for the same body to describe lengths ¢; and ¢5 of figure 7.2,
respectively. Galileo’s result can be expressed as follows:

ti 0
— == 7.6
H 0 (7.6)
Galileo also considered planes of the same length and different heights. Consider two inclined planes
having the same length £. Let h; and ho be their heights when they are inclined at angles #; and 05 to the
horizontal, as in figure 7.3.

Figure 7.3: Inclined planes having the same length and different heights.
Galileo proved the following result:®

Theorem IV, Proposition IV
The times of descent along planes of the same length but of different inclinations are to each

other in the inverse ratio of the square roots of their heights.

Let t; and t2 be the time intervals required to move along the same length ¢ of two inclined planes of
heights h; and ho, respectively, as in figure 7.3. Galileo’s result can be expressed as follows:

4|Gal54, pp. 185-187] and [Gal85, p. 146].
5[Gal54, p. 187] and [Gal85, p. 147].
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Galileo generalized these results considering two planes having different inclinations, lengths and heights.
In all cases Galileo obtained experimentally that balls rolling down inclined planes move with uniform
accelerations relative to the ground, namely:

(7.7)

d = constant . (7.8)

The value of this acceleration might depend on the angle 8 of inclination to the horizontal. But considering
a fixed inclination, Galileo always found an uniformly accelerated motion. A particular case is that of free
fall, when 6 = 90°. In this situation the inclined plane does not affect the falling body.

7.1.2 The Free Fall Acceleration Is Independent of the Weight of the Body

From his experiments with inclined planes Galileo concluded that a body in free fall moves with a constant
acceleration relative to the ground. But in principle the value of this acceleration might depend on the weight
of the body. With other experiments Galileo was also the first to conclude that the free fall acceleration
was independent of the body’s weight. In one of his experiments he compared the times of fall of two iron
spheres falling from a height of 100 cubits, one ball of 100 pounds and the other with 1 pound. Although
one ball was 100 times heavier than the other, their times of fall were essentially the same:®

[...] Aristotle says that “an iron ball of one hundred pounds falling from a height of one hundred
cubits reaches the ground before a one-pound ball has fallen a single cubit.” I say that they arrive
at the same time. You find, on making the experiment, that the larger outstrips the smaller by
two finger-breadths, that is, when the larger has reached the ground, the other is short of it by
two finger-breadths; now you would not hide behind these two fingers the ninety-nine cubits of
Aristotle, nor would you mention my small error and at the same time pass over in silence his
very large one. |[...]

Galileo mentioned correctly that this small time difference was due to air friction.
Galileo’s conclusion as regards bodies of the same shape, and having the same chemical composition (like
two iron balls), combined with equation (7.8), can then be written as follows:

@ = constant, no matter the weight of the body . (7.9)

7.1.3 The Free Fall Acceleration Is Independent of the Chemical Composition
of the Body

Galileo was also the first to discover another very important aspect connected with free fall, namely, that it
has the same value for all bodies, no matter their density nor chemical composition. This conclusion is highly
non trivial. Galileo compared the times of fall of bodies having different specific gravities, such as gold, lead,
stone, etc. He released these bodies in a certain medium, from the same height, and compared their different
times of fall. He then repeated the experiment, now changing the medium. As media he considered air,
water, quicksilver, etc. Each time he released the same pair of bodies, like a ball of gold and another of lead,
and compared their different times of fall. He concluded that, for two bodies of different specific gravities,
there was a greater time difference when the medium was more resistant. And the resistance of the medium
increase with its density. From these experiments he made a remarkable conclusion, namely:”

We have already seen that the difference of speed between bodies of different specific gravities
is most marked in those media which are the most resistant: thus, in a medium of quicksilver
gold not merely sinks to the bottom more rapidly than lead but it is the only substance that will
descend at all; all other metals and stones rise to the surface and float. On the other hand the
variation of speed in air between balls of gold, lead, copper, porphyry, and other heavy materials
is so slight that in a fall of 100 cubits a ball of gold would surely not outstrip one of copper by
as much as four fingers. Having observed this I came to the conclusion that in a medium totally
devoid of resistance all bodies would fall with the same speed.

6|Gal54, pp. 64-65] and [Gal85, p. 57].
7[Gal54, pp. 71-72] and [Gal85, p. 62].
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He reached this conclusion not only with these experiments of bodies of different specific gravities falling
in different media, but also with his measurements of the periods of oscillation of simple pendulums, as will
be seen in Section 8.2.

His experimental conclusions as regards the fall of bodies moving freely in vacuum near the surface of
the Earth can then be expressed as follows:

a = constant, no matter the weight, shape or density of the body . (7.10)

That is, all bodies fall to the ground in vacuum with the same constant acceleration, no matter the
chemical composition of the bodies. This means that not only a lead ball with a gravitational mass of 3 kg
will fall freely to the ground with the same acceleration of another lead ball of 1 kg, but also with the same
acceleration of a wooden block with a mass of 200 g. This is one of the most important and mysterious facts
of classical mechanics.

Figure 7.4 represents this equality in the acceleration of free fall.

2

-
a,=a,
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Figure 7.4: Two bodies fall freely towards the ground in vacuum with the same constant acceleration, no
matter their weights, shapes, densities or chemical compositions.

7.1.4 Newton and the Experiments of Free Fall

Otto von Guericke (1602-1686) invented the air pump in the early 1650’s. Robert Boyle (1627-1691) asked
his assistant, Robert Hooke, to build a machine similar to that of Guericke. Boyle verified in 1669 with this
air pump that a feather falls in vacuum along a straight line in the same way as dense bodies fall in air.
Other scientists showed also that a feather and a coin fall together in vacuum after being released at rest
from the same height, taking the same time to cover equal distances. This fact was expressed by Newton in
Proposition 6, Theorem 6 of Book III of the Principia as follows:®

It has been, now for a long time, observed by others, that all sorts of heavy bodies (allowance
being made for the inequality of retardation which they suffer from a small power of resistance
in the air) descend to the Earth from equal heights in equal times; and that equality of times we
may distinguish to great accuracy, by the help of pendulums. [...]

In Proposition 10, Theorem 10, of Book III of the Principia, Newton said:®

[...] In the spaces near the Earth the resistance is produced only by the air, exhalations, and
vapors. When these are carefully exhausted by the air pump from under the receiver, heavy
bodies fall within the receiver with perfect freedom, and without the least sensible resistance:
gold itself, and the lightest down, let fall together, will descend with equal velocity; and though
they fall through a space of four, six, and eight feet, they will come to the bottom at the same
time; as appears from experiments. [...]

In the General Scholium at the end fo the Principia he also discussed this topic:!?

8[New34, p. 411] and [New08b, p. 200].
9[New34, p. 419] and [New08b, p. 208].
10|New34, p. 543| and [New08b, pp. 327-328].



86 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

Bodies projected in our air suffer no resistance but from the air. Withdraw the air, as is done in
Mr. Boyle’s vacuum, and the resistance ceases; for in this void a bit of fine down and a piece of
solid gold descend with equal velocity. |[...]

In Query 28 of his book Opticks Newton expressed himself as follows:!!

[...] The open air which we breathe is eight or nine hundred times lighter than water, and by
consequence eight or nine hundred times rarer, and accordingly its resistance is less than that of
water in the same proportion, or thereabouts; as I have also found by experiments made with
pendulums. And in thinner air the resistance is still less, and at length, by rarefying the air,
becomes insensible. For small feathers falling in the open air meet with great resistance, but in
a tall glass well emptied of air, they fall as fast as lead or gold, as I have seen tried several times.

[

7.1.5 The Numerical Value of the Free Fall Acceleration

Although Galileo was the first to show that two bodies fall with the same constant acceleration towards the
ground when air resistance can be neglected, he did not obtain a precise value for this acceleration. The first
to obtain the precise value corresponding to an acceleration of 9.8 m/s? were Christian Huygens (1629-1695)
and Isaac Newton, based on their pendulum’s experiments. Although their results were not expressed in
the International System of Units, which had not yet been created, their numerical values were equivalent
to our modern value of 9.8 m/s?. Huygens’s main works related with pendulum clocks were made between
1650 and 1670. His main work on this subject, the book Horologium Oscillatorum [The Pendulum Clock],
was published in 1673, before the publication of Newton’s Principia. Huygen’s book has been published into
French, German and English. The modern precise value of the free fall acceleration near the surface of the
Earth appeared for the first time in this book.!?

7.2 Free Fall in Newtonian Mechanics

7.2.1 Results Obtained from Newton’s Laws of Motion

We consider here the problem of free fall utilizing Newton’s mechanics, figure 7.5.

mi mg

Figure 7.5: A freely falling body.

A body of inertial mass m; and gravitational mass m, is falling freely near the surface of the Earth.
The only force acting on this test body is the gravitational force F, exerted by the Earth. If the body is
falling from a height of 10 meters, we can suppose that the grav1tatlonal force exerted on it by the Earth is
essentially constant during the fall, as seen in Section 5.2. In this problem we can disregard the variation
of this gravitational force because this distance of 10 m is negligible compared with the Earth’s radius of
6.37 x 108 m. Therefore the gravitational force exerted on this body by the Earth can be written as:

F Mgpmy

=-G————= I 7 =my§(RE) . (7.11)

In this equation g(Rg) is the force per unit gravitational mass near the surface of the Earth, which can be
written as:
HNew79, Query 28, p. 366] and [New96, Query 28, pp. 268-269)].

12[Huy13, pp. 180-186 and 264 Note 175], [Huy34, pp. 348-359], [Huy86, pp. xiii-xiv, xviii-xix and 167-172] and [Bar89, pp.
454 and 528-530].
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(7.12)

The free fall acceleration can be obtained utilizing equation (7.11) and Newton’s second law of motion
in the form of equation (1.4), namely:

F, GM,
= m;i - _Z_ZR—QEQE? = m‘i J(Rp) = constant . (7.13)

From equation (7.13), obtained from newtonian mechanics, we conclude that each body will fall freely
towards the ground with a constant acceleration. This conclusion agrees with Galileo’s experimental result
expressed by equation (7.8).

7.2.2 The Proportionality between Weight and Inertial Mass Obtained from
Free Fall Experiments

The value of § given by equation (7.12) depends only on the gravitational mass Myg of the Earth, on its
radius Rg and on the location of the test body. That is, the value of § does not depend on the properties
of the test body like its gravitational mass m, nor on its inertial mass m;.

Let us suppose a lead coin of weight F;; = |ﬁgl |, gravitational mass mg and inertial mass my; falling freely
towards the ground with a constant acceleration a; = |@|. A feather of weight F,; = |F,;|, gravitational
mass mgs and inertial mass m;; falls freely with a constant acceleration ay = |@y| towards the ground.
According to equation (7.13), the ratio of these two accelerations is given by:

ar Fo/ma _ Mg/ M ' (7.14)
ap  Fyp/mip  mgyp/mif

Utilizing only newtonian mechanics, it is not possible to predict the value of the ratio of these accelera-
tions.

We now utilize Galileo’s result that all bodies fall freely in vacuum towards the Earth with the same ac-

celeration, no matter their weights, shapes, densities and chemical compositions, equation (7.10). Equations
(7.10) and (7.14) yield:

a _ Fa/ma_ mg/mi 1 (7.15)
af  Fgr/mig  mgp/my

Equation (7.15) can also be written in two alternative forms, namely:

For _ For (7.16)

mi Mg '
or

Dol _ Tof (7.17)

mg mir
Equations (7.16) and (7.17) are valid not only for lead (I) and feather (f), but also for any other body
of weight F,, gravitational mass m, and inertial mass m;, no matter its weight, shape or density. Equation
(7.16) can then be written as:
Fy _ E _ Fy

—= = constant for all bodies . (7.18)
Lz mif mg

Equations (7.17) and (7.18) can also be expressed equating the ratio of inertial masses with the ratio of
weights and with the ratio of gravitational masses, that is:
m; F m
Ma _ Zgt Mgl (7.19)
miyz  Fyo Mg
As mentioned in Section 1.2, equations (7.18) and (7.19), obtained from newtonian mechanics combined
with Galileo’s experimental conclusion that all bodies fall freely in vacuum with the same constant acceler-
ation towards the ground, was presented by Newton in the first definition of the Principia by an equivalent
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statement, namely, that the mass of a body is known by its weight, for it is proportional to the weight of the
body.!3 If body A, for instance, is 5 times heavier than body B, as determined with an equal arm balance,
then necessarily the inertial mass of body A is 5 times larger than the inertial mass of B, no matter their
densities or chemical compositions.

In the International System of Units the ratio of the gravitational mass m, of any body to its inertial
mass m; is defined as having the dimensionless numerical value 1. Therefore equation (7.17) can be written
as follows:

Mgl _ Mol _ ™9 _ constant for all bodies = 1 . (7.20)
mg mir mg

This means that the proportionality between inertial mass and weight, as expressed by Newton, can also
be phrased as follows: The inertial mass of a body is known by its gravitational mass, for the inertial mass
is proportional to the gravitational mass.

With the ratio of the gravitational mass of a body to its inertial mass being defined as 1, equation (7.20),
the inertial mass of a body becomes equal to its gravitational mass. In the International System these two
magnitudes have the same unit, the kilogram, represented by kg:

mg=m;=m. (7.21)

Therefore it is possible to utilize a single magnitude to indicate not only the inertial mass of a body, but
also its gravitational mass. This magnitude can be called simply mass, being here represented by m.

In the case of two bodies A and B falling freely in vacuum at the same location of the Earth, the

experimental value of this constant acceleration is given by:
m
as=ap =938 R (7.22)

The exact value of this acceleration depends upon the latitude, as seen in Section 1.4. At the poles its
value is 9.83 m/s?, at a latitude of 50° its value is 9.81 m/s?, while at the Equator its value is 9.78 m/s?,
supposing always a free fall at sea level.

Let us suppose an hypothetical situation in which Galileo had found that all bodies did fall freely to the
ground with constant accelerations, but in which these accelerations might have different values for different
bodies. A heavier piece of gold, for instance, might fall to the ground in vacuum with a greater acceleration
than that of a lighter piece of gold. A weight of gold might also fall to the ground with an acceleration
which was different from the acceleration of the same weight of silver. Even in this hypothetical situation
the whole structure of newtonian mechanics might remain the same. But now the weight of a body would
not be proportional to its inertial mass. The ratio of gravitational mass to inertial mass might change from
one body to another. Mechanics would be more complicated. In this hypothetical situation it would be
necessary to consider gravitational and inertial masses as independent concepts. There would be no relation
between gravitational mass and inertial mass. Despite this fact, the essence of newtonian mechanics would
remain essentially the same.

This hypothetical situation would be equivalent to what happens nowadays with the concepts of electric
charge and inertial mass, which are independent of one another. It is possible to increase the electrification
of a body without affecting its inertial mass. Two bodies with the same electric charge do not need to have
the same inertial mass. There is no relation between the electric charge of a body and its inertial mass.

What we want to emphasize here is that the proportionality between weight and inertial mass, no matter
the density nor the chemical composition of bodies, is not a necessary consequence of newtonian mechanics,
as it cannot be deduced from its postulates or axioms. This fact has an empirical origin which must be
appended to Newton’s formulation.

7.2.3 Two Bodies Attracting One Another in the Frame of Fixed Stars

The free fall acceleration of a body was considered in Subsection 7.2.1 in the Earth’s frame of reference. The
motion of the Earth relative to an external inertial frame of reference was not considered in that Subsection.

A more general situation which can be easily solved is the gravitational attraction of two bodies, like the
Earth and an apple, by taking into account the motion of both bodies relative to absolute space or relative
to an inertial frame of reference. This situation will be considered in this Subsection considering the frame
F of the fixed stars as a good inertial system of reference. The interacting bodies will be called 1 and 2.

13[New34, p. 1] and [New90, p. 1].
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Body 1 exerts a force on body 2, accelerating it relative to F. By Newton’s third law of motion, body 2
exerts an equal and opposite force on body 1, accelerating it relative to F. The inertial mass of body 1 will
be represented by m;1, while its gravitational mass will be represented by mgy;. Likewise m;» will represent
the inertial mass of body 2 and its gravitational mass will be represented by mgys. These two bodies will be
considered as point particles located at their centers of mass.

According to equations (4.16) and (4.30), the total energy E; of this system is given by:

O O
Mg1Mg2 U1 U1 V2 * V2
_ gllitg
Et =-G + mi1 + my2
T12 2 2

(7.23)

In this equation the velocities are considered relative to the inertial frame of the fixed stars, being 715 the
distance between 1 and 2.

Deriving equation (7.23) with respect to time, utilizing equations (1.4), (1.7) and (2.29), together with
the definition vo = ¥ — v, yields:

dEt Mag1M g2 Mag1M g2 Mag1M g2
W = %T12 + ’Ul mllal =+ 1)2 m12a2 = G%Tlg ’UlQ — ’UlQ G% = O (724)
T12 T12 T12

This means that E; is a constant which does not depend on the time ¢t. That is, E; is always the same,
no matter the values of r15, ¥} or vs:

B, = g2 + mi o1 + Mo %2 éw = constant in time . (7.25)
T12
The force ﬁgl exerted by 2 on 1 is given by equation (1.7):
Fy = —GLglmg2 12 = —Fia (7.26)
1o

where 715 = (1 — 72)/r12 is the unit vector pointing from 2 to 1, while 1312 is the force exerted by 1 on 2.
The equations of motion for particles 1 and 2 can be obtained combining equation (7.26) with Newton’s

second law of motion, equation (1.4), and utilizing that 7o; = —f12, yielding:
Py = G%%l =m;1ds , (7.27)
12
and
Fpo = —GMM = Minds . (7.28)
12

Newton’s law of gravitation, equation (7.26), satisfies the principle of action and reaction in the strong
form. According to equations (4.4) and (4.10), this means that also the total linear momentum p; and the
total angular momentum L, are constant in time. Supposing particles beginning from rest, 71(t = 0) =
Ua(t = 0) = 0, the total linear momentum will always have a zero value, the same happening for the total
angular momentum. Moreover, let us suppose that the center of mass of this system is located at the origin
O of the frame of reference of the fixed stars, 7., = 6, where 7., was defined by equation (4.11). These
suppositions yield the following relations:

T = Mi1T1 + MyaTe =0, (7.29)
and
N ms1 - mi1 - mi1
T9g = — T, Uy =— 1, a2 = — ay . (730)
mi2 m;2 mi2

This situation is represented in figure 7.6.
Utilizing that in the International System of Units the inertial mass is equal to the gravitational mass,
equation (7.21), defining r = |F1| and ro = |72], and using also equations (1.4) and (7.26), yields:
Mgl mi1

— = — . 7.31
(r1 +19)? Fa1 = m;2 “ ( )

a» = —G
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Figure 7.6: Two bodies interacting in the frame of the fixed stars.

If, for instance, m; = 3meg, then do = —3d;. On the other hand, when mj; > mao, we get r1 < 7o,
|01| < |Ua] and |d@1] < |@2]. For example, let us suppose an apple with an inertial mass m;2 = 100 g = 0.1 kg
interacting with the Earth of mass m;; = 6 x 10%* kg. We will also utilize the free fall acceleration of the
apple as given by |@2| = 9.8 m/s?. In this situation equation (7.30) yields a negligible acceleration for the
Earth relative to the fixed stars given by |@1| = 1.666 x 1072%|ds| = 1.6 x 10725 m/s?>. When mass 1 is much
larger than mass 2, it is possible to neglect the acceleration of body 1 compared with the acceleration of
body 2. But it should be kept in mind that these two bodies are accelerated relative to an inertial frame of
reference. The conservation of linear momentum happens in this inertial frame.

7.3 Electrified Body Inside a Capacitor

7.3.1 Electrostatic Force per Unit Charge

We discuss here another example of a constant force.

Figure 7.7 presents an ideal plane capacitor at rest relative to the ground. It has two square plates of side
L separated by a small distance d, with d < L. We consider a cartesian coordinate system at rest relative
to these plates, with the z axis orthogonal to the plates, origin at the center of the plates, pointing from
the negative to the positive plate, which is the direction of the unit vector z. Plates situated at z = z, and
z = —2z, are uniformly electrified carrying total charges @) and —@Q, respectively. In the positive plate there
is a constant surface charge density given by o, = ¢ = Q/L?. In the negative there is an opposite surface
charge density, namely, c_ = —o. We suppose these charges to remain fixed over this ideal capacitor, not
being affected by other charges. That is, we suppose the plates of this capacitor to be made of an insulating
material, in such a way that the charges spread over these plates remain fixed no matter the position nor
the motion of the nearby test charges.

Figure 7.7: Ideal plane capacitor at rest relative to the ground.

The electrostatic force between two point charges is given by equation (2.12). Integration of this equation
yields the well known electric force F' exerted by this capacitor on a point body electrified with a charge ¢
located inside it, namely:
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F=—qZ=¢E. (7.32)

-2z, (7.33)

The vector E points from the positive to the negative plate, as indicated in figure 7.7. In order to arrive
at this result border effects were neglected.

This force F has the same value in all points inside the capacitor. An analogous calculation yields a zero
force exerted by this capacitor and acting on a charge located anywhere outside these plates.

Equations (3.4) and (3.8) can also be utilized in order to calculate the electric field inside the capacitor.
The final result agrees with equation (7.33). The force acting on a test charge inside the capacitor can also be
obtained utilizing the electromagnetic force given by equation (3.15) and the electric field given by equation
(7.33). This force is also given by equation (7.32).

In classical electromagnetism (Maxwell’s equations together with the electromagnetic force acting on
a charge) this will be the total force exerted by this ideal capacitor on any test charge located inside the
capacitor. This is a constant force, no matter the position, velocity nor acceleration of the test charge relative
to the plates of the capacitor.

In Weber’s electrodynamics, on the other hand, this charged capacitor exerts a force on an internal test
charge which depends on the velocity and acceleration of the test charge relative to the plates of the capacitor.
Let 7 = 22, with —z, < z < z,, be the position vector of the internal test charge relative to the origin O
of the inertial frame of reference being considered here. The velocity and acceleration of this test charge
relative to this frame of reference are given by, respectively, ¥ = v,& + vy + v.2 and @ = a, & + a,§ + a. 2.
In this situation Weber’s force exerted by this capacitor on the internal test charge is given by:4

2

- 1
F=—qZ st 2 |52 —v.(ved +vy0) + 22025 — 2d]| s . (7.34)
o 2|2 :

We now suppose that the test charge is moving relative to the capacitor with a small velocity and a small
acceleration such that v? < ¢? and |2d| < ¢?. In this situation Weber’s force reduces to the classical value
given by equation (7.32). In this approximation the case being considered here will be another example of
a constant force, no matter the position of the test charge inside the capacitor.

The tension or electric potential difference between the plates of this capacitor, represented by Ag, is
given by:

od  Qd

Ap=Fd=—=15—. (7.35)

7.3.2 Stationary Charge Inside the Capacitor

There are several experiments showing that there is no relation between the electric charge of a body and
its weight, or that there is no relation between the charge of a body and its gravitational mass.

A simple experiment showing this fact is the electrification of a plastic rod by rubbing it in our hair. By
this procedure we can change its electrification without changing its weight. Its degree of electrification is
indicated by the amount of bits of paper it attracts when close to them.!®

We now present a more sophisticated experiment illustrating that these two magnitudes are independent
from one another. Between 1908 and 1913 Robert Millikan (1868-1953) performed some experiments in order
to determine the electron’s charge. An electrified oil drop was held in vertical equilibrium between the plates
of a charged capacitor. The drop’s weight was balanced by the buoyant force exerted by the surrounding air
and by the electric force exerted by the capacitor. In other situations the oil drop moved vertically with a
constant dragging velocity. Here we consider only the situation in which the oil drop was kept essentially at
rest relative to the plates of the capacitor. This equilibrium was unstable. It is represented in figure 7.8.

Let mg, be the gravitational mass of the oil’s drop. Supposing this drop is a sphere of radius r, its
volume is given by 47r3/3. The volume density of the gravitational mass of the oil is given by pg. Its

14[Ass89b], [ACI1], [AC92], [Ass92b, Section 5.6], [Ass94, Sections 6.7 and 7.2] and [Ass95b, Section 5.5].
15[Ass10b], [Ass10a] and [Assllc|.
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Figure 7.8: An oil drop electrified with a charge —q. Force acting on the electrified oil drop: The downward
weight F; = mg,g due to the Earth, the upward buoyant force Fj, = mgyrg exerted by the surrounding air
and the upward electric force F, exerted by the capacitor.

downward weight in vacuum is given by Fy, = mgog = 47r3pg09/3. If the air or fluid around this drop has
a gravitational mass density pq¢, the upward buoyant force exerted by this fluid on the drop is given by
Fy, =mgrg = 4nr3pyrg/3, where myy is the gravitational mass of fluid occupying the volume of the oil drop.
According to equations (7.32) and (7.33), the upward electric force acting on the oil drop electrified with a
charge —q is given by F. = ¢F = qo/¢,.

According to Newton’s second law of motion, equation (1.4), the equilibrium situation is characterized
by the following relation:

Fop—Fe=mia=0, (7.36)

where m;, is the inertial mass of the oil drop and Fp, = Fy — F = mgog — Mmgrg is the apparent weight of
the drop, namely, its weight in vacuum minus the buoyant force exerted by the surrounding fluid.

The ratio between the apparent weight of the oil drop and its electric charge can be obtained from
equations (7.35) and (7.36), namely:

@ _ 47”“39(990 — Pgf) 9 _ %

q 3q €o d

(7.37)

Experiments show that different tensions are required in order to balance different drops. That is,
different surface charge densities of the plates are required in order to keep different drops in equilibrium
relative to the ground. According to equation (7.37), this means that there is no relation between the drop’s
electric charge ¢ and its weight in vacuum Fj. There is also no relation between the drop’s charge ¢ and
the its apparent weight Fy, = F; — F} in air. We can change ¢ independently from Fj by increasing the
electrification of the drop. It is also possible to change Fy; independent from ¢, considering drops of different
sizes but with the same electrification. This means that the tension required to balance a drop 1 will be
different from the tension required to balance another drop 2 if the ratio ¢1/F,; is different from the ratio
g2/ Fyo, that is, if they have different ratios of charge to weight. This is represented in figure 7.9.

B 4 o+ o+ o+ o+ o+ o+
q,0F,, 9.0F,,
(a) (b)

Figure 7.9: Drop 1 has a ratio of charge to weight different from the ratio of charge to weight of drop 2.
They can only be equilibrated vertically in capacitors which have different tensions, that is, capacitors with
different surface charge densities.

Another simple situation showing that there is no relation between the electric charge of a body and its
weight is illustrated in figure 7.10. A body of gravitational mass mg, inertial mass m; and electric charge ¢
connected to a string of length ¢ is located inside an ideal capacitor with charge densities +o over its two
plates. The force per unit charge generated by this capacitor is given by E.

The body electrified with a charge ¢ is inside the ideal capacitor with vertical plates. The forces acting
on the electrified body are represented in figure 7.10 (b). There is the body’s downward weight ﬁg exerted
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Figure 7.10: (a) Electrified body of charge ¢ and weight F, in equilibrium inside a capacitor. (b) Forces
acting on the body.

by the Earth, the tension T exerted by the stretched string along its length, and the horizontal electric force
F, exerted by the charged capacitor. In equilibrium:

Fo4+T+F,=mia=0. (7.38)

According to equations (1.17), (7.32) and (7.33), together with figure 7.10 (b), we have:

Tsinf = F, = qF = qgi , (7.39)

o

and

Tcosl =Fy=myg . (7.40)

By squaring equations (7.39) and (7.40) we can obtain the tension T along the string, namely:

2
T=\/*E*+ F} = \/q2 (ag) +mgg? . (7.41)

This tension can be measured with a dynamometer connected to the string.
Dividing equation (7.39) by equation (7.40) and utilizing equation (7.35) yields:

E A
fng— Lp_ 4P _4 0 480 (7.42)
Fy mg g mg geo My gd

Experiments show that this angle of inclination to the vertical can have different values for different
bodies, figure 7.11, even when these bodies are placed inside the same capacitor having the same tension
between its plates.

According to equation (7.42), this difference in the angles of inclination of the strings to the vertical means
that these two bodies have different ratios of charge to weight, or different ratios of charge to gravitational
mass, namely:

q1 q2
&y 2 7.43
o # Fos (7.43)
or
oy 2 (7.44)

mgl mgg

These experiments show that there is no relation between the electric charge of a body and its weight.
Likewise, there is no relation between the electric charge of a body and its gravitational mass.
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Figure 7.11: Two bodies having different ratios of charge to weight are supported by strings of the same
length inside the same capacitor. The angles of inclination of these strings to the vertical have different
values.

7.3.3 Electrified Body Accelerated Inside a Capacitor

In this Subsection we present a situation showing that there is no relation between the electric charge ¢
of a body and its inertial mass m;. We now consider a charge in vacuum inside an ideal capacitor. The
capacitor will be always at rest relative to an inertial frame of reference. We will consider the Earth as a
good inertial frame to study this problem. The test charged body may be accelerated relative to the plates
of the capacitor. We suppose that the electrical force acting on this charged body is much larger than its
weight, so that we can neglect the gravitational force acting on it. Utilizing equations (1.4) and (7.32) we
obtain the acceleration @ of this body relative to the ground as given by:

i=-LE. (7.45)
my

According to equation (7.33), the electric force per unit charge, E, depends only on the surface charge
density over the plates of the capacitor, being independent of ¢ and m;. This force per unit charge is
analogous to the force per unit gravitational mass at the surface of the Earth in the situation of free fall
discussed in Sections 7.1 and 7.2.

However, there is a great difference between the free fall acceleration in a region of constant gravitational
force and the acceleration of an electrified body in a region of constant electric force (that is, in a region
for which the force on a body does not depend upon the location of this body). In the case of bodies being
attracted by the Earth in vacuum, all bodies fall with the same acceleration, no matter their weights or
chemical compositions. But in the case of two electrified bodies being accelerated in the same region of
constant electric force, these bodies can have different accelerations. A proton (p), for instance, has an
acceleration twice as great as the acceleration of an alpha particle () which is being accelerated inside the
same capacitor, figure 7.12. The alpha particle is the nucleus of the helium atom, with two protons and two
neutrons.

+ + + 4+ +

p o
Gop
O Oy
T =P
- o= 2
ap

Figure 7.12: Two charged particles having different accelerations inside the same capacitor.
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According to equation (7.45), the ratio between the accelerations of the proton and alpha particle inside
the same capacitor is given by, with a = |d]:

% _ Gp/Mip (7.46)
Qg Q(x/mia ' -

Utilizing that g, = 2¢, and that m;, = 4m;, yields:

i, = 20, . (7.47)

This difference between these two accelerations is due to the fact that the charge of an alpha particle
is twice that of a proton, while its inertial mass is four times the inertial mass of the proton, as it has two
neutrons and two protons.

This effect does not happen in free fall. All bodies fall freely towards the ground with the same acceler-
ation, no matter their weight, shape, density or chemical composition.

This is an extremely important fact. Comparing these two examples represented in figures 7.4 and 7.12,
we can conclude that the inertial mass m; of a test body is proportional to its weight F} or to its gravitational
mass my, as indicated by equation (7.19). The example of the proton and alpha particles being accelerated
inside the same capacitor, on the other hand, shows that the inertial mass of an electrified body is not
proportional to its electric charge ¢, namely:

.y

a4 (7.48)
mi2 a2

These facts suggest that the inertial mass of a body is connected to its weight or to its gravitational

mass, but not to its electric properties.

7.4 Body Accelerated Relative to the Ground while Connected to
a Spring

Consider now two bodies having the same inertial mass m; supported over a frictionless wagon. Each body
is connected to a horizontal spring of elastic constant k£ and relaxed length ¢, when the wagon is at rest
relative to the ground, figure 7.13 (a). The other extremities of the springs are connected to the wagon. We
will neglect the inertial mass m;s of each spring in comparison with the inertial of the body connected to it,
namely, m;s < m;.

A force is applied to the wagon until it reaches a velocity v relative to the ground. The external force
no longer acts after this point. The wagon then moves forward with a constant velocity v relative to the
ground. After the situation is stabilized and the wagon is moving with this constant velocity relative to
the ground, the springs and the two bodies will also be moving with this constant velocity v relative to
the ground, as they are connected to the wagon. Experimentally it is found that these two springs remain
relaxed, maintaining their initial lengths ¢,, figure 7.13 (b). The cylinder represents an external body fixed
relative to the ground.

¢ m m e L m m.£78

: mo >0 8
a

Figure 7.13: (a) Wagon at rest in the ground. (b) Wagon moving at a constant velocity relative to the
ground. (¢) Wagon uniformly accelerated relative to the ground.

We now make the wagon move along a straight line with a constant acceleration a relative to the ground.
Experiments show that one spring will be compressed while the other will be stretched, figure 7.13 (¢). The
wagon is uniformly accelerated towards the cylinder, to the right in this figure. The left spring is compressed
while the right spring is stretched. The extremity of the left spring connected to the wagon is at a larger
distance from the cylinder than its extremity connected to the body of inertial mass m;. For the right spring,
on the other hand, the extremity connected to the wagon is at a shorter distance from the cylinder than its
extremity connected to the body.
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We consider as positive the direction pointing from the wagon to the cylinder. The compression of the
left spring can be obtained utilizing Newton’s second law of motion together with Hooke’s law, equations
(1.4) and (2.6):

—k(l —L,) = m;a . (7.49)

The elongation of the right spring can also be obtained from equations (1.4) and (2.6):

k(0 —£,) =ma . (7.50)

That is, the lengths of both springs undergo the same variation, namely:

m|al

0= bl = =

(7.51)

7.4.1 Distinction between Velocity and Acceleration from the Deformation of
a Spring

There is a very important distinction which can be made comparing the three situations of figure 7.13. A
constant velocity v of the wagon relative to the ground does not have any dynamic effect, no matter the
value of v, as can be seen comparing figures 7.13 (a) and (b). A constant acceleration, on the other hand,
generates a dynamic effect, namely, a change in the length of both springs indicated by figure 7.13 (c) and
given numerically by equation (7.51). This means that we can know if the wagon is accelerated relative to
the ground even in a closed wagon without windows. To this end we only need to observe if the springs
connected to it are compressed or stretched, as in figure 7.13 (¢). On the other hand, if we are inside a closed
wagon, we cannot know if it is at rest or if it is moving at a constant velocity v relative to the ground. The
springs inside the wagon remain in the same situation, they are not compressed nor stretched, no matter
if the wagon is at rest or if it is moving along a straight line at a constant velocity relative to the ground,
figure 7.13 (a) and (b).

7.4.2 Distinction between Relative Acceleration and Absolute Acceleration from
the Deformation of a Spring

Figure 7.14 indicates how is it possible to distinguish the relative acceleration of a test body relative to
other material bodies, from the absolute acceleration of a test body relative to Newton’s absolute space.
There are two equal test bodies of gravitational mass mg, and inertial mass m; connected to the extremities
of two equal horizontal springs of relaxed length ¢,. The other extremity of each spring is connected to a
wagon which can move relative to the ground. In this figure the paper coincides with the frame of absolute
space. In situation (a) the wagon has a linear acceleration @ relative to absolute space, being accelerated
towards a cylinder which is at rest in the ground, while the Earth has no acceleration relative to absolute
space. The springs are deformed as given by equation (7.51). In situation (b), on the other hand, we present
the prediction of a thought experiment of what would happen, according to classical mechanics, if it were
possible to accelerate the Earth relative to absolute space. While the wagon has no acceleration relative to
absolute space, the Earth has a linear acceleration —a relative to absolute space, with the cylinder which is
fixed in the ground being accelerated towards the wagon. No matter if the Earth is at rest or has a linear
horizontal acceleration relative to absolute space, it only exerts a vertical gravitational force on the test body
pointing downwards, equation (1.20). This force is balanced by the upward vertical force exerted by the floor
of the wagon. Therefore, the springs inside the wagon should not be deformed, having their relaxed length
L.

There is the same relative acceleration @ between the Earth and the wagon in situations (a) and (b) of
figure 7.14. Despite this fact, these two situations are not dynamically equivalent. While the springs of
situation (a) are deformed according to equation (7.51), no such deformation takes place in the springs of
situation (b) according to classical mechanics. In newtonian mechanics we explain the deformation of the
springs of figure 7.14 (a) as being due to the absolute acceleration of the test bodies relative to empty space.
There would be no such absolute acceleration of the test bodies relative to Newton’s absolute space in the
situation of figure 7.14 (b).

We can also include the stars and galaxies in this analysis without affecting the final results, as indicated
by figure 7.15. Situation (b) is the prediction of what would happen, according to newtonian mechanics, it
if were possible to give a common linear acceleration, relative to absolute space, to the Earth, to the set of
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Figure 7.14: Paper coincides with absolute space. (a) Wagon uniformly accelerated to the right relative to
absolute space while the Earth has no acceleration relative to absolute space. The springs are deformed. (b)
Wagon without acceleration relative to absolute space, while the Earth is uniformly accelerated to the left
relative to absolute space. The springs should not be deformed according to classical mechanics.

fixed stars and to the set of galaxies. No matter if the Earth is at rest or accelerated to the left relative to
absolute space, it should exert only the downward vertical force acting on the test body, equation (1.20).
This force is balanced by the upward vertical force exerted by the floor of the wagon. The sets of stars and
galaxies, accelerated relative to absolute space, exert no net gravitational force on bodies located at the solar
system, according to equation (1.20). As there is no force acting on the test bodies of mass m connected to
the springs, the springs should remain relaxed according to classical mechanics.
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Figure 7.15: Paper coincides with absolute space. (a) Wagon uniformly accelerated to the right relative to
absolute space. The Earth, the set of fixed stars and the set of galaxies have no acceleration relative to
absolute space. The springs are deformed. (b) Wagon without acceleration relative to absolute space. The
Earth, the set of fixed stars and the set of galaxies are uniformly accelerated to the left relative to absolute
space. The springs should not be deformed according to classical mechanics.

In situations (a) and (b) of figure 7.15 there is the same relative acceleration @ between the wagon and
the Earth, between the wagon and the set of fixed stars, and between the wagon and the set of galaxies.
Although these two situations are kinematically equivalent, they are not dynamically equivalent. After all,
while the springs of figure 7.15 (a) are deformed, the same does not happen with the springs of figure 7.15
(b). This dynamic difference in the behavior of the springs is explained in classical mechanics by saying that
while the test bodies of figure 7.15 (a) are accelerated relative to absolute empty space, the same does not
happen with the test bodies of figure 7.15 (b).

7.4.3 What is the Origin of the Force which is Stretching the Spring?

Figure 2.5 showed springs being stretched by forces of different nature, namely, (a) gravitational, (b) electric
and (¢) magnetic. A spring does not stretch itself. It can only be stretched by two external forces acting on
the extremities of the spring in opposite directions. The force acting on each extremity must be pointing in
the direction going from the center of the spring to this extremity, as shown in figure 2.4 (c¢) and in figure
2.6.

We can now make an interesting question. What is the origin of the force which is stretching the right
spring of figure 7.13 (c)? Has this force a gravitational, electric, magnetic or nuclear origin?

We can also ask what is the origin of the force which is compressing the left spring of figure 7.13 (¢)? A
spring does not compress itself. It can only be compressed by two external forces acting on the extremities
of the spring and pointing in opposite directions. The force acting on each extremity must be pointing in
the direction which goes from this extremity to the center of the spring.

The answer to these questions in classical mechanics is that the right spring of figure 7.13 (c¢) is not being
stretched by any force of interaction, in contrast to what happened with the springs of figure 2.5. According
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to newtonian mechanics the right spring of figure 7.13 (¢) is being stretched due to the inertia of the body
of inertial mass m; connected to it. Initially the wagon, spring and mass m; were at rest in the ground. A
force is applied to the wagon in order to accelerate it relative to the Earth. When the wagon moves to the
right with an acceleration a relative to the ground, initially the body of inertial mass m; tends to remain
at rest. But the right extremity of the spring is connected to the wagon, in such a way that the spring also
begins to move to the right with the wagon. The spring then begins to stretch as the wagon is in motion
and the body at rest. The spring then begins to exert an elastic force on the body, accelerating it relative
to the ground. The initial acceleration of the body is smaller than a. As time goes by, the stretching of the
spring increases, the same happening with the acceleration of the test body, until the spring and the body
move relative to the ground with the same acceleration a given to the wagon. From this moment onwards
the spring remains stretched exerting a force k(¢ — ¢,) to the right on the body, while the whole system
composed of wagon, spring and body of inertial mass m; maintain the same acceleration a relative to the
ground. According to Newton’s second law of motion we have k(¢ — ¢,) = m;a. By action and reaction, the
body exerts a force on the spring pointing to the left and having magnitude k(¢ — ¢,). Mathematically it is
possible to say that the right spring is stretched due to an inertial force —m;a exerted by the body on the
spring, pointing to the left. There is a force of equal magnitude acting on the right extremity of the spring,
exerted by the wall of the wagon, pointing to the right.

The main difference between this case of figure 7.13 (c¢) and the three situations of figure 2.5 is that
this inertial force —m;a does not originate in any kind of interaction of the test body and other bodies
around it. This inertial force acting on the test body of inertial mass m; is not due to its interaction with
the wagon, with the Earth, with the stars nor with the galaxies. In figure 2.5 (a), on the other hand, the
gravitational force exerted by the Earth on each heavy body suspended by the spring is transmitted to the
spring, stretching it. The electric force acting on each electrified body of figure 2.5 (b) is transmitted to the
spring, stretching it. Likewise, the magnetic force acting on each magnet of figure 2.5 (c) is transmitted to
the spring, stretching it.

7.5 Body Accelerated Relative to the Ground while Suspended by
a String

We now consider an ideal inextensible string of constant length ¢ with its upper extremity fixed at the ceiling
of a closed wagon. The wagon can move relative to the ground. A body of gravitational mass m, and inertial
mass m; is connected at the lower extremity of the string. The Earth exerts a gravitational force F, on
this body, namely, its weight. A force is applied to the wagon giving it a constant horizontal acceleratlon a
relative to the ground. The string is found to remain inclined to an angle 6 to the vertical, as in figure 7.16.

(2) (b)

Figure 7.16: (a) Wagon accelerated relative to the ground, with the string inclined of an angle 6 to the
vertical. (b) Forces acting on the test body.

We are supposing the body being accelerated in vacuum or that we can neglect the buoyant force and
the resistive force due to air currents acting on it. There are then only two forces acting on the test body,
namely, its downward weight F and the tension T exerted by the stretched string and pointing along its
length, figure 7.16 (b). Accordlng to Newton’s second law of motion we get:

F,+T =ma . (7.52)
Utilizing the angle # shown in figure 7.16 and the fact that the acceleration is horizontal yields:

T'sinf = m;a , (7.53)
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and

Tcosf=F, . (7.54)

Dividing equation (7.53) by equation (7.54) and utilizing that F, = myg yields the tangent of the angle,
namely:

m;a - m; a

g mgg
That is, tan @ is proportional to the acceleration of the string relative to the ground. This acceleration

can be controlled by changing the horizontal force applied to the wagon. Therefore, it is possible to control

this angle 6 of inclination.
Squaring equations (7.53) and (7.54) yields the tension T of the string, namely:

tanf = (7.55)

T = \/m?cﬂ + 2 = \/mfa2 +m2g? . (7.56)

A dynamometer connected to the string can be utilized to measure this tension.

7.5.1 Proportionality between Weight and Inertial Mass by the Inclination of
the String

A string of length ¢ remains inclined at an angle 67 to the vertical, as given by equation (7.55), when it is
moving with an acceleration a; relative to the ground supporting a body 1 of weight Fy, gravitational mass
mg1 and inertial mass m;;. Analogously, another string of length ¢ remains inclined at an angle 6 to the
vertical when it is moving with an acceleration as relative to the ground while supporting a body 2. From
equation (7.55) the ratio of the tangents of these inclinations is given by:
tan91 _ m;i1a1 & _ mil/mgl ﬂ ' (757)
tanfla  mugaz Fy1i mia/mgo as
This result is obtained from the theoretical structure of newtonian mechanics. We now utilize an addi-
tional empirical information, namely, that all bodies connected to strings remain inclined at the same angle
0 to the vertical when the wagons to which they are attached move with the same acceleration a relative to
the ground, no matter the shapes, weights, densities nor chemical compositions of the bodies connected to
them. This experimental fact cannot be deduced from Newton’s laws of motion. It is an empirical datum
which is independent from these laws. This equality of angles is represented in figure 7.17.

Figure 7.17: Strings supporting different bodies are inclined to the vertical by the same angle when they
move with the same acceleration relative to the ground, no matter the weights or chemical compositions of
the bodies connected to them.

That is, when a; = ag = constant, it is found experimentally that §; = 62, no matter the values of Fy,
Fg2, mi1, miz, mg1 or mgo. This equality of angles happens also for bodies of different shapes, densities or
chemical compositions. Utilizing this experimental fact in equation (7.57) yields:

ma _ Fg _ mg (7.58)
mia  Fypo  mga’
no matter the weights nor chemical compositions of bodies 1 and 2.
Utilizing equation (7.21) or equation (7.58) into equation (7.55) yields:

tanf = S . (7.59)
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Equation (7.58) is analogous to equation (7.19). But now this result has been obtained from an experiment
which is conceptually different from that of free fall. When two bodies are released in vacuum near the
surface of the Earth, they fall with the same constant acceleration relative to the ground. The value of this
acceleration on the surface of the Earth cannot be controlled, as it depends only on the properties of the
Earth, namely, its gravitational mass and radius.

The acceleration of the wagon discussed in this Section, on the other hand, can be changed at will by
controlling the force applied to the wagon. Given a certain acceleration a, then the angle of inclination will
be given by equation (7.59). By increasing or decreasing the acceleration a of the wagon relative to the
ground, the angle of inclination will change accordingly. In any event, given this acceleration a, the angle
# of inclination will have the same value for all bodies connected to the string, no matter their weight nor
chemical composition. The theoretical consequences of this experimental fact are represented by equations

(7.58) and (7.59).

7.5.2 Distinction between Velocity and Acceleration by the Inclination of the
String

Sections 5.2 and 6.2 showed that a string connected to a wagon with its lower extremity supporting a test
body remains vertical not only when the wagon is at rest, but also when it is moving along a straight line
with a constant velocity relative to the ground, figures 5.5 and 6.5. When the wagon moves along a straight
line with a constant acceleration a relative to the ground, on the other hand, the string remains inclined to
the vertical at an angle 6, figure 7.16. This angle is specified by equation (7.59), namely, tané = a/g. Figure
7.18 compares these three situations.
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Figure 7.18: Motion of a wagon relative to the ground. (a) Wagon at rest. (b) Moving with a constant
velocity v. (¢) Moving with a constant acceleration a.

These three situations exhibit an important distinction, namely, an acceleration causes a dynamic mea-
surable effect. This visible effect is the inclination of the string to the vertical. This inclination does not
appear when the wagon is at rest nor when it is moving at a constant velocity v relative to the ground, no
matter the value of this velocity.

Another important aspect to be emphasized here is related with the measurement of motion. In general,
in order to know if there is motion between two bodies 1 and 2, it is necessary to analyze the distance r
between them, comparing it with another distance between other bodies which is considered as the standard
of length. When the distance between 1 and 2 changes in time, compared with our standard of length, we
say that they are moving relative to one another. We can say, for instance, that a body is moving relative
to the ground when its distance to objects fixed in the ground change as a function of time. The test body
can, for instance, be moving towards a wall.

In the situation of figure 7.18 a person in the ground can know if the wagon is at rest or moving relative
to the ground by comparing the distance between the wagon and a tree. A person inside the wagon can
also know if the wagon is at rest or moving relative to the ground if this person can look at the outside and
observe the positions of the trees around the wagon.

In a closed wagon without windows, on the other hand, a person inside the wagon cannot know if the
wagon is at rest or moving along a straight line with a constant velocity relative to the ground. Objects
inside the wagon do not give any hint nor visible indication of this velocity. An example can be seen in
figures 7.18 (a) and (b). The string remains vertical not only when the wagon is at rest, but also when it is
moving at a constant velocity relative to the ground.

The acceleration of the wagon relative to the ground, on the other hand, can be obtained by a person
inside the wagon not only kinematically but also dynamically. The kinematic determination is by looking
at the trees outside the wagon and observing how the distance between the wagon and each tree varies as
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a function of time. But even inside a closed wagon without windows, it is possible for a person to know its
acceleration relative to the ground. To this end the person must measure the inclination to the vertical of
a body supported by a string. The vertical can be indicated, for instance, by a door or wall of the wagon.
The value of this acceleration will be indicated by equation (7.59), namely:

a=gtanf . (7.60)

It is also possible to know the direction of this acceleration. To this end it is necessary to know to which
side of the vertical the string is inclined. In the situation of figure 7.18 (c), for instance, the person inside
the wagon would detect the inclination of the string to the left, that is, with the supported body staying
closer to a certain wall of the wagon. The person would then conclude that the wagon was accelerated to
the right, that is, towards the opposite wall of the wagon.

In the next Subsection we discuss the meaning of the acceleration indicated by this experiment and given
by equation (7.60).

7.5.3 Distinction between Relative Acceleration and Absolute Acceleration from
the Inclination of the String

By detecting a change in the distance between two bodies, it is possible to say that there is a relative motion
between them. In principle this motion can be attributed to anyone of these bodies. This is illustrated in
figure 7.19. A test body of mass m is supported by a string inside a wagon which moves along a straight line
relative to the ground at a constant velocity v. The cylinder represents a body fixed relative to the ground.

LB [ . LB

(a) (b)

Figure 7.19: Relative velocity between the wagon and the ground. (a) Situation seen by a person in the
ground. (b) Situation seen by a person inside the wagon.

Figure 7.19 (a) shows the situation from the point of view of a person at rest relative to the ground,
while the wagon, string and test body move towards the cylinder at a constant velocity v. Figure 7.19 (b)
shows the situation from the point of view of a person inside the wagon. This person observes the wagon,
string and test body at rest relative to himself, while the cylinder and the Earth move towards the wagon
at a constant velocity —v. There is the same relative velocity between the ground and the string in both
situations. The motion can be attributed to the wagon or to the ground.

We now consider the situation of an uniformly accelerated motion. Figure 7.20 (a) shows the situation
from the point of view of a person at rest relative to the ground, while the wagon, string and test body
move towards the cylinder at a constant acceleration a. We can suppose the value of this acceleration to be
5 m/s?. The string is inclined to the vertical at an angle §. Figure 7.20 (b) presents this situation from the
point of view of a person inside the wagon. This person observes the wagon, string and test body at rest
relative to himself, while the cylinder and the Earth move towards the wagon at a constant acceleration —a.
The string is inclined relative to the vertical at an angle . There is the same relative acceleration a between
the wagon and the ground in both situations. Can this acceleration be equally attributed to the wagon or
to the Earth?

In principle situations (a) and (b) of figure 7.20 are equivalent. It might be thought that the angle 6
of inclination of the string to the vertical might be due to this relative acceleration between the wagon and
the Earth, no matter which one of them were really accelerated relative to Newton’s absolute space. But
this equivalence does not happen in classical mechanics. Newton argued that the dynamic effects arise on
the accelerated bodies. These dynamic effects should only arise, according to Newton, when the bodies
themselves were accelerated relative to absolute space. These dynamic effects would not arise on the test
bodies if they were at rest relative to absolute space, even if the Earth and the surrounding astronomical
bodies were accelerated relative to absolute space, in such a way that the same relative acceleration existed
between the test bodies and the Earth, or between the test body and the surrounding astronomical bodies.



102 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

BN ot ]

-a
(a) (b)

Figure 7.20: Wagon moving with a constant acceleration a relative to the ground with the string inclined to
the vertical at an angle 0. (a) Situation seen from a person in the ground. (b) Situation seen from a person
inside the wagon.

Newton illustrated his points of view utilizing circular motions. We present here his arguments utilizing
motions which are uniformly accelerated along a straight line.

When the wagon was at rest relative to the ground, a string connected to the wagon with a test body of
mass m connected to its lower extremity remained vertical. Figure 7.20 (a) showed that the string becomes
inclined to the left at an angle 8 to the vertical when the wagon is moving to the right relative to the ground
at a constant acceleration a. Let us suppose now an hypothetical situation (thought experiment) in which
the wagon were at rest relative to Newton’s absolute space, but in which the Earth were moving to the
left at a constant acceleration —a. Would the string be inclined at an angle 6 to the vertical? According
to newtonian mechanics, the string would remain vertical, although there is the same relative acceleration
between the Earth and the wagon in both situations, namely, in figures 7.20 (a) and (b). Figure 7.21 presents
the outcome of these experiments according to newtonian mechanics and considering the paper in which this
drawing has been made to be at rest relative to absolute space. Situation (a) is the situation when the wagon
has an uniform acceleration a to the right and the string is inclined to the vertical. The value of a can be
5 m/s%. Situation (b) presents the prediction of what would happen in the hypothetical situation in which
the wagon were at rest relative to absolute space and the Earth were uniformly accelerated to the left with

6

a constant acceleration —a.
m : a
@ - a : :
(a) (b)

Figure 7.21: Paper at rest relative to absolute space. (a) Wagon accelerated to the right with the string
inclined at an angle 6 to the vertical. (b) Wagon at rest and Earth accelerated to the left, with the string
vertical.

Although the relative acceleration between the Earth and the wagon is the same in both situations, the
string remains inclined only in case (a) in which the test mass m is accelerated relative to Newton’s absolute
space. In situation (b) newtonian mechanics predicts that the string will remain vertical. It is easy to
understand this prediction utilizing classical mechanics. The force exerted by the Earth on the mass m of
figure 7.21 is the downward weight F;, = mg. As Newton’s law of gravitation does not depend on velocity nor
acceleration, the Earth will remain attracting the test body downwards, no matter the horizontal acceleration
of the Earth indicated in figure 7.21 (b), as seen by equation (1.20). This fact indicates that the angle 6 of
inclination of the string to the vertical given by tanf = a/g is not due to the relative acceleration between
the Earth and the wagon.

There is a second possibility to interpret this angle 6 to the vertical. It might depend upon the relative
acceleration between the wagon and the set of fixed stars belonging to our galaxy. However, as seen in
Subsection 1.4.4, the fixed stars exert no influence upon terrestrial bodies. In order to understand this fact,
figure 7.22 presents a new hypothetical situation, once again considering the paper to be at rest relative to
absolute space.



Ch. 7: Rectilinear Motion Uniformly Accelerated Relative to the Ground 103

* * < <
. * -a -a t‘k
g -a
— S
* a

* -a &

%77797779777 -a

* " @ P
_a _a
* <

(a) (b)

Figure 7.22: Paper at rest relative to absolute space. (a) Wagon accelerated to the right with the string
inclined to the vertical at an angle 6. (b) Wagon, string and test body at rest, while the Earth and fixed
stars are accelerated to the left. The string remains vertical.

Once more situations (a) and (b) of figure 7.22 are kinematically equivalent. In both situations there
is the same relative acceleration between the wagon and the Earth, or between the wagon and the fixed
stars. However, these situations are not dynamically equivalent. In situation (a) the string is inclined to
the vertical, while in situation (b) it is vertical. According to newtonian mechanics the Earth accelerated to
the left exerts only a downward gravitational force on the test body, while the accelerated fixed stars exert
no net force on the test body according to equation (1.20). Therefore the angle 6 of inclination given by
tand = a/g is not due to the relative acceleration between the wagon and the fixed stars.

A third possibility might be to suppose this angle to depend upon the relative acceleration between the
wagon and the set of distant galaxies. However, as seen in Subsection 1.4.4, the set of distant galaxies
exert no net force on the test body m. Figure 7.23 presents another hypothetical situation, once more
considering the paper at rest relative to absolute space. Situation (a) presents the wagon, string and mass
m accelerated to the right, while the Earth, stars and galaxies are at rest. The string is inclined at 6 to the
vertical. Situation (b) presents the wagon, string and mass m at rest, while the Earth, stars and galaxies
are accelerated to the left. The string remains vertical according to newtonian mechanics.
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Figure 7.23: Paper at rest relative to absolute space. (a) Wagon accelerated to the right with the string
inclined at € to the vertical. (b) Wagon at rest, while the Earth, stars and galaxies are accelerated to the
left. The string remains vertical.

Once more situations (a) and (b) of figure 7.23 are kinematically equivalent as there is the same relative
acceleration between the wagon and the Earth, between the wagon and the set of fixed stars, and between the
wagon and the set of distant galaxies. But these two situations are not dynamically equivalent. While the
string is inclined at 6 to the vertical in situation (a), it is vertical in situation (b). According to newtonian
mechanics, the Earth accelerated to the left exerts only the downward gravitational force on the gravitational
mass m. The set of stars and galaxies accelerated to the left exert no net gravitational force on the test
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body m, according to equation (1.20).

This discussion shows that the acceleration a which appears in equation (7.60) is not the acceleration of
the test body m relative to the Earth, its acceleration relative to the set of fixed stars, nor its acceleration
relative to the set of distant galaxies. In newtonian mechanics this acceleration must be interpreted as
the acceleration of the test body of inertial mass m relative to absolute space. We can now understand
Newton’s statement'® that absolute space, without relation to anything external, remains always similar and
immouvable, as seen in Section 1.2. That is, absolute space is not related to the Earth, is not related to the
fixed stars and is not related to the distant galaxies. Absolute space can only be identified with empty space
or with the vacuum.

Therefore the acceleration which appears in Newton’s second law of motion in the form of equation (1.4)
must be interpreted as the acceleration of the test body of inertial mass m; relative to Newton’s absolute
space, or relative to any inertial frame of reference which is moving along a straight line with a constant
velocity relative to absolute space. There is no other alternative to interpret the meaning of this acceleration
in newtonian mechanics due to the cosmological implications of Proposition 70, Theorem 30, of Book I of
the Principia discussed in Subsection 1.4.4.

7.5.4 What Would Be the Inclination of the String to the Vertical If All Stars
and Galaxies Around the Earth Were Annihilated?

The distinction between relative acceleration and absolute acceleration can also be seen considering other
thought experiments. Suppose we could annihilate all stars and galaxies from the universe, remaining only
the Earth, the wagon, the string and the test body. Even in this situation the string would remain inclined
at @ to the vertical when the wagon moved at a constant acceleration a relative to absolute space, while the
Earth remained stationary or moving at a constant velocity relative to absolute space, as indicated in figure
7.21 (a). The string would remain vertical, on the other hand, when the wagon remained stationary relative
to absolute space, while the Earth were moved with a constant acceleration —a relative to absolute space,
as indicated in figure 7.21 (b).

We could also double the amount of stars and galaxies around the Earth, compared with the situation of
the real universe observed around the Earth, without affecting the inclination of strings accelerated relative
to the ground, provided the new stars and galaxies were also distributed isotropically around the Earth.

Suppose all the stars and galaxies around the Earth were annihilated, remaining only the Earth, the
wagon, the string and the test body m. If the wagon remained at rest relative to absolute space, the string
would be vertical, as in figure 7.24 (a). In this situation there is no motion between the test body and the
wagon, nor between the test body and the Earth. However, if the wagon, string, test body m and the Earth
were all placed in motion relative to absolute space, moving together along a straight line with a constant
acceleration a, the string would be inclined at an angle 8 to the vertical, as indicated in figure 7.24 (b).

(a) (b)

Figure 7.24: Paper at rest relative to absolute space. (a) Earth and wagon at rest with the string vertical.
Wagon and Earth accelerated together to the right, with the string inclined at 6 to the vertical.

Situations (a) and (b) of figure 7.24 are visually or dynamically equivalent, as there is no motion between
the wagon and the Earth in both cases. The Earth, wagon, string and test body are at rest relative to
one another in these two configurations. However, these two situations are not dynamically equivalent. In

16|New90, p. 6].
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situation (a) the string remains vertical, parallel to the walls of the wagon. In situation (b) the string remains
inclined at an angle 6 to the vertical and to the walls of the wagon.

We can add stars and galaxies around the Earth in this hypothetical situation that nothing would be
changed. These new stars and galaxies must be distributed uniformly or isotropically around the Earth.
They can be at rest or moving together relative to the Earth, it does not matter. The string of figure 7.24
(a) will remain vertical, while the string of figure 7.24 (b) will remain inclined at an angle 6 to the vertical.

7.5.5 What Is the Origin of the Force Inclining the String?

Figures 5.6 and 5.7 showed a string inclined at an angle 6 to the vertical when three forces were acting on the
suspended body of gravitational mass mg4, namely, the downward vertical weight F; due to the gravitational
attraction of the Earth, the horizontal force F' and the force T along the string due to its tension. The
horizontal force F' might have several origins, namely, gravitational, elastic, electric or magnetic.

We can ask an interesting question here, namely, what is the origin of the force which is inclining the
string of figure 7.167 In classical mechanics there is no physical origin for this force. That is, it is not due
to any kind of interaction between the test body and other bodies in the universe. The classical explanation
for this inclination of the string is related to the inertia of the body attached to it. Initially the wagon,
string and test body are at rest relative to an inertial frame of reference connected to the Earth. When a
force is applied to the wagon making it move at a constant acceleration a relative to this inertial frame of
reference, the test body of inertial mass m; suspended in the string tends to remain at rest relative to the
ground. However, as it is connected to the string and the upper extremity of the string is connected to the
wagon, the string begins to incline to the vertical, increasing its tension. The test body then begins to have
a small acceleration relative to the ground. The inclination and tension of the string increase together with
the acceleration of the test body relative to this inertial frame. When the body reaches the same acceleration
a of the wagon, the tension T of the string and the tangent of its angle of inclination attain their highest
values given by equations (7.56) and (7.59), respectively. In this final situation there is a maximal tension
in the string and zero relative motion between the test body and the wagon.

The horizontal force acting on the body is the horizontal component of the tension in the string, namely,
T'sinf. By Newton’s second law of motion we have T sin# = m;a. By action and reaction, the test body
exerts an equal and opposite force force on the string. Mathematically this inertial force exerted by the
body on the string can be written as —m;a. This inertial force —m;a acting on the string of figure 7.16 is
analogous to the horizontal force F of figures 5.6 and 5.7, as all of them incline the string. This analogy can
also be seen comparing the expressions yielding the tension T of the stretched strings given by equations

5.6) and (7.56). While the tension T of the strings of figures 5.6 and 5.7 is given by T = ,/F? + F2, that
gs of fig g 2

of figure 7.16 is given by T' = (/m?a® + F, g2. This means that the inertial force —m;a plays the same role

as a real force of interaction represented by F', as both forces increase the tension 7' of the string. The
only difference between a real force F' and the inertial force —m;a is that we cannot find the material agent
responsible for this inertial force. That is, we cannot find the other material body in the universe which is
interacting with the test body and generating this inertial force —m;a, which would then be transferred to
the string, stretching it and increasing its tension. We cannot find as well the physical origin for this inertial
force. That is, in classical mechanics it is not a gravitational, elastic, electric, magnetic or nuclear force, nor
a force of any other known nature.

7.6 Body Accelerated Relative to the Ground while Suspended by
a Spring

The situation discussed in Section 7.5 can also be considered replacing the string by a spring of elastic
constant k£ and relaxed length /,, as in figure 5.3. In this Section we will neglect the weight and inertial mass
of this spring compared with the weight and inertial mass of the body connected to it. This means that we
can neglect the deformation of this spring, due to its own weight and inertia, compared with its deformation
by connecting it to a test body of weight Fi; = mg,g and inertial mass m;.

The upper extremity of the spring is connected to the ceiling of a wagon, with its lower extremity
connected to a body of gravitational mass m, and inertial mass m;. When the wagon is at rest or moving
with a constant velocity relative to the ground, the spring is found experimentally to remain vertical, as in
figure 7.25 (b) and (c).
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Figure 7.25: (a) Spring vertical with relaxed length ¢,. (b) Spring at rest relative to the ground supporting
a body and stretched to a length ¢;. (c¢) Spring moving at a constant velocity v relative to the ground and
stretched to a length £;.

The stretched length ¢; of the spring is given by equation (5.1), namely:

F
el—éozf:%. (7.61)

A horizontal force is applied to the wagon making it move horizontally along a straight line with a
constant acceleration a relative to the ground. We wait until the situation stabilizes, with the wagon, spring
and test body moving together relative to the ground with this constant acceleration a. The spring is found
inclined at an angle 0 to the vertical and having a total length o, figure 7.26 (a).

(2 (b)

Figure 7.26: (a) Wagon, spring and test body moving with a constant acceleration a relative to the ground,
with the spring inclined at an angle 6 to the vertical. (b) Forces acting on the stretched spring.

We consider here the situation in which the wagon, spring and test body have the same constant accel-
eration a relative to the ground, in such a way that there is no relative motion between the wagon, spring
and test body. The spring is not oscillating and is inclined at a constant angle 8 to the vertical. In classical
mechanics there are two forces acting on the test body, namely, the downward weight of the body 139 =myg
due to the gravitational attraction of the Earth and the elastic force of the stretched spring, 136 = f, acting
along the length of the spring, figure 7.26 (b). The equation of motion is given by:

— —

Fy+T =mi . (7.62)
Utilizing the angle 6 of figure 7.26 yields:
Tsinf = m;a , (7.63)
and
Tcosf=F, . (7.64)

Dividing equation (7.63) by equation (7.64) and utilizing that F,, = myg yields the tangent of the angle
as given by:
mia _ m; a
e mg; '
Utilizing the experimental fact that the angle 8 has the same value for all bodies moving with the same

acceleration relative to the ground, no matter their weights, shapes or chemical compositions (neglecting the
buoyant force of air and the dragging friction), yields once more the conclusion that the inertial mass of a

tanf =

(7.65)
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body is proportional to its weight, or that the inertial mass of a body is proportional to its gravitational
mass. Combining equations (7.21) and (7.65) yields once again equation (7.59), namely, tanf = a/g.
The tension in the spring is given by equation (2.5), namely:

T =k(ty—0,) (7.66)

where ¢, represents its relaxed length and /s its stretched length indicated in figure 7.26 (a). Equations
(7.63), (7.64) and (7.66) yield:

T =k(ly—{,) = \/mf(ﬂ +F2= \/mfcﬂ +m2g? . (7.67)

This equation indicates that the tension in the spring changes according to its acceleration relative to
the ground. This tension can be visualized or measured by the spring’s deformation ¢5 — /,,.

The whole discussion of Section 7.5 can also be made utilizing a spring instead of an inextensible string.
The stars and galaxies, in particular, have no relation with the tension or stretching of the spring. The stars
and galaxies can be annihilated without affecting the spring or its length. The acceleration a appearing
in equations (7.65) and (7.67) is the acceleration of the test body of inertial mass m; relative to Newton’s
absolute space or relative to an inertial frame of reference. This acceleration is not related to the acceleration
of the test body relative to the ground, relative to the fixed stars, nor relative to the frame of distant galaxies.

The main advantage of utilizing a spring instead of an ideal inextensible string is that the tension in the
spring can be measured or indicated by its deformation o — ¢,.

7.7 Vessel Partially Filled with Liquid Accelerated Relative to the
Ground

7.7.1 Shape of the Liquid’s Free Surface and Pressure Inside It

We consider a vessel partially filled with an ideal incompressible liquid. When the vessel is at rest relative
to the ground, its free surface remain horizontal and the pressure inside it varies linearly with the depth. A
force is applied to the vessel to make it move horizontally along a straight line with a constant acceleration
a relative to the ground. We wait until the situation stabilizes, with the liquid moving together with the
vessel at this constant acceleration a relative to the ground. In this equilibrium configuration the liquid’s
free surface is found to be inclined at an angle « to the horizontal. The tangent of this angle is given
by tana = h/¢, where h is the vertical gap between the higher and lower portions of the liquid, while ¢
represents the width of the recipient along the direction of the acceleration, as represented in figure 7.27.

Q) Q

(a) (b)

Figure 7.27: Vessel partially filled with liquid moving with a constant acceleration relative to the ground.
(a) Perspective view. (b) Side view.

This problem will be considered in newtonian mechanics supposing once again an ideal incompressible
liquid.'” We consider an inertial frame of reference at rest relative to the ground, with horizontal 2 axis
along the direction of the acceleration of the vessel and vertical z axis. At a certain moment the vessel is
moving through this frame of reference in the situation represented in figure 7.27 (b), that is, with the origin
of the coordinate system at the lowest point of the free surface of the liquid and with the frontal side of the
vessel along the z axis.

17[Luc80, pp. 418-421].
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In order to obtain the equation describing the free surface of the liquid, we consider an infinitesimal
element of fluid with volume dV/, inertial mass dm; and gravitational mass dmg situated just below the free
surface of the fluid, anywhere along this free surface. The forces acting on this element are its downward
weight dﬁg due to its gravitational interaction with the Earth and the forces due to the pressure gradient

of the surrounding fluid and air around it. This buoyant force will be represented by dF,. This buoyant
force is orthogonal to the free surface of the fluid, making an angle « to the upward vertical, figure 7.27 (b).
Equation (1.4) yields:
dF, + dFy, = dm;a . (7.68)
Utilizing dF, = |dF,|, dFy, = |dF}|, a = |d@| and figure 7.27 this equation can be written as:

dFy sinat + dFy cosaz — dF,z2 = dm;ad . (7.69)

Utilizing dF; = dmgg, the equations of motion along the x and z directions can be written as, respectively:

dFysina = dmya (7.70)

and

dFycosa = dmygg . (7.71)

Dividing equation (7.70) by equation (7.71) and utilizing figure 7.27 yields the tangent of the inclination
angle of the fluid to the horizontal as given by:
dm; i h
tanazﬂg:p—g:—, (7.72)
dmgg pgg L
where p; = dm;/dV is the volume density of inertial mass of the fluid p, = dmg,/dV its volume density of
gravitational mass.
We now obtain the pressure anywhere inside the fluid. To this end the infinitesimal element of fluid of
volume dV will be considered anywhere inside the liquid. Applying equations (1.17) and (2.3) to equation
(7.68) yields, with dF, = dmyg§ = —dmgygZ and @ = ai:

19) 19) 19)
—dmggs — 8—§dV:E - a—ZdV@ - 8—5611/2 = dm;ad . (7.73)
This equation along the x, y and z axes can be written as, respectively:
Ip
= = _pa, 7.74
5 = it (7.74)
Ip
— =0 7.75
>0, (7.75)
and
dp
- = . 7.76
92 Pg9 ( )
Integration of equations (7.74) up to (7.76) yields:
p(CC, Y, Z) = —piax + fl(yu Z) 9 (777)
p(xv Y, Z) = f?(xv Z) ) (778)
and
p(x, ¥, 2) = —pg9z + f3(x, y) , (7.79)

where f1(y, z), fo(z, z) and f3(z, y) are arbitrary functions of y and z; z and z; and « and y, respectively.
Combining these three equations one gets:

p(z, y, 2) = —piax — pggz + ki1, (7.80)
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where k; is a constant. Utilizing that in the lowest point (z, y, z) = (0, 0, 0) we are at the free surface of
the fluid where the pressure is p,, the atmospheric pressure, yields k1 = p,. Therefore the pressure anywhere
inside the fluid and along its surface is given by:

p(x, y, 2) = —piax — pggz + po - (7.81)

Utilizing in equation (7.81) that in all points along the free surface of the fluid the pressure is that of the
atmosphere, namely, p(x, y, z) = p,, we can obtain the equation of this free surface as given by (utilizing
also equation (7.72)):

Z:—&Ex:—(tana)x:—%x . (7.82)

When z = —/ this equation yields z = h. This last conclusion is compatible with figure 7.27 and with
equation (7.72).

The equation satisfied by the isobaric surfaces can be obtained imposing p(z, y, z) = p1 = constant into
equation (7.81), namely:

p= L0 P PL = —(tana)x + k2 , (7.83)
Pg 9 Pgd
where ko = (po — p1)/pgg = constant. These isobaric surfaces are then seen to be planes parallel to the free
surface of the liquid given by z = —(tan a)x.

These equations complete the solution of this problem utilizing the theoretical structure of newtonian
mechanics. The important aspect to be kept in mind is that the free surface of the liquid remains inclined
to the horizontal only when the vessel is accelerated relative to an inertial frame of reference. According to
equation (7.72), tan « is proportional to the acceleration of the fluid relative to the Earth.

7.7.2 Obtaining the Proportionality between Inertial Mass and Gravitational
Mass from Experiments with Accelerated Fluids

Consider two vessels side by side partially filled with ideal incompressible liquids of different chemical com-
positions. Fluid 1 can be, for instance, water and fluid 2 can be oil. External forces are applied to these two
vessels making them move along a straight line with the same constant acceleration a relative to the ground.
Let a7 be the angle of inclination of fluid 1 to the horizontal and «aso the inclination of fluid 2. Equation
(7.72) yields:

tan a1 o pil/pgl
tanas  pio/pg2

(7.84)

This is the result obtained from Newton’s second law of motion together with his law of universal
gravitation.

It is an observational fact that all incompressible fluids remain inclined at the same angle « to the
horizontal when they move with the same acceleration relative to the ground, no matter their densities nor
chemical compositions:

oy = ag = constant for all fluids . (7.85)

That is, water, oil, honey, liquid mercury and other fluids remain inclined at the same angle to the horizontal
when they move with the same constant acceleration, figure 7.28.

Therefore, even when the fluids have different volume densities of gravitational mass, pg1 7# pg2, experi-
ments show that oy = awg, provided a; = as. Applying the experimental result expressed by equation (7.85)
into equation (7.84) yields:

tanar  pi1/pg1
tanas  piz/pg2

=1. (7.86)

That is:

Pu _ Pz _ Pt (7.87)
Pg1 Pg2 Pg
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Figure 7.28: Two incompressible fluids 1 and 2 remain inclined at the same angle o to the horizontal when
they move relative to the ground with the same constant acceleration a, no matter their densities nor chemical
compositions.

This result is analogous to equation (7.17) which was obtained from the fact that all bodies fall freely
towards the ground with the same acceleration. A lead coin and a feather, for instance, are released from
rest simultaneously from the same height above the ground. Experiments show that they fall freely with the
same constant acceleration of 9.8 m/s? near the surface of the Earth. The value of this free fall acceleration
cannot be controlled externally, as it depends only on the gravitational mass of the Earth and its radius.

Equation (7.87), on the other hand, has been obtained from a new kind of experiment. The fact that
tan a; = tan as for two fluids, no matter their densities nor chemical compositions, is obtained for all values
of the common acceleration a given to the two vessels. The value of this acceleration relative to the ground
is controlled by the person applying the force on the vessels. This acceleration can have an arbitrary value.
The value of the angle « of inclination depends on the value of a according to equation (7.72). Therefore,
increasing the value of a, the value of the angle « increases simultaneously. On the other hand, no matter
the value of the acceleration a given to the vessels, it is always observed that tan oy = tan s, according to
equation (7.85). Two fluids having different chemical compositions will be inclined by the same angle relative
to the horizontal, provided they are moving with the same acceleration relative to the ground.

Utilizing equations (7.20) and (7.21), which are valid in the International System of Units, together
with equation (7.72), the tangent of the angle of inclination of an arbitrary incompressible fluid accelerated
relative to the ground is given by:

h
tana = = = — (7.88)
g /£
According to equations (7.20) and (7.21), the volume density of inertial mass, p;, and the volume density
of gravitational mass, pg, can be represented by a single symbol, namely, p:

pi=pg=p. (7.89)

Utilizing equation (7.89) in equation (7.81), the pressure anywhere inside the fluid can be written as:

p(z, y, 2) = —pax — pgz +po . (7.90)

Analogously, equation (7.83) for the isobaric surfaces having a constant pressure p; is given by:

PR e I —(tana)x + ko , (7.91)
g P9
where ko = (p, — p1)/pg = constant. That is, these isobaric surfaces are parallel to the plane z = —(tan o)z

characterizing the free surface of the fluid.

7.7.3 Distinction between Velocity and Acceleration from the Inclination of the
Fluid

It is possible to distinguish between velocity and acceleration utilizing this experiment of an accelerated
vessel with liquid, as was done in Subsection 7.5.2 utilizing a body suspended by a string. Figure 7.29
presents a vessel partially filled with a liquid in three situations: (a) At rest in the ground, (b) moving with
a constant velocity v, and (c) moving with a constant acceleration a relative to the ground.

A person inside the wagon of a train or inside an airplane can know its velocity and acceleration by
looking at bodies located outside the train or airplane and observing how these bodies change their distances
to the train or airplane. But suppose now the train or airplane are closed without windows. The passenger
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(a) (b) (c)

Figure 7.29: (a) Vessel at rest relative to the ground, (b) vessel moving at a constant velocity, and (c) vessel
uniformly accelerated relative to the ground.

observing the free surface of water in a glass cannot know if he is at rest or moving along a straight line at
a constant velocity relative to the ground. The surface of the water remains horizontal not only when it is
at rest in the ground, but also when it is moving at a constant velocity v relative to the ground, no matter
the value of v. While a person is flying from Brazil to Europe, for instance, with the airplane moving at 700
km/h relative to the ground, the water in a glass remains horizontal, as it was when the plane was at rest in
the ground. Only during taking off, turbulences and landing does the water surface change its shape, that
is, when the airplane is accelerated relative to the ground.

But even in this closed train or airplane without windows the person can know its acceleration relative
to the ground by observing the water surface. When the water is inclined at an angle o to the horizontal,
the person knows that he is moving with a constant acceleration given by:

a=gtano . (7.92)

The person can also know the direction of this acceleration relative to the ground, namely, from the higher
side of the water to the lower side.

7.7.4 Distinction between Relative Acceleration and Absolute Acceleration from
the Inclination of the Fluid

It is possible to distinguish relative acceleration from absolute acceleration utilizing this experiment of an
accelerated vessel, as was done in Subsection 7.5.3 utilizing a body suspended by a string.

What we want to discuss here is the meaning of the acceleration a appearing in equation (7.92). In
newtonian mechanics this is the acceleration of the fluid relative to absolute space or relative to any inertial
frame of reference which moves along a straight line with a constant velocity relative to absolute space. This
acceleration a is not the acceleration of the fluid relative to the vessel, relative to the Earth, relative to the
fixed stars, nor relative to the frame of distant galaxies. This conclusion can be understood and visualized
utilizing some thought experiments. The behavior of the fluid in these thought experiments will be predicted
utilizing newtonian mechanics.

We consider the paper where we make the drawings to be at rest relative to absolute space. Figure 7.30
(a) presents the vessel moving together with the fluid with an uniform acceleration a while the Earth, stars
and galaxies are at rest relative to absolute space. The Earth attracts the fluid downwards, while the set
of stars and galaxies make no net force on the fluid according to equation (1.15). The surface of the fluid
remains inclined at an angle « to the horizontal. Figure 7.30 (b) presents the vessel and the fluid at rest
relative to absolute space, while the Earth, stars and galaxies move together with an acceleration —a. The
accelerated Earth attracts the fluid downwards, while the set of stars and galaxies exert no net force on the
fluid according to equation (1.20). The surface of the fluid should remain flat and horizontal, parallel to the
bottom of the vessel.

Situations (a) and (b) of figure 7.30 are visually or kinematically equivalent, as there is no motion between
the fluid and the vessel in both cases. Moreover, there is the same relative acceleration in both cases between
the fluid and the Earth, between the fluid and the stars, and between the fluid and the distant galaxies.
However, these two situations are not dynamically equivalent. In situation (a) the free surface of the fluid
in inclined to the horizontal and to the bottom surface of the vessel. The fluid can even spill out of the
vessel if the acceleration is great enough. In situation (b), on the other hand, the free surface of the fluid is
horizontal and parallel to the bottom surface of the vessel.

Figure 7.31 presents another way of showing this distinction between relative acceleration and absolute
acceleration. Once again the reference frame of the paper coincides with Newton’s absolute space. In
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Figure 7.30: The paper is at rest in absolute space. (a) Inclined fluid. (b) Horizontal fluid.

situation (a) the vessel, the fluid, the Earth, the stars and galaxies are at rest relative to absolute space.
The free surface of the fluid is horizontal and parallel to the bottom side of the vessel. In situation (b) the
vessel, the fluid, the Earth, the stars and galaxies are moving together along a straight line with a constant
acceleration a relative to absolute space. The free surface of the fluid is inclined at an angle a to the
horizontal and to the bottom surface of the vessel. The Earth pulls the fluid downwards in both situations,
while the set of stars and galaxies exert no net force on the fluid in both situations, according to equations
(1.15) and (1.20).
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Figure 7.31: Paper at rest relative to absolute space. (a) Horizontal fluid. (b) Inclined fluid.

Situations (a) and (b) of figure 7.31 are visually or kinematically equivalent. The vessel, fluid, Earth,
stars and galaxies are at rest relative to one another in both situations. However, these two situations are
not dynamically equivalent. In situation (a) the free surface of the fluid is horizontal and parallel to the
bottom side of the vessel. In situation (b), on the other hand, the free surface of the fluid is inclined to the
horizontal and to the bottom side of the vessel. The fluid can even spill out of the vessel if the acceleration
is high enough.

7.7.5 What Would Be the Inclination of the Fluid If All Stars and Galaxies
Around the Earth Were Annihilated?

There is another way of realizing that the set of stars and galaxies have no influence upon the angle a of
inclination of the fluid to the horizontal given by equation (7.92). To this end it is only necessary to observe
that if all the stars and galaxies around the Earth were annihilated of the universe, remaining only the
vessel, the fluid and the Earth, there would be no change in this angle. That is, provided the vessel and
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the fluid remained with the same constant acceleration a relative to absolute space, the angle of inclination
would remain with its value «a given by equation (7.92), as represented in figure 7.32. The frame of the
paper coincides with absolute space. In situation (a) the vessel, the fluid and the Earth are at rest relative
to absolute space and the free surface of the fluid is horizontal. In situation (b) the vessel, the fluid and
the Earth are moving together relative to absolute space with a linear constant acceleration @. In this case
newtonian mechanics predicts that the free surface of the fluid will be inclined at an angle « to the horizontal
and to the bottom surface of the fluid, with this angle given by equation (7.92).

(a) (b)
Figure 7.32: Paper at rest relative to absolute space. (a) Horizontal fluid. (b) Inclined fluid.

All conclusions of this Subsection are due to equations (1.15) and (1.20). They show that spherical shells
exert no net force on internal bodies, no matter the accelerations of these bodies or the accelerations of these
spherical shells relative to an inertial frame of reference. This means that we can add or remove material
spherical shells around the vessel without affecting the behavior of the internal fluid.

7.8 Summary of the Distinction Between Velocity and Acceleration,
and Between Relative Acceleration and Absolute Acceleration

Figure 7.33 summarizes the conclusion of Chapter 6. In figure 7.33 (a) there are two horizontal springs on
a frictionless surface. They are fixed to the wagon and their free extremities are connected to test bodies
which can move relative to the wagon. There is a vertical string fixed at the ceiling and supporting a test
body in its lower extremity. There is also a vessel partially filled with a liquid. The wagon is at rest relative
to the ground. We represented a rectangular block and a cylinder at rest relative to the ground. To simplify
the analysis we include the set of galaxies also at rest relative to the ground.

$ §

Figure 7.33: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant linear velocity v
relative to the ground.

Figure 7.33 (b) presents the situation when the wagon is moving with a constant linear velocity v relative
to the ground, going from the rectangular block towards the cylinder. Nothing happens inside the wagon,
no matter the value of v. Therefore, by observing only the test bodies inside the wagon it is not possible to
know if the wagon is at rest or moving with a constant velocity v relative to the ground.

Figure 7.34 indicates how it is possible to distinguish from rest and acceleration, or how it is possible
to distinguish from constant velocity and acceleration, by observing the behavior of deformable test bodies
located inside the wagon. In situation (a) all bodies are at rest relative to the ground. In situation (b)
the wagon and all bodies inside it are moving together with a constant linear acceleration a relative to the
ground. They are accelerated from the rectangular block towards the cylinder. The deformation of the
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horizontal springs, the inclination of the string and the inclination of the free surface of water depend on the
acceleration of the wagon.

$ §

[ —
o

Figure 7.34: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant linear acceleration
a relative to the ground.

Figure 7.35 presents the result of a thought experiment. This prediction is based on newtonian mechanics.
We consider the paper where this drawing has been made as staying at rest relative to Newton’s absolute
space. Now the wagon is supposed to remain at rest relative to absolute space, while the Earth and the
set of galaxies have a common and constant linear acceleration —a relative to absolute space. The cylinder
fixed in the Earth is moving towards the wagon with acceleration —a. Nothing should happen with the test
bodies inside the wagon. That is, the horizontal springs should not be deformed, the string should remain
vertical and the free surface of water should remain horizontal, parallel to the floor.
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Figure 7.35: (a) Wagon, Earth and galaxies at rest relative to Newton’s absolute space. (b) Wagon at rest
relative to absolute space, while the Earth and the set of galaxies have a common constant acceleration —a
relative to absolute space.

Figure 7.34 (b) is kinematically equivalent to figure 7.35 (b). After all, there is the same relative acceler-
ation a between the wagon and the Earth, and between the wagon and the set of galaxies. However, these
two configurations are not dynamically equivalent. After all, in figure 7.35 (b) the springs have their relaxed
lengths, the string is vertical and the free surface of water is horizontal. In figure 7.34 (b), on the other
hand, the springs are deformed, the string is inclined relative to the wall of the wagon and the free surface
of the water is no longer horizontal.

In newtonian mechanics the effects indicated in figure 7.34 (b) are not due to the set of galaxies. After all
they exert no net gravitational force on any body of the solar system, no matter if they are at rest or being
accelerated as a whole relative to absolute space. This is due to Newton’s theorem 30, equations (1.11) and
(1.20). Therefore, the set of galaxies might be annihilated without affecting the configurations of the bodies
presented in figures 7.34 and 7.35.



Chapter 8

Bodies in Oscillatory Motions

In this Chapter we consider forces depending on position and generating oscillatory motions.

8.1 Spring

8.1.1 Period and Frequency of Oscillation of a Spring

The first example to be considered here is that of a body with inertial mass m; connected to one extremity
of a spring, with the other extremity of the spring fixed to the Earth, figure 8.1. The spring has an elastic
constant k and a relaxed length £,. Let ¢ be its length when stretched (£ > £,) or compressed (¢ < ¢,). The
weight of the test body is balanced by the normal upward force exerted by the frictionless surface. The only
remaining force acting on the body is the horizontal elastic force exerted by the spring.

F

=)
4 L

Figure 8.1: Body connected to one extremity of a spring, while the other extremity of the spring is fixed
relative to the ground.

The elastic force exerted on the body by the spring is given by:

F = —kzi (8.1)

where Z is the unit horizontal vector along the length of the spring. The displacement of the body from the
equilibrium position is represented by x, namely, x = ¢ — £,. Combining this equation with Newton’s second
law of motion given by equation (1.4) and utilizing @ = (d?z/dt?)2 = &4 yields the one dimensional equation
of motion given by:

m;T+kx=0. (8.2)
The solution of this equation is given by:
x(t) = Acos(wt + 0,) , (8.3)
where
k 27
w . T (8.4)
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The constant A represents the amplitude of oscillation, 8, is the initial phase, w is the angular frequency
of oscillation, while T" represents the period of a complete oscillation, that is, the time interval required for
the test body to return to its initial configuration. This period of oscillation can be written as:

m; 2
T =2 =T 8.5
T = (8.5)

The constant magnitudes A and 6, are related to the total energy F of the body and to its initial position
z, by the following equations:

miz? kx? kA2
E==t5 =7 (8.6)

and

xo = Acosb, . (8.7)

8.1.2 The Ratio of the Periods of Oscillation of Two Bodies Connected to the
Same Spring Depends on the Ratio of Their Inertial Masses

Consider two test bodies of inertial masses m;; and m;2 connected separately to the same spring. The ratio
of their periods of oscillation 77 and T5 and the inverse ratio of their frequencies of oscillation w; and ws can
be obtained from equations (8.4) and (8.5), namely:

L_w_ fmi (8.8)
Ty w M2
Equations (8.4) and (8.8) show that the period and angular frequency of oscillation of a spring depend
on the value of the inertial mass of the test body connected to it, because the elastic constant k is a property
of the spring which is independent of the value of the inertial mass of the body connected to it. Suppose
a test body 1 of inertial mass m; = m; connected to a spring has a frequency of oscillation given by w; =
Vk/my1 = \/k/m;, figure 8.2 (a). Another body 2 having twice the inertial mass of the first body, ma = 2m;;,
oscillates in the same spring with a frequency of oscillation given by ws = \/k/ma = \/k/2m; = w1/ V2,
figure 8.2 (b).

2m:

k . W
W= Y m 0)2_./3'
)

i
(a) (b
Figure 8.2: Two different inertial masses m; = m; and mo = 2m,; oscillating in the same spring.
Equation (8.8) means that we # w; when m;2 # m;1. Therefore it is possible to change the period and

frequency of oscillation of a spring by changing the value of the inertial mass of the test body connected to
it.

8.2 Galileo’s Pendulum Experiments

Galileo was the first scientist to study systematically the oscillatory motion of pendulums. His motivation
for this study was related to his interest in free falling bodies:!

1[Gal54, p. 84] and [Gal85, p. 71].



Ch. 8: Oscillatory Motions

The experiment made to ascertain whether two bodies, differing greatly in weight will fall from a
given height with the same speed offers some difficulty; because, if the height is considerable, the
retarding effect of the medium, which must be penetrated and thrust aside by the falling body,
will be greater in the case of the small momentum of the very light body than in the case of the
great force [violenza| of the heavy body; so that, in a long distance, the light body will be left
behind; if the height be small, one may well doubt whether there is any difference; and if there
be a difference it will be inappreciable.

It occurred to me therefore to repeat many times the fall through a small height in such a way
that I might accumulate all those small intervals of time that elapse between the arrival of the
heavy and light bodies respectively at their common terminus, so that this sum makes an interval
of time which is not only observable, but easily observable. In order to employ the slowest speeds
possible and thus reduce the change which the resisting medium produces upon the simple effect
of gravity it occurred to me to allow the bodies to fall along a plane slightly inclined to the
horizontal. For in such a plane, just as well as in a vertical plane, one may discover how bodies
of different weight behave: and besides this, I also wished to rid myself of the resistance which
might arise from contact of the moving body with the aforesaid inclined plane.

Galileo then arrived at his study of a simple pendulum.

117

8.2.1 Relation between the Period of Oscillation and the Length of the Pendu-

lum

After performing experiments with simple pendulums of different lengths, Galileo arrived at the following

law:2

As to the times of vibration of bodies suspended by threads of different lengths, they bear to
each other the same proportion as the square roots of the lengths of the thread; or one might
say the lengths are to each other as the squares of the times; so that if one wishes to make the
vibration-time of one pendulum twice that of another, he must make its suspension four times
as long. In like manner, if one pendulum has a suspension nine times as long as another, this
second pendulum will execute three vibrations during each one of the first; from which it follows
that the lengths of the suspending cords bear to each other the [inverse| ratio of the squares of
the number of vibrations performed in the same time.

Let ¢ and ¢5 be the lengths of two simple pendulums, figure 8.3.
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Figure 8.3: Two simple pendulums of lengths ¢; and /5 oscillating with periods 77 and T5, respectively.

as follows:

nh_ 4
T, Vi’

Let T1 and T» be their periods of oscillation. Galileo’s experimental result can be expressed algebraically

(8.9)

8.2.2 The Period of Oscillation of a Pendulum Is Independent of Its Weight

and Chemical Composition

In principle this period of oscillation of a simple pendulum might depend on other factors, such as the weight
of the body suspended in the pendulum, the density or chemical composition of this body. This period of
oscillation might also depend on the amplitude of oscillation.

2[Gal54, p. 96] and [Gal85, p. 79)].
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We quote here some other experimental conclusions of Galileo:?

Accordingly I took two balls, one of lead and one of cork, the former more than a hundred times
heavier than the latter, and suspended them by means of two equal fine threads, each four or five
cubits long. Pulling each ball aside from the perpendicular, I let them go at the same instant, and
they, falling along the circumferences of the circles having these equal strings for semi-diameters,
passed beyond the perpendicular and returned along the same path. This free vibration [per lor
medesime le andate e le tornate] repeated a hundred times showed clearly that the heavy body
maintains so nearly the period of the light body that neither in a hundred swings nor even in a
thousand will the former anticipate the latter by as much as a single moment [minimo momento|,
so perfectly do they keep step. We can also observe the effect of the medium which, by the
resistance which it offer to motion, diminishes the vibration of the cork more than that of the
lead, but without altering the frequency of either; even when the arc traversed by the cork did
not exceed five or six degrees while that of the lead was fifty or sixty, the swings were performed
in equal times.

Galileo’s conclusion obtained from experiments like these utilizing pendulums of the same length can be
expressed as follows:

e The period of oscillation is independent of the amplitude of oscillation. In Galileo’s experiment the
periods of the pendulums had the same value for arcs of sixty or five degrees. Therefore the period of
oscillation is independent of the initial angle 6, of inclination of the string to the vertical.

e The period of oscillation is independent of the weight of the test body. In Galileo’s experiment the
periods of the pendulums had the same value for two bodies of different weights, even when one body
was a hundred times heavier than the other. Therefore the period of oscillation is independent of the
gravitational force F}, exerted by the Earth on the test body.

e The period of oscillation is independent of the volume density of gravitational mass of the test body
and is also independent of the chemical composition of this test body. In Galileo’s experiment the
periods of the pendulums had the same value, although one of them was a lead ball and the other a
cork ball.

Later experiments performed by other scientists showed that the first conclusion was valid only for
small oscillations, that is, when § < 1 rad. When this approximation is valid, the period of oscillation is
essentially independent of the amplitude of oscillation. As the amplitude of oscillation § becomes large, the
period becomes slightly longer than for small oscillations. At large amplitudes the frequency of oscillation,
on the other hand, is slightly lower than at small amplitudes.

Galileo’s two other conclusions, namely, that the period of oscillation is independent of the weight and
chemical composition of the test body, have been shown to be true in all situations. Let T' be the period
of a complete oscillation of the pendulum oscillating in vacuum. Experiments with simple pendulums have
shown that:

T = constant no matter the weight, density or chemical composition of the body . (8.10)

The most important aspect related to the period of oscillation of simple pendulums oscillating in vacuum
is that it is independent of the weight and chemical composition of the test body. These properties are
not intuitive. Nature might behave differently. Galileo did not offer any explanation for this remarkable
behavior.

8.2.3 Relation between the Period of Oscillation of a Simple Pendulum, Its
Length and the Free Fall Acceleration

As shown in Subsection 8.2.1, Galileo obtained that the period T' of oscillation of a simple pendulum is
proportional to the square root of its length ¢. He also showed that this period is independent of the weight,
density and chemical composition of the test body. But he did not relate this period with the acceleration
g of free fall. The first scientist to obtain this relation was Huygens, in 1659, publishing his result in 1673

3[Gal54, pp. 84-85] and [Gal85, p. 71].
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in his book The Pendulum Clock.* Huygens’s expression for the period of oscillation of a simple pendulum
can be expressed as follows in modern algebraic notation:

¢
T = 271'\/; . (8.11)

The acceleration of free fall can be obtained inverting this equation, namely:

g= 4w2% : (8.12)

Section 8.3 will show how to obtain these results from newtonian mechanics. Two aspects should be

emphasized here. The first one is that Huygens obtained this result before Newton. The second aspect is

that Huygens obtained the modern value of g utilizing this expression together with his measurements of

the length and period of oscillation of pendulums. The value of ¢ obtained by Huygens® in the International
System of Units can be expressed as g = 9.81 m/s%.

8.3 Simple Pendulum in Newtonian Mechanics

8.3.1 Period and Angular Frequency of Oscillation

This Section considers the motion of a simple pendulum according to Newton’s formulation. We will suppose
that the pendulum is located at the terrestrial Equator. The Earth at the Equator can be considered a good
inertial frame of reference to analyze this problem. A small body of typical size d (length, radius or maximal
diameter) oscillates in a vertical plane connected to an inextensible string of length ¢ such that d < ¢. The
test body has inertial mass m; and gravitational mass m,. Let 6 be the angle of inclination of the string to
the vertical, figure 8.4.

Figure 8.4: Simple pendulum.

Neglecting air resistance, there are two forces acting on the test body, namely, its downward weight
Fy = mgg = —mygZ and the tension T acting along the stretched string, pointing towards its point of
support fixed relative to the ground. The equation of motion is given by:

Fy4+T =mid . (8.13)

We utilize the angle 6 represented in figure 8.4, the constant length ¢ of the string and a polar coordinate
system with its origin O at the upper point of support of the string which is fixed relative to the ground.
The length of arc from the vertical described by the test body inclined at an angle 6 to the vertical is given
by s = {6, its tangential velocity at the angle 6 is given by vy = 00, its tangential acceleration along the
circumference of the trajectory is given by ap = éé, while its centripetal acceleration towards the center of
the circle is given by a. = £6? (utilizing equation (9.8) which will be presented in Section 9.1). The tangential
and radial components of equation (8.13) are then given by, respectively:

—Fysinf = m;ap = m 00 , (8.14)

and

4[Huy13, pp. 180-186], [Huy34, pp. 348-359|, [Huy86, pp. xiii-xiv, xviii-xix and 167-172] and [Bar89, pp. 454 and 528-530].
5[Huy13, pp. 180-186 and 264 Note 175], [Huy34, pp. 348-359], [Huy86, pp. xiii-xiv, xviii-xix and 167-172] and [Bar89, pp.
454 and 528-530].
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T — F,cos = ma, = ml? . (8.15)

Considering only small oscillations of the pendulum (6 < 1 rad), then sin# ~ 6 and equation (8.14) can
be simplified to:

mi9+7‘q9=mi9+mg%6‘20. (8.16)
This equation has the same form of equation (8.2). Its solution is given by:

6(t) = Acos(wt + ) , (8.17)

| Fy mgg 27

The constant magnitude A represents the angular amplitude of oscillation, « is the initial phase, w is the
angular frequency of oscillation and T is the period of oscillation for a complete cycle. Although we are
utilizing the same symbol T" to represent not only the tension in the string but also the period of oscillation,
these two concepts are different from one another, having different dimensions or units of measure. While
the tension is measured in the International System of Units in Newtons, N, the period of oscillation is
measured in seconds, s.

Inverting equation (8.18), the period of oscillation can be written as:

L 2w\/mié = 271'\/mi £ (8.19)
w F, Mg g

That is, newtonian mechanics predicts correctly that the period of oscillation of the pendulum is propor-
tional to the square root of its length. This prediction agrees with Galileo’s experimental result presented
in equation (8.9).

Equations (8.18) and (8.19) can be utilized to express the inertial mass of the test body as a function of
the weight F, of the body, the period T' of oscillation, and the length ¢ of the pendulum, namely:

with

_ FT?
T 4w
Consider a test body of inertial mass m;; and weight Fy; having a period 77 when oscillating in a

pendulum of length ¢, while another body of inertial mass m; and weight Fy» has a period 7> when
oscillating in the same pendulum. The ratio of their inertial masses is then given by:

2
my g <T1)
— = = = . 8.21
Mig  Fyo \I (8:21)

m;

(8.20)

8.3.2 The Proportionality between Weight and Inertial Mass Obtained from
Pendulum Experiments

Consider a lead ball, I, oscillating in a pendulum of length ¢. The weight, inertial mass and gravitational
mass of this body will be represented by, respectively, Fy;, m; and mg. According to equation (8.18), its
angular frequency and period of oscillation, represented by w; and Tj, respectively, are given by:

Fy Mgl g 2
=,/ = |9 8.22
wi mi my £ T, ( )

Consider a cork ball, ¢, oscillating in the same pendulum of length ¢. The weight, inertial mass and
gravitational mass of this body will be represented by, respectively, Fy., m;. and mg.. According to equation
(8.18), its angular frequency and period of oscillation, represented by w,. and T, respectively, are given by:

Fye Mge g 2T
e =1/ = [ Mged _ T 8.23
“ micé Mic 14 Tc ( )
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Therefore the ratio of the angular frequency of oscillation of the lead ball to the angular frequency of
oscillation of the cork ball, or the inverse of the ratio of their periods of oscillation, when vibrating in vacuum
supported by pendulums of the same length, is given by:

w _ [Faimi _ [maimi 1. 20
We Fgc/mic mgc/mic n
Utilizing only the theoretical structure of newtonian mechanics it is not possible to know the value of
these ratios.
We now utilize Galileo’s experimental result that all pendulums of the same length have the same period

of oscillation in vacuum, no matter the weight, density, nor chemical composition of the test bodies supported
by the pendulums. Equation (8.10) combined with equation (8.24) yields:

ﬂ — E(]l/mil _ mgl/mil _ E 1. (825)
We Fgc/mic mgc/mic n
This equation is valid not only for lead and cork balls, but also for any other arbitrary body of weight

F,, gravitational mass m, and inertial mass m; oscillating in the same pendulum. It can be expressed in
two alternative ways, namely:

Fy_ P _F 5.26)
mi M MG '
and
Mgl _ Mge _ Mg (8.27)
mip Mic m; ' '

These equations can also be written as equation (7.19).

We now compare the angular frequencies w for a spring oscillating horizontally and for a simple pendulum
oscillating in a vertical plane, equations (8.4) and (8.18). The most important distinction is that the angular
frequency of a spring depends only on the inertial mass m; of the test body, being independent of the
weight and of the gravitational mass of the test body. In the pendulum, on the other hand, the frequency of
oscillation depends on the ratio of weight to inertial mass, F, /m;, or, equivalently, on the ratio of gravitational
mass to inertial mass, my/m,;. When a test body of inertial mass m; and gravitational mass m, is vibrating
horizontally connected to a spring, its angular frequency of oscillation is given by w1 = 1/k/m;. By connecting
two of these bodies to the same spring, the new angular frequency of oscillation is given by we = /k/2m,; =
wl/\/§7 figure 8.2.

Suppose now the first body is connected to an inextensible string of length ¢ and performs small os-
cillations in a vertical plane. Its angular frequency of oscillation is given by wi = (/mgg/m;f. By
connecting two of these bodies to the same string, the new angular frequency of oscillation is given by

wo = +/2mgg/2m;l = wq, figure 8.5.

L L
m 2m
mg g =
Oy Pam

(a) (b)

Figure 8.5: Two different masses m and 2m oscillating in the same string.
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The same happens no matter the density nor chemical composition of the test body. That is, in pen-
dulums of the same length ¢ and at the same location of the Earth (same g), all bodies oscillate with the
same frequency in vacuum, no matter their weights, densities, chemical compositions, etc. This fact is an
experimental result which cannot be deduced from Newton’s laws of motion. It is not possible to deduce
the proportionality between weight and inertial mass only from Newton’s laws of motion. Likewise it is not
possible to deduce the proportionality between gravitational mass and inertial mass only from Newton’s laws
of motion. Only experience teaches us that the angular frequency of oscillation of a pendulum in vacuum is
independent of the weight, density and chemical composition of the test body, while the angular frequency of
a horizontal spring is inversely proportional to the square root of the inertial mass of the test body attached
to it.

As seen in Subsection 7.2.2, in the International System of Units the ratio between the inertial mass of
a body and its gravitational mass is defined as having the dimensionless value 1, as indicated by equations
(7.20) and (7.21). This means that we can cancel the masses which appear in equations (8.18) and (8.19).
Therefore the angular frequency w and the period T of a pendulum vibrating in a vertical plane can be
written as, respectively:

2
w = %:%, (8.28)

2T _ gﬁ\/g . (8.29)
w g

This result is equivalent to equation (8.11) obtained by Huygens and published in 1673. Huygens was
the first scientist to relate mathematically the period of oscillation of a simple pendulum with its length and
with the free fall acceleration near the surface of the Earth. Although he did not write an expression like
that of equation (8.29), his result is equivalent to this expression.

and

8.3.3 Newton’s Pendulum Experiments Showing the Proportionality between
Weight and Inertial Mass

We quote here Newton’s precise experiments with pendulums from which he arrived at the proportionality
between the inertial mass m; of a body and its weight F;. What we denominate inertial mass has been
called by Newton in the first definition of the Principia “quantity of matter,” “mass” or “body.” According
to equation (1.9), the proportionality between the inertial mass of a body and its weight is equivalent to a
proportionality between the inertial mass of the body and its gravitational mass.

In the first definition of the Principia, that of quantity of matter, Newton said:%

It is this quantity that I mean hereafter everywhere under the name of body or mass. And the
same is known by the weight of each body, for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shown hereafter.

Before presenting these experiments, we quote Proposition 24, Theorem 19, of Book II of the Principia,
together with its Corollaries 1, 6 and 7. The mathematical expression of this Proposition is given by equation
(8.21). Here are Newton’s words:”

Section 6
The motion and resistance of pendulous bodies

Proposition 24. Theorem 19

The quantities of matter in pendulous bodies, whose centres of oscillation are equally distant from
the centre of suspension, are in a ratio compounded of the ratio of the weights and the squared
ratio of the times of oscillation in a vacuum.

[

6[New34, p. 1] and [New90, p. 1].
7[New34, pp. 303-304] and [New08b, pp. 85-86].
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Corollary 1. Therefore if the times are equal, the quantities of matter in each of the bodies are
as the weights.

[.]

Corollary 6. But in a nonresisting medium, the quantity of matter in the pendulous body is
directly as the comparative weight and the square of the time, and inversely as the length of the
pendulum. For the comparative weight is the motive force of the body in any heavy medium,
as was shown above; and therefore does the same thing in such a nonresiting medium as the
absolute weight does in a vacuum.

Corollary 7. And hence appears a method both of comparing bodies one with another, as to the
quantity of matter in each; and of comparing the weights of the same body in different places, to
know the variation of its gravity. And by experiments made with the greatest accuracy, I have
always found the quantity of matter in bodies to be proportional to their weight.

These pendulum experiments, first performed in the beginning of 1685,® were presented in Proposition
6, Theorem 6, of Book III of the Principia:®

Proposition 6. Theorem 6

That all bodies gravitate towards every planet; and that the weights of bodies towards any one
planet, at equal distances from the centre of the planet, are proportional to the quantities of matter
which they severally contain.

It has been, now for a long time, observed by others, that all sorts of heavy bodies (allowance
being made for the inequality of retardation which they suffer from a small power of resistance
in the air) descend to the Earth from equal heights in equal times; and that equality of times
we may distinguish to great accuracy, by the help of pendulums. I tried experiments with gold,
silver, lead, glass, sand, common salt, wood, water, and wheat. I provided two wooden boxes,
round and equal: I filled one with wood, and suspended an equal weight of gold (as exactly as
I could) in the centre of oscillation of the other. The boxes, hanging by equal threads of 11
feet, made a couple of pendulums perfectly equal in weight and figure, and equally receiving the
resistance of air. And, placing one by the other, I observed them to play together forwards and
backwards, for a long time, with equal vibrations. And therefore the quantity of matter in the
gold (by Corollaries 1 and 6, Proposition 24, Book II) was to the quantity of matter in the wood
as the action of the motive force (or vis motriz) upon all the gold to the action of the same upon
all the wood; that is, as the weight of the one to the weight of the other: and the like happened
in the other bodies. By these experiments, in bodies of the same weight, I could manifestly have
discovered a difference of matter less than the thousandth part of the whole, had any such been.

[

The motive force or vis motriz mentioned here is the weight of the body, that is, the gravitational force
F, exerted by the Earth on the body. Therefore his statement that the quantity of matter in the gold was
to the quantity of matter in the wood as the motive force upon all the gold to the motive force upon all the
wood can be expressed mathematically as equation (7.19), namely:

1 go F (o)
i gold _ Zg gold (8.30)

mMj wood F(] wood

According to equation (7.19), the ratio between the inertial masses of two bodies is equal to the ratio of
their weights. In the case of these pendulum experiments performed by Newton, all bodies had the same
weight. His conclusion obtained from these experiments quoted in Proposition 6, Theorem 6, of Book IIT of
the Principia, can then be expressed algebraically as follows:

My gold = M silver = M lead = MM glass = "M sand

= M5 common salt = " wood = M water = T wheat - (831)

8[Coh80, Section 5.7, pp. 271-273] and [New10a, p. 200].
9[New34, p. 411] and [New08b, pp. 200-201].
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According to his own evaluation, this equality had a precision of at least one part in a thousand. As he
worked with bodies of the same weight, the precision of his measurements can be expressed as follows:

Mj wood — M gold

<1072, (8.32)

Mj wood

Newton found the same precision for the other bodies.
Sometimes this precision is expressed as follows:

Mg

=1+£1077. (8.33)
mg
This relation is valid for all materials (gold, wood, ...).

With the experiments performed by Eétvos (1848-1919) at the beginning of the XXth century, the
precision of this relation has been improved to one part in 10%. Nowadays!? this precision is that of one part
in 10'2. Let a and b be two different substances (like gold and wood). The modern experimental precision
of the proportionality between inertial mass and weight can be expressed mathematically as follows:

Mia & Mga

— = =14+10712. 8.34
myp  Fg  mg (8:34)

Suppose two bodies a and b having exactly the same weight, but being of different nature (like gold and
wood). Nowadays it is possible to say that they have the same inertial mass with a precision of one part in
10'2, namely:

Mia ZM ) < 10712 i Fjy = Fy . (8.35)

Miq
Didactic discussions of the proportionality between inertial and gravitational masses can be found in
several works.!!

8.4 Electrified Pendulum Oscillating over a Magnet

We now consider the motion of a simple pendulum consisting of a test body suspended by an inextensible
string of length ¢. The upper extremity of this string remains fixed relative to the Earth. The test body
has inertial mass m; and gravitational mass m,. We suppose small oscillations due to the gravitational
attraction of the Earth. The pendulum is supposed to be located at the Equator and the laboratory can
be considered a good inertial frame of reference to study this problem. The difference as regards the case
considered in Section 8.3 is that the oscillating test body is supposed to be electrified with an electric charge
q and it is oscillating close to a large permanent magnet,'? as indicated in figure 8.6.

K

m:
1
X q
N
S

Figure 8.6: Electrified pendulum oscillating above a magnet.

This magnet is at rest relative to the ground. We also consider this magnet as an ideal insulator, in such
a way that we can neglect the electric charges and currents induced in the magnet by the mobile test charge.

10[WES2].

1 [Gol68, pp. 162-172], [Luc79, pp. 103-108 and 516-525] and [Nus81, pp. 497-504].

12[Ass98, Section 2.5: Péndulo carregado eletricamente|, [Ass99a, Subsection 2.3.3: Electrically charged pendulum], [FA03]
and [Gar10].
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In this problem we will neglect as well the magnetic force exerted by the Earth on the electrified test body in
comparison with the magnetic force exerted by the magnet on the test body. If we are utilizing the language
of field theory, this supposition is analogous to neglect the magnetic field of the Earth in comparison with
the magnetic field of the magnet.

There are now three forces acting on the test body, namely, the downward gravitational force F}, exerted
by the Earth, the tension T of the string pointing along its length, and the magnetic force due to the magnet.
We will see that this magnetic force will cause a precession in the plane of oscillation of the pendulum, rotating
this oscillating plane relative to the ground. This problem will be first considered in newtonian mechanics
utilizing Maxwell’s equations and the electromagnetic force given by equation (3.15). We then consider the
same problem in newtonian mechanics utilizing Weber’s force law.

8.4.1 Precession of the Plane of Oscillation According to Classical Electromag-
netism

As seen in Chapter 3, Section 3.4, in classical electromagnetism the magnetic force F, acting on a body
electrified with a charge ¢ moving in a region where there is a magnetic field B is given by:

F,.=qixB. (8.36)

The velocity ¢ which appears in this expression is the velocity of the test charge ¢ relative to a frame of
reference. The frame to be considered here is the laboratory located at the Equator, which is a good inertial
system to study this problem. The magnetic field B is that due to the magnet at rest in the ground. We here
suppose the magnet to be large enough in such a way that the magnetic field it generates can be considered
as having the same magnitude and direction, no matter the position of the test charge during its oscillations.
We counsider a coordinate system (x, y, z) with its origin O at the lowest point of the pendulum, with the
z axis pointing vertically upwards and in such a way that the initial motion of the pendulum is along the
xz plane. The uniform magnetic field will be considered as pointing along the positive z direction, B= Bz,
figure 8.6. The magnetic force acting on the charge ¢ moving with velocity ¥ = v, 2 + v, g + v, 2 relative to
an inertial frame is then given by:

F = q0 x B = q(vsd + 0,0 + v.2) x (B2) = ¢B(vy& — v,1)) . (8.37)
The equation of motion (1.4) can then be written as:
Fy+T+q0x B=md . (8.38)

The situation to be considered here is represented in figure 8.7.

Figure 8.7: Charged pendulum oscillating in a region of uniform magnetic field B.

We consider small oscillations (6 < 1 rad) and suppose that the pendulum is released from rest at an
initial angle 6, to the vertical, that is, with 6, = 0. With these initial conditions the solution of equation
(8.17), in the absence of a magnetic force, is given by:

0(t) = 0, cos(wt) , (8.39)

where



126 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

_ F,  [mgg 2m
w_”miﬂ_ ml T (8.40)

Here w is the angular frequency and T is the period of oscillation for a complete cycle.
With the assumption of small oscillations we get sin @ = 6. Therefore the position x(¢) of the test body
along the z axis indicated in figure 8.7, in the absence of the magnetic force, is given approximately by:

x(t) = —Lsinf ~ —00 = —10, cos(wt) . (8.41)

Accordingly the horizontal velocity along the x direction, v, is given approximately by:

Vg (t) & L0, w sin(wt) . (8.42)

When there is no magnetic force, the pendulum oscillates only along this vertical plane xz of our inertial
frame of reference fixed relative to the ground.

We now consider the presence of the magnet, as in figure 8.6. In this situation the pendulum will no
longer oscillate in a plane fixed relative to the ground. In the first half of its motion it has a component of
the velocity along the positive x direction, v,. According to equation (8.37), there will be a component of
the magnetic force acting on the electrified pendulum along the negative y direction, namely:

qU x B = quad X B2 = —quy By . (8.43)

This force will modify the motion of the pendulum as indicated in figure 8.8. In this figure we are
supposing ¢ > 0 and we are looking the pendulum from above.

X

\Qp

Qi1t=0

Figure 8.8: Motion of the electrified pendulum in the presence of a magnet.

That is, supposing a positive charge, ¢ > 0, and an initial motion along the positive x direction, v, > 0,
the magnetic force will deflect the pendulum clockwise to the right, towards y < 0. On the other hand,
when g > 0 and the pendulum is returning in the second half of its motion, with v, < 0, it will be deflected
clockwise to the left, towards y > 0. Therefore the plane of oscillation of the pendulum precesses in the
clockwise direction with an angular velocity €, (looking it from above and supposing ¢ > 0).

We will calculate €, supposing a small magnetic force, such that:

qB
m;w

<1. (8.44)

This supposition is analogous to having the greatest velocity in the x direction much larger than the greatest
velocity in the y direction, or to saying that the velocity in the x direction is essentially unaffected by the
magnet.

The gravitational force acts along the z direction, ﬁg = —mygZ%, while the tension T directed along the
string acts in the 2z plane. From equations (8.38), (8.42) and (8.43) the equation of motion in the y direction
is given by:

—quy B = —q8,lwBsin(wt) = m;a, . (8.45)
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This equation can be integrated twice utilizing that v, (¢t = 0) = 0 and that y(¢ = 0) = 0 yielding:

Y= qBO,¢ [sm(wt) 3 t] .

my w

(8.46)
The value of €2, can be obtained from figure 8.9.

XA
Ay

H
Trt=T/2
\O
t=0

Figure 8.9: Geometry for calculating the precession of the plane of oscillation of a charged pendulum.

<A

In half a period, At = T/2 = 7/w, the pendulum has moved from z, = —6,¢ to x = 6,¢, such that
Az = 20,¢. Simultaneously it has moved from y, = 0 to y = y(T/2) = —¢B0,¢n/m;w, such that Ay =
—qB8y¢m/m;w. The value of €, is then given by:

Ay/ Az qB

Q, = =1 4
P At 2mi (8 7)

The negative sign of €, indicates a rotation in the clockwise direction when the pendulum is seen from
above. To arrive at this result we neglected friction, assumed uniform gravitational and magnetic fields, and
supposed that ¢B/m;w < 1.

We conclude that the magnet causes a precession of the plane of oscillation of the electrified pendulum
oscillating in an inertial frame due to the action of a uniform gravitational force. If the magnet were not
present, the plane of oscillation of the pendulum would remain stationary in this inertial frame, fixed relative
to the Earth.

8.4.2 Charge and Current Configurations Generating an Uniform Magnetic
Field

An uniform magnetic field B can be generated by three main configurations of charges and currents in
classical electromagnetism, as represented in figure 8.10.

IR N
i

(@) (b) (c)

Figure 8.10: Configurations yielding an uniform magnetic field B. (a) Region close to the center of the
extremity of a large cylindrical magnet. (b) Region inside a cylindrical shell carrying a constant azimuthal
electric current. (c) Region inside an uniformly charged spherical shell spinning around one of its axis with
a constant angular velocity relative to an inertial frame of reference.

The first configuration is represented in figure 8.10 (a). The magnetic field is approximately uniform in
the region close to the center of one of the faces of a large cylindrical magnet. An analogous configuration
is the region between the poles of a large horseshoe magnet, in the shape of the letter U.
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The second configuration is represented in figure 8.10 (b). The magnetic field is uniform inside a cylin-
drical shell of infinite length carrying a constant azimuthal electric current. This constant magnetic field
is obtained inside an infinite tightly wound solenoid consisting of N circular coils per unit length wrapped
around a cylindrical shell, each coil carrying a constant current /. This configuration is equivalent to that
of a cylindrical shell carrying an uniform azimuthal surface current K = NI, where N represents the num-
ber of circular turns per unit length. It is also possible to obtain this constant azimuthal current by the
superposition of two uniformly charged cylindrical shells. The first shell is stationary relative to an inertial
frame of reference, being uniformly electrified with a positive charge (the Earth may be considered a good
inertial frame to study this problem). The second shell is uniformly electrified with a negative charge, having
magnitude equal to the magnitude of the first shell, spinning around the axis of the cylinder with a constant
angular velocity relative to the laboratory, figure 8.10 (b).

The third configuration is represented in figure 8.10 (c¢). The magnetic field is uniform inside a uniformly
charged spherical shell spinning around an axis passing through its center, provided the charged shell is
spinning with a constant angular velocity relative to an inertial frame of reference.

The magnetic field close to the center of a Helmholtz’s coil is also approximately uniform.'3 It has
two circular loops of equal radius a parallel to one another and aligned with their common axis, separated
by a distance 2b = a, figure 8.11. The same constant current I flows in each coil. When 2b = a this
system produces a highly uniform magnetic field in the vicinity of the axial midpoint, as the first and second
derivatives of B with respect to z vanish at the point midway between the coils (z = 0).

-0 2b

Figure 8.11: This arrangement is known as a Helmholtz’s coil when 2b = a.

We now calculate the magnetic field inside the cylindrical shell of figure 8.10 (b). There is an infinite
cylindrical shell of radius R with its axis along the z axis. The calculation will be performed in an inertial
frame of reference in which this cylindrical shell is at rest. The Earth can be considered as a good inertial
frame for this problem. We consider this cylindrical shell composed of two uniform surface charge densities.
There is a positive surface charge density o4 = o at rest relative to the cylindrical shell and a negative
surface charge of the same magnitude, 0 = —o, spinning around the axis of the cylinder, relative to this
inertial frame, with a constant angular velocity ﬁg = —Qgz, with Qg = |ﬁs| These two surface charge
densities are considered uniform over the cylindrical shell, having the same value in all points of the shell.
Let ¢ be the unit vector along the azimuthal direction ¢ of a cylindrical coordinate system. The tangential
velocity of the negative surface charges, relative to the laboratory, is given by ¥ = —RQg, figure 8.12.

Equation (3.9) can be utilized in order to obtain the magnetic field in this configuration. It vanishes
outside the cylinder, B =0. Anywhere inside the cylinder it has a constant and uniform value given by:'4

B = uoRQs0% = noK2 = B2 | (8.48)

where K = ov = 0fg R is the uniform surface current density.

We now consider the configuration of figure 8.10 (c). A spherical shell of radius R is uniformly charged
with a total charge @ and has an uniform surface charge density ¢ = Q/47R?. It spins around the z
axis passing through its center with a constant angular velocity Qg = Qg2 relative to an inertial frame of
reference, with Qg = |ﬁs|, figure 8.13. The Earth can be considered a good inertial frame to study this
problem.

A test body electrified with a charge ¢ is located at the position vector 7 relative to the center of the
shell. It moves with velocity ¢ and acceleration a relative to this inertial frame of reference.

I3[RMCS82, p. 170], [Gri89, p. 243, exercise 5.59] and [HM95, p. 39, exercise 1-18].
14[FLS64, Section 13-5, pp. 13-5 to 13-6], [Pur80, pp. 188-192], [RMC82, pp. 172 and 183], [Gri89, pp. 219-221] and [HM95,
exercise 1-20, p. 39].
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Figure 8.12: Cylindrical shell of radius R at rest in the laboratory. It has a positive uniform surface charge
density o at rest in the terrestrial frame, together with a negative surface charge density —o spinning around
the axis of the cylinder with a constant angular velocity g relative to the laboratory.
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Figure 8.13: Uniformly charged spherical shell spinning around the z axis passing through its center with a
constant angular velocity Qg relative to an inertial frame of reference.

The magnetic field in this configuration can be obtained utilizing equation (3.9). Outside the spherical
shell it behaves as the field of a magnetic dipole. Anywhere inside the shell the magnetic field has a constant
and uniform value given by:*®

5 Qs peQs, 2 o
67 R 7 L (8.49)
The same magnetic field would be produced by a spherical shell of radius R with a total charge —@Q
uniformly distributed over its surface and spinning around the z axis with a constant angular velocity —{Q2g

relative to this inertial frame of reference.

8.4.3 Precession of the Plane of Oscillation in a Region of Uniform Magnetic
Field

We now consider a test body electrified with a charge ¢ moving with velocity ¥ relative to an inertial frame
of reference in the presence of an uniform magnetic field B. The magnetic field considered here will be that
of figures 8.12 and 8.13, as given by equations (8.48) and (8.49), respectively.

The magnetic force acting on a test charge moving relative to this inertial frame can be obtained utilizing
equations (8.36) and (8.48), namely:

F = ¢ x B = qu,RQs0 (v, & — v.7) - (8.50)
Figure 8.14 represents the charged pendulum oscillating inside the cylindrical shell of figure 8.10 (b).

15|Fey64, exercise 14-6, pp. 14-3 and 14-4], [BT64, pp. 61 and 250] and [Gri89, pp. 229-230].
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Figure 8.14: Electrified pendulum oscillating inside the cylindrical shell of figure 8.10 (b).

In this configuration the angular velocity of precession of the plane of oscillation given by equation (8.47)
can be expressed as follows:

B o
LB 4 pge— RO

Q, = Qs . (8.51)

This equation shows that the angular velocity of precession of the plane of oscillation of the charged
pendulum, relative to the ground or relative to an inertial frame of reference, is directly proportional to the
angular velocity of the negative charges composing this cylindrical shell. Both angular velocities of equation
(8.51), 2, and Qg, should be understood here relative to the laboratory, which is being considered as a good
inertial frame to analyze this problem.

Two very important consequences can be drawn from equation (8.51), namely: (I) By stopping the drifting
or dragging velocity of the negative charges of the cylindrical shell by making 2g — 0, the precession of the
plane of oscillation of the pendulum goes to zero, 2, — 0. (II) By annihilating the positive and negative
surface charge densities over the cylindrical shell by making 04 = o0 — 0 and 60— = —¢o — 0, the precession
of the plane of oscillation of the pendulum also goes to zero, €2, — 0.

We now consider the test charge moving with velocity ¢ relative to an inertial frame of reference in the
situation of figure 8.13. The magnetic field in this configuration is given by equation (8.49). The magnetic
force acting on this test body is given by:

PoqQ o = poqQ«ls, . R
Pl Qg = G R (vy& — vg7) - (8.52)

Figure 8.15 represents the configuration of the pendulum oscillating inside the spherical shell of figure

o] s

q

ﬁ:qﬁxé:

Figure 8.15: Charged pendulum oscillating inside the spherical shell of figure 8.10 (c).

For this configuration the angular velocity of precession of the charged pendulum relative to this inertial
frame of reference given by equation (8.47) can be expressed as follows:

0 - 9B _ 1@
P 2m; 127m; R

Therefore the angular velocity of precession of the plane of oscillation of the charged pendulum, 2,, is
directly proportional to the angular velocity of the charges on the spherical shell, 2g. Both angular velocities
of equation (8.53), 2, and {2, should be understood here relative to the laboratory, which is being considered
a good inertial frame of reference to study this problem.

Qs . (8.53)
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Once more two extremely important consequences can be drawn from equation (8.53), namely: (I) The
precession of the plane of oscillation of the pendulum goes to zero when the rotation of the charges of the
shell go to zero, that is, Q, — 0 when Qg — 0. (II) The angular velocity of precession of the plane of
oscillation of the charged pendulum, (2, is also proportional to the amount of charges @) spread over the
spherical shell. By triplicating @, the angular velocity of precession also triplicates, provided 2g remains
the same. Likewise, 2, = 0 when Q) — 0.

8.4.4 Precession of the Plane of Oscillation according to Weber’s Electrody-
namics

The same problem can be analyzed utilizing newtonian mechanics together with Weber’s force given by
equation (2.22). All velocities and accelerations discussed in this Subsection should be understood relative
to the laboratory at the Equator, which is being considered a good inertial frame of reference to study this
problem.

We first consider the situation of figure 8.10 (b). The stationary cylindrical shell of figure 8.12 has two
equal and opposite surface charge densities, 04 = ¢ and o = —o. The positive charges are at rest relative to
the cylindrical shell, while the negative charges spin around the axis of the cylinder with a constant angular
velocity Qs =-0 52, relative to the inertial frame considered here, with Qg = |ﬁ s/

Consider a test body electrified with a charge ¢ moving relative to this inertial frame with a velocity
¢ when passing through the axis of the cylindrical shell. The integration of Weber’s force exerted by the
positive and negative charges of the cylinder and acting on the test body is given by:'6

F = quoRQs0 (v, 2 — v,9) . (8.54)

This result coincides with equation (8.50) with an important difference. The velocity ¥ which appears in
the magnetic force given by equation (8.36) is usually interpreted as the velocity of the test charge g relative
to an inertial frame of reference. As regards Weber’s electrodynamics, on the other hand, the velocity
which appears in equation (8.54) is the velocity of the test charge relative to the axis of the cylinder, that is,
relative to the positive surface charge density o, = ¢ which is being supposed at rest relative to the cylinder.
However, in this problem we are considering the magnet at rest relative to the ground. And the laboratory
at the Equator is being considered a good inertial frame of reference to study this problem. Therefore there
will be no fundamental distinction between the meanings of the velocities which appear in equations (8.50)
and (8.54) for this situation.

Moreover, we will suppose that the test charge is always close to the axis of the cylinder. Let p represent
its distance to the axis of the cylinder of radius R. We will assume that p < R. This means that equation
(8.54) represents the electromagnetic force exerted by the cylinder and acting on the test charge according
to Weber’s electrodynamics while the charged pendulum is oscillating inside the cylinder.

Equation (8.54) obtained from Weber’s electrodynamics coincides then with equation (8.50) obtained
from classical electromagnetism. Therefore both expressions yield the same angular velocity of precession of
the plane of oscillation of the charged pendulum vibrating inside the cylinder, namely, the expression given
by equation (8.51):

qpoRo
2mi

Q, = Qg . (8.55)

The two main consequences obtained from this equation (8.55) are the same as those obtained from
classical electromagnetism: (I) The angular velocity €, of precession of the plane of oscillation of the charged
pendulum relative to the ground is proportional to the angular velocity Qg of the negative charges rotating
around the axis of the cylinder. This means that €2, — 0 when s — 0, that is, the precession of the
pendulum goes to zero when we stop the drifting velocity of the negative charges in the cylinder. (II) The
angular velocity of precession 2, is also proportional to the positive and negative surface charge densities of
the cylindrical shell, 0, = ¢ and 0_ = —o. Therefore, 2, — 0 when o — 0.

We now consider the situation of figure 8.10 (¢) from the point of view of Weber’s electrodynamics. A
spherical shell of radius R is electrified with a total charge ) uniformly distributed over its surface with
a surface charge density o = Q/(4wR?). This charged shell spins around the z axis passing through its
center with a constant angular velocity ﬁs = Qg2 relative to the inertial frame of reference, with Qg = |ﬁs|
The center of the shell coincides with the origin O of our inertial frame of reference. A point test body

16[Ass89b], [Ass92al, [Ass93a], [AT94] and [Ass94, Sections 6.7, 7.3 and 7.4].
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electrified with a charge ¢ is located at 7 relative to the center of the shell, moving with velocity ¥ = d7/dt
and acceleration @ = d/dt = d?7/dt? relative to this inertial frame of reference, figure 8.13. Appendix B,
Section B.1, shows how to integrate Weber’s force exerted by this electrified spinning shell and acting on the
test charge moving inside it. This force is given by:!”

—

dQg

ﬁ—% d’—l—ﬁsx(ﬁgxf‘)—i—%fxﬁs—i—?”xw . (8.56)

T 127R

Here we suppose the spherical shell to be spinning with a constant angular velocity, such that dﬁs /dt = 0.
Therefore we can disregard the last component of equation (8.56).

Consider now the charged pendulum oscillating near the Earth inside this spinning charged shell, as
in figure 8.15. There are three forces acting on the test body, namely, the electromagnetic force given by
equation (8.56), the downward weight of the body, ﬁg = —myg?% exerted gravitationally by the Earth, and the
tension T acting along the string. Applying newtonian mechanics together with Weber’s electrodynamics,
the equation of motion (1.5) can then be written as follows:

1oq@
127 R

Supposing |(10qQ@)/(127R)| < m,, the first term inside the square brackets can be neglected in com-
parison with the right hand side of this equation. The centrifugal component of the force proportional to
ﬁg X (ﬁg x ) can also be neglected in this problem, as it does not lead to any precession of the plane of
oscillation of the pendulum, which is the magnitude we wish to obtain. With these assumptions this equation
can be simplified to:

Fy+T+ @+ Qs x (Qg x 7) + 20 x Qg| = m,a . (8.57)

By T4 P9« Gy — . (8.58)

The magnetic component of this force proportional to ¥ x Q¢ is identical to the magnetic force given by
equations (8.38) and (8.52). This means that the final value of the angular velocity of precession €, of the
plane of oscillation of the charged pendulum relative to the inertial frame of reference will be given by the
same equation (8.53) in both theories, namely, classical electromagnetism and Weber’s electrodynamics:

HoqQ
Q, = -+l
P 12mm; R

The consequences which can be drawn from equation (8.59) are the same as those obtained from classical
electromangetism: (I) , is proportional to Qg, such that €, — 0 when Qg — 0. (II) The angular velocity
2, is also proportional to the total charge () spread over the spherical shell. Therefore, 2, — 0 when @ — 0.

Figure 8.16 shows the electrified pendulum seen from above oscillating inside the spinning charged shell
when the pendulum and the shell are electrified with charges of the same sign, ¢@Q > 0. The plane of
oscillation precesses in the opposite direction of the rotation of the shell. That is, if the charged shell rotates
anti-clockwise, the plane of oscillation of the pendulum rotates clockwise.

(8.59)

Qg

Q

Figure 8.16: When ¢@ > 0, the plane of oscillation precesses in the opposite direction of the rotation of the
shell.

Figure 8.17 shows the electrified pendulum seen from above oscillating inside the spinning charged shell
when the pendulum and the shell are oppositely charged, that is, when g < 0. The plane of oscillation of

17[Ass89al, [Ass92a] and [Ass94, Section 7.3].
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the pendulum precesses in the same direction as the rotation of the shell. That is, if the charged shell spins
anti-clockwise, the plane of oscillation of the pendulum will also precess anti-clockwise.

Qg

Q

Figure 8.17: When ¢@Q < 0, the plane of oscillation of the pendulum precesses in the same direction as the
rotation of the shell.
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Chapter 9

Bodies in Uniform Circular Motion

In this Chapter we discuss three situations of uniform circular motion which were considered by Newton.
We first deal with a planet orbiting around the Sun relative to the frame of fixed stars. We then consider
two globes connected by a cord and revolving about their common center of gravity relative to absolute
space. And finally we analyze a bucket partially filled with water and spinning around its axis relative to
the ground.

9.1 Centripetal Acceleration, Centrifugal Force and Centripetal Force

In this Chapter we will consider the motion of a test particle with inertial mass m; moving in a plane
relative to an inertial frame of reference. Let xy be the plane where the motion takes place, with the z axis
orthogonal to this plane. Let (x, y) be the rectangular coordinates of the test particle relative to the origin
O of this reference frame, while its polar coordinates are represented by (p, ¢), figure 9.1 (a). The position
vector 7 relative to the origin of this inertial frame of reference, the velocity ¢ = di/dt and acceleration
@ = dv/dt = d*7/dt relative to this frame are represented in figure 9.1 (b). The unit vectors in rectangular
coordinates, & and §, and in polar coordinates, p and @, are presented in figure 9.1 (c).

9
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(@) (b) (c)

Figure 9.1: (a) Rectangular and polar coordinates. (b) Position, velocity and acceleration vectors. (c¢) Unit
rectangular and polar vectors.

The relations between these coordinates and unit vectors are well known, namely:!

p=Vz?+y?, (9.1)

Y
t == 9.2
ang = -, (9.2)
p = cospi + sin gy , (9.3)
and
@ = —sinpz + cos Y . (9.4)

L[Sym71, Section 3.4].
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The position vector 7 of the test particle relative to the origin of this coordinate system, the velocity ¢/
and acceleration a relative to this frame are given by, respectively:

r=x+yy=pp, (9.5)
L dr . e N . a
U= = 0l 0y = 88+ ) = 0pp 009 = P+ pp (9.6)
and
L dv &7 . e . . L9\ A . Cn
Q= =5 = G+ ayf =E8+§§ = app+app = (p— p")p+ (pP +200)P . (9.7)

The angular velocity dy/dt is also usually represented by w. The tangential velocity can then be written
as: v, = pY = pw.

We first consider a single body of inertial mass m; under the influence of a centripetal force F describing
a circular motion, p = 0 and g = 0, relative to an inertial frame of reference S, figure 9.2.
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Figure 9.2: Uniform circular motion of a body in an inertial frame of reference S due to a centripetal force.

The centripetal force considered here will always be directed to the center O of this inertial frame of
reference S, F' = —Fp, where F = |F| is the magnitude of the force and p is the unit vector pointing from
O to the test particle.

The so called centripetal acceleration, a., is defined as the magnitude of the radial acceleration a, along
the radial p direction. It arises from motion along the tangential ¢ direction. According to equations (9.6)
and (9.7) one gets:

2 2 U
00 = lagl = pg® =t = 2. (9.8)

Utilizing equation (1.4) and a constant radius p for the uniform circular motion, the magnitude of the

centripetal force is given by:
02
F = ma. = mipg? = mipw? = m;—% . (9.9)
p
Supposing a constant force and a constant radius of motion, this equation leads to the following result:

¢ = constant . (9.10)
It should be observed that this centripetal force changes only the direction of motion relative to absolute
space, without affecting the magnitude of the tangential velocity. That is, |ti,| = constant, although the

velocity ¢ changes constantly its direction relative to the inertial frame of reference S.

Huygens and Newton were the first to arrive at expressions analogous to equation (9.9) describing the
force acting on a body moving in a circular orbit with a constant tangential velocity around a fixed center.
Huygens calculated the vis centrifuga or centrifugal force. He coined this name meaning the tendency of the
body to move alway from the center of the circle. He considered a body connected to a string and revolving
horizontally around a fixed center, being interested in the force exerted by this body on the string holding
it along this circular orbit. He obtained the mathematical expression for the centrifugal force in 1659 and
wrote a manuscript in Latin on this topic, De Vi Centrifuga [On centrifugal force|, which was published
posthumously in 1703.2 However, in his book On the Pendulum Clock, published in 1673, he presented the
main properties of the centrifugal force, without giving the proofs of how he obtained these theorems.? The

2[Huy03], [Huy29] and [Huy].
3[Huy13, pp. 190-192], [Huy34, pp. 366-368] and [Huy86, pp. xx-xxi and 173-178].
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proofs of these theorems only became known in 1703 with the publication of his earlier work on centrifugal
force. Huygens was then the first scientist to publish the correct value of the centrifugal force, in 1673.
Newton discovered the main results of the centripetal force between 1664 and 1666, working independently
of Huygens, but published nothing on this topic until the appearance of the Principia in 1687. He coined
the name wvis centripeta or centripetal force in order to oppose Huygens expression centrifugal force, as he
was interested in the force acting on the body in order to make it orbit around a circle relative to absolute
space.* Newton transformed Huygens’s centrifugal force into a centripetal force, saying expressly that he

had done so in honor of Huygens:®

Mr Huygens gave the name vis centrifuga to the force by which revolving bodies recede from
the centre of their motion. Mr Newton in honour of that author retained the name & called the
contrary force vis centripeta.

Newton’s definition of centripetal force appears in the beginning of the Principia:®

Definition 5

A centripetal force is that by which bodies are drawn or impelled, or any way tend, towards a
point as to a centre.

For a discussion on the different meanings of the centrifugal force according to Huygens, Newton, Leibniz
and many other scientists, see the works of Meli.”

9.2 Circular Orbit of a Planet

9.2.1 Planet Orbiting around the Sun Relative to the Fixed Stars

The first situation to be considered here is that of a planet orbiting around the Sun due to their mutual
attraction. The problem will be considered in the frame of the fixed stars, that is, relative to the background
of stars belonging to our galaxy. This set of stars can be considered a good inertial frame to study this
problem. The gravitational and inertial masses of the planet, mg, and m;,, will be considered much smaller
than the gravitational and inertial masses of the Sun, myg and m;s. We can then neglect the motion of
the Sun and it will be considered at the origin of our coordinate system. Although the orbits of the planets
around the Sun are usually elliptical, in this Section we will consider only the particular case of circular
orbits in which the distance between each planet and the Sun does not change as a function of time, figure
9.3.

%

&

Figure 9.3: Circular orbit of a planet around the Sun in the frame of fixed stars.

Equations (1.7) and (9.9) yield:

2

MesMm v
gSMgp ©p
F = Gir2 = MipQep = mip_r . (9.11)

4[Bar89, Sections 8.2, 9.7-9.9 and 10.5-10.6].
5As quoted in [Coh80, p. 237].

6[New34, p. 2] and [New90, p. 3].

7[Mel90], [Mel02], [Mel05] and [Mel06].
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Here F = |ﬁq| is the magnitude of the gravitational force and r is the distance between the planet and the

Sun.
The centripetal acceleration is then given by:

2
Vo mygp Gmyggs
ep = =2 = L= (9.12)
r Mip T

According to equation (9.12), the period T}, for a complete circular orbit of the planet around the Sun,
relative to the fixed stars, is given by:

2mr m; T
T, =—=2 P . 9.13
p ™ mgp GMmgs ( )

Therefore the square of this period is proportional to the cube of the distance between the Sun and the
planet, namely:

3
T? = 4n? 2 T (9.14)
Mmgp GMygs
Suppose two planets, 1 and 2, describe circular orbits of radii ; and 75 around the Sun, moving relative
to the fixed stars with tangential velocities v,1 = v1 and v,2 = v, and completing their orbits in periods T}
and T4, respectively, as represented in figure 9.4.

Figure 9.4: Two planets orbiting around the Sun.

According to equation (9.13), the ratio of the periods of their circular orbits is given by:

T ma/mg (ﬁ)m (9.15)
T M2/ Mga \ T2 ' -

This is the final result obtained from the structure of newtonian mechanics.

9.2.2 The Proportionality between the Inertial Mass and the Gravitational
Mass of Each Planet Obtained from Kepler’s Third Law

Kepler’s third law of planetary motion, discovered in 1618 and published in 1619, was given as follows:®

[...] the ratio which exists between the periodic times of any two planets is precisely the ratio of
the %th power of the mean distances, i.e., of the spheres themselves; |...]

Kepler discovered it in 1618:°

On March 8 of this present year 1618, if precise dates are wanted, [the solution] turned up in my
head. But I had an unlucky hand and when I tested it by computations I rejected it as false.
In the end it came back again to me on May 15, and in a new attack conquered the darkness
of my mind; it agreed so perfectly with the data which my seventeen years of labour on Tycho’s
observations had yielded, that I thought at first I was dreaming, or that I had committed a petitio
Principi...

8|Kep02, Harmonies of the World, Book V, Chapter 3, Proposition 8, p. 14], [Koe59] and [Koe89, pp. 273-274].
9[Koe59].
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This law can be expressed mathematically as follows:

3/2
Ty 1
— = — . 9.16
a-(2) (9.16)
Combining equations (9.15) and (9.16) yields the fact that the ratio of the inertial mass of a specific
planet to its gravitational mass has the same value as this ratio for any other planet of the solar system,
namely:
Mgl My2

= a2 (9.17)

mgl mgg

This equation is analogous to equation (7.17), but it is now being obtained for planets orbiting around
the Sun. That is, although the planets have different sizes, densities, temperatures, chemical compositions,
gravitational masses, etc., the ratio between m; and m, of a specific planet 1 has the same value as this ratio
for any other planet 2.

This result can also be expressed by saying that the ratio between the inertial masses of two planets is
equal to the ratio of their gravitational masses, namely:

i1 _ Mgt (9.18)
mi2 mMg2

The same reasoning can be applied for any two satellites (also called Moons) orbiting around Jupiter, as
these orbits also follow Kepler’s third law.

It should be emphasized here that equation (9.18) shows that the ratio between the inertial masses of any
two planets orbiting around the Sun is equal to the ratio of their gravitational masses. On the other hand,
it would be wrong to say that this ratio m;1/m;s is also equal to the ratio between the weights of these two
planets towards the Sun, although this had been the case for two bodies located at the surface of the Earth,
see equation (7.19). The weight of a planet towards the Sun is nothing else then the gravitational force
F = F, exerted by the Sun on the planet given by equation (9.11). This equation, together with equation
(9.13), yields:

2
mip = qu = qup/r = qugp . (919)
Qcp Vo 42y

The ratio between the inertial masses of planets 1 and 2 orbiting around the Sun can be obtained from
equation (9.19), namely:

2
my1 g <T1> T2
=== =. 9.20
Mg Ty \1T>/) 71 (9:20)

The ratio between the inertial masses of two planets orbiting around the Sun can be obtained combining
equation (9.20) with Kepler’s third law, equation (9.16). Utilizing also equation (9.18) one finally gets:

mi _mg _ Fg (T_1>2 (9.21)

M Mg Fygo \r2

Therefore, for two planets orbiting around the Sun at different distances from the Sun, although the ratio
of their inertial masses is equal to the ratio of their gravitational masses, this ratio is different from the ratio
of their weights towards the Sun. The same can be said of two satellites orbiting around a planet at different
distances from this planet. The reason for this fact is that the weight of each planet towards the Sun is not
only proportional to the gravitational mass of the planet, but is also inversely proportional to its distance
to the Sun.

We can only say that the ratio between the inertial masses of two test bodies is equal to the ratio of their
weights, if the two bodies are at the same distance from the center of the attracting spherical body. This
happened in Galileo’s free fall experiment. Therefore it was possible to arrive at equation (7.19). In the case
of the solar system, on the other hand, different planets orbit at different distances from the Sun. Therefore
we arrive at equation (9.21).

In the International System of Units the ratio between the inertial mass of a test body to its gravitational
mass is defined as having the dimensionless numerical value 1, equation (7.20). Utilizing this result in
equations (9.12) and (9.13) yields:
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2
Yep _ Gmgs

2 )

Qep =

(9.22)

r r
and

2mr T 2
T,="— =27r,/ = /2 (9.23)
? Vep Gmgs VGmygs

That is, the centripetal acceleration a.p, the orbital velocity v,, and the period T}, of the orbit of the
planet are independent of the mass of the planet, although they depend on the gravitational mass of the
Sun.

In this Section we are considering the circular orbit of a planet around the Sun relative to the frame of
fixed stars. An interesting question which can be asked runs as follows: How can the planet keep a constant
distance to the Sun, despite their gravitational attraction? According to Newton, the planet can only keep
a constant distance to the Sun due to its centripetal acceleration relative to absolute space or relative to
an inertial frame of reference. Therefore, if the planet and the Sun were initially at rest relative to an
inertial frame of reference, they would attract and move towards one another, until their collision would take
place. What keeps the planet at a constant distance from the Sun, despite their mutual attraction, is the
centripetal acceleration of the planet relative to an inertial frame of reference. The planet must have a non
zero tangential velocity in this inertial frame of reference, that is, a velocity which is not directed towards
the Sun. This tangential velocity can only be understood or defined utilizing an external frame of reference.
Later on we will return to this discussion.

9.2.3 The Inertial Mass of Any Body Seems to Be Related to a Gravitational
Property of this Body

Subsection 7.2.2 showed that the ratio between the inertial masses of two bodies is equal to the ratio of their
gravitational masses, as they fall freely with the same acceleration near the surface of the Earth. The same
is valid for the planets orbiting around the Sun, as we conclude from Newton’s law of gravitation combined
with Kepler’s third law, as seen in Subsection 9.2.2. Section 7.3, on the other hand, showed that the ratio
of the inertial masses of two electrified bodies can be different from the ratio of their charges. A proton, for
instance, moves inside a capacitor with an acceleration which is different from that of an alpha particle being
accelerated inside the same capacitor. We can also say that the ratio of the inertial masses of two electrified
bodies can be different from the ratio of the electrical forces acting on them due to their interaction with
other charged bodies.

Subsections 8.3.2 and 8.3.3 showed that the ratio between the inertial masses of two bodies is equal to the
ratio of their gravitational masses, as two simple pendulums of the same length oscillate at the same frequency
near the Earth, no matter the weights nor chemical compositions of the oscillating bodies. Subsection 8.1.2,
on the other hand, showed that the ratio between the inertial masses of two bodies is not always equal to the
ratio of the elastic forces applied to them by the same spring under the same deformation from the relaxed
position. The frequency wy of a body of inertial mass m; oscillating horizontally when connected to a spring,
for instance, is different from the frequency wo of another body of inertial mass mo # mq oscillating in the
same spring.

Analogously it can be shown that the inertial mass of a test body is not connected with a possible
magnetic force acting on this body, nor with a possible nuclear force acting on this body, nor with any
other kind of interaction it can suffer from its interactions with other bodies. That is, the inertial mass of
a body is not connected with a magnetic, nuclear, nor any other kind of property of this body or of the
medium around it. That is, two bodies with the same inertial masses can have different magnetic or nuclear
properties, although they always have the same gravitational mass. Newton expressed this fact in Corollary
5, Proposition 6, Book III of the Principia:'®

Corollary 5. The power of gravity is of a different nature from the power of magnetism; for
the magnetic attraction is not as the matter attracted. Some bodies are attracted more by the
magnet; others less; most bodies not at all. The power of magnetism in one and the same body
may be increased and diminished; and is sometimes far stronger, for the quantity of matter, than
the power of gravity; and in receding from the magnet decreases not as the square but almost as
the cube of the distance, as nearly as I could judge from some rude observations.

10[New08b, p. 203].
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Newton’s statement that “the magnetic attraction is not as the matter attracted,” can also be phrased
as follows: the magnetic force acting on a test body is not proportional to the inertial mass of this body.
His statement that “the power of magnetism in one and the same body may be increase and diminished,”
means that we can increase the magnetic force acting on a body, or generated by it and acting upon other
magnetized bodies, by increasing or decreasing its magnetization, without affecting its inertial mass. His
statement that this power of magnetism “is sometimes far stronger, for the quantity of matter, than the
power of gravity,” can be phrased as follows: The ratio of the magnetic force acting on a magnetized body
to its inertial mass can be much larger than the ratio of its weight to its inertial mass.

Since Coulomb it has been known that the force exerted between two magnetic poles p; and ps is
proportional to the product of these pole intensities, equation (2.13). On the other hand, there is no relation
between the intensity of this magnetic pole p and the inertial mass m; of this body. In the case of gravity
Newton showed that the gravitational force between two bodies was proportional to the product of their
inertial masses. From this Corollary 5, Proposition 6 of Book III of the Principia, it can be seen that Newton
was aware that the magnetic force acting on a body was not proportional to its inertial mass.

The inertial mass of a test body is only proportional to its gravitational mass. It is not proportional
to other properties of this body, like its electric charge, intensity of magnetic pole, electric current, nor to
any elastic, thermal or nuclear property. Why does nature behave like that? There is no answer to this
question in newtonian mechanics. Nature might behave in such a way that a piece of gold did fall freely to
the ground with an acceleration different from that of a lighter piece of gold, or from that of another piece
of gold of the same weight but different shape, or from that of a piece of silver of the same weight, etc. If
any of these facts did in fact happen, the whole structure of newtonian mechanics might be maintained,
with the only difference that we would no longer cancel m; with m,. We would then need to consider these
two magnitudes as independent from one another, as it happens with the electric charge of a body which is
independent from its inertial mass.

Although this striking proportionality between inertial mass and gravitational mass does not prove any-
thing, it is highly suggestive. This proportionality suggests that the inertial mass of a body may have a
gravitational origin. In other words, the inertial force —m;a acting on a test body may have a gravitational
origin, arising from its gravitational interaction with other bodies in the cosmos. We show in this book that
according to relational mechanics this is indeed the case.

9.2.4 Orbital Motion of Two Particles in the Frame of Fixed Stars

We now generalize the situation studied in Subsection 9.2.1 by considering two bodies, 1 and 2, interacting
gravitationally with one another and taking into account the motion of both of them relative to an inertial
frame of reference. These two bodies can be the Sun and a planet, the Earth and the Moon, Jupiter and one
of its satellites, or any other two bodies. The inertial and gravitational masses of body 1 will be represented
by m;; and mg1, while for body 2 they will be represented by m;> and mgs, respectively. These bodies will
be considered as particles located at their centers of mass. In this Subsection we are only interested in the
situation in which each one of these two bodies describes a circular orbit around the common center of mass,
considering these motions as happening relative to an inertial frame of reference. Therefore, the distance 712
between these bodies will not depend on time, being a constant.

The frame F' of the fixed stars will be considered here as a good inertial system. The position vectors of
particles 1 and 2 relative to the origin O of the frame F' will be represented by 71 and 7. Likewise, their
velocities and accelerations relative to frame F' will be represented by v, v, d1 and da, respectively.

The gravitational force 1321 exerted by 2 on 1 is given by equation (1.7):

ﬁgl = —G%flg = —ﬁlg s (924)
T1a
where 715 = (71 — 72)/r12 is the unit vector pointing from 2 to 1, while Fiy is the force exerted by 1 on 2.

Combining equation (9.24) with Newton’s second law of motion, equation (1.4), and utilizing that 7y =

—712, the equations of motion for particles 1 and 2 are given by, respectively:

Fy = waﬂ = mdy , (9.25)
T12
and
Fip = —wam = Myady . (9.26)

12
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Newton’s law of gravitation, equation (9.24), satisfies the principle of action and reaction in the strong
form. According to equations (4.4) and (4.10), this means that the total linear momentum p; and the total
angular momentum Ly of this system are constant in time.

The situation which interests us here is the particular case in which the total linear momentum goes
to zero, P = 0, but in which the total angular momentum is a constant different from zero, namely,
L; = constant # 0. Moreover, we will suppose that the center of mass of the system is located at the origin
of the coordinate system, 7., = 0, with 7., defined by equation (4.11). Therefore:

Tem = M4i1T1 + MioTo =0, (927)
and
- mi1 - mi1 - mi1
T9g = — T, Uy =— v, a2 = — ay . (928)
mg2 ms;2 mg2

We are interested, in particular, in the solution of this problem in which the two bodies describe circular
orbits around the common center of mass relative to the frame of fixed stars, as illustrated in figure 9.5.

Figure 9.5: Two particles describing circular orbits around their center of mass in the frame of the fixed
stars.

Utilizing equations (1.4), (7.26) and (9.8), together with 1 = || and ro = |3, yields:

2 2
Mmag1Mg2 m;i1v mioU
05 = —— = 2 = maw’n = mpw’rs (9.29)
(r1 +12) 71 ro

where w is the common angular velocity of both particles, relative to the frame F of fixed stars.

When my; > myo we get r1 < 1o, |0h| < |02] and |d1| < |dz2|. In this case we can neglect the motion
of particle 1 in the frame of the fixed stars, compared with the motion of particle 2 in this frame. We then
return to the results of Subsection 9.2.1.

Utilizing that m; = m,, equation (7.21), the angular velocity given by equation (9.29) can then be written
as:

G G
we |—Mel [ g2 (9.30)
(r1 4+ 72)%r2 (r1+72)%r
Utilizing equations (9.28) and (9.30), the distance between the two bodies is given by:

(9.31)

G(mg + m.qa)} 13
Glmgr £ mg2) [

T‘1+T‘2:|: o
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9.3 Rotation of Two Globes, Relative to an Inertial Frame of Ref-
erence, about Their Common Center of Gravity

9.3.1 Rotation of Two Globes Connected by a Cord

We consider now two equal globes of the same inertial mass m; on an horizontal frictionless table. The
Earth will be considered as a good inertial frame of reference for this problem. We will suppose that they
are connected by an inextensible cord of length ¢. We will suppose that they are rotating, relative to the
laboratory, with a constant angular velocity w = ¢ = v, /p around the central point O between them. The
distance p from each globe to the center is then given by p = ¢/2, figure 9.6.

////"‘\\\\
N
// N \(0
/ \
/ \
/ \
/ \
\
mije ¢ My
| |
\ p 0 p |
\ /
\ /
\ /
\\ /
() N s
\\ //

Figure 9.6: Two globes rotating on an frictionless table. The rectangle represents the table fixed in the
ground.

The only force acting on each globe is exerted by the stretched or tensioned cord. This tension will be
represented by T'. Equation (9.9) applied to any of these globes yields:

2
T =m;a. = miv—t =mw?p . (9.32)
p

Therefore, by increasing the angular velocity w of rotation of the globes, the tension T is increased
simultaneously. By knowing m;, w and p, the value of the tension can then be calculated utilizing equation
(9.32). A dynamomenter connected to the cord might be utilized in order to measure this tension.

9.3.2 Rotation of Two Globes Connected by a Spring

The problem of Subsection 9.3.1 can also be easily solved replacing the cord by a spring of elastic constant
k and relaxed length £,, figure 9.7 (a). We consider here the inertial mass of the spring, m;s, much smaller
than the inertial mass m; of each body connected to it, m;s < m;. The distance p, of each globe to the
center O is given by p, = £,/2 when they are at rest on the table. A force is applied to the two bodies
until they rotate around one another, relative to the ground, with an angular velocity w. From this moment
onwards the external force no longer acts on the two bodies. After the situation stabilizes and the two masses
keep rotating at a constant angular velocity w, the spring is observed to be stretched, having a total length
¢ greater than ¢,, £ > {¢,. In this situation the distance p of each globe to the center of the system is given
by p = ¢/2, figure 9.7 (b).

The tension T or elastic force F, = T exerted by the stretched spring on each body is given by equation
(9.9):

2
F.=T=k({—1¢,) = miv—“’ =mw?p . (9.33)
P

The difference of this case in comparison with the situation of Subsection 9.3.1 is that now the tension
T acting on the spring can be visualized or measured by its elongation, that is, through ¢ — ¢, = T'/k. A
greater elongation indicates a greater tension.

Figure 9.8 (a) illustrates the elastic force T' acting on each globe when the system is rotating relative to
the ground with a constant angular velocity w. The stretched spring exerts a centripetal force on each globe.
By action and reaction, each globe exerts a centrifugal force on the spring, as represented in figure 9.8 (b).
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Figure 9.7: (a) Two globes at rest on the table separated by a distance £,. (b) Two bodies rotating with a
common constant angular velocity w relative the ground and separated by a distance ¢ > ¢,.

The right body, for instance, exerts a force towards the right on the right extremity of the stretched spring.
Likewise, the left body exerts a force towards the left on the left extremity of the stretched spring.
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Figure 9.8: (a) Centripetal forces exerted by the stretched spring on each rotating globe. (b) By action and
reaction each globe exerts a centrifugal force on the extremity of the spring to which it is attached.

9.3.3 Newton and the Distinction between Relative Rotation and Absolute Ro-

tation

Newton discussed this problem of the rotation of two globes connected by a cord as a possible way of
distinguishing relative rotation from absolute rotation. By this experiment we could know if the globes were
really rotating or not rotating relative to absolute space. His discussion appears at the Scholium in the
beginning of Book I of the Principia, after the eight initial definitions and before his three laws of motion.

Here we present the entire discussion, with our emphasis:

11

It is indeed a matter of great difficulty to discover, and effectually to distinguish, the true motions
of particular bodies from the apparent; because the parts of that immovable space, in which those
motions are performed, do by no means come under the observation of our senses. Yet the thing
is not altogether desperate; for we have some arguments to guide us, partly from the apparent
motions, which are the differences of the true motions; partly from the forces, which are the
causes and effects of the true motions. For instance, if two globes, kept at a given distance one
from the other by means of a cord that connects them, were revolved about their common centre
of gravity, we might, from the tension of the cord, discover the endeavor of the globes to recede
from the axis of their motion, and from thence we might compute the quantity of their circular
motions. And then if any equal forces should be impressed at once on the alternate faces of the
globes to augment or diminish their circular motions, from the increase or decrease of the tension
of the cord, we might infer the increment or decrement of their motions; and thence would be
found on what faces those forces ought to be impressed, that the motions of the globes might be

1 [New34, p. 12] and [New90, pp. 13-14].
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most augmented; that is, we might discover their hindmost faces, or those which, in the circular
motion, do follow. But the faces which follow being known, and consequently the opposite ones
that precede, we should likewise know the determination of their motions. And thus we might
find both the quantity and determination of this circular motion, even in an immense vacuum,
where there was nothing external or sensible with which the globes could be compared. But
now, if in that space some remote bodies were placed that kept always a given position to one
another, as the fized stars do in our regions, we could not indeed determine from the relative
translation of the globes among those bodies, whether the motion did belong to the globes or to the
bodies. But if we observed the cord, and found that its tension was that very tension which the
motions of the globes required, we might conclude the motion to be in the globes, and the bodies
to be at rest; and then, lastly, from the translation of the globes among the bodies, we should
find the determination of their motions. But how we are to obtain the true motions from their
causes, effects, and apparent differences, and the converse, shall be explained more at large in
the following treatise. For to this end was that I composed it.

This is an extremely important discussion. We illustrate Newton’s points of view with figures and utilizing
a spring instead of a cord. The value of the tension T in the cord mentioned by Newton can then be indicated
or visualized by the variation in the length of the spring when the system is rotating, according to equation
(9.33). That is, if £ and ¢, are the lengths of the spring when the system is rotating or stationary relative
to absolute space, respectively, the tension T' acting on the spring is related with the variation of its length
through T' = k(¢ — ¢,). The two bodies connected by the spring are rotating on a horizontal frictionless
table. The relaxed spring has a length ¢,. When the globes are rotating relative to absolute space with a
constant angular velocity w, the stretched spring has a length ¢, with £ > /¢,. As seen in Subsection 1.6.3,
Newton considered the fixed stars at rest relative to absolute space. We will suppose that the Earth is also
stationary relative to absolute space. This supposition is not necessary, as we might consider the Earth as
a good inertial frame of reference even when it has a constant velocity relative to absolute space. But this
supposition simplifies the analysis of this problem and we can highlight the main aspects pointed out by
Newton with a greater clarity.

We then consider the Earth as our standard reference frame to study this problem. The paper in which
the figures are drawn will be supposed to be at rest relative to the ground. The rectangle in the figures
indicate a table at rest in the ground. The motion will be considered in a horizontal plane, with the z axis
vertical. The unit vector Z points vertically upwards.

In the first situation all bodies (stars, table, spring and two globes) are at rest relative to the ground.
The spring has a relaxed length ¢,, figure 9.9 (a). In the second situation the two globes and the spring
rotate together, around a vertical axis passing through the center of the spring, with a constant angular
velocity & = w?Z relative to the ground and relative to the frame of fixed stars. The spring is stretched with
a length ¢, with ¢ > ¢,, figure 9.9 (b).
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Figure 9.9: (a) Two globes at rest on a table connected by a relaxed spring of length ¢,. (b) Globes and
spring rotating together relative to the ground with a constant angular velocity . The stretched spring has
a length ¢ > /¢,,.

The initial configuration of figure 9.9 (a) is reproduced in the initial configuration of figure 9.10 (a). That
is, when all bodies are at rest relative to the ground, the relaxed spring has a length ¢,. We now suppose
a thought experiment represented in figure 9.10 (b). The two globes and the spring remain at rest on the
table. But now the whole set of fixed stars rotate together relative to the terrestrial frame 7" with a constant
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angular velocity Wpr = —&@ = —wZz. That is, if the globes in figure 9.9 (b) were rotating anti-clockwise
relative to the ground with an angular velocity w = 27 rad/s, the fixed stars of figure 9.10 (b) are rotating
clockwise relative to the ground with an angular velocity of the same magnitude, namely, |wpr| = 27 rad/s.
What will be the tension acting on the spring is this hypothetical situation? What will be the length of the
stationary spring in this thought experiment?

& - ~ -— Q)
% * s ’7// " \\\
/ \
/ \
/ \
{, I {, \
10, — e, — 11; * { M gpe— 11 | & l
poO po \ poO po |
= — N /
\ //
* - (D\ \\ *
s
~ -
(a) (b)

Figure 9.10: (a) Two globes at rest on a table connected by a relaxed spring of length ¢,. (b) Globes and
spring stationary, while the set of fixed stars rotate together relative to the ground with a constant angular
velocity Wpr = —. What is the length of the spring in this thought experiment?

According to Newton’s discussion of this problem, the spring should not be tensioned in this hypothetical
situation. This means that it should maintain its original length ¢,, remaining relaxed, as represented in
figure 9.10 (b).

Figure 9.11 compares the situation of figures 9.9 (b) and 9.10 (b), in the context of newtonian mechanics.
Figure 9.11 (a) shows two globes rotating with a constant anti-clockwise angular velocity & relative to
absolute space, while the Earth, the table and the fixed stars are stationary. The spring is stretched with
a length £. Figure 9.11 (b) shows the prediction of what should happen if the globes and spring remained
stationary relative to absolute space and also at rest relative to the ground, while the set of fixed stars
rotated together relative to the Earth with a constant clockwise angular velocity —d. According to classical
mechanics, the spring should remain relaxed, maintaining its original length ¢,, with ¢, < ¢.
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Figure 9.11: Comparison of figures 9.9 (b) and 9.10 (b).

There is the same relative rotation with a magnitude w between the globes and the set of fixed stars
in both situations of figure 9.11. Despite this fact, it would be possible to distinguish these two situations
observing the tension of the cord or spring connecting them. In the case of a spring, this tension can be
visualized, indicated or measured by the variation of its length, ¢ — ¢,. The spring is stretched with a length
¢ in situation (a). However, it should not be stretched in situation (b). In this last situation it should
maintain its relaxed length ¢,. Therefore, when there is tension in the spring, this means a real rotation of
the globes relative to absolute space. When there is no tension in the spring, on the other hand, the globes
must be at rest or moving along a straight line with a constant velocity relative to absolute space. Although
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there is the same relative rotation between the globes and the set of fixed stars in both situations of figure
9.11, it should be possible to determine if the rotation relative to absolute space belongs to the globes, as in
situation (a), or to the stars, as in situation (b).

9.4 Newton’s Bucket Experiment

9.4.1 Bucket at Rest or Rotating Together with the Water Relative to the
Ground

We now analyze Newton’s bucket experiment. This is one of the simplest and most important of all experi-
ments performed by Newton.!? It is illustrated in figure 9.12.

(a) (b)

Figure 9.12: (a) Bucket and water at rest relative to the ground, with a horizontal surface of the water. (b)
Bucket and water rotating together relative to the ground with a constant angular velocity w around the
axis of the bucket, with a concave surface of the water.

As the diurnal rotation of the Earth relative to the fixed stars is much smaller than the rotation of the
bucket relative to the Earth in this experiment, we will consider the Earth at rest relative to the fixed stars,
in order to simplify the analysis of this problem. The Earth and the set of fixed stars can be considered a
good inertial frame of reference to study this problem. A bucket partially filled with water is suspended by
a cord near the surface of the Earth. In figure 9.12 (a) the bucket and the water are at rest relative to the
ground. The free surface of water is observed to remain flat and horizontal. The bucked is turned about in
such a way that the cord is strongly twisted. By the sudden action of another force, the bucket is whirled
about the contrary way. The bucket continues the rotation around its axis while the cord is untwisting itself.
In the beginning of the rotation of the bucket, the water remains at rest relative to the ground. Due to the
existing friction between the walls of the bucket and the water, the water begins gradually to spin relative to
the ground. The water begins to recede little by little from the middle, ascending to the sides of the bucket
and descending along the axis of rotation. It forms itself into a concave figure. Supposing that the bucket
maintains for a long time a constant angular velocity of rotation relative to the ground, the system stabilizes
in the configuration shown in figure 9.12 (b). In this situation the bucket and the water rotate together with
a constant angular velocity w relative to the ground. The free surface of water assumes a concave shape.
This concave shape remains constant in time, provided the bucket and water keep rotating around the axis
of the buket at a constant angular velocity relative to the ground.

Newton finished his experiment at this point. But it might be continued as follows. The bucket is
suddenly stopped by holding it strongly with our hands. From then onwards it remains at rest relative
to the ground. Just after the bucket has been stopped, the water remains rotating relative to the ground,
keeping its concave figure. However, due to the friction between the water and the walls of the bucket,
the water decreases gradually its rotation relative to the ground. Simultaneously it decreases gradually its
concavity. That is, the portions of the water in contact with the sides of the bucket descend little by little,
while the portion along the axis of rotation raises little by little. When the water is no longer rotating
relative to the bucket, remaining once again at rest relative to the ground, its free surface return to be flat
and horizontal.

We first consider the situation when the bucket and the water are at rest relative to the ground, figure
9.13 (a). The water is considered as an ideal incompressible fluid with a volume density of inertial mass p;
and a volume density of gravitational mass p,. The coordinate system for this problem is represented in
figure 9.13 (b). There is the vertical z axis and the horizontal x and y axes, with origin O at the upper
surface of the water.

12[New34, pp. 10-11], [New90, pp. 11-12] and [Ass97b].
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Figure 9.13: (a) Bucket and water at rest relative to the ground, with a horizontal surface of the water. (b)
Coordinate system with its origin at the upper surface of the water, horizontal coordinate z and vertical
coordinate z. It is also represented a small volume dV inside the liquid. (c) Forces acting on an infinitesimal
element of gravitational mass dmgy: Downward gravitational force dF, exerted by the Earth and upward
buoyant force dFy exerted by the surrounding liquid. In equilibrium these two forces balance one another.

Consider a infinitesimal element of fluid of volume dV and gravitational mass dmy. There are two forces
acting on it, namely, the downward gravitational force dﬁg exerted by the Earth and the upward buoyant
force dF} exerted by the surrounding fluid and being due to the gradient of pressure p which exists inside
the fluid. These forces are represented in figure 9.13 (c¢). The fluid is at rest relative to the ground, such
that its velocity and acceleration go to zero, namely, v = 0 and @ = 0. Newton’s second law of motion can
then be written as:

dF, + dFy = dm;a =0 . (9.34)

Utilizing that dﬁg = dmgyg = —dmgyg2 and dF, = — (Vp)dV due to the gradient of pressure p which
exists inside the fluid, this equation can be written as equation (5.9). The solution for the pressure p inside
the fluid is then given by equation (5.11), namely:

p(z) = Po — pggz - (9.35)
This equation indicates that the pressure changes linearly with the depth of the liquid. Equation (9.35)

indicates that the surfaces with p(z) = p; = constant, are horizontal planes parallel to the fluid’s free surface
located at a height z; given by:

Do — D1
pgg

The free surface of the water is horizontal and the pressure increases linearly with the depth according
to equation (9.35).

We now calculate the figure of the spinning water and the pressure inside it. We consider the situation
of figure 9.12 (b). In this configuration the water and the bucket rotate together around the axis of the
bucket, relative to the ground, with a constant angular velocity w. We calculate the shape of the free surface
of water and the pressure anywhere inside the spinning liquid.'® Experimentally the surface of the water
remains concave, as represented in figure 9.12 (b).

The simplest way to obtain the form of the surface is to consider an inertial frame of reference T" which
is at rest relative to the ground, centered on the lowest part of the spinning liquid, with the z axis pointing
upwards, as in figure 9.14. The z axis is chosen along the rotation axis of the bucket. The distance of any
infinitesimal portion of the liquid to the axis of rotation will be represented by u = /22 + y2. This distance
is being represented by u instead of the usual symbol p in order to avoid confusion with the volume densities
of inertial and gravitational mass of the fluid.

We first consider an infinitesimal volume dV of liquid just below the surface. Its inertial mass is dm; =
pidV and its gravitational mass is dmgy = p,dV. There are two forces acting on it, namely, the downward

zZ1 =

(9.36)

13|Luc80, pp. 421-424].
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Figure 9.14: Water spinning relative to the ground. The inertial frame of reference 7" with orthogonal axes
(z, z) is at rest in the ground, with its origin on the lowest part of the water.

gravitational force dﬁg = dmgyG = —dmgygZ and the buoyant force dF, exerted by the remainder of fluid
(liquid and air) around the test volume element dV. This buoyant force is orthogonal to the free surface
of the liquid at that location. As any portion of liquid describes a horizontal circular motion around the z
axis, there is no net vertical force acting on it. The sum of these two forces, dﬁg + dﬁb, must point towards
the z axis of rotation. That is, suppose the test element of volume dV is located at ¥ = uu + 2z, where
@ = p = cos @ + sin g is the unit vector of cylindrical coordinates given by equation (9.3) and represented
in figure 9.1. The net force dF acting on this element must point along —, that is, dF° = —|dF|a. This
inward force changes the direction of circular motion relative to an inertial frame of reference, but does not
change the magnitude of the tangential velocity. This tangential velocity can be represented by vy = v,, = v,,.
Newton’s second law of motion for this test element can be written as:

dF, + dFy = dm;d = —dm,a,a (9.37)

where a, = v?/u = uw? is the centripetal acceleration of the test element.
Utilizing the angle o presented in figure 9.14, using dF,, = |dFg|, g = |§| and dF}, = |dF}|, this equation
can be separated into its components along the @ and Z directions, namely:

02
dFysina = dm;a. = dm;—2 = dmw*u | (9.38)
U

and
dFycosa = dF, = dm,g . (9.39)
Dividing equation (9.38) by equation (9.39) yields:

dm; w?u

tana = (9.40)

dmg g
Figure 9.14 shows that tan @ = dz/du, where dz/du is the inclination of the curve to the horizontal in

each of its points. That is, tan & = dz/du represents the inclination to the horizontal of the free surface of
the fluid:

dz dm; w?

_dz _ dmiwiu 41
tan o 2" dm, (9.41)

Integrating equation (9.41), using p; = dm;/dV, py = dmgy/dV, and utilizing the fact that the curve
must pass through the origin * = y = z = 0 of our coordinate system, yields:

L2
= Y2 (9.42)

Pg 29
Therefore the surface of the liquid is a paraboloid of revolution. The greater the value of the angular
velocity w, the larger the concavity of the surface.
We can also calculate the pressure anywhere within the fluid by a similar reasoning, with figure 9.15.
Newton’s second law of motion for an infinitesimal amount of inertial mass dm; of the liquid is given by:
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Figure 9.15: Forces acting on an infinitesimal portion of liquid.

dF, + dFy, = dm;a . (9.43)

Utilizing cylindrical coordinates (u, ¢, z) = (/22 + y2, arctan(y/x), z), together with equation (2.3),
the buoyant force acting on m; due to the surrounding liquid is given by:

- dp 19p Op

dFy =—(Vp)dV = — | ==u+ ——=—p+ —2|dV . 9.44

’ (Vp) (8uu+u8<p(p+8zz (944)

In the situation considered here any portion dm, of the fluid at a distance u from the z axis describes a

horizontal circular orbit with a constant angular velocity w. Therefore it has only a centripetal acceleration
given by:

2
Yy 24
—+ . 9.45

: o (9.45)

a=—"4=—uw

Utilizing equations (9.44) and (9.45) into equation (9.43), together with dF, = —dm,gZ, yields:

%a + %S—Zgﬁ + %2) dV = dm;d = —dmw*uts . (9.46)

The u, ¢ and z components of this equation are given by, respectively:

dﬁg +dFy, = —dmggZ — (

% = piw’u, (9.47)
dp
- =0 9.48
5, =0 (9.48)
and
Ip
92 = —pPg9 - (9.49)
The integration of these three equations leads to:
2,2
piwu
plu, ¢, 2) = —5—+ fily, 2), (9.50)
p(uv ®, Z) = f2(u7 Z) 5 (951)
and
p(u, ¢, 2) = —pggz + f3(u, @), (9.52)

where f1(p, 2), fa(u, z) and f3(u, ¢) are arbitrary functions of ¢ and z; v and z; and u and ¢, respectively.
Equating these three solutions yield:

2
W

2

p(u, @, z) = piv 2 pg9z +k , (9.53)
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where k is a constant.

According to figure 9.15, the lowest point of the free surface of liquid has been chosen as the point for
which (u, z) = (0, 0). Imposing that the pressure in this point is the atmospheric pressure p,, equation
(9.53) yields k = p,. Therefore the final solution for the pressure anywhere inside the liquid is given by:

2

piw
p(u, ¢, 2) = =50 = pggz +po - (9.54)

All over the free surface of the liquid we have the atmospheric pressure, that is, p(u, ¢, z) = po.
Substituting this fact in equation (9.54) yields once more the equation of the concave surface, namely,
equation (9.42). This procedure completes the solution of the problem in newtonian mechanics.

9.4.2 Obtaining the Proportionality between Inertial Mass and Gravitational
Mass from the Concave Shape of Fluids Rotating with the Bucket

Suppose we have two equal buckets partially filled with different fluids 1 and 2, such as water and liquid
mercury, filling the same volume of each bucket. We analyze here only the situation illustrated in figure
9.12 (b) in which the buckets are rotating together with their liquids, relative to the ground, with constant
angular velocities w; and wy. In the first bucket there is an ideal incompressible fluid with volume density of
inertial mass p;; and volume density of gravitational mass p41, while in the second bucket there is another
ideal incompressible fluid with volume density of inertial mass p;2 and volume density of gravitational mass
Pg2. According to equation (9.42), the free surfaces of these two fluids have the shapes of paraboloids of
revolution. The ratio of the heights z; and z; above the lowest points of these two liquids, at the same
distance u; = us = u from their axes of rotation, is given by:

2 _ pa/pa (ﬂ)Q | (9.55)

22 Pi2Pg2 w2

Experiments show that with two homogeneous incompressible fluids, z; = zo whenever w; = ws, no
matter the specific gravities or the chemical compositions of these liquids. That is, all parabolic surfaces
have the same concavity when these fluids rotate relative to the ground with the same angular velocity, as
indicated in figure 9.16.

® ®

Figure 9.16: The free surfaces of all ideal incompressible liquids have the same concavity when they ro-
tate relative to the ground with the same angular velocity, no matter their specific gravities nor chemical
compositions.

Combining this experimental result with equation (9.55) yields once again the fact that the ratio of the
volume density of inertial mass of a liquid to its the volume density of gravitational mass has the same value
for all liquids, equation (7.87).

Moreover, utilizing that in the International System of Units this ratio has a dimensionless value 1,
equation (7.20), the expressions describing the free surface of liquid, equation (9.42), and the pressure within
the liquid, equation (9.54), can then be simplified to:

z=—u”, (9.56)

and
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2

pw
p(u, ¢, 2) = —-u’ = pgz +po (9.57)

where p; = py = p represents the volume density of mass of the fluid and p, is the atmospheric pressure.

9.4.3 Newton and the Distinction between Relative Rotation and Absolute Ro-
tation in the Bucket Experiment

Newton presented his bucket experiment in the Scholium after the eight definitions in the beginning of Book
I of the Principia. This experiment appears before his three laws of motion. It is one of the most important
experiments in the history of mechanics. It was presented just before the two globes experiment described in
Subsection 9.3.3. While the situation of the two globes connected by a cord and rotating relative to absolute
space was only imagined by Newton, being a thought experiment, the bucket experiment to be described
here was a real experiment performed by him. He observed the rotation of the water relative to the ground
and also the ascent of the water towards the sides of the vessel. This crucial experiment supplied him the
empirical support to the concept of absolute motion which was employed in his laws of motion. He did not
change the type of fluid which was put in rotation, working only with water. Therefore, he did not discuss the
proportionality between inertial mass and gravitational mass (or the distinction between p; and p,) which
could be deduced from this experiment. The fundamental relevance of this experiment was that he believed
he had found with it an empirical support to his concept of absolute rotation with respect to empty space.
With this experiment it would be possible to distinguish the absolute rotation of the water with respect to
empty space, from its relative rotation with respect to other material bodies (like the bucket, the Earth, the

fixed stars and the other astronomical bodies). It is important to quote it in full (our emphasis):'4

The effects which distinguish absolute from relative motion are, the forces of receding from the
axis of circular motion. For there are no such forces in a circular motion purely relative, but in
a true and absolute circular motion, they are greater or less, according to the quantity of motion.
If a vessel, hung by a long cord, is so often turned about that the cord is strongly twisted, then
filled with water, and held at rest together with the water; thereupon, by the sudden action
of another force, it is whirled about the contrary way, and while the cord is untwisting itself,
the vessel continues for some time in this motion; the surface of the water will at first be plain,
as before the vessel began to move; but after that, the vessel, by gradually communicating its
motion to the water, will make it begin sensibly to revolve, and recede by little and little from
the middle, and ascend to the sides of the vessel, forming itself into a concave figure (as I have
experienced), and the swifter the motion becomes, the higher will the water rise, till at last,
performing its revolutions in the same times with the vessel, it becomes relatively at rest in it.
This ascent of the water shows its endeavor to recede from the axis of its motion; and the true
and absolute circular motion of the water, which is here directly contrary to the relative, becomes
known, and may be measured by this endeavor. At first, when the relative motion of the water
in the vessel was greatest, it produced no endeavor to recede from the axis; the water showed no
tendency to the circumference, nor any ascent towards the sides of the vessel, but remained of
a plain surface, and therefore its true circular motion had not yet begun. But afterwards, when
the relative motion of the water had decreased, the ascent thereof towards the sides of the vessel
proved its endeavor to recede from the axis; and this endeavor showed the real circular motion
of the water continually increasing, till it had acquired its greatest quantity, when the water
rested relatively to the vessel. And therefore this endeavor does not depend upon any translation
of the water in respect of the ambient bodies, nor can true circular motion be defined by such
translation. There is only one real circular motion of any one revolving body, corresponding
to only one power of endeavoring to recede from its axis of motion, as its proper and adequate
effect; but relative motions, in one and the same body, are innumerable, according to the various
relations it bears to external bodies, and, like other relations, are altogether destitute of any real
effect, any otherwise than they may perhaps partake of that one only true motion. |...]

According to Newton, the free surface of the water would be concave only when the water were rotating
relative to absolute space. He did not present the calculations describing the shape of the free surface of the
water. To him it was enough to observe its concave figure. He knew and observed that the faster the water

14 [New34, pp. 10-11] and [New90, pp. 11-12].
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did rotate relative to the ground, the greater was its concavity. According to Newton, the angular velocity
w appearing in equation (9.42) describing the concave shape of the water would be the angular velocity of
the water relative to empty absolute space, the w would not mean the angular velocity of the water relative
to “ambient bodies.” That is, this angular velocity w does not represent the rotation of the water relative
to the bucket, nor relative to the Earth, nor relative to the set of fixed stars, nor even its rotation relative
to any other astronomical body around the Earth. Remember that, to Newton,'® absolute space is “without
relation to anything external.” Therefore, it is not related with the bucket, nor with the Earth, nor even
with the fixed stars and other astronomical bodies.

We will now show that Newton had no other alternative at that time than to arrive at this conclusion.
The angular velocity of the bucket relative to the ground in Newton’s experiment was much higher than the
angular velocity of the Earth relative to the fixed stars due to the diurnal rotation of the Earth. It was also
much higher than the angular velocity of the Earth relative to the fixed stars due to its annual translation
around the Sun. Therefore we can consider the Earth as not being accelerated relative to the frame of fixed
stars in this experiment, that is, we can consider it as a good inertial frame. We concentrate our analysis in
two very specific situations represented by figure 9.12 (a) and (b), namely:

(a) In the first situation, the bucket and the water are at rest relative to the ground. Therefore, the
bucket and the water are also at rest, or moving along a straight line with a constant velocity, relative to the
frame of fixed stars. Let Wy represent the angular velocity of the bucket relative to the terrestrial frame T,
while &, represents the angular velocity of the water relative to the Earth. In this first situation we have
Gor = Gwr = 0. Experimentally it is found that the surface of the water is flat and horizontal. This fact
can be deduced from newtonian mechanics, as was shown in Section 5.3.

(b) In the second situation the bucket and the water rotate together, relative to the Earth, around the
axis of the bucket with a constant angular velocity Wy = &Gy = J = wZ = constant # 0. Therefore the
bucket and the water also rotate together, relative to the frame of fixed stars, around the axis of the bucket
with this constant and common angular velocity. Experimentally it is found that the surface of the water
is concave. The equation describing this parabolic surface was deduced utilizing newtonian mechanics in
Subsections 9.4.1 and 9.4.2.

The key questions which need to be answered and well understood are: Why is the surface of water
flat in the first situation and concave in the second? What is responsible for this different behavior? The
water concavity in the second situation is due to the rotation of the water relative to what? We now answer
these questions utilizing the newtonian point of view and considering all plausible possibilities. There are
three main natural suspects for this concavity of the water: The rotation of the water relative to the bucket,
relative to the Earth, or relative to the other astronomical bodies (composed essentially by the fixed stars
and distant galaxies).

Let us see if the rotation of the water relative to the bucket can explain the difference observed in situations
(a) and (b) of figure 9.12. That the bucket is not responsible for the different behavior of the water can
be immediately grasped by observing that there is no relative motion between the water and the bucket in
these two situations. After all, Gy — Gy = 0 not only in the first situation in which dyr = Gyr = 6, but
also in the second situation in which &yr = Jyr # 0. This means that whatever the force exerted by the
bucket on each molecule of the water in the first situation, it will remain the same in the second situation,
as the bucket remains at rest relative to the water in this second situation.

The second suspect is the rotation of the water relative to the Earth. After all, in the first situation of
figure 9.12 the water was at rest relative to the ground, @,z = 0, and its surface was flat. In the second
situation, on the other hand, the water was spinning relative to the ground, &W,,v # 0, and its surface was
concave. Thus, this relative rotation between the water and the Earth might be responsible for the concavity
of water. Newton maintained that this was not the case:'6 “And therefore this endeavor [to recede from the
axis of circular motion| does not depend upon any translation of the water with respect of the ambient bodies,
nor can true circular motion be defined by such translation.” We show here that Newton was consistent and
correct in this conclusion when using his own law of gravitation. In the first situation, the only relevant
force exerted by the Earth on each molecule of water is of gravitational origin. As we saw in Chapter 1,
utilizing equation (1.7) and theorem 31 of the Principia presented in Subsection 1.4.1, the Earth attracts
any molecule of water as if the whole Earth were concentrated at its center, equations (1.15) and (1.17):

—

Fy=mgyG=—mgygZ . (9.58)

15New34, p. 6] and [New90, p. 7].
16[New34, p. 11] and [New90, p. 12].
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In the second situation, the water is rotating relative to the ground, but the force exerted by the Earth
on each water molecule is still given simply by the result of equation (9.58), namely, ﬁg = —mgygZ, pointing
vertically downwards. This conclusion is due to the fact that Newton’s law of gravitation, equation (1.7),
does not depend on the velocity or acceleration between interacting bodies. This means that in newtonian
mechanics the Earth cannot be responsible for the concavity of the surface of the water. Whether the water
is at rest or spinning relative to the ground, it will experience the same gravitational force due to the Earth,
that is, the downward weight F_"g given by equation (9.58). This force has no tangential component along
the direction of motion of the molecule relative to the ground. This force has not as well any centrifugal
component pointing from the axis z of rotation towards any water molecule. There is no component of the
gravitational force exerted by the Earth on the water which depends on the velocity of the water relative
to the ground, nor any component which depends on the acceleration of the water relative to the ground.
Therefore it is not the Earth which causes the water to ascend towards the sides of the bucket when the
water is spinning relative to the ground.

The third material suspect which might cause the concavity of the water is the set of fixed stars. This
concavity might be due, in particular, to the relative rotation between the water and the set of fixed stars.
Let &y represent the angular rotation of the water relative to the set of fixed stars. In the first situation
of figure 9.12, the water is essentially at rest or moving with a constant linear velocity relative to the frame
of fixed stars, Gyr = 0. The water has a flat and horizontal surface. In the second situation, on the other
hand, the water is spinning around its axis, relative to the fixed stars, with a constant angular velocity,
Wywp = constant # 0. The water has a concave surface. This relative rotation between the water and the
fixed stars might be responsible for the concavity of water. But in newtonian mechanics this is not the
case either. The only relevant interaction of the water with the fixed stars is of gravitational origin. Let us
analyse the influence of the stars in the first situation. As we saw in Chapter 1, utilizing equation (1.7) and
theorem 30 of the Principia presented in Subsection 1.4.1, we find that the net force exerted by all the fixed
stars on any molecule of water is essentially zero, assuming that the fixed stars are distributed more or less
at random in the sky and neglecting the small anisotropies in their distribution. This result is represented in
equation (1.11). This is the reason why the fixed stars are seldom mentioned in the solution of any problem
of classical mechanics (collision of bodies, oscillation of pendulums or springs, trajectory of projectiles, etc.).
This will remain valid not only when the water is at rest relative to the fixed stars, but also when the water
is rotating relative to them. Once more, this null result is due to the fact that Newton’s law of gravitation,
equation (1.7), does not depend on the velocity or acceleration between the interacting bodies. Thus, the
force exerted by a spherical shell on a material point as given by equation (1.15), remains valid no matter
what the velocity or acceleration of the test body relative to the shell.

As we have seen in Subsection 1.4.4, Newton was aware that we can neglect the gravitational influence
of the set of fixed stars in most situations of the solar system. Recall that he wrote in the Principia:'”
“Not to mention that the fixed stars, everywhere promiscuously dispersed in the heavens, by their contrary
attractions destroy their mutual actions, by Proposition 70, Book I.” The conclusion is then that the relative
rotation between the water and the fixed stars is not responsible for the concavity of the water either.

Newton knew only the fixed stars belonging to our galaxy, the Milky Way. He was not aware of the
existence of the galaxies. Nowadays we might consider that the concavity of the water in the second situation
of figure 9.12 might be due to the relative rotation between the water and the set of distant galaxies. But
in newtonian mechanics this explanation does not work as well. It is known that the distant galaxies are
distributed more or less uniformly in the sky, apart some small anisotropies. Therefore, the same conclusion
Newton reached for the fixed stars (that they exert no net force on bodies of the solar system) applies to
the distant galaxies. That is, the set of distant galaxies exert essentially zero net gravitational force on the
molecules of water in Newton’s bucket experiment, no matter if the water is at rest or spinning relative to
the galaxies.

The concavity of the water is a real phenomenon, as we can measure how much the water ascended
along the sides of the bucket. Moreover, the water can even pour out of the bucket if its angular velocity w
relative to the ground is great enough. Newton concluded that this effect was not due to the rotation of the
water relative to the bucket, nor relative to the Earth, nor even relative to the astronomical bodies around
the Earth, like the fixed stars. Therefore, Newton had no other choice than to point out another cause
for this effect, namely, the rotation of the water relative to absolute space. This was his only alternative,
assuming the validity of the universal law of gravitation, which he proposed in the same book where he
presented the bucket experiment. Moreover, this newtonian absolute space cannot have any relation with
the gravitational mass of the water, of the bucket, of the Earth, of the fixed stars, of the distant galaxies,

17[New34, p. 422] and [New08b, p. 211].
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nor of any other material body. After all, as we have just seen, all these other possible material influences
have been eliminated. Therefore Newton’s absolute space must be identified with the vacuum or with empty
space, as it is not connected to any material body.

The quantitative explanation of this key experiment, without introducing the concept of absolute space,
is one of the main accomplishments of relational mechanics as developed in this book.

9.4.4 What Would Be the Shape of the Spinning Water If All Other Astronom-
ical Bodies around the Earth Were Annihilated?

In Newton’s experiment not only the Earth, the bucket and the water were present, but also the stars and
galaxies around the Earth. Newton was aware of the existence of the stars, but not of the galaxies. Figure
9.17 presents Newton’s experiment including in the drawing the stars and galaxies around the Earth. To
simplify the analysis we are supposing that the set of stars and the set of galaxies are at rest relative to the
Earth. The rotation of the water relative to the ground in Newton’s experiment was much larger than the
diurnal rotation of the Earth around its axis relative to the fixed stars. It was also much larger than the
annual rotation of the Earth around the Sun relative to the fixed stars. Therefore, in our simplified analysis,
we will also neglect the diurnal rotation of the Earth around its axis and its annual translation around the
Sun relative to the fixed stars.
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Figure 9.17: Newton’s bucket experiment including the galaxies in the picture. (a) Bucket and water at rest
relative to the ground. (b) Bucket and water rotating together relative to the ground.

An important consequence of the analysis presented in Subsection 9.4.3 is that even if the fixed stars
and distant galaxies disappeared (were literally annihilated from the universe), the concavity of the water
would not change in this bucket experiment. The fixed stars and the distant galaxies have no relation with
the concavity of the water, at least according to newtonian mechanics. This absence of influence is due to
Proposition 70, Theorem 30 of Book I of the Principia presented in Subsection 1.4.1. Suppose, for instance,
that the water ascended up to the border of the bucket when it made a turn per second relative to the
ground, rotating with an angular velocity w = 27 rad/s. Therefore it would still raise to this same level in
the hypothetical situation without stars and galaxies, provided it were still rotating relative to the ground
once a second. This thought experiment is presented in figure 9.18.

If we could double the number of all stars and galaxies, as compared with the real situation presented in
figure 9.17, the concavity of the water would still remain the same. We are supposing here that the bucket,
the water and the Earth were not changed in this hypothetical situation in comparison with the real world
(that is, the Earth would continue with its present size and with a density 5.5 times larger than the density
of water). Only the number of stars and galaxies would be doubled in comparison with the real world. This
thought experiment is represented in figure 9.19.
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Figure 9.18: The concavity of the water should not change according to newtonian mechanics if all other
astronomical bodies around the Earth were annihilated. (a) Bucket and water at rest relative to the ground.
(b) Bucket and water rotating together relative to the ground.

) ol oy =
) Wﬂ o (-)q
Y h: ¢
* - % @ =
+ = * =
* *
Y ¢
= -
- - - -
% - % -
* *
vy b vy b
= (RN} = ()
@) (b)

Figure 9.19: The concavity of water would not be changed according to newtonian mechanics if the number
of stars and galaxies around the Earth were doubled. (a) Bucket and water at rest relative to the ground.
(b) Bucket and water rotating together relative to the ground.

9.4.5 What Would Be the Shape of the Water If It Remained at Rest in the
Ground While All Other Astronomical Bodies Rotated Rapidly Around
the Axis of the Bucket?

Another important consequence can be drawn from the analysis presented in Subsection 9.4.3.

In Newton’s experiment the water was initially at rest relative to the bucket and to the ground, having a
horizontal free surface, figure 9.17 (a). We are supposing the stars and galaxies to be at rest relative to the
ground to simplify the analysis of this problem. When the water is spinning together with the bucket around
the axis of the bucket relative to the ground, the water assumes a concave shape. Let us suppose that in the
situation of figure 9.17 (b) the bucket were spinning once a second relative to the ground, w = 27 rad/s, with
the higher portion of the water reaching the upper border of the bucket. We also assume that the plane of
the paper in which this drawing has been made coincides with Newton’s absolute space and that the water
is spinning anti-clockwise when seen from above.

We now imagine a situation which is visually or kinematically equivalent to that of figure 9.17 (b).
Initially the water and the bucket are at rest relative to absolute space and the surface of the water is
horizontal. What would be the shape of the free surface of water if, while the bucket and water remained
at rest relative to absolute space, the Earth, the set of fixed stars, and the set of galaxies rotated together,
relative to absolute space, completing a clockwise turn per second around the axis of the bucket? As seen
in Subsection 1.4.3, the spinning Earth would still attract the stationary water vertically downwards, while
the stars and galaxies, rotating around the bucket, would still exert no net force on any molecule of water,
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according to equation (1.21). This means that the surface of the water in this thought experiment would
remain flat and horizontal, parallel to the bottom side of the bucket, as indicated in figure 9.20.
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Figure 9.20: (a) Earth, bucket, water, stars and galaxies at rest relative to absolute space. (b) Supposing
the bucket and water at rest relative to absolute space, the surface of the water should remain flat and
horizontal, even when the Earth, stars and galaxies rotate together quickly around the axis of the bucket.

The situation of figure 9.20 (b) is visually or kinematically equivalent to the situation of figure 9.17 (b).
In both cases there is the same relative rotation between the water and the Earth, between the water and
the fixed stars, and between the water and the distant galaxies. Despite this fact, these two situations are
not dinamically equivalent. While the water is concave in the situation of figure 9.17 (b), it is flat in the
situation of figure 9.20 (b).

Another hypothetical situation in which the surface of the water would remain flat is indicated in figure
9.21.
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Figure 9.21: The Earth is supposed to remain at rest relative to absolute space. Supposing the water to
remain at rest relative to the ground, the surface of the water would remain flat and horizontal not only in
situation (a) when the stars and galaxies are at rest relative to the ground, but also in situation (b) in which
only the stars and galaxies were rotating together, relative to the ground, around the axis of the bucket.

In this case the Earth remains at rest relative to absolute space in situations (a) and (b). In this thought
experiment all motions can be referred to the Earth. In situation (a) the water, stars and galaxies are at
rest relative to the ground and the water has a flat surface. In case (b) there is an hypothetical situation
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in which only the set of stars and the set of galaxies are spinning quickly together, relative to the ground,
around the axis of the bucket. The bucket and the water remain at rest relative to the ground. According
to newtonian mechanics, the surface of the water will remain flat horizontal in this second situation, even if
it were possible to rotate all the stars and galaxies once a second around the axis of the bucket. Subsection
23.3.5 will show that relational mechanics makes different predictions for these thought experiments.



Chapter 10

Diurnal Rotations of the Earth

This Chapter discusses the diurnal rotations of the Earth around its axis according to newtonian mechanics.

The Earth does not rotate relative to itself. Likewise, there is no rotation of the Earth relative to any
person at rest relative to the ground, nor relative to any frame of reference which is at rest relative to the
ground. Therefore, when it is stated that the Earth rotates once a day around its North-South axis, this
rotation must be understood as happening relative to other material bodies outside the Earth, or relative to
other inertial frames of reference which are different from the terrestrial frame of reference.

There are two main ways of determining that the Earth is rotating around its axis relative to something.
The first procedure is to observe the relative rotation between the Earth and other astronomical bodies (like
the Sun, the set of fixed stars, the set of distant galaxies, the cosmic background radiation, etc.). This
rotation is called the relative rotation of the Farth or the kinematic rotation of the Farth. This rotation can
be measured or indicated by a visual effect. We see, for instance, the Sun rotating once a day around the
North-South axis of the Earth (the Sun rising, setting, etc.). Likewise, by observing the stars at night, we see
that they rotate once a day around the North-South axis of the Earth (the set of fixed stars moves as a whole
during the night relative to a wall fixed in the ground, for instance). This relative or kinematic rotation of
the Earth can be equally explained by two alternative motions, namely: (I) The Earth rotates once a day
clockwise around its North-South axis, relative to a frame of reference S, while the other astronomical bodies
(like the set of fixed stars, for instance) remain at rest in this frame. (II) The Earth remains stationary
relative to another frame of reference S’, while the other astronomical bodies (like the set of fixed stars, for
instance) rotate once a day anti-clockwise around the North-South axis of the Earth. The diurnal relative
rotation between the Earth and the Sun has been known and measured for more than two thousand years.
Likewise, the diurnal relative rotation between the Earth and the set of fixed stars has also been known and
measured for more than two thousand years.

The second way to determine the Earth’s rotation utilizes dynamic effects happening on the Earth itself or
happening on bodies connected to the Earth. In this second procedure, the value of the rotation of the Earth
can be obtained without any observation of external astronomical bodies. This rotation can be determined,
for instance, in a closed room utilizing a Foucault’s pendulum. This rotation is called the absolute rotation
of the Earth or the dynamic rotation of the Earth. It can be measured or indicated by the figure of the Earth
(the Earth is flattened at the poles). This absolute or dynamic rotation of the Earth can be measured as well
by its influence on bodies moving relative to the ground (Foucault’s pendulum, gyroscopes, major circulation
of air and winds in the Northern and Southern hemispheres, etc.). In newtonian mechanics these dynamic
effects happen only due to a real rotation of the Earth around its North-South axis relative to absolute space,
no matter if the other astronomical bodies are at rest or moving relative to absolute space. These effects
would not happen if the Earth did not rotate relative to absolute space, even if the other astronomical bodies
(like the Sun, stars and galaxies) did rotate once a day, around the North-South axis of the Earth, relative
to absolute space. It is also possible to say that according to classical mechanics these effects happen when
the Earth has a real rotation around its North-South axis relative to an inertial frame of reference S, no
matter if the other astronomical bodies are at rest or moving relative to S. These effects would not happen
if the Earth did not rotate relative to an inertial frame of reference S, even if the other astronomical bodies
(like the Sun, stars and galaxies) did rotate once a day, around the North-South axis of the Earth, relative
to this frame of reference S.

This definition of an absolute rotation of the Earth has been given by Newton. He also showed how to
calculate the dynamic effects which arise due to the absolute rotation of the Earth with his expression of a
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