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Relational Mechanics

¨ A new mechanics intended to replace newtonian
mechanics and also Einstein’s theories of relativity.

¨ It implements Mach’s principle quantitatively based on
Weber’s force for gravitation and the principle of
dynamical equilibrium.

¨ It explains Newton’s bucket experiment with the concave
figure of the water being due to a gravitational
interaction between the water and the distant galaxies
when in relative rotation.

¨ It is intended for physicists, engineers, mathematicians,
historians, philosophers of science and students.
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Front Cover:
Top left: Car at rest relative to the ground with two horizontal springs, a vessel partially filled
with liquid and a pendulum supporting a test body.
Top right: There are some visible effects when a car is uniformly accelerated relative to the
ground (for instance, with an acceleration of a = 5 m/s2 to the right): horizontal springs are
deformed, a pendulum remains inclined to the vertical and the free surface of water in a
vessel remains inclined to the horizontal.
What would happen with these bodies if it were possible to accelerate uniformly the set of
galaxies relative to the ground, in the opposite direction, with the same magnitude (for
instance, with an acceleration of a = –5 m/s2 to the left), while the car and the internal bodies
remained at rest in the ground?
Bottom left: Nothing would happen to the bodies according to newtonian mechanics. The
springs should remain relaxed, the water horizontal and the pendulum vertical.
Bottom right: According to relational mechanics, on the other hand, the same visible effects
should take place in all these bodies. The deformable bodies should behave as in the top right
configuration. That is, the springs should be deformed, the water should be inclined to the
horizontal and the pendulum should be inclined to the vertical. The kinematic situation now
is the same as that of top right configuration, with equal relative acceleration between these
bodies and the set of galaxies. Therefore, the same dynamic effects should appear.
Phenomena like these are discussed at length in this book.
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Preface

This book presents Relational Mechanics. This is a new mechanics which opposes not only Newton’s classical
mechanics, but also Einstein’s special and general theories of relativity. It answers several questions which
have not been clarified by the theories of Newton and Einstein. In this new mechanics several concepts
which formed the basis of newtonian theory do not appear, such as absolute space, absolute time and
absolute motion. Other classical concepts do not appear as well, such as inertial mass, inertial force, inertia
and inertial systems of reference. Only when relational mechanics is compared with newtonian mechanics
can we obtain a clear understanding of these old concepts.

Relational mechanics is a quantitative implementation of the ideas of Leibniz, Berkeley and Mach utilizing
Weber’s force for gravitation. It is based only on relational concepts such as the distance between material
bodies, the relative radial velocity between them and the relative radial acceleration between them. Several
scientists took part in its development, including Wilhelm Weber himself and Erwin Schrödinger. The goal
of this book is to present the properties and characteristics of this new physics, together with the main
aspects related to its historical development after Newton. In this way relational mechanics can be seen in a
broad perspective. After this presentation it becomes easy to make a comparison with the old worldviews,
namely, newtonian and einsteinian mechanics.

A great emphasis is given to Newton’s bucket experiment. When a bucket partially filled with water
remains stationary in the ground, the water surface is observed to remain horizontal. When the bucket and
the water rotate together relative to the ground around the bucket’s axis with a constant angular velocity,
the surface of the water is observed to become concave, higher at the sides of the bucket than along the
its axis. This is one of the simplest experiments ever performed in physics. Despite this fact no other
experiment had so deep and influential consequences upon the foundations of mechanics. We place it at the
same level Galileo’s experimental discovery that all bodies fall freely towards the ground with a constant
acceleration, no matter their weights or chemical compositions. The explanation of these two facts without
utilizing the concepts of absolute space or inertia, but taking into account the gravitational influence exerted
by the distant galaxies in these two experiments, is one of the major achievements of relational mechanics.

In order to show all the power of relational mechanics and to analyze it in perspective, we first present
newtonian mechanics and Einstein’s theories of relativity. We address the criticisms of Newton’s theory
made by Leibniz, Berkeley and Mach. We present several problems connected to Einstein’s theories of
relativity. We then present relational mechanics and show how it solves mathematically all the problems
and negative aspects of classical mechanics with a clarity and simplicity unsurpassed by any other model.
The detailed history of relational mechanics is also presented, emphasizing the achievements and limitations
of all major works along these lines of reasoning. In addition, we present several notions which are beyond
the scope of newtonian theory, such as the precession of the perihelion of the planets, the anisotropy of
the effective inertial mass, the adequate mechanics for high velocity particles, etc. Experimental tests of
relational mechanics are also outlined.

This book is an improved version of some earlier works, such as On Mach’s principle (1989), On the
absorption of gravity (1992), Mecânica Relacional (1998), Relational Mechanics (1999), Uma Nova Física
(1999) and The principle of physical proportions (2001 to 2011).3 A Portuguese version of this work was
published in 2013 under the title Mecânica Relacional e Implementação do Princípio de Mach com a Força
de Weber Gravitacional.4 Several improvements have been made in comparison with these works, namely:

• The is a much larger number of figures. Moreover, we tried to emphasize the material body (Earth,
stars or galaxies) relative to which the motion of the test body is being described.

• The explanations are more didactic and clear.
3[Ass89a], [Ass92f], [Ass98], [Ass99a], [Ass99b], [Ass01], [Ass03a], [Ass04] and [Ass11b] with German translation in [Ass13a].
4[Ass13b].
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• The phenomena connected with the rotation of the Earth, in relation to the set of fixed stars, were
separately analyzed in the frame of the fixed stars and in the Earth’s frame of reference.

• The field concept has been avoided (gravitational field, electric field or magnetic field). The field
concept is utilized only in connection with the conceptual framework of Faraday, Maxwell and Lorentz.
In order to avoid the many problems associated with the field concept, in this book we utilize the
concepts of force per unit mass, force per unit charge or force per unit magnetic pole.

• We tried to indicate clearly in all equations of relational mechanics the influence of the mean density
of gravitational mass of the universe in the appropriate phenomena.

• We presented a detailed discussion related to the conceptual and experimental distinction between
relative motion and absolute motion. This has been made not only when the bodies are spinning
(relative to the set of distant galaxies or relative to absolute space), but also when they are linearly
accelerated (in relation to the set of galaxies or in relation to absolute empty space).

• Several new phenomena have been considered.

• The quotation of original works and the number of references have been greatly enlarged.

• An Appendix has been included indicating several alternative ways of calculating Weber’s force exerted
by an spherical shell and acting on an internal body. This calculation presents the main result distin-
guishing relational mechanics not only from newtonian mechanics, but also from Einstein’s theories of
relativity.

This book is intended for physicists, mathematicians, engineers, philosophers and historians of science.
It is also addressed to teachers of physics at university or high school levels and to their students. Those
who have taught and learned newtonian mechanics know the difficulties and subtleties related to its basic
concepts (inertial frame of reference, proportionality between inertial and gravitational masses, fictitious
centrifugal force, etc.) Above all, it is intended for young unprejudiced people who have an interest in the
fundamental questions of physics, namely:

• Is there an absolute motion of any body relative to empty space? Or is there only a relative motion of
this body in relation to other material bodies?

• How to distinguish experimentally these two completely opposite conceptions of motion? Can we prove
experimentally that a certain body is accelerated relative to empty space? Or the only thing that can
be proved experimentally is that a certain body is accelerated in relation to other bodies?

• What is the meaning of inertia? What is the meaning of inertial force?

• Why the inertial mass of a test body is proportional to the gravitational mass of this test body?

• Is there any material body responsible for the inertial force acting on another test body?

• Why two bodies of different weight, shape and chemical composition fall freely in vacuum with the
same acceleration towards the Earth’s surface?

• When a bucket partially filled with water is at rest relative to the ground, the surface of the water
remains flat and horizontal. Newton rotated the bucket together with the water around the bucket’s
axis, with a constant angular velocity relative to the ground. He observed that the surface of the
water became concave, higher towards the sides of the bucket and lower around its axis. What was the
material agent responsible for this behavior of the water? This concave shape of the water’s surface
was due to the rotation of the water relative to some material body? Was it due to the rotation of
the water relative to the bucket? Or relative to the Earth? Or relative to other material bodies, such
as the stars of our galaxy? Or relative to the frame of distant galaxies? Is this curvature due to the
rotation of the water in relation to empty absolute space, as Newton believed? Or is this curvature
due to the rotation of the water in relation to the distant astronomical bodies, as Mach suggested?

• When the bucket and water are at rest relative to the ground, the surface of the water remains flat
and horizontal. If it were possible to rotate quickly all other astronomical bodies around the bucket’s
axis (like 1 turn per second), would the surface of the water remain flat and horizontal? Or would it
become concave, higher towards the sides of the bucket and lower along its axis?
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• It is known that the Earth is flattened at the poles, with the North-South axis smaller than the East-
West diameter. Newton was the first to predict this effect and to calculate its magnitude, relating it
with the diurnal rotation of the Earth around its North-South axis. Is this flattening of the Earth due
to its diurnal rotation in relation to empty space, as Newton believed? Or is this flattening due to the
diurnal rotation of the Earth in relation to the other astronomical bodies, as Mach believed?

• What would be the shape of the Earth if all other astronomical bodies were annihilated and the Earth
remained alone in the universe? Would it remain flattened at the poles?

• Suppose that it were possible to annihilate all astronomical bodies around the Earth, in such a way
that it remained alone in the universe. Is there any philosophical meaning to speak about the rotation
of the Earth? Rotation relative to what? Would it be possible to detect or to measure any effect due
to this hypothetical rotation?

• Foucault observed that the plane of oscillation of a pendulum does not remain fixed in relation to the
Earth’s surface, except when it is located at the Equator. The plane of oscillation of a Foucault’s
pendulum located at the geographic North pole of the Earth follows the motion of the stars and
galaxies around the Earth. That is, it precesses 360o in one sidereal day. Is there any physical relation
or connection between these two phenomena, as Mach suggested? Or is this only a coincidence?

• If it were possible to stop the rotation of the stars and galaxies around the Earth, what would be the
motion of the plane of oscillation of a Foucault’s pendulum located at the North pole? Would it sill
precess relative to the ground during its oscillations? Or would the plane of oscillation remain at rest
relative to the ground?

• What are the possible experiments which can be made in order to distinguish Mach’s points of view
from those of Newton?

• Newton believed that there are measurable effects when bodies are absolutely accelerated relative to
empty space. Mach, on the other hand, argued that all these empirical effects pointed out by Newton
were in fact due to the relative acceleration between this body and the distant astronomical bodies.
How to test in the laboratory these two opposite worldviews?

In this book we show the answer to all these questions from the point of view of relational mechanics. We
show that these answers are much simpler and more philosophically sound and appealing than in Einstein’s
theories of relativity.

Nowadays the majority of physicists accept Einstein’s theories as correct. We show this is untenable and
present an alternative theory which is much clearer and more reasonable than the previous ones. We know
that these are strong statements, but we are sure that anyone with a basic understanding of physics will
accept this fact after reading this book with impartiality and without prejudice. With an understanding of
relational mechanics, we enter a new world, viewing the same phenomena with different eyes and from a new
perspective. It is a change of paradigm, considering this word with the meaning given to it by Kuhn in his
important work.5 This new formulation will help put physics on new rational foundations, moving it away
from the mystifications of this century.

We hope physicists, engineers, mathematicians and philosophers will adopt this book in their courses of
mechanics, mathematical methods of physics and history of science, recommending it to their students. We
believe the better way to create critical minds and to motivate the students is to present to them different
approaches for the solution of the same problems, showing how the concepts have been growing and changing
throughout history and how great scientists viewed equivalent subjects from different perspectives.

In this book we utilize the International System of Units. When we define any physical concept we utilize
“≡” as a symbol of definition. We utilize symbols with a double subscript with some different meanings.
Examples: mi1 is the inertial mass of body 1, ~Fji is the force exerted by particle j on particle i, ~vmS is the
velocity of particle m relative to the frame of reference S, and ~a12 = ~a1 − ~a2 is the acceleration of particle
1 relative to a certain frame of reference minus the acceleration of particle 2 relative to the same frame of
reference. In the text we clarify which meaning we are employing in each case.

Andre Koch Torres Assis6

5[Kuh62].
6Institute of Physics, University of Campinas — UNICAMP, 13083-859 Campinas, SP, Brazil, e-mail: assis@ifi.unicamp.br

— homepage: <www.ifi.unicamp.br/~assis>.
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Chapter 1

Newtonian Mechanics

1.1 Introduction

The branch of knowledge which deals with the equilibrium and motion of bodies is called mechanics. In the
last three hundred years this area of physics has been taught based on the work of Isaac Newton (1642-1727),
being called classical or newtonian mechanics. His main work is called Mathematical Principles of Natural
Philosophy, usually known by its first Latin name, Principia.1 This book was originally published in 1687.
It is divided in three parts, Books I, II and III.

The other main work of Newton is his book Opticks, originally published in 1704. While the Principia
was written in Latin, the Opticks was published in English, being later on translated to Latin and other
languages.2

Newtonian mechanics as presented in the Principia is based on the concepts of space, time, velocity,
acceleration, weight, mass, force, etc. This formulation is presented in Section 1.2.

Since long before Newton there has been a great discussion between philosophers and scientists about the
distinction between absolute and relative motion.3 Absolute motion is conceived as the motion of a body in
relation to empty space. Relative motion, on the other hand, is conceived as the motion of a body in relation
to other bodies. In this book we consider only Newton and other scientists following him. The reasons for
this choice are the impressive success achieved by newtonian mechanics as regards the phenomena observed
in nature and the new standard introduced by Newton in this whole discussion with his dynamic arguments,
as distinguished from kinematic arguments, in favour of absolute motion. In particular, we can cite his
famous bucket experiment and the flattening of the Earth. These are some of the main topics of this book.

1.2 Laws of Motion

In this Section we present classical mechanics in Newton’s words. Moreover, we will also introduce some
modern algebraic formulas which synthetize his formulation in mathematical language utilizing vectorial
magnitudes and the International System of Units.

The Principia begins with eight definitions. The first definition is “quantity of matter,” which is also
called “body” or “mass.” Newton defined it as the product of the density of the body by the volume it
occupies:4

Definition I: The quantity of matter is the measure of the same, arising from its density and bulk
conjointly.

Thus air of a double density, in a double space, is quadruple in quantity; in a triple space,
sextuple in quantity. The same thing is to be understood of snow, and fine dust or powders, that
are condensed by compression or liquefaction, and of all bodies that are by any causes whatever
differently condensed. I have no regard in this place to a medium, if any such there is, that freely
pervades the interstices between the parts of bodies. It is this quantity that I mean hereafter

1[New34], [New52a], [New90], [New99], [New08b] and [New10b].
2[New52b], [New79] and [New96].
3[Jam57], [Jam11], [Dug88], [Evo88], [BX89], [Bar89], [Jam93], [Jam10] and [Evo94].
4[New34, p. 1] and [New90, p. 1].
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4 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

everywhere under the name of body or mass. And the same is known by the weight of each
body, for it is proportional to the weight, as I have found by experiments on pendulums, very
accurately made, which shall be shown hereafter.

In the Principia Newton spoke of only one kind of mass, namely, the quantity of matter in the body.
After Newton, it has been usual to call this magnitude by the name inertial mass, in order to distinguish it
from the mass which appears in the law of universal gravitation, which is called nowadays as gravitational
mass. These two mass concepts will be discussed in Subsection 1.3.2.

Representing the quantity of matter (that is, the inertial mass) of a homogeneous body by mi, its volume
density of inertial mass by ρi and its volume by V , we have:

mi ≡ ρiV . (1.1)

As will be seen in Section 14.4, Ernst Mach (1838-1916) correctly criticized this definition, as Newton did
not specify nor define previously the density of the body. Newton did not present as well an experimental
procedure to measure the density of the body which would be independent from another procedure to measure
its inertial mass. According to Mach, it was necessary to have a definition of inertial mass which did not
depend on the density of the body. The density of a homogeneous body would be then defined as the ratio of
the inertial mass of the body by its volume. Mach’s alternative definition of inertial mass will be discussed
in Section 14.4.

After this first definition, Newton introduced the concept of “quantity of motion” of a body, defining it
as the product of the quantity of matter with the velocity of the body:5

Definition II: The quantity of motion is the measure of the same, arising from the velocity and
quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts; and therefore in a body double
in quantity, with equal velocity, the motion is double; with twice the velocity, it is quadruple.

Representing the vectorial velocity by ~v and the quantity of motion by ~p we have:

~p ≡ mi~v . (1.2)

In the sequel we will see that to Newton this velocity should be understood as the velocity of the body
in relation to absolute space and measured by absolute time.

Newton then defined the equivalent expressions vis insita or vis inertiae. The first expression can be
translated as innate force of matter, inherent force of matter, inner force, essential force, internal force of a
body, or as a force inherent to the body.6 The second expression can be translated as inertial force, force of
inertia, inertia, or as a force of inactivity. Newton’s words:7

Definition III: The vis insita, or innate force of matter, is a power of resisting, by which every
body, as much as in it lies, continues in its present state, whether it be of rest, or of moving
uniformly forwards in a right line.

This force is always proportional to the body whose force it is and differs nothing from the
inactivity of the mass, but in our manner of conceiving it. A body, from the inert nature of
matter, is not without difficulty put out of its state of rest or motion. Upon which account, this
vis insita may, by a most significant name, be called inertia (vis inertiae) or force of inactivity.
But a body only exerts this force when another force, impressed upon it, endeavors to change its
condition; and the exercise of this force may be considered as both resistance and impulse; it is
resistance so far as the body, for maintaining its present state, opposes the force impressed; it is
impulse so far as the body, by not easily giving way to the impressed force of another, endeavors
to change the state of that other. Resistance is usually ascribed to bodies at rest, and impulse to
those in motion; but motion and rest, as commonly conceived, are only relatively distinguished;
nor are those bodies always truly at rest, which commonly are taken to be so.

5[New34, p. 1] and [New90, p. 2].
6[Coh80, pp. 190 and 257] and [Coh99, Section 4.7, pp. 96-101].
7[New34, p. 2] and [New90, p. 2].
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His fourth definition is that of “impressed force:”8

Definition IV: An impressed force is an action exerted upon a body, in order to change its state,
either of rest, or of uniform motion in a right line.

[...]

The fifth definition is that of “centripetal force:”9

Definition V: A centripetal force is that by which bodies are drawn or impelled, or any way tend,
towards a point as to a centre.

[...]

Then follow definitions of the absolute quantity of a centripetal force, of the accelerative quantity of a
centripetal force and the motive quantity of a centripetal force.

After these definitions, there is a very famous Scholium with the definitions of absolute time, absolute
space and absolute motion.10 It is worthwhile quoting its main parts:11

Scholium

Hitherto I have laid down the definitions of such words as are less known, and explained the sense
in which I would have them to be understood in the following discourse. I do not define time,
space, place, and motion, as being well known to all. Only I must observe, that the common
people conceive those quantities under no other notions but from the relation they bear to sensible
objects. And thence arise certain prejudices, for the removing of which it will be convenient to
distinguish them into absolute and relative, true and apparent, mathematical and common.

I. Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without
relation to anything external, and by another name is called duration: relative, apparent, and
common time, is some sensible and external (whether accurate or unequable) measure of duration
by the means of motion, which is commonly used instead of true time; such as an hour, a day, a
month, a year.

II. Absolute space, in its own nature, without relation to anything external, remains always
similar and immovable. Relative space is some movable dimension or measure of the absolute
spaces; which our senses determine by its position to bodies; and which is commonly taken
for immovable space; such is the dimension of a subterraneous, an aerial, or celestial space,
determined by its position in respect of the Earth. Absolute and relative space are the same in
figure and magnitude; but they do not remain always numerically the same. For if the Earth, for
instance, moves, a space of our air, which relatively and in respect of the Earth remains always
the same, will at one time be one part of the absolute space into which the air passes; at another
time it will be another part of the same, and so, absolutely understood, it will be continually
changed.

III. Place is a part of space which a body takes up, and is according to the space, either absolute
or relative. [...]

IV. Absolute motion is the translation of a body from one absolute place into another; and
relative motion, the translation from one relative place into another. [...]

Then come his three “Axioms, or Laws of Motion” and six corollaries, namely:12

Axioms, or Laws of Motion

Law I: Every body continues in its state of rest, or of uniform motion in a right line, unless it is
compelled to change that state by forces impressed upon it.

[...]

8[New34, p. 2] and [New90, p. 3].
9[New34, p. 2] and [New90, p. 3].

10[Bar93].
11[New90, pp. 6-8].
12[New34, pp. 13-20] and [New90, pp. 15-23].
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Law II: The change of motion is proportional to the motive force impressed; and is made in the
direction of the right line in which that force is impressed.

[...]

Law III: To every action there is always opposed an equal reaction: or, the mutual actions of two
bodies upon each other are always equal, and directed to contrary parts.

[...]

Corollary 1: A body, acted on by two forces simultaneously, will describe the diagonal of a paral-
lelogram in the same time as it would describe the sides by those forces separately.

[...]

Corollary 4: The common centre of gravity of two or more bodies does not alter its state of motion
or rest by the actions of the bodies among themselves; and therefore the common centre of gravity
of all bodies acting upon each other (excluding external actions and impediments) is either at
rest, or moves uniformly in a right line.

[...]

Corollary 5: The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without any circular
motion.

[...]

His first law of motion is usually called the law of inertia.
His second law of motion can be written as:

~F =
d~p

dt
=

d

dt
(mi~v) . (1.3)

Here we have used ~F for the resultant force acting on the body, also called the net force. If the inertial
mass mi is constant, then this law can be written in the simple and well known expression given by:

~F = mi~a , (1.4)

where ~a = d~v/dt is the acceleration of the body in relation to absolute space, figure 1.1. Absolute space
has been identified with the paper in which this figure has been drawn due to the fact that, according to
Newton, it has no relation to anything external. Therefore, this acceleration ~a should not be understood as
the acceleration of the body relative to the ground, relative to the stars belonging to our galaxy, nor relative
to the frame of distant galaxies. Newton’s absolute space is then equivalent to empty space or equivalent to
the vacuum.

mi

a

v

Figure 1.1: Body of inertial mass mi moving with velocity ~v and acceleration ~a in relation to Newton’s
absolute space.

Suppose there are N bodies interacting with one another. Let p be one of these bodies, with p = 1, ..., N .
Its inertial mass will be represented by mip and suppose it is moving in absolute space with acceleration ~ap.
Let k be another body belonging to these N bodies. We will represent the force exerted by p on k as ~Fpk.
In this case equation (1.4) for body k can be written as:

N
∑

p=1

p 6=k

~Fpk = mik~ak . (1.5)

In classical mechanics the trajectories of bodies in absolute space are obtained through this equation of
motion. Some special cases need the application of equation (1.3), such as a rocket utilizing fuel and ejecting
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gases, a load truck loosing sand during its motion, etc. These situations of variable mass can also be solved
utilizing equation (1.4), provided that each component of the problem is considered separately (the rocket
and the ejected gases, or the truck and the lost sand, etc.) For this reason it is possible to consider equation
(1.4) as the fundamental basis of newtonian mechanics.

Newton’s third law of motion is usually called the law of action and reaction. Representing the force
exerted by body A on another body B by ~FAB and the force exerted by B on A by ~FBA, the third law can
be written as:

~FAB = − ~FBA . (1.6)

Whenever Newton utilized the third law, the forces between the bodies were directed along the straight
line connecting them, as in the law of gravitation.

His first corollary is called the law of the parallelogram of forces.
His fifth corollary introduces the concept of inertial frames of reference or inertial systems. That is,

frames of reference which are at rest or which move along a straight line with a constant velocity in relation
to absolute space. These reference frames are discussed in Section 1.7.

In this book we will call “test body” to the body whose motion is being studied. The “source bodies,” on
the other hand, will represent the bodies exerting forces on the test body.

1.3 Universal Gravitation

1.3.1 Modern Formulation of the Law of Gravitation

In order to apply his formulation of mechanics, Newton needed expressions for the forces acting on the
bodies. The most important and famous force is his law of universal gravitation, presented by Newton in the
third book of the Principia. This law can be expressed nowadays with the following words: Each particle
of matter attracts any other particle with a force which is proportional to the product of the gravitational
masses of these bodies and which is inversely proportional to the square of the distance between them. These
forces of attraction are considered along the straight line connecting each pair of particles.

Algebraically Newton’s law of gravitation can be written as follows:

~F21 = −G
mg1mg2

r2
r̂ = − ~F12 . (1.7)

In this equation ~F21 is the force exerted by the gravitational mass mg2 on the gravitational mass mg1, G is
a constant of proportionality, r is the distance between the point bodies, r̂ is the unit vector pointing from
2 to 1, while ~F12 is the force exerted by mg1 on mg2, figures 1.2 and 1.3.

r

r^

mg2mg1

Figure 1.2: Two bodies separated by a distance r.

21 F21 F12

Figure 1.3: Force ~F21 exerted by 2 on 1 and force ~F12 exerted by 1 on 2.

In the International System of Units the constant G, usually called the constant of universal gravitation,
is given by:

G = 6.67× 10−11 m3

kgs2
. (1.8)
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Consider an inertial frame of reference S with origin O. Let ~r1 = x1x̂+ y1ŷ + z1ẑ be the position vector
of gravitational mass mg1 relative to the origin O of S, while ~r2 = x2x̂+ y2ŷ + z2ẑ is the position vector of
mg2 separated by a distance r =

√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, figure 1.4.

z

y
x

0

S

r1
m1

r2

m2

r

r^

Figure 1.4: Gravitational masses mg1 and mg2 located at the position vectors ~r1 and ~r2 in relation to the
origin O of a reference frame S and separated by a distance r.

In this case the unit vector r̂ pointing from 2 to 1 can be written as r̂ = (~r1 − ~r2)/r.

1.3.2 Inertial Mass and Gravitational Mass

The masses which appear in equation (1.7) are called “gravitational masses” in order to distinguish them
from the “inertial masses.” The inertial masses are the masses which appear in the definition of quantity of
matter, in the definition of linear momentum and in Newton’s second law of motion, equations (1.1), (1.2)
and (1.4).

Gravitational masses are sometimes called by some authors “gravitational charges,” due to the great
analogy between them and the electrified bodies (also called electric charges). An electric charge generates
and feels electric forces. That is, it acts upon other charges, accelerating them, and it is also affected by the
presence of other charges, being accelerated by them. Likewise, the bodies containing gravitational masses
generate and feel gravitational forces. That is, they accelerate other bodies with gravitational masses and
are simultaneously accelerated by them. Moreover, the electrostatic force between electrified bodies has the
same form as Newton’s law of gravitation, as will be seen in equation (2.12). That is, it is proportional to
the product of the two interacting charges, q1q2, and varies inversely as the square of the distance between
them. Moreover, it is also a central force, acting along the straight line connecting the two point charges.
For these reasons it can be seen that the gravitational masses have a much greater analogy with the electric
charges than with the inertial masses.

In this book we will keep this conceptual distinction between the inertial masses — which appear in
equations (1.1), (1.2) and (1.4) — and the gravitational masses — which appear in equation (1.7). These
two masses will be represented by different symbols, namely, mi and mg, respectively. In any event it should
be mentioned that Newton himself introduced only one mass concept in the Principia, namely, that which
has been called inertial mass in Section 1.2.

The gravitational masses are usually measured with a balance. They are proportional to the weight of
the body or to the gravitational force exerted by the Earth on this body near the surface of the Earth. That
is, if a balance is utilized to measure the weights Fg1 and Fg2 of bodies 1 and 2 at the same location of the
Earth, the ratio of their gravitational masses is defined by the following relation:

mg1

mg2
≡ Fg1

Fg2
. (1.9)

Suppose, for instance, that with an equal arm balance five bodies are found having the same weight. Let
us represent the weight of each one of the bodies by WA and the gravitational mass of each one of them by
mgA. Moreover, let us suppose that there is another body B which, when placed in one pan of this balance,
equilibrates all other five bodies placed together at the other pan of the balance. In this case we say that
the weight of B, WB , is five times the weight of A. That is, WB = 5WA, in such a way that:

mgA

mgB
≡ WA

WB
=

1

5
. (1.10)
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A discussion of how to build balances and measure weights can be found in the book Archimedes, the
Center of Gravity and the First Law of Mechanics: The Law of the Lever.13

1.3.3 Newton’s Original Formulation of the Law of Gravitation

Nowhere in the Principia did Newton express the law of gravitation in the form of equation (1.7). In
Subsection 1.3.1 we presented a short formulation of this law in the following words: Each particle of matter
attracts any other particle with a force which is proportional to the product of the gravitational masses of
these bodies and which is inversely proportional to the square of the distance between them.

Newton did not utilize these words, but we can find similar statements in several passages of the Principia:
Book I, Propositions 72 to 75 and Proposition 76, especially Corollaries 1 to 4; Book III, Propositions 5,
7 and 8; and in the General Scholium at the end of Book III. For instance, in Book I, Proposition 76,
Corollaries 1 to 4, Newton was referring to isotropic distributions of matter, that is, with mass densities of
each spherical body depending only upon the distances r1 and r2 to the centers of each body, like ρ1(r1) and
ρ2(r2). Moreover, he considered that each material point attracted with a force varying inversely with the
square of the distance:14

Corollary 1. Hence if many spheres of this kind, similar in all respects, attract each other, the
accelerative attractions of each to each, at any equal distances of the centres, will be as the
attracting spheres.

Corollary 2. And at any unequal distances, as the attracting spheres divided by the squares of
the distances between the centres.

Corollary 3. The motive attractions, or the weights of the spheres towards one another, will be
at equal distances of the centres conjointly as the attracting and attracted spheres; that is, as
the products arising from multiplying the spheres into each other.

Corollary 4. And at unequal distances directly as those products and inversely as the squares of
the distances between the centres.

Proposition 7 of Book III stated:15

That there is a power of gravity pertaining to all bodies, proportional to the several quantities of
matter which they contain.

That all planets gravitate one towards another, we have proved before; as well as that the force of
gravity towards every one of them, considered apart, is inversely as the square of the distance of
places from the centre of the planet. And thence (by Proposition 69, Book I, and its Corollaries)
it follows that the gravity tending towards all the planets is proportional to the matter which
they contain.

Moreover, since all the parts of any planet A gravitate towards any other planet B; and the
gravity of every part is to the gravity of the whole as the matter of the part to the matter of the
whole; and (by Law III) to every action corresponds an equal reaction; therefore the planet B
will, on the other hand, gravitate towards all the parts of the planet A; and its gravity towards
any one part will be to the gravity towards the whole as the matter of the part to the matter of
the whole. Q. E. D.

This last paragraph is very important. It shows the key role played by the law of action and reaction in
the derivation of the fact that the force of gravity is proportional to the product of the masses of the two
bodies (and not, for instance, proportional to the sum of these masses, or proportional to the product of
the masses squared, or to their product cubed, etc.). French presented a detailed and critical discussion of
Newton’s arguments to arrive at the law of gravitation, emphasizing the importance of the law of action and
reaction.16

In the General Scholium at the end of the book we read:17

13[Ass08], [Ass10a] and [Ass11a].
14[New34, p. 199] and [New90, p. 228].
15[New34, pp. 414-415] and [New08b, pp. 203-204].
16[Fre89].
17[New34, p. 546] and [New08b, p. 331].
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Hitherto we have explained the phenomena of the heavens and of our sea by the power of gravity,
but we have not yet assigned the cause of this power. This is certain, that it must proceed
from a cause that penetrates to the very centres of the Sun and planets, without suffering the
least diminution of its force; that operates not according to the quantity of the surfaces of the
particles upon which it acts (as mechanical causes used to do), but according to the quantity of
the solid matter which they contain, and propagates its virtue on all sides to immense distances,
decreasing always as the inverse square of the distances.

In the System of the World written by Newton, first published in 1728, we can also see the importance
of the law of action and reaction in order to reach the conclusion that the gravitational force is proportional
to the product of the masses. We quote here from Section 20 of Newton’s book, soon after the Section in
which Newton discussed his pendulum experiments which showed the proportionality between weight and
inertial mass:18

[20.] The agreement of those analogies.

Since the action of the centripetal force upon the bodies attracted is, at equal distances, pro-
portional to the quantities of matter in those bodies, reason requires that it should be also
proportional to the quantity of matter in the body attracting.

For all action is mutual, and (by the third Law of Motion) makes the bodies approach one to
the other, and therefore must be the same in both bodies. It is true that we may consider one
body as attracting, another as attracted; but this distinction is more mathematical than natural.
The attraction resides really in each body towards the other, and is therefore of the same kind
in both.

1.4 The Forces Exerted by Spherical Shells

1.4.1 Force Exerted by a Stationary Spherical Shell

In Section 12 of Book I of the Principia, Newton proved two extremely important theorems related with the
force exerted by a spherical shell on internal and external point particles. He supposed forces which vary
inversely with the square of the distance between the interacting particles, as is the case with his gravitational
force, equation (1.7), and also with the electrostatic force. In the first theorem Newton proved the following
result:19

Section 12: The attractive forces of spherical bodies.

Proposition 70. Theorem 30: If to every point of a spherical surface there tend equal centripetal
forces decreasing as the square of the distances from these points, I say, that a corpuscle placed
within that surface will not be attracted by those forces any way.

That is, if a body is placed anywhere inside the spherical shell (not only on its center), the resultant
force exerted by the shell on the body is zero. This situation is represented in figure 1.5, in which there is a
spherical shell of gravitational mass Mg, radius R and center C, with a corpuscle of gravitational mass mg

located in an arbitrary location inside the shell, at a distance r from the center of the shell.

mgC

Mg

Figure 1.5: The spherical shell exerts no resultant force on a particle located anywhere inside the shell.

Newton’s result can be expressed mathematically as follows:

18[New34, p. 568] and [New08a, Section 20, p. 354].
19[New34, p. 193] and [New90, p. 221].
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~F = ~0, if r < R . (1.11)

By symmetry it might had been concluded that the net force would be zero if the corpuscle were located
exactly at the center of the shell. If it were not on its center, as represented in figure 1.5, the only conclusion
that could be drawn based upon arguments of symmetry, is that the net force acting on the particle must be
along the line connecting it to the center of the shell. No argument of symmetry would lead to the conclusion
that this force must be zero. It is possible to show that this net force is zero only when the force between
the particles is inversely proportional to the square of the distance between them. If the force between the
particles had another behavior (if it varied as the inverse of the distance cubed, for instance), then the result
given by equation (1.11) would no longer be valid.

With theorem 31 Newton proved the following result:20

Proposition 71. Theorem 31: The same things supposed as above, I say, that a corpuscle placed
without the spherical surface is attracted towards the centre of the sphere with a force inversely
proportional to the square of its distance from that centre.

That is, a particle placed outside the spherical shell is attracted as if the shell were concentrated at its
center. This is represented in figure 1.6, in which there is a spherical shell of gravitational mass Mg, radius
R and center C, with a corpuscle of gravitational mass mg located outside it in an arbitrary location, at a
distance r from the center of the shell. The net force on this particle points towards the center of the shell
and its magnitude varies inversely as the square of the distance between the corpuscle and the center of the
shell.

mgC

Mg

F

Figure 1.6: The spherical shell exerts an attractive force on an external corpuscle. The force points towards
the center of the shell and its magnitude is inversely proportional to the square of the distance between this
center and the particle.

Utilizing Newton’s law of universal gravitation, equation (1.7), together with his Proposition 71, Theorem
31 of the Principia, we obtain that a spherical shell of gravitational mass Mg and radius R exerts a force ~F
on a particle of gravitational mass mg located at a distance r > R from the center of the shell given by:

~F = −G
Mgmg

r2
r̂ , if r > R . (1.12)

Here r̂ represents an unit vector pointing radially outwards from the center of the shell towards the location
of mg, that is, pointing from C towards the particle.

Let us now consider the situation when the corpuscle of gravitational mass mg is exactly over the surface
of the spherical shell of radius R and gravitational mass Mg, as in figure 1.7.

mgC

Mg

F

Figure 1.7: The spherical shell exerts an attractive force on a corpuscle located exactly over the surface of
the shell. This force points towards the center of the shell.

20[New34, p. 193] and [New90, p. 222].
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Integration of Newton’s law, equation (1.7), yields the following net force ~F exerted by the shell on the
particle:

~F = −G

2

Mgmg

R2
r̂ , if r = R . (1.13)

Propositions 70 and 71 of Book I of the Principia are nowadays presented as follows. Suppose we have a
spherical shell of gravitational mass Mg and radius R centered on O figure 1.8. Let us suppose a reference
frame at rest relative to the spherical shell, with its origin located over the center of the shell. Let ~r represent
the position vector pointing from the center of the shell towards an arbitrary material point.

R

O

R

O

r1

mg1

Mg

(a) (b)

Mg

mg1

r1

Figure 1.8: Spherical shell.

An element of gravitational mass dmg2 located at ~r2 over the surface of the shell is given by dmg2 =
σg2da2 = σg2R

2dΩ2 = σg2R
2 sin θ2dθ2dϕ2, where σg2 = Mg/4πR

2 is the surface density of gravitational
mass distributed uniformly over the surface of the shell, dΩ2 is the element of spherical angle, θ2 and ϕ2 are
the polar and azimuth angles of spherical coordinates, θ2 varying from 0 to π rad, and ϕ2 varying from 0 to
2π rad. The gravitational force exerted by this element of gravitational mass on a test particle mg1 located
at ~r1 is given by equation (1.7):

d~F21(~r1) = −G
mg1dmg2

r212
r̂12 , (1.14)

where ~r12 = ~r = ~r1 − ~r2 is the vector pointing from dmg2 to mg1, r12 = |~r12| = r is the distance between
dmg2 and mg1, while r̂12 = ~r12/r12 = r̂ represents the unit vector pointing from dmg2 to mg1. Appendix B
shows how to perform the integration of this force utilizing spherical coordinates. After integration, the net
force exerted by the shell on mg1 is given by (utilizing that r1 ≡ |~r1| and r̂1 ≡ ~r1/r1):

~F (~r1) =







−GMgmg1r̂1/r
2
1 , if r1 > R

−GMgmg1r̂1/(2R
2) , if r1 = R

~0 , if r1 < R







. (1.15)

That is, if the particle is outside the shell, it will be attracted as if the shell were concentrated at O. If
the particle is anywhere inside the shell, it will not feel any net force exerted by the shell. And if it is over
the surface of the shell it will be attracted towards the center of the shell with a force which is the arithmetic
mean between the values of the force when the particle is slightly outside and slightly inside the shell.

As Newton’s law of gravitation does not depend upon the velocity nor upon the acceleration of the bodies,
equation (1.15) will remain valid no matter the velocity or acceleration of the particle in relation to absolute
space or in relation to the spherical shell. This equation will also remain valid no matter the velocity or
acceleration of the shell in relation to absolute space or in relation to the particle.

Utilizing Newton’s law of universal gravitation, equation (1.7), and his Proposition 71, Theorem 31 of
the Principia, it is possible to obtain easily the force on an external particle exerted by a spherical body
with a volume density of gravitational mass which depends only upon the distance to the center of the shell,
ρg(r), but which does not depend upon the polar and azimuth angles θ and ϕ. That is, the spherical body
will attract the external particle as if its whole mass were concentrated on the center of the sphere.
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In the case of the Earth, neglecting the small effects due to its form being not exactly spherical, the force
it exerts on an external particle of gravitational mass mg located at a distance r from the center of the Earth
is given by:

~F (r > RE) = −G
MgEmg

r2
r̂ , (1.16)

where MgE is the gravitational mass of the Earth, RE its radius and r̂ is the unit vector pointing radially
away from the center of the Earth towards the test particle mg. This force is usually called the weight of
the body, being represented by ~W , by mg~g or by ~Fg:

~Fg = mg

(−GMgE

r2
r̂

)

≡ mg~g , (1.17)

where

~g(r) ≡
~Fg

mg
= −GMgE

r2
r̂ . (1.18)

Here ~g(r) is the force exerted by the Earth, by the unit of gravitational mass. It is also called the gravitational
field of the Earth. As will be seen shortly, ~g has the same value as the downward acceleration of bodies
falling freely in vacuum towards the center of the Earth. By this equation it can be observed that the force
per unit mass depends upon the distance between the test body and the center of the Earth. The magnitude
of the weight, |~Fg|, can be represented by W , by mgg or by Fg.

In the International System of Units the gravitational mass of the Earth is given by: MgE = 5.98×1024 kg.
If the test body is close to the surface of the Earth, then r ≈ RE , where RE = 6.37 × 106 m is the mean
radius of the Earth. Close to the surface of the Earth the magnitude of this acceleration of free fall, |~g(RE)|,
is given by:

g(RE) = |~g(RE)| =
GMgE

R2
E

≈ 9.83
m

s2
. (1.19)

This value needs to be corrected due to two main factors: (i) The flattened shape of the Earth at the poles
and enlarged at the Equator, and (ii) the diurnal rotation of the Earth in relation to the frame of distant
stars. These two factors affect the measured value of the terrestrial gravitational force per unit mass, in such
a way that it depends upon the latitude. At the poles its value is close to 9.83 m/s2, at the Equator its
value is 9.78 m/s2, while at a latitude of 50o this force per unit mass has a value of 9.81 m/s2 (values at sea
level). That is, if we have a balance at sea level, at rest relative to the ground, a body with a gravitational
mass of 1 kg will weight 9.83 N at the poles, 9.81 N at 50o latitude and 9.78 N at the Equator.

1.4.2 Force Exerted by a Linearly Accelerated Spherical Shell

Suppose a spherical shell of radius R and gravitational mass Mg is moving relative to absolute space with a
linear acceleration ~A, figure 1.9.

R

O

R

O

r1

mg1

Mg

(a) (b)

Mg

mg1

r1

A A

Figure 1.9: Linearly accelerated spherical shell.

What is the force exerted by this spherical shell on a gravitational mass mg1 located inside or outside
the shell? Let ~r1 be the position vector of this particle in relation to the center of the shell. As Newton’s
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law of gravitation does not depend upon the velocity nor upon the acceleration between the bodies, equation
(1.15) remains valid no matter the value of the acceleration ~A, that is:

~Faccelerated shell(~r1) =







−GMgmg1r̂1/r
2
1 , if r1 > R

−GMgmg1r̂1/(2R
2) , if r1 = R

~0 , if r1 < R







. (1.20)

Moreover, this result remains valid no matter the velocity ~v1 and acceleration ~a1 of the test particle mg1

relative to absolute space.

1.4.3 Force Exerted by a Spinning Spherical Shell

Suppose a spherical shell of radius R and gravitational mass Mg is spinning relative to absolute space with
an angular velocity ~Ω around an axis passing through the center of the shell, figure 1.10.

z

y

x

Mg

R

0

r1
v1

a1

mg

Ω

Figure 1.10: Spinning spherical shell.

What is the force exerted by this spherical shell on a particle of gravitational mass mg1 located inside
or outside the shell? Let ~r1 be the position vector of this particle in relation to the center of the shell.
As Newton’s law of gravitation does not depend upon the velocity nor upon the acceleration between the
interacting bodies, equation (1.15) remains valid no matter the value of ~Ω, that is:

~Fspinning shell(~r1) =







−GMgmg1r̂1/r
2
1 , if r1 > R

−GMgmg1r̂1/(2R
2) , if r1 = R

~0 , if r1 < R







. (1.21)

Moreover, this result remains valid no matter the velocity ~v1 and acceleration ~a1 of the particle with
gravitational mass mg1 in relation to absolute space.

1.4.4 Cosmological Implications from the Fact that a Spherical Shell Exerts No

Force on Internal Bodies

Newton was completely aware of the cosmological implications of his Proposition 70, Theorem 30, of Book
I of the Principia, discussed in Subsection 1.4.1. In this Proposition Newton proved that the gravitational
force exerted by a spherical shell on a test body located anywhere inside the shell has a zero net value.

He presented this consequence in the second Corollary of Proposition 14, Theorem 14 (The aphelions and
nodes of the orbits of the planets are fixed), of Book III of the Principia:21

Corollary 1. The fixed stars are immovable, seeing they keep the same position to the aphelion
and nodes of the planets.

Corollary 2. And since these stars are liable to no sensible parallax from the annual motion of
the Earth, they can have no force, because of their immense distance, to produce any sensible
effect in our system. Not to mention that the fixed stars, everywhere promiscuously dispersed in
the heavens, by their contrary attractions destroy their mutual actions, by Proposition 70, Book
I.

21[New34, p. 422] and [New08b, p. 211].
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The main implication of Proposition 70 is that we can essentially neglect the gravitational influence
exerted by the set of fixed stars upon the planetary motions and upon experiments conducted with test
bodies moving on the Earth. Their joint influence can be neglected due to the fact that the stars are
randomly scattered in all directions in the sky, neglecting here the concentration of stars in the Milky Way.
This means that the net force exerted by the set of stars upon the Sun, upon the planets of the solar system,
and upon terrestrial bodies is essentially null. That is, this net force can be neglected when compared with
the magnitude of the other forces which usually act upon terrestrial bodies, upon the planets or upon the
Sun. Therefore, we can neglect the influence of the gravitational force exerted by the set of fixed stars on
terrestrial bodies and on the dynamics of the solar system.

Although Newton was not aware of the existence of galaxies, the same conclusion can be drawn applied
to them. The galaxies are spread more or less uniformly in all directions of space. Therefore, the net
gravitational force exerted by the galaxies which are around the Milky Way, acting on any body belonging
to the Milky Way, is essentially zero. Even when this force is not exactly zero, it will be much smaller than
the usual forces acting on this body due to the other bodies which belong to the Milky Way.

The sets of stars and galaxies do not exert resultant forces on any body of the solar system, no matter
the velocity nor the acceleration of this body in relation to absolute space. This result is valid not only in the
frame of absolute space and in all inertial frames which move with constant velocities in relation to absolute
space, but also in all frames which are accelerated in relation to absolute space. In these non-inertial frames
the sets of stars and galaxies can be seen with translational accelerations along a straight line, or rotating
together around a test body. Despite this fact, the sets of stars and galaxies, accelerated or spinning, will
remain exerting zero net forces on this test body. This zero net force is due to the fact that Newton’s law of
gravitation does not depend upon the velocity or acceleration between the interacting bodies.

It will be seen in Subsection 16.3.2 that this Proposition 70, Theorem 30, remains valid in Einstein’s
special theory of relativity. This null result, on the other hand, is no longer valid with a Weber’s force
for gravitation, as will be seen in Subsection 17.5.1. This is one of the crucial points in which relational
mechanics differs from newtonian mechanics and also from Einstein’s theories of relativity. This new result of
relational mechanics will lead to a new vision of the world. The interpretation offered by relational mechanics
to the majority of simple phenomena of physics is completely different from the interpretations offered by
classical mechanics and by Einstein’s theories of relativity. Relational mechanics presents a new paradigm
for physics.

1.5 The Mean Density of the Earth

Usually the textbooks mention that the gravitational constant G was first measured by H. Cavendish (1731-
1810) in 1798 in his experiment with a torsion balance. As a matter of fact, Newton and Cavendish did
not write down the gravitational force with a constant G, as given by equation (1.7). Moreover, they never
mentioned the constant G. Cavendish’s paper is called “Experiments to determine the density of the Earth.”22

He obtained that the mean density of the Earth is 5.48 times larger than the density of water.23

In order to obtain the mean density of the Earth, Cavendish compared the gravitational force exerted by
the Earth on a sphere with gravitational mass mg, with the gravitational force exerted between two spheres
with gravitational masses Mg and mg, with their centers separated by a distance r. In order to perform this
last measurement, which yields a value much smaller than the gravitational attraction exerted by the Earth,
he utilized a torsion balance. This is a very sensitive instrument which can detect tiny forces. Knowing how
many times the density of the sphere with mass Mg was larger than the density of water, and utilizing the
known values of the distance r and the Earth’s radius RE , Cavendish could then determine the mean density
of the gravitational mass of the Earth.

It should be remarked that Newton had a very good idea of the mean density of the Earth 100 years
before Cavendish. For instance, in Proposition 10 of Book III of the Principia he wrote:24

But that our globe of Earth is of greater density than it would be if the whole consisted of water
only, I thus make out. If the whole consisted of water only, whatever was of less density than
water, because of its less specific gravity, would emerge and float above. And upon this account,
if a globe of terrestrial matter, covered on all sides with water, was less dense than water, it would
emerge somewhere; and, the subsiding water falling back, would be gathered to the opposite side.

22[Cav98] and [Clo87].
23[Cav98, p. 284] and [Cav98, Gravitation, Heat and X-Rays, pp. 100-101 and 143].
24[New34, p. 418] and [New08b, pp. 207-208].
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And such is the condition of our Earth, which in a great measure is covered with seas. The Earth,
if it was not for its greater density, would emerge from the seas, and, according to its degree of
levity, would be raised more or less above their surface, the water of the seas flowing backwards
to the opposite side. By the same argument, the spots of the Sun, which float upon the lucid
matter thereof, are lighter than that matter; and, however the planets have been formed while
they were yet in fluid masses, all the heavier matter subsided to the centre. Since, therefore, the
common matter of our Earth on the surface thereof is about twice as heavy as water, and a little
lower, in mines, is found about three, or four, or even five times heavier, it is probable that the
quantity of the whole matter of the Earth may be five or six times greater than if it consisted
all of water; especially since I have before shown that the Earth is about four times more dense
than Jupiter. [...]

That is, Newton estimated 5ρwater < ρE < 6ρwater and Cavendish obtained 100 years later ρE =
5.48ρwater. This is only a small example of how far ahead of his time Newton was. Modern measurements
of the mean density of the Earth yield a value of 5.52 times the mean density of water, that is, ρE =
5.52× 103 kg/m3.

1.6 The Measurements of Inertial Mass, Time and Space

1.6.1 Measurement of Inertial Mass

As seen in Section 1.2, Newton defined the quantity of matter or mass of a body as given by the product
of its density by the volume occupied by the body. This newtonian mass is called nowadays inertial mass.
However, as a matter of fact, Newton did not utilize this definition in order to measure the value of the
inertial mass of any body. As he himself mentioned in the first definition of the Principia:25

It is this quantity that I mean hereafter everywhere under the name of body or mass. And the
same is known by the weight of each body, for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shown hereafter.

In Sections 7.2 and 8.3 we will discuss Newton’s experiments on pendulums. With these experiments
he showed that the inertial mass of a body is proportional to its weight. With this proportionality Newton
obtained an operational precise procedure to determine the inertial mass of any body. To this end it was
only necessary to weight it with a balance. Let mi1 and mi2 be the inertial masses of two bodies with weights
Fg1 and Fg2, respectively. From his pendulum experiments, Newton obtained that the ratio of the inertial
masses of these bodies was given by the ratio between their weights, with these weights determined at the
same location of the Earth. Algebraically this proportionality can then be expressed as follows:

mi1

mi2
=

Fg1

Fg2
. (1.22)

Newton obtained that this proportionality between inertial mass and weight was valid for all bodies, no
matter their shapes, densities or chemical compositions. Therefore, he did not need to utilize the density
of the body in order to obtain its inertial mass, as it was only necessary to weight it with a balance. That
is, although he presented a definition of inertial mass which can be expressed mathematically by equation
(1.1), he did not utilize it in his mechanics. Whenever he needed to estimate the inertial mass of a body, he
would simply weight it. He would then obtain its inertial mass by equation (1.22).

1.6.2 Measurement of Time

As seen in Section 1.2, according to Newton we should utilize in his mechanics only the absolute time in
order to estimate the motion of any body. However, absolute time, in his own words, flows equably without
relation to anything external. Therefore, to measure absolute time we could not utilize the motion of any
body. We could not utilize a pendulum clock, a water clock, a mechanical clock, the diurnal rotation of the
Earth relative to the set of fixed stars, the annual translation of the Earth around the Sun relative to the
frame of fixed stars, etc. This fact generates a problem, because it is necessary to measure absolute time in

25[New34, p. 1] and [New90, p. 1].
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order to describe the phenomena utilizing Newton’s laws of motion, in order to test theoretical models, in
order to make predictions of future events, etc.

Despite this statement, Newton always considered the diurnal rotation of the Earth relative to the frame
of fixed stars as being the appropriate measure of absolute time which should be utilized in his mechanics.
He wrote a very important text, The System of the World, first published posthumously in 1728.26 This is
a non mathematical work which he intended to publish as the last portion of the Principia. Later on he
changed his mind and published the same subject as Book III of the Principia, but now with a complete
mathematical treatment: Book III: The System of the World (in mathematical treatment).27 In Section 35
of the book published in 1728, Newton was very explicit about the utilization of the rotation of the planets
relative to the frame of fixed stars as an excellent measure of absolute time:28

[35.] The planets rotate around their own axes uniformly with respect to the stars; these motions
are well adapted for the measurement of time.

While the planets are thus revolved in orbits around remote centres, in the meantime they make
their several rotations about their proper axes: the Sun in 26 days; Jupiter in 9h 56m; Mars
in 24 2

3
h; Venus in 23h; and that in planes not much inclined to the plane of the ecliptic, and

according to the order of the signs, as astronomers determine from the spots or maculae that by
turns present themselves to our sight in their bodies; and there is a like revolution of our Earth
performed in 24h; and those motions are neither accelerated nor retarded by the actions of the
centripetal forces, as appears by Corollary 22, Proposition 66, Book I; and therefore of all others
they are the most uniform and most fit for the measurement of time; but those revolutions are to
be reckoned uniform not from their return to the Sun, but to some fixed star: for as the position
of the planets to the Sun is non-uniformly varied, the revolutions of those planets from Sun to
Sun are rendered non-uniform.

That is, we should consider as uniform the sidereal days, but not the solar days. For instance, the time
interval necessary for the set of fixed stars to complete a whole cycle around the Earth in 14th of January
should be considered equal to the time interval necessary for a whole cycle of the fixed stars around the Earth
in 23rd of April, in 10th of October or in any other epoch of the year. The solar day (time interval necessary
for the Sun to complete a whole cycle around the Earth), on the other hand, in 14th of January should not
be considered equal to the solar day in 23rd of April, nor equal to the solar day in 10th of October.

Proposition 17, Theorem 15, of Book III of the Principia presents the equivalent to this Section 35 of
The System of the World published in 1728:29

Proposition 17. Theorem 15

That the diurnal motions of the planets are uniform, and that the libration of the Moon arises
from its diurnal motion.

The Proposition is proved from the first Law of Motion, and Corollary 22, Proposition 66, Book
I. Jupiter, with respect to the fixed stars, revolves in 9h 56m; Mars in 24h 39m; Venus in about
23h; the Earth in 23h 56m; the Sun in 25 1/2d, and the Moon in 27d 7h 43m. These things appear
by the Phenomena. [...]

In Proposition 19, Problem 3 of Book III of the Principia Newton gave a more precise value for the period
of rotation of the Earth in relation to the frame of fixed stars, namely, 23 hours, 56 minutes and 4 seconds.
We will adopt this value here for the sidereal day, namely, 86,164 seconds. A second is defined in such a way
that the period of rotation of the Earth in relation to the Sun, averaged over the year, the mean solar day,
is exactly 24 hours = 86,400 seconds.

Let then this time interval of 86,164 seconds be the time necessary for the Earth to spin 2π rad around
its axis, relative to the frame of fixed stars. This is also the interval of time necessary for the set of fixed
stars to make a complete turn around the North-South axis of the Earth, rotating together relative to the
ground. When the Earth rotates an angle θ, measured in radians, relative to the fixed stars, the time interval
t, measured in seconds, is then given by:

26[New34, pp. 549-626] and [New08a].
27[New34, pp. 397-547] and [New08b].
28[New34, pp. 579-580] and [New08a, pp. 364-365].
29[New34, p. 423] and [New08b, pp. 212-213].
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t(s)

23 h 56 m 4 s
=

t(s)

86, 164 s
=

θ(rad)

2π rad
. (1.23)

That is, the time t which appears in newtonian mechanics can be obtained from a measurement of the
angle of rotation of the Earth relative to the frame of fixed stars. Newton had stated that absolute time flows
equably without relation to anything external. Despite this statement, the measure of absolute time which
he employed in the Principia was related to external bodies. In particular, absolute time was determined by
the angle of rotation of the Earth in relation to the set of fixed stars.

1.6.3 Measurement of Space

As seen in Section 1.2, in newtonian mechanics absolute space should be utilized as the frame of reference
(also called a coordinate system) in relation to which the position and motion of any body should be
described. This generates a practical problem due to the fact that, according to Newton, absolute space is
without relation to anything external. Therefore, in order to describe the motion of any body we could not,
in principle, utilize the Earth, the frame of fixed stars, the frame of distant galaxies, nor any other frame
which is defined by the presence of a material body. How is then possible to describe the motions of bodies
in relation to absolute space when this space is invisible and is not related to anything material? Newton
solved this problem in Book III of the Principia utilizing a hypothesis:30

Hypothesis I

That the centre of the system of the world is immovable.

This is acknowledged by all, while some contend that the Earth, others that the Sun, is fixed in
that centre. Let us see what may from hence follow.

Proposition 11. Theorem 11

That the common centre of gravity of the Earth, the Sun, and all the planets, is immovable.

For (by Corollary 4 of the Laws) that centre either is at rest, or moves uniformly forwards in
a right line; but if that centre moved, the centre of the world would move also, against the
Hypothesis.

That is, by this hypothesis, Newton adopted the center of gravity of the solar system as being at rest
relative to absolute space.

In the System of the World Newton presented the same point of view as follows:31

[28.] The common centre of gravity of the Sun and all the planets is at rest and the Sun moves
with a very slow motion. Explanation of the solar motion.

Because the fixed stars are quiescent one in respect of another, we may consider the Sun, Earth,
and planets, as one system of bodies carried hither and thither by various motions among them-
selves; and the common centre of gravity of all (by Corollary 4 of the Laws of Motion) will either
be quiescent, or move uniformly forwards in a right line: in which case the whole system will
likewise move uniformly forwards in right lines. But this is an hypothesis hardly to be admitted;
and, therefore, setting it aside, that common centre will be quiescent: and from it the Sun is
never far removed. [...]

After postulating that the center of gravity of the solar system is immovable relative to absolute space,
Newton concluded in Book III of the Principia that the fixed stars are not only at rest relative to one another,
but are also at rest relative to absolute space:32

30[New34, p. 419] and [New08b, pp. 208-209].
31[New34, p. 574] and [New08a, pp. 359-360].
32[New34, p. 422] and [New08b, p. 211].



Ch. 1: Newtonian Mechanics 19

Proposition 14. Theorem 14

The aphelions and nodes of the orbits of the planets are fixed.

The aphelions are immovable by Proposition 11, Book I; and so are the planes of the orbits, by
Proposition 1 of the same book. And if the planes are fixed, the nodes must be so too. It is
true that some inequalities may arise from the mutual actions of the planets and comets in their
revolutions, but these will be so small, that they may be here passed by.

Corollary 1. The fixed stars are immovable, seeing they keep the same position to the aphelion
and nodes of the planets.

[...]

In the beginning of the System of the World Newton said that the idea of the heliocentric system was
very old, arising since the beginning of philosophy. When he described this idea we can perceive once again
his own conception that the set of fixed stars was at rest with respect to absolute space, although here he
did not utilize this expression, mentioning only that the fixed stars were immovable “in the highest parts of
the world:”33

[1.] The matter of the heavens is fluid.

It was the ancient opinion of not a few, in the earliest ages of philosophy, that the fixed stars
stood immovable in the highest parts of the world; that under the fixed stars the planets were
carried about the Sun; that the Earth, as one of the planets, described an annual course about
the Sun; while by a diurnal motion it was in the meantime revolved about its own axis; and
that the Sun, as the common fire which served to warm the whole, was fixed in the centre of the
universe.

It can be concluded that in order to describe the motions of bodies Newton could then utilized the frame
of distant stars, instead of referring these motions to absolute space, which is invisible. For instance, when
describing the orbits of the planets around the Sun, the orbits of the Moons around their planets, or the
laws of planetary motion due to Kepler (1571-1630), Newton always presented these orbits in relation to the
frame of fixed stars, considering them at rest relative to absolute space.

We quote here two examples of this fundamental role played by the fixed stars, namely, when Newton
described in Book III of the Principia the orbits of Jupiter’s satellites, and the orbits of the five primary
planets around the Sun:34

Phenomena

Phenomenon I

That the circumjovial planets, by radii drawn to Jupiter’s centre, describe areas proportional to
the times of description; and that their periodic times, the fixed stars being at rest, are as the 3

2
th

power of their distances from its centre.

[...]

Phenomenon IV

That the fixed stars being at rest, the periodic times of the five primary planets, and (whether
of the Sun about the Earth, or) of the Earth about the Sun, are as the 3

2
th power to their mean

distances from the Sun.

[...]

Soon after these statements, Newton presented35 the “periodic times, with respect to the fixed stars,” of the
planets and Earth revolving about the Sun, in days and decimal parts of a day. For the Earth, in particular,

33[New34, p. 549] and [New08a, p. 335].
34[New34, pp. 401-404] and [New08b, pp. 189-193].
35[New34, p. 404] and [New08b, pp. 192-193].
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he presented the annual period taken for the Earth to complete its orbit around the Sun as 365.2565 days.
In other portions of the Principia and in the System of the World this annual period is presented as being
365 days, 6 hours and 9 minutes.36 This period is the time interval for the Earth to complete a whole orbit
around the Sun, with respect to the frame of fixed stars, returning to the same initial position it had.

In this way Newton had something material, real and visible, namely, the frame of fixed stars, in relation
to which he could describe the trajectories of the bodies he was studying.

1.7 Inertial Frames of Reference

In Newton’s second law of motion, equations (1.3) and (1.4), there is a velocity and an acceleration (supposing
a constant inertial mass). According to Newton, this velocity and this acceleration of the test body should
be considered in relation to absolute space, measured by absolute time. According to his fifth corollary,
presented in Section 1.2, it also possible to refer the motion of this body to any system of reference which
moves in absolute space along a straight line with a constant velocity. If the resultant force acting on a body
is zero, it will remain at rest or moving along a straight line with a constant velocity, not only in absolute
space, but also in relation to any other frame of reference which moves relative to absolute space with a
constant velocity. That is, whenever

∑N
p=1

p 6=k

~Fpk, it can be concluded from equation (1.5) that:

~ak = ~0 , that is, ~vk = constant in time . (1.24)

Nowadays these frames of reference in which Newton’s laws of motion are valid in the form of equations
(1.3) and (1.4) are called37 inertial frames of reference, or inertial systems. In the next Chapters the motion
of bodies will be described with respect to an inertial frame of reference.

There are then three main ways of characterizing an inertial frame of reference, namely:

• An inertial frame is Newton’s absolute space or any system of reference which moves along a straight
line with a constant velocity in relation to absolute space.

• Any system of reference in which Newton’s laws of motion are valid in the form of equations (1.3) and
(1.4).

• Any system of reference in which a particle remains at rest or moves along a straight line with a
constant velocity when there is no net force acting on in, equation (1.24).

1.8 Material Frames of Reference: The Earth, the Set of Fixed

Stars, and the Universal Frame of Reference Defined by the

Set of Galaxies

The concept of absolute space was introduced by Newton by saying that it had no relation to anything
external, Section 1.2. The inertial frames of reference were defined in Section 1.7. In principle absolute
space and the inertial frames of reference have no relation to material objects like the Earth, the set of fixed
stars or the set of galaxies. But in practice it is known that the Earth, the set of fixed stars and the set of
galaxies are good inertial frames of reference in many situations which will be discussed in this book. The
relation between these material frames of reference and the inertial frames of reference is one of the main
topics which is discussed in this book.

In practice it is known that the Earth may be considered as a good inertial system for motions taking
place close to it, provided these motions have small dimensions compared with the radius of the Earth, and
provided these motions last for a short time compared with the diurnal period of rotation of the Earth with
respect to the frame of fixed stars. The Earth is called the terrestrial frame of reference, terrestrial system
of reference or laboratory frame. It is represented in figure 1.11 by the letter T from the word “terrestrial.” It
is possible, for instance, to study the free fall acceleration ~a of an apple of mass m in relation to the ground,
as in figure 1.11. In this case any frame of reference which has a rectilinear motion with constant velocity
relative to the ground may also be considered a good inertial frame.

36[New34, pp. 441, 459 and 590], [New08b, pp. 230 and 246] and [New08a, p. 374].
37[Fre71, pp. 163, 174 and 494], [Gol80, p. 2], [Nus81, pp. 110-111], [Sym71, pp. 271-273, 502, 508ff and 576], [Sym82, pp.

304 and 549] and [SJ04, p. 111].
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m

a

vT

Figure 1.11: Terrestrial frame of reference T at rest relative to the ground. Test body moving with velocity
~v and acceleration ~a relative to the Earth.

A better inertial frame is that of the fixed stars belonging to our galaxy, the Milky Way. The frame in
which the fixed stars are seen at rest is represented in this book by the letter F . This is a better inertial
frame than the laboratory frame when the conditions specified in the previous paragraph are not satisfied,
or when we want to study the diurnal rotation of the Earth, or its annual translation around the Sun, or the
orbit of any planet around the Sun, etc. This is called the frame of the fixed stars, the system of reference of
the fixed stars, or simply the fixed stars, represented by the letter F in figure 1.12. Although the Moon, the
Sun, the planets and comets are moving with respect to the background of fixed stars, there is essentially
no motion of any specific star with respect to the other stars. The sky seen nowadays with its constellations
of stars is essentially the same sky described by the old Egyptians and Greek scholars. Although the set of
stars rotates as a whole with respect to the Earth, one star almost does not move with respect to any other
star. For this reason the set of stars is usually called the set of “fixed” stars. Any frame of reference which is
moving along a straight line with a constant velocity with respect to the fixed stars may be also considered
a good inertial frame to study, for instance, the diurnal rotation of the Earth around its axis, or the orbital
motion of a planet around the Sun.

m

av

F

Figure 1.12: Reference frame F of the fixed stars. Test body moving with velocity ~v and acceleration ~a
relative to F .

Aristarchus of Samos (310-230 B.C.) proposed a heliocentric system in antiquity. According to this model,
the Sun is considered at rest in relation to the fixed stars, with the Earth orbiting around the Sun with a
period of one year and spinning around its axis with a period of one day. Due to the annual motion of the
Earth, a stellar parallax should be observed, that is, one specific star which is close to the Earth should
move or change its position in relation to the distant stars. However, the first observation of this parallax
was made only in 1838 by F. W. Bessel (1784-1846). In 1924 Edwin P. Hubble (1889-1953), after discovering
Cepheid variables in some nebulae seen in the sky, showed that these nebulae are very far away from our
own systems of stars. Since then it has been clear that the set of stars seen in the sky represents only one
set between millions of other similar systems of stars, with each set being very far away from the other sets.
These sets of stars have been called galaxies. Our own galaxy is called the Milky Way.

When we need to study the motion of the stars of the Milky Way among themselves, or the rotation
of the galaxy as a whole relative to the other galaxies, or the translation of the Milky Way in relation to
other galaxies, then it is necessary another frame of reference. The best inertial system known nowadays is
the frame of reference in which the set of distant galaxies is seen at rest, without translational acceleration
and without rotation as a whole. In this book we will call this last frame the universal frame of reference
or universal system of reference. It is represented by the letter U in figure 1.13. Obviously there should
exist motion of the galaxies in relation to one another, but these motions are so small compared with other
ordinary motions in our own galaxy that they can be usually neglected. The universal frame is the system
of reference in which the average velocity of all galaxies goes to zero. Any other system of reference which is
moving along a straight line with a constant velocity in relation to the universal frame may also be considered
a good inertial frame.

This universal frame of reference can also be defined by other means, which seem to be compatible and
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Figure 1.13: Test body moving with velocity ~v and acceleration ~a relative to the universal frame of reference
U in which the set of distant galaxies is at rest.

equivalent with one another, as discussed by Wesley.38 Although Wesley utilized these physical properties
to define what he called “absolute space,” we will utilize the same physical properties presented by Wesley
to define what we are calling here the “universal frame of reference.” We prefer this last name, instead of
Wesley’s “absolute space,” in order to avoid confusion with Newton’s “absolute space.” Newton’s absolute
space, in his own words, “in its own nature, without relation to anything external, remains always similar
and immovable.” Our universal frame of reference, on the other hand, is totally related to external material
galaxies.

Therefore, following Wesley and this change of name, the physical properties defining the universal frame
of reference can be defined as follows:39

• The frame of reference in which the set of distant galaxies is seen at rest, without translational accel-
eration and without rotation as a whole.

• The space in which the material universe appears isotropic in the large, that is, in which distant galaxies
appear to be uniformly distributed.

• The space in which the sum of the redshifts of distant galaxies is zero.

• The space in which the 2.7 K cosmic background radiation is isotropic.

According to Wesley, the frame U of distant galaxies is also the frame in which the oneway velocity of
energy propagation of light in vacuum is fixed as c.

In this book we will discuss the relation between the material frame of reference defined by the set of
galaxies, that is, the universal frame U , and the inertial frames of reference defined in Section 1.7. We will
discuss how this material frame U is an excellent inertial frame. In particular, the universal frame U has
also the following properties:

• The space in which linear momentum is conserved for the universe as a whole and in which the total
linear momentum is a zero minimum. That is, it is the space in which the sum of the linear momenta
of all of the bodies in the universe is a zero minimum.

• The space in which angular momentum is conserved for the universe as a whole and in which the total
angular momentum is a zero minimum.

• The space in which energy is conserved for the universe as a whole.

• The space in which newtonian mechanics without fictitious forces is valid for the universe as a whole.

In the figures presented in this book the terrestrial frame will be represented by the Earth itself, by a line
indicating the ground, or by the letter T . The frame of the fixed stars will be represented by some stars at
rest relative to one another, or by the letter F . The universal frame of reference will be represented by some
galaxies at rest relative to one another, or by the letter U . That is, instead of representing bodies moving in
relation to the white sheet of paper, as indicated in figure 1.1 and as usually done in the textbooks, we will
try to emphasize the material bodies which form the background relative to which the motion of the test
body is observed and measured.

38[Wes91, Section 1.16: “Definitions” of Absolute Space, pp. 32-33], [Wes02, Chapter 1: Evidence for Absolute Space] and
[WM06, Chapter 1: Light in Absolute Space].

39[Wes91, Section 1.16: “Definitions” of Absolute Space, pp. 32-33], [Wes02, Chapter 1: Evidence for Absolute Space] and
[WM06, Chapter 1: Light in Absolute Space].
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We call “particles” to bodies with negligible dimensions compared with the lengths and distances involved
in the problem under consideration. In general we can neglect the internal properties of these particles,
representing them by material points. That is, a particle will be characterized by its inertial mass. In order
to specify its location, three coordinates will be utilized to indicate its position: x, y, z. These coordinates
are fixed in relation to some inertial frame. In practice these coordinates will be usually fixed in relation
to the ground, in relation to the fixed stars, or in relation to the universal frame of reference. We are here
interested in studying the motion of particles in simple and important situations.
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Chapter 2

Other Forces of Interaction between

Material Bodies

Beyond the gravitational force acting between gravitational masses, there are several forces of other nature
acting between material bodies. We present some of these forces in this Chapter, always in the International
System of Units and with modern algebraic formulas expressed in vector notation.

2.1 Buoyant Force Exerted by a Fluid

Archimedes (287-212 B.C.) obtained in his work On Floating Bodies the upward force exerted by the sur-
rounding fluid on a body immersed in it. His definition of a fluid and the fundamental principle of this work
were presented as follows:1

Let it be granted that the fluid is of such a nature that of the parts of it which are at the same
level and adjacent to one another that which is pressed the less is pushed away by that which is
pressed the more, and that each of its parts is pressed by the fluid which is vertically above it, if
the fluid is not shut up in anything and is not compressed by anything else.

The definition of fluid presented by Newton in Book II of the Principia was the following:2

Section 5

The density and compression of fluids; hydrostatics

.

The definition of a fluid

A fluid is any body whose parts yield to any force impressed on it and, by yielding, are easily
moved among themselves.

Nowadays a fluid is defined as a substance which will support no shearing stress when in equilibrium.3

When Archimedes supposed that a solid was lighter or heavier than a fluid, he was referring to the specific
weight or specific gravity, that is, if the weight per volume of the solid was smaller or higher than the weight
of a fluid occupying the same volume as the solid body. Archimedes then proved three important theorems
concerning the buoyancy, or loss of weight, of bodies immersed in fluids:4

Proposition 5: Any solid lighter than a fluid will, if placed in the fluid be so far immersed that
the weight of the solid will be equal to the weight of the fluid displaced.

[...]

1[Dij87, pp. 373 and 379], [Napa], [Napb] and [Ass08, p. 26].
2[New34, p. 290] and [New08b, Section 5, p. 71].
3[Luc80, pp. 369-375], [Sym71, p. 247] and [Sym82, p. 278].
4[Arc02, pp. 257-258] and [Ass96].
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Proposition 6: If a solid lighter than a fluid be forcibly immersed in it, the solid will be driven
upwards by a force equal to the difference between its weight and the weight of the fluid displaced.

[...]

Proposition 7: A solid heavier than a fluid will, if placed in it, descend to the bottom of the fluid,
and the solid will, when weighed in the fluid, be lighter than its true weight by the weight of the
fluid displaced.

[...]

These theorems are known nowadays by the name principle of Archimedes. The upward force exerted
by the fluid on an immersed body is called buoyancy or buoyant force. It will be represented in this book
by the symbol Fb. Let Fg = mgg be the weight in vacuum of a homogeneous body of gravitational mass mg

and volume V . Let Vs be the volume of the submerged part of the body. The buoyant force acts vertically
upwards, against the weight Fg of the body. Let Fgf be the weight of the fluid occupying this submerged
volume Vs. Utilizing equation (1.17), theses theorems by Archimedes can be written as:

Fb = Fgf = mgfg = ρgfVsg , (2.1)

where mgf is the gravitational mass of the fluid occupying the submerged volume Vs and ρgf is the density
of gravitational mass of the fluid.

Let Fap be the apparent weight of the body, that is, the measured value of its weight (utilizing a spring
balance or dynamometer) when the body has a submerged volume Vs. According to Archimedes’s theorems,
the value of Fap is given by:

Fap = Fg − Fb = Fg − Fgf = Fg −mgfg = Fg − ρgfVsg . (2.2)

Nowadays the buoyant force is related to the gradient of pressure acting on the body immersed in a fluid.
This fact is illustrated qualitatively5 in figure 2.1. We remove the upper and lower covers of a cylindrical
vessel made of transparent plastic. We close these covers with elastic bladder discs, fixed tightly to avoid
the entrance of water. A flexible tube with open ends is inserted in the side of the cylindrical vessel. This
apparatus is inserted in a vessel filled with water, with the upper extremity of the flexible tube above the
surface of water. Due to the open tube, the pressure inside the vessel is that of the atmosphere. When the
vessel is horizontal, both discs are equally deformed inwards. However, when the vessel is vertical, we can
then observe that the lower disc is more deformed towards the center of the cylinder than the upper disc.
There is a higher pressure exerted by the water on the lower side of the vessel than at the upper side.

Figure 2.1: Relation between the buoyant force and the gradient of pressure.

Let an infinitesimal body of inertial mass dmi, gravitational mass dmg and volume dV immersed in a
fluid be in equilibrium at rest relative to the ground. Let dFg be its weight in vacuum and the buoyant force
acting on it be represented by dFb, figure 2.2.

Let p(x, y, z) be the pressure in an arbitrary point (x, y, z) of the fluid. The buoyant force d~Fb acting
on an infinitesimal body is given by:

d~Fb = −
(

∂p

∂x
x̂+

∂p

∂y
ŷ +

∂p

∂z
ẑ

)

dV ≡ − (∇p) dV . (2.3)

Here ∇p is called the pressure gradient in a fluid in the region occupied by the element of volume.

5[DGa05].
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Figure 2.2: Body immersed in a fluid.

2.2 Elastic Force Exerted by a Spring

The expression for the law of elastic force was obtained by Robert Hooke (1635-1703) in 1660, being published
in 1678. He expressed himself as follows:6

The theory of springs, though attempted by divers eminent mathematicians of this age has
hitherto not been published by any. It is now about eighteen years since I first found it out, but
designing to apply it to some particular use, I omitted the publishing thereof.

About three years since His Majesty was pleased to see the experiment that made out this theory
tried at White-Hall, as also my spring watch.

About two years since I printed this theory in an anagram at the end of my book of the descrip-
tions of helioscopes, viz., ceiiinosssttuu, id est, ut tensio sic vis; that is, the power of any spring
is in the same proportion with the tension thereof: That is, if one power stretch or bend it one
space, two will bend it two, and three will bend it three, and so forward. Now as the theory is
very short, so the way of trying it is very easie.

Take then a quantity of even-drawn wire, either steel, iron, or brass, and coyl it on an even
cylinder into a helix of what length or number of turns you please, by one of which suspend
this coyl upon a nail, and by the other sustain the weight that you would have to extend it,
and hanging on several weights observe exactly to what length each of the weights do extend it
beyond the length that its own weight doth stretch it to, and you shall find that if one ounce, or
one pound, or one certain weight doth lengthen it one line, or one inch, or one certain length,
then two ounces, two pounds or two weights will extend it two lines, two inches, or two lengths;
and three ounces, pounds, or weights, three lines, inches, or lengths; and so forwards. And this is
the rule or law of nature, upon which all manner of restituent or springing motion doth proceed,
whether it be of rarefaction, or extension, or condensation and compression.

Figure 2.3 represents this experiment.

ℓo ℓ1
ℓ3

m gg

(a) (b) (c)

3m gg

Figure 2.3: Representation of Hooke’s experiment.

In figure 2.3 (a) there is a spring with its upper extremity connected to a rigid support which is at rest
relative to the ground. Its lower extremity is free to move relative to the ground. The length between these

6[Hoo78], [Gun31, pp. 333-334] and [Hoo35].
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two extremities when the spring supports only its own weight is ℓo. In figure 2.3 (b) this spring supports a
weight Fg = mgg, being stretched with a length ℓ1 between its two extremities. In figure 2.3 (c) the spring
is even more stretched, supporting a weight 3Fg = 3mgg. These weights Fg = mgg and 3Fg = 3mgg were
determined with an equal arm balance. The length between its two extremities in this case is ℓ3. Hooke’s
experimental result can be expressed mathematically as follows:

ℓ3 − ℓo
ℓ1 − ℓo

=
3Fg

Fg
=

3

1
. (2.4)

It is possible to introduce an elastic constant k for a spring by utilizing a standard weight Fg which it
supports vertically. With this procedure the elastic force Fe of a stretched spring can be expressed as follows:

Fe = −k(ℓ− ℓo) = −Fg = −mgg . (2.5)

The negative sign in front of k(ℓ − ℓo) indicates that when the spring is stretched, ℓ > ℓo, the elastic force
acts upwards, balancing the weight Fg exerted by the Earth on the suspended body. In this case we are
considering as positive the downward force, being negative the upward force.

Figure 2.4 (a) represents Hooke’s experiment. Figure 2.4 (b) presents the forces acting on the body of
gravitational mass mg in Hooke’s experiment. There is a downward gravitational force exerted by the Earth
(its weight Fg = mgg) and the upward elastic force Fe = −k(ℓ− ℓo) exerted by the stretched spring. Figure
2.4 (c) presents the forces exerted on both extremities of the spring. There is a downward force exerted
by the suspended body on the lower extremity of the spring. This is the weight Fg of the body which is
transmitted to the spring. There is an upward force T exerted by the support on the upper extremity of the
spring. Let us consider only the situation when the stretched spring is in equilibrium, at rest relative to the
ground. In this situation the net force exerted on it is zero. This means that T = −Fg.

ℓ

(a) (b) (c)

T

Fe

mg

Fg
Fg

Figure 2.4: (a) Hooke’s experiment with a stretched spring supporting a weight Fg = mgg. (b) Upward
elastic force Fe and downward gravitational force Fg acting on the gravitational mass mg. (c) Equal and
opposite forces T and Fg acting on the two extremities of the stretched spring when it is in equilibrium, at
rest relative to the ground.

Whenever the spring is at rest relative to the ground with a total length ℓ greater than its natural length
ℓo, we say that the spring is stretched. In this situation there are equal and opposite forces acting on its
extremities, with these forces along its length, pointing away from the center of the spring. On the other
hand, whenever the spring is at rest relative to the ground with a total length ℓ smaller than its natural
length ℓo, we say that the spring is compressed. In this situation there are equal and opposite forces acting
on its extremities, with these forces along its length, pointing towards the center of the spring.

In figure 2.5 there is a horizontal spring on an ideal table without friction, at rest relative to the ground.
Here are some examples in which the spring is stretched (ℓ > ℓo) by forces of different nature. In (a) there
are downward gravitational forces exerted by the Earth on the two gravitational masses mg connected to
the spring. These forces are transmitted to the extremities of the spring by contact forces, stretching it. In
(b) electric forces of repulsion between the two bodies electrified with charges of the same sign stretch the
spring. We are supposing that the spring is an ideal insulator. In (c) there are magnetic forces of repulsion
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between the two magnets connected to the extremities of the spring. We are supposing that the spring is
made of a non ferromagnetic material.

mg
mg

-- N S NS

(a) (b) (c)

Figure 2.5: Horizontal springs at rest relative to the ground, being stretched by (a) gravitational, (b) electric,
and (c) magnetic forces.

Figure 2.6 presents the equal and opposite forces F acting on the extremities of the springs of figure 2.5.

F F

Figure 2.6: Equal and opposite forces F acting on the extremities of the springs of figure 2.5.

Let us suppose that ℓo is the relaxed length of a horizontal spring. By connecting one of its extremities
to a body of inertial mass mi, keeping the other extremity fixed relative to the ground, and compressing or
stretching it up to a length ℓ, the spring exerts a force ~F on this body, figure 2.7.

0 x

k
mi

x

ℓo

ℓ

F

Figure 2.7: Stretched spring.

Let x ≡ (ℓ − ℓo) and let x̂ be the unit vector pointing horizontally along the direction of the stretched
spring. In this case the force ~F exerted by the spring on the body connected to it is usually expressed as
follows:

~F = −k(ℓ− ℓo)x̂ = −kxx̂ , (2.6)

where k is called the elastic constant of this spring, or the spring constant. This mathematical expression is
usually called Hooke’s law.

2.3 Frictional Force Exerted by a Fluid

When a body moves in a fluid like water or air, the fluid exerts a resistive drag on this body. This force
tends to decrease the motion of the body relative to the fluid. It is called drag force, frictional force or force
of friction.

In the General Scholium at the end of Section 6 of Book II of the Principia, soon after Proposition 31,
Theorem 25, Newton presented several experiments with pendulums oscillating in air, water and mercury.7

In the Scholium at the end of Section 7 of Book II, soon after Proposition 40, Problem 9, Newton presented
several experiments with bodies falling in water and air.8

Let us suppose that the body is moving relative to the ground with a velocity ~v and that the fluid around
the body is moving with respect to the ground with a velocity ~vf , figure 2.8.

The relative velocity of the body with respect to the fluid around it may be represented by ~vr, being
defined by:

7[New34, pp. 316-326] and [New08b, pp. 98-108].
8[New34, pp. 355-366] and [New08b, pp. 137-147].
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vf

v

m

Figure 2.8: Body moving relative to the ground with velocity ~v, while the fluid around it is moving with
velocity ~vf with respect to the ground.

~vr ≡ ~v − ~vf . (2.7)

The area of cross section of the body should be considered perpendicular to its velocity relative to the
fluid, that is, orthogonal to the direction of ~vr. In the case of a sphere of radius r, this area of cross section
is given by A = πr2.

From his experiments Newton concluded that there were three main components of the resistive force
exerted by the fluid on a sphere of radius r when there was a relative motion between them. He distin-
guished these three components by different names.9 The first component was the resistance arising from
the “tenacity” of the fluid. This component did not depend upon the relative velocity between the body and
the fluid. The second component was the resistance arising from the “attrition” or “friction” of the fluid.
This component was proportional to the radius of the sphere and to the relative velocity between the body
and the fluid. The third component was the resistance arising from the “density,” “inertia” or “inactivity”
of the fluid. This component was proportional to the density of inertial mass of the fluid, to the square of
the radius of the sphere and to the square of its relative velocity with respect to the fluid.10 Let ρf be the
density of inertial mass of the fluid. The general expression for the force of friction ~F exerted by the fluid
on spherical bodies of radii r moving relative to it can be written as:

~F = −(b0 + b1rvr + b2ρfr
2v2r)v̂r , (2.8)

where b0 > 0, b1 > 0 and b2 > 0 are constants which do not depend upon the radius of the sphere, upon
the density of the fluid, nor upon the relative velocity between the body and the fluid. Moreover, we are
utilizing the following definitions: vr ≡ |~v − ~vf | and v̂r ≡ ~vr/vr. This force tends to decrease the relative
velocity between the body and the fluid around it.

If a body of inertial mass mi is interacting only with this fluid, his equation of motion can be obtained
combining equations (1.4) and (2.8):

−(b0 + b1rvr + b2ρfr
2v2r )v̂r = mi~a . (2.9)

Newton obtained from his experiments that in a great number of situations the main component of this
resistive force was proportional to the density ρf of the fluid, to the area A of cross section of the body
and to the square of the relative velocity between the body and the fluid. Algebraically this force ~F can be
written as follows:

~F = −1

2
CρfAv

2
r v̂r , (2.10)

where C is a dimensionless positive constant which is called “drag coefficient.” Its value is usually between
0.5 and 1.0, depending upon the shape of the body. This force points towards −v̂r, tending to decrease the
relative velocity vr between the body and the fluid.

In other situations this drag force is well represented by a force proportional to the relative velocity vr,
namely:

~F = −c1vr v̂r = −c1~vr , (2.11)

9[New34, pp. 244, 280-281, 316-326 and 354-366] and [New08b, pp. 21, 59-60, 98-108 and 132-147] and [New96, p. 268].
10[New79, Query 28, pp. 362-370] and [New96, p. 268].
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where c1 is a positive constant. For a sphere moving in a fluid, this force is usually proportional to the radius
r of the sphere. This means that c1 may be written as b1r, where b1 is a positive constant independent of
the radius of the sphere and also independent of the relative velocity vr between the fluid and the body.

To Newton it was very clear that this frictional force depended upon the relative velocity between the
body and the fluid. In the case of the drag force in a fluid, it is not relevant the absolute velocity of the
body relative to absolute space, relative to the ground, nor relative to an inertial frame of reference. What
matters is the velocity of the body with respect to the fluid around it and with which it is interacting. For
instance, in Section 7 of Book II of the Principia, he discussed the resistance encountered by bodies moving
in a fluid. In Proposition 37, Theorem 29, he discussed the resistance encountered by a cylinder moving in
a fluid. In Lemmas 5 and 7 after this Proposition he discussed the situation in which the cylinder was at
rest relative to the ground, while water was flowing with respect to the ground, considering how this body
hindered the passage of the water. In this discussion it is clear that only the relative velocity between the
body and the fluid is relevant as regards the mutual force of resistance exerted between them:11

Lemma 5

If a cylinder, a sphere, and a spheroid, of equal breadths be placed successively in the middle of
a cylindric canal, so that their axes may coincide with the axis of the canal, these bodies will
equally hinder the passage of the water through the canal.

[...]

Lemma 6

The same supposition remaining, the fore-mentioned bodies are equally acted on by the water
flowing through the canal.

This appears by Lemma 5 and the third Law. For the water and the bodies act upon each other
mutually and equally.

Lemma 7

If the water be at rest in the canal, and these bodies move with equal velocity and in opposite
directions through the canal, their resistances will be equal among themselves.

This appears from the last Lemma, for the relative motions remain the same among themselves.

That is, what matters in the drag force is only the relative velocity of the body with respect to the
fluid around it. It is not relevant the absolute velocity of the body relative to absolute space, relative to
the ground, nor relative to an inertial frame of reference. According to Newton, only the relative velocity
between the test body and the fluid will be relevant as regards the force of interaction between them.

2.4 Electrostatic Force between Electrified Bodies

Augustin Coulomb (1738-1806) obtained in 1785 the law of force between two bodies electrified with charges
q1 and q2 separated by a distance r which was large compared with the diameters of the bodies. He presented
his results in two papers of 1785, published in 1788.12 He called these electrified bodies by different names,
namely, “electrical masses,” “electrified molecules,” or “densities of electric fluids.”13

In the case of bodies electrified with charges of the same sign, Coulomb expressed himself as follows:14

Fundamental Law of Electricity

The repulsive force between two small spheres charged with the same sort of electricity is in the
inverse ratio of the squares of the distances between the centers of the two spheres.

For bodies electrified with charges of opposite signs, Coulomb concluded that:15

11[New34, pp. 345-351].
12[Cou85a], [Cou85b], [Pot84] and [Cou35a].
13[Gil71b] and [Gil71a, pp. 190-192].
14[Cou85a, p. 572], [Pot84, p. 110] and [Cou35a].
15[Cou85b, p. 572], [Pot84, p. 123] and [Cou35a].
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We have thus come, by a method absolutely different from the first, to a similar result; we may
therefore conclude that the mutual attraction of the electric fluid which is called positive on
the electric fluid which is ordinarily called negative is in the inverse ratio of the square of the
distances; just as we have found in our first memoir, that the mutual action of the electric fluid
of the same sort is in the inverse ratio of the square of the distances.

Up to now Coulomb mentioned only how the electric force varied with the distance between the electrified
bodies. It was only in the final section of his second memoir, when he recapitulated the major propositions
that resulted from his researches, that he mentioned that this force was proportional to the product between
the charges:16

Recapitulation of the subjects contained in this Memoir

From the foregoing researches, it follows that:

1. The electric action, whether repulsive or attractive, of the two electrified spheres, and therefore
of two electrified molecules, is in the ratio compounded of the densities of the electric fluid of the
two electrified molecules and inversely as the square of the distances; [...]

Gillmor pointed out correctly that Coulomb did not specifically prove that the electric force law was
proportional to the product of the charges.17 He only implied this proportionality in q1q2, although he did
not consider it important to demonstrate this result experimentally.

Let us suppose two electrified particles or point bodies at rest relative to one another, separated by a
distance r, with r̂ being the unit vector pointing from 2 to 1, figure 2.9.

r

r̂

q2q1

Figure 2.9: Two bodies electrified with charges q1 and q2 separated by a distance r.

The force ~F21 exerted by q2 on q1 is written as follows in the International System of Units and in vector
notation:

~F21 =
q1q2
4πεo

r̂

r2
= − ~F12 . (2.12)

Here εo = 8.85× 10−12 A2s4/kgm3 is a constant called vacuum permittivity, or permittivity of free space,
while ~F12 is the force exerted by q1 on q2.

This force is very similar to Newton’s law of gravitation, equation (1.7). Both force laws are directed
along the straight line connecting the bodies, they follow the law of action and reaction, and vary as the
inverse square of the distance between the bodies. Moreover, the electric force is proportional to the product
of the two charges, while the gravitational force is proportional to the product of the two gravitational
masses. It seems that Coulomb arrived at his force law more by analogy with Newton’s law of gravitation
than by his doubtful few measurements with the torsion balance.18

The similarity between equations (1.7) and (2.12) indicates that the gravitational masses play the same
role as the electric charges. That is, a gravitational mass mg1 generates a force on another gravitational
mass mg2 and feels a force exerted by mg2, in such a way that they will accelerate one another relative to
absolute space if they are free to move. Likewise, an electric charge q1 generates a force on another charge
q2 and feels a force generate by q2, in such a way that they will accelerate one another relative to empty
space if they are free to move. The behavior of these interactions, or the algebraic expression of these forces,
is essentially the same for gravitational masses and for electric charges.

16[Cou85b, p. 611], [Pot84, p. 146] and [Gil71a, pp. 190-191].
17[Gil71b] and [Gil71a, pp. 190-192].
18[Hee92].
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2.5 Force between Magnetic Poles

In order to describe the magnetic interaction between magnets, or the magnetic interaction between a
magnet and the Earth, Coulomb proposed in 1785 an expression describing the force between magnetic
poles considered as concentrated on particles or material points.19 Coulomb called these poles “magnetic
densities.”20 Nowadays these poles are called North pole of the magnet and South pole of the magnet, with
the North pole being considered positive, by convention. The unit of magnetic pole in the International
System of Units is Am.

Coulomb expressed himself in the following words:21

The magnetic fluid acts by attraction or repulsion in a ratio compounded directly of the density
of the fluid and inversely of the square of the distance of its molecules.

The first part of this proposition does not need to be proved; let us pass to the second. [...]

Let p1 and p2 be the intensities of two magnetic poles (magnetic pole-strengths) separated by a distance
r, with r̂ being the unit vector pointing from 2 to 1, figure 2.10.

r

r̂

p2p1

Figure 2.10: Two magnetic poles p1 and p2 separated by a distance r.

The force ~F21 exerted by the magnetic pole p2 on the magnetic pole p1 is expressed as follows in the
International System of Units and with vector notation:

~F21 =
µo

4π

p1p2
r2

r̂ = − ~F12 . (2.13)

Here µo ≡ 4π × 10−7 kgm/(A2s2) is a constant called vacuum permeability, or permeability of free space,
while ~F12 is the force exerted by 1 on 2.

Gillmor pointed out correctly that Coulomb did not prove experimentally that the force between two
magnetic poles was proportional to the product of the pole-strengths.22 Coulomb only implied that this
force was proportional to the product p1p2, although he did not perform experiments to test this statement.
According with his words just quoted, he did not consider it necessary to prove experimentally this aspect
of the law. This statement of Coulomb does not seem correct to us. It would be necessary to verify
experimentally this essential aspect of the force between two magnetic poles, before one could reach the
conclusion that this was a law of nature. The same happens with the electric force being proportional to the
product of the two charges.

The concept of a magnetic pole is an idealization, as up to now no one succeeded in isolating a magnetic
pole. The basic magnetic entity with which we can make measurements is called a magnetic dipole. It can
be considered as a North pole concentrated on a point, pN , separated by a fixed distance ℓ from a South
pole of the same intensity, pS = −pN , concentrated on another point. Let ℓ̂ be an unit vector pointing from
the South pole to the North pole of this dipole, figure 2.11.

^

pSpN

ℓ

ℓ

Figure 2.11: A magnetic dipole.

19[Cou85b], [Pot84] and [Cou35b].
20[Gil71b] and [Gil71a, pp. 190-192].
21[Cou85b, p. 593], [Pot84, p. 130] and [Cou35b].
22[Gil71b] and [Gil71a, pp. 190-192].
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The magnetic moment ~m of this dipole is defined by the following expression:

~m ≡ pN ℓℓ̂. (2.14)

Let us consider two magnetic dipoles of lengths ℓ1 and ℓ2 with their centers separated by a distance r,
figure 2.12.

r

ℓ1 ℓ2

pS1

pN1

pS2

pN2

Figure 2.12: Two magnetic dipoles separated by a distance r.

Suppose the center of dipole 1 is located at the position vector ~r1 = x1x̂ + y1ŷ + z1ẑ relative to the
origin O of an inertial frame of reference S, while the center of dipole 2 is located at the position vector
~r2 = x2x̂+ y2ŷ + z2ẑ, figure 2.13.
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Figure 2.13: Magnetic dipoles 1 and 2 with their centers located at the position vectors ~r1 and ~r2 relative
to the origin O of a reference frame S and separated by a distance r. Their magnetic moments are ~m1 and
~m2, respectively, while r̂ is the unit vector pointing from the center of dipole 2 to the center of dipole 1.

The force between these two dipoles can be obtained from equation (2.13) by taking into account the
forces exerted by each magnetic pole of one dipole acting on each magnetic pole of the other dipole. For
instance, the net force ~F21 exerted by dipole 2 on dipole 1 is the vector sum of four terms, namely, the force
of pN2 on pN1, the force of pN2 on pS1, the force of pS2 on pN1, and the force of pS2 on pS1. The sum of
these four forces for the situation of figure 2.13 is given by:

~F21 =
3µo

4πr5

[

(~m1 · ~r)~m2 + (m2 · ~r)~m1 + (~m1 · ~m2)~r −
5(m1 · ~r)(~m2 · ~r)~r

r2

]

= − ~F12 , (2.15)

where ~r = ~r1 − ~r2 is the vector pointing from the center of dipole 2 to the center of dipole 1 and ~F12 is the
net force exerted by dipole 1 on dipole 2. This relation is valid when the distance r between the centers of
the dipoles is much larger than their lengths, that is, when r ≫ ℓ1 and r ≫ ℓ2.

Likewise we can obtain the torque exerted by dipole 2 on dipole 1 by considering the torques exerted by
poles pN2 and pS2 acting on poles pN1 and pS1.

Similarly it is possible to obtain the magnetic force and torque exerted by the Earth on a magnetic
needle by considering separately the magnetic forces and torques exerted by the Earth on each magnetic
pole composing the compass.

2.6 Ampère’s Force between Current Elements

André-Marie Ampère (1775-1836) worked between 1820 and 1827 with the interaction between current
carrying conductors. The two portions of his first paper on electrodynamics were published in 1820.23 He

23[Amp20a], [Amp20b], [Amp65a], [CA07], [CA09] and [AC11, Chapters 23 and 24, pp. 295-345].
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obtained the final expression for the law of force describing the interaction between two current elements in
1822.24 His main worked on electrodynamics was published in 1826.25

Let i1 and i2 be the electric current intensities in two circuits. They represent the amount of charge
flowing through the cross section of each circuit in the unit of time. Let d~ℓ1 and d~ℓ2 be two oriented
segments in each circuit, with infinitesimal lengths |d~ℓ1| and |d~ℓ2|, pointing along the direction of the current
in each point of circuits 1 and 2, respectively. We will suppose two current elements i1d~ℓ1 and i2d~ℓ2 separated
by a distance r connecting their centers, with r̂ being the unit vector pointing from the center of element 2
to the center of element 1, figure 2.14.

r

r̂
i d1 ℓ1

i d2 ℓ2

Figure 2.14: Two current elements separated by a distance r.

Ampère’s force d2 ~F21 exerted by i2d~ℓ2 on i1d~ℓ1 is expressed as follows in the International System of
Units and in vector notation:26

d2 ~F21 = −µo

4π
i1i2

r̂

r2

[

2(d~ℓ1 · d~ℓ2)− 3(r̂ · d~ℓ1)(r̂ · d~ℓ2)
]

= −d2 ~F12 , (2.16)

where d2 ~F12 is the force exerted by 1 on 2. The constant µo appearing here is the same constant of equation
(2.13).

Ampère’s expression, equation (2.16), is a central force. It varies inversely as the square of the distance
between the interacting bodies and satisfies the principle of action and reaction. Moreover, it points along
the straight line connecting the two interacting current elements. The same behavior happens with Newton’s
law of gravitation, equation (1.7), with the electrostatic force between point charges, equation (2.12), and
with the force between magnetic poles, equation (2.13).

Ampère’s force, on the other hand, presents a new aspect which is not present in the forces between
gravitational masses, electric charges and magnetic poles. This novelty is that it depends on the angle
between the two current elements through the term with d~ℓ1 · d~ℓ2, and it also depends on the angle of each
current element with the straight line connecting them through the terms with r̂ ·d~ℓ1 and r̂ ·d~ℓ2. The reason
for this new behavior is that each current element cannot be considered as concentrated in a point, as it is
orientated in space, pointing along the direction of the electric current flowing in each element. Each current
element must then be considered as an orientated segment of infinitesimal length.

Ampère’s procedure to arrive at this expression was brilliant, although tortuous and very difficult to
follow. The approach which he followed has been described in detail, with different emphasis, in several
works.27

Newton’s influence on Ampère was very great. In order to arrive at his expression, Ampère explicitly
assumed that the force should be proportional to the product between i1dℓ1 and i2dℓ2. He also postulated
that it should obey the law of action and reaction, with the force pointing along the direction connecting the
two current elements. These facts did not come from any experiment. In any event, as it happened with the
electrostatic force law, Ampère’s force was also extremely successful in explaining several electrodynamics
phenomena. The electrostatic force also explained extremely well several electric phenomena, although not
all aspects of this law were obtained experimentally. As was seen in Section 2.4, Coulomb assumed that this
force was proportional to the product q1q2. He did not consider relevant to test this aspect of the law. He
did not perform any experiment to test this property.

Wilhelm Weber (1804-1891) was the first to test and confirm experimentally, in 1846, that the force
between two current carrying wires was proportional to the product i1i2 of the two current intensities.28

To this end he first specified how to measure current intensities without utilizing the force between current
carrying wires. He then controlled the current in each current carrying wire and measured the force between
them by a dynamometer, showing that in fact this force was proportional to i1i2.

24[Amp22a], [Amp22b] and [Amp85].
25[Amp26], [Amp23], [Amp65b], [Cha09] and [AC11].
26[Ass92b, Chapter 3], [Ass94, Chapter 4], [Ass95b, Chapter 3], [BA98, Chapter 5], [BA01, Chapter 5], [AH07, Chapter 1],

[AH09, Chapter 1] and [AH13, Chapter 1].
27[Blo82], [Gra85], [Gra94], [Hof96], [GG96], [Dar00], [Ste03], [Ste05], [Cha09] and [AC11].
28[Web46], translated to English in [Web07].
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We present here some statements by Ampère indicating the great influence exerted by Newton and his
gravitational force law upon his work. They come from his may work summarizing his researches: On the
Mathematical Theory of Electrodynamic Phenomena, Experimentally Deduced. This work begins as follows:29

The new era in the history of science marked by the works of Newton, is not only the age of
man’s most important discoveries in the causes of natural phenomena, it is also the age in which
the human spirit has opened a new highway into the sciences which have natural phenomena as
their object of study.

Until Newton, the causes of natural phenomena had been sought almost exclusively in the impul-
sion of an unknown fluid which entrained particles of materials in the same direction as its own
particles; wherever rotational motion occurred, a vortex in the same direction was imagined.

Newton taught us that motion of this kind, like all motions in nature, must be reducible by
calculation to forces acting between two material particles along the straight line between them
such that the action of one upon the other is equal and opposite to that which the latter has
upon the former and, consequently, assuming the two particles to be permanently associated,
that no motion whatsoever can result from their interaction. It is this law, now confirmed by
every observation and every calculation, which he represented in the last of the three axioms at
the beginning of the Philosophiæ naturalis principia mathematica. But it was not enough to rise
to the conception, the law had to be found which governs the variation of these forces with the
positions of the particles between which they act, or, what amounts to the same thing, the value
of these forces had to be expressed by a formula.

Newton was far from thinking that this law could be invented from abstract considerations,
however plausible they might be. He established that this law must be deduced from observed
facts, or preferably, from empirical laws, like those of Kepler, which are only the generalized
results of a great number of particular observations.

To observe first the facts, varying the conditions as much as possible, to accompany this with
precise measurement, in order to deduce general laws based solely on experience, and to deduce
therefrom, independently of all hypothesis regarding the nature of the forces which produce the
phenomena, the mathematical value of these forces, that is to say, to derive the formula which
represents them, such was the road which Newton followed. This was the approach generally
adopted by the learned men of France to whom physics owes the immense progress which has
been made in recent times, and similarly it has guided me in all my research into electrodynamic
phenomena. I have relied solely on experimentation to establish the laws of the phenomena and
from them I have derived the formula which alone can represent the forces which are produced; I
have not investigated the possible cause of these forces, convinced that all research of this nature
must proceed from pure experimental knowledge of the laws and from the value, determined solely
by deduction from these laws, of the individual forces in the direction which is, of necessity, that
of a straight line drawn through the material points between which the forces act. [...]

His explanation of how he obtained his formula describing the force between current elements was pre-
sented in the following words:30

I will now explain how to deduce rigorously from these cases of equilibrium the formula by which
I represent the mutual action of two elements of voltaic current, showing that it is the only force
which, acting along the straight line joining their mid-points, can agree with the facts of the
experiment. First of all, it is evident that the mutual action of two elements of electric current
is proportional to their length; for, assuming them to be divided into infinitesimal equal parts
along their lengths, all the attractions and repulsions of these parts can be regarded as directed
along one and the same straight line, so that they necessarily add up. This action must also be
proportional to the intensities of the two currents. [...]

These quotations indicate the enormous influence of Newton’s law of gravitation on Ampère’s reasoning.
Ampère postulated that the force acted along the straight line connecting the current elements, that is,
pointing along the direction of the unit vector r̂. Moreover, he assumed that this force was proportional to

29[Amp26, pp. 3-5], [Amp23, pp. 175-177], [Amp65b, pp. 155-156] and [AC11, pp. 366-367].
30[Amp26, p. 27], [Amp23, p. 199], [Amp65b, p. 172] and [AC11, pp. 383-384].



Ch. 2: Other Forces of Interaction between Material Bodies 37

the product of the two current intensities, i1i2, and also proportional to the product of their lengths, dℓ1dℓ2.
He then deduced from his experiments that this force varied with the inverse square of the distance between
the elements, being proportional to r−2. Although he obtained this distance dependence experimentally
at the end of his researches, he had assumed theoretically this distance behavior since the beginnings of
his electrodynamic works in 1820. His major work was to deduce from his experiments and mathematical
reasoning that the force law between two current elements was proportional to a function of the angles given
by 2(d~ℓ1 · d~ℓ2)− 3(r̂ · d~ℓ1)(r̂ · d~ℓ2).

By integrating this force over a closed circuit C2 of arbitrary shape, Ampère obtained the force d~F21

exerted by this circuit on a current element i1d~ℓ1 which did not belong to this closed circuit. Nowadays
Ampère’s result can be expressed mathematically as follows:

d~F21 =
µo

4π
i1i2

∮

C2

r̂

r2

[

3(r̂ · d~ℓ1)(r̂ · d~ℓ2)− 2(d~ℓ1 · d~ℓ2)
]

= i1d~ℓ1 ×
∮

C2

µo

4π

i2d~ℓ2 × r̂

r2
. (2.17)

That is, this force is always orthogonal to the current element i1d~ℓ1, no matter the shape of the closed circuit
2.

Integrating this force over a closed circuit C1, we obtain the force ~F21 exerted by the closed circuit 2 on
the closed circuit 1 as given by:

~F21 =
µo

4π
i1i2

∮

C1

∮

C2

r̂

r2

[

3(r̂ · d~ℓ1)(r̂ · d~ℓ2)− 2(d~ℓ1 · d~ℓ2)
]

=
µo

4π
i1i2

∮

C1

∮

C2

d~ℓ1 × (d~ℓ2 × r̂)

r2
= −µo

4π
i1i2

∮

C1

∮

C2

(d~ℓ1 · d~ℓ2)r̂
r2

= − ~F12 . (2.18)

Here ~F12 is the force exerted by the closed circuit 1 on the closed circuit 2.
An important case of interaction between two closed circuits is the situation in which two small closed

loops are separated by a great distance between their centers. Let a1 and a2 represent the areas of these two
loops, i1 and i2 the current intensities, while the unit vectors normal to these loops are represented by n̂1

and n̂2, respectively, figure 2.15. These loops may be considered small compared with the distance r between
their centers when r ≫ √

a1 and r ≫ √
a2.

r
n1
^

i1

n2
^

i2

Figure 2.15: A closed loop of area a1, current intensity i1 and unit normal vector n̂1 interacting with another
closed loop of area a2, current intensity i2 and unit normal vector n̂2.

The magnetic moment ~m of each one of these loops is defined by:

~m ≡ ian̂ . (2.19)

This magnetic moment is orthogonal to the area of each loop.

2.7 Force between a Magnetic Dipole and a Current Carrying Wire

In 1820 H. C. Oersted (1777-1851) observed the deflection of a compass due to the presence in its neighbor-
hood of a long straight wire carrying a constant current. He wrote a short work of 4 pages describing his
observations, in Latin, which he sent to several scientists.31 This work gave rise to the science of electromag-
netism, that is, the systematic study of the relation between electric and magnetic phenomena. This word
electromagnetism was also coined by Oersted.32 In 1820 Oersted observed also the opposite phenomenon,
namely, the torque exerted on a current carrying coil due to a magnet fixed in the laboratory.33

31[Oer20], [Oer65], [Ørs86], [Ørs98b] and [Ørs98a].
32[Ørs98c, p. 421], [Ørs98d, p. 426], [GG90, p. 920] and [GG91, p. 116].
33[Ørs98c].
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Ampère continued these researches also observing the forces of action and reaction between a magnet
and a current carrying wire. He also observed the torques of action and reaction between a magnet and a
current carrying wire. Moreover, he succeeded in reproducing the interactions between two magnets through
equivalent interactions between two current carrying conductors. To achieve this goal, he replaced each
magnet by a wire coiled in a plane spiral in which a constant current flowed, or by a helix with a constant
current. He could also reproduce the torque exerted by the Earth on a magnetic compass by replacing the
compass by a large coil carrying a steady current. He could explain all these electromagnetic interactions
supposing the existence of microscopic electric currents flowing around the atoms and molecules of any
magnetic material like a compass needle. These microscopic currents are called nowadays molecular currents
or ampèrian currents.

Let ~m1 and ~m2 be the magnetic moments of two infinitesimal dipole magnets, that is, dipoles such that
their lengths ℓ1 and ℓ2 are much smaller than the distance r between their centers, ℓ1 ≪ r and ℓ2 ≪ r,
figure 2.12. Ampère showed theoretically that the forces and torques exerted by dipole 1 on dipole 2 can be
reproduced replacing dipole 1 by a closed loop of area a1 in which flows a constant current i1, provided the
normal n̂1 of this loop is along the direction of the magnetic dipole 1, n̂1 = ℓ̂1, and also provided that they
have equivalent magnetic moments given by:

m1 = |~m1| = pN1ℓ1 = i1a1 . (2.20)

In this case we are supposing that coil 1 is also infinitesimal, that is, in such a way that its typical size
given by

√
a1 is much smaller than its separation to dipole 2,

√
a1 ≪ r, figure 2.16.

r
n1

ℓ2

pS2

pN2
^

i1

Figure 2.16: A current carrying loop of area a1, current intensity i1 and unit normal vector n̂1 interacting
with a magnetic dipole of magnetic moment ~m2.

It is also possible to replace dipole 2 by a closed loop of area a2 in which flows a constant current i2,
provided the normal n̂2 to this coil is along the direction ℓ̂2 of the dipole 2, n̂2 = ℓ̂2, and provided also that
this coil 2 and dipole 2 have equivalent magnetic moments given by:

m2 = |~m2| = pN2ℓ2 = i2a2 . (2.21)

In this case we would have the situation represented in figure 2.15. That is, the force and torque exerted
by loop 1 on loop 2 of figure 2.15 will have the same values of the force and torque exerted by dipole 1 on
dipole 2 of figure 2.12, provided equations (2.20) and (2.21) are valid. In order to have this equivalence, it
is also necessary that the unit normal vectors of these loops, n̂1 and n̂2, point along the directions of the
magnetic moments of the two dipoles, that is, n̂1 = ℓ̂1 and n̂2 = ℓ̂2.

In this way Ampère succeeded in reducing the magnetic phenomena (interactions between two magnets
or the interaction between a magnet and the Earth) and also the electromagnetic phenomena (interaction
between a magnet and a current carrying wire) in terms of electrodynamic phenomena (interaction between
two current carrying wires). That is, the forces and torques exerted between magnets, the forces and torques
exerted between a magnet and the Earth, and the forces and torques exerted between a magnet and a current
carrying wire, can be explained only in terms of the forces and torques exerted between current carrying
conductors.

2.8 Weber’s Force between Electrified Bodies

Wilhelm Eduard Weber (1804-1891) was one of the main scientists of XIXth century. He was contemporary
of Maxwell and worked together with Gauss (1777-1855) at Göttingen University. His main works were
published in 6 volumes between 1892 and 1894.34 He wrote eight major Memoirs between 1846 and 1878
under the general title Elektrodynamische Maassbestimmungen (this title can be translated as Electrodynamic
Measurements; Determination of Electrodynamic Measures or Electrodynamic Measure Determinations).35

34[Web92b], [Web92a], [Web93], [Web94b], [WW93] and [WW94].
35[Web46], [Web52b], [Web52a], [KW57], [Web64], [Web71], [Web78] and [Web94a].
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The eighth Memoir was published only posthmously in his complete works. Three of these 8 major Mem-
oirs have already been translated to English, namely, the first, Determinations of electrodynamic measure:
Concerning a universal law of electrical action;36 the sixth, Electrodynamic measurements—Sixth Memoir,
relating specially to the principle of the conservation of energy;37 and the eighth, Determinations of electro-
dynamic measure: Particularly in respect to the connection of the fundamental laws of electricity with the
law of gravitation.38 In 1848 it was published an abridged version of the first Memoir,39 which has also been
translated into English, On the measurement of electro-dynamic forces.40 In 2010 it was published a list
with all his works translated to English.41

In 1846 Weber proposed42 a force law with which he could unify electrostatics, equation (2.12), with
electrodynamics, equation (2.16), together with the law of induction of 1831 obtained by Faraday (1791-
1867). Weber’s force can be applied not only for charges at relative rest, but also when the charges are
moving relative to one another. As there are many works discussing Weber’s electrodynamics,43 we will
present only its main aspects in this book.

In the International System of Units and in vector notation Weber’s force ~F21 exerted by the point body
2 electrified with charge q2 and acting on the point body 1 electrified with charge q1 is given by:

~F21 =
q1q2
4πεo

r̂

r2

(

1− ṙ2

2c2
+

rr̈

c2

)

=
q1q2
4πεo

r̂12
r212

(

1− ṙ212
2c2

+
r12r̈12
c2

)

= − ~F12 . (2.22)

Here ~F12 is the force exerted by q1 on q2, r ≡ r12 is the distance between the charges, r̂ ≡ r̂12 is the unit
vector pointing from q2 to q1, ṙ ≡ dr/dt ≡ ṙ12 ≡ dr12/dt is the relative radial velocity between them, and
r̈ ≡ dṙ/dt = d2r/dt2 ≡ r̈12 ≡ dṙ12/dt = d2r12/dt

2 is the relative radial acceleration between the charges.
The constance c which appears in equation (2.22) is the ratio of electromagnetic and electrostatic units of

charge. Its experimental value was first determined by Weber and R. Kohlrausch (1809-1858) between 1854
and 1856.44 Several authors discussed their extremely important and pioneering work.45 In the International
System of Units this magnitude can be written as:

c ≡ 1√
µoεo

= 2.998× 108
m

s
. (2.23)

Let us suppose charges q1 and q2 located at ~r1 ≡ x1x̂+ y1ŷ+ z1ẑ and ~r2 ≡ x2x̂+ y2ŷ+ z2ẑ, respectively,
in relation to the origin O of an arbitrary reference frame S, figure 2.17. This arbitrary frame or coordinate
system does not need to be inertial. That is, it can be accelerated relative to the universal frame U of distant
galaxies.
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Figure 2.17: Point charges q1 and q2 located at the position vectors ~r1 and ~r2 in relation to the origin O
of a reference frame S and moving in this frame with velocities ~v1 and ~v2 and accelerations ~a1 and ~a2,
respectively.

36[Web07].
37[Web72].
38[Web08].
39[Web48].
40[Web66].
41[Ass10c].
42[Web46], translated to English in [Web07].
43See, for instance, [Wie60], [Wie67], [Ass92b], [Ass94], [Ass95b], [Fuk03], [AH07], [AH09], [AW11] and [AH13], and the works

quoted in these books.
44[Web55], [WK56], translated to English in [WK03] and translated to Portuguese in [WK08], [KW57] and [WK68].
45[Kir57], [Ros57], [Woo68], [Woo81], [Wis81], [Ros81], [Har82], [JM86, Vol. 1, pp. 144-146 and 296-297] and [Hec96].
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The unit vectors x̂, ŷ and ẑ point along the positive directions of the x, y and z axes of this coordinate
system. The velocities and accelerations of these charges in this frame of reference S are given by: ~v1 =
d~r1/dt = ẋ1x̂ + ẏ1ŷ + ż1ẑ, ~v2 = d~r2/dt = ẋ2x̂ + ẏ2ŷ + ż2ẑ, ~a1 = d2~r1/dt

2 = d~v1/dt = ẍ1x̂ + ÿ1ŷ + z̈1ẑ and
~a2 = d2~r2/dt

2 = d~v2/dt = ẍ2x̂+ ÿ2ŷ + z̈2ẑ.
The position vector pointing from q2 to q1 will be defined by ~r12 ≡ ~r1 − ~r2 ≡ ~r. We also define in this

reference frame the relative vector velocity ~v12 and the relative vector acceleration ~a12 by:

~r12 ≡ ~r ≡ ~r1 − ~r2 = (x1 − x2)x̂+ (y1 − y2)ŷ + (z1 − z2)ẑ ≡ x12x̂+ y12ŷ + z12ẑ , (2.24)

~v12 ≡ d~r12
dt

=
d~r

dt
= ~v1 − ~v2 = (ẋ1 − ẏ1)x̂+ (ẏ1 − ẏ2)ŷ + (ż1 − ż2)ẑ ≡ ẋ12x̂+ ẏ12ŷ + ż12ẑ , (2.25)

and

~a12 ≡ d~v12
dt

=
d2~r12
dt2

=
d2~r

dt2
= ~a1 − ~a2 = (ẍ1 − ẍ2)x̂ + (ÿ1 − ÿ2)ŷ + (z̈1 − z̈2)ẑ ≡ ẍ12x̂+ ÿ12ŷ + z̈12ẑ . (2.26)

The two point charges are separated by a distance r12 ≡ r given by:

r12 ≡ |~r12| ≡ r ≡ |~r| = |~r1 − ~r2| = [(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2]1/2 =

√

x2
12 + y212 + z212 . (2.27)

The unit vector pointing from q2 to q1 is given by:

r̂12 ≡ ~r12
r12

≡ r̂ ≡ ~r

r
. (2.28)

The radial relative velocity ṙ12 ≡ ṙ and the relative radial acceleration r̈12 ≡ r̈ are defined by, respectively:

ṙ12 ≡ dr12
dt

≡ ṙ ≡ dr

dt
=

x12ẋ12 + y12ẏ12 + z12ż12
r12

=
~r12 · ~v12

r12
= r̂12 · ~v12 , (2.29)

and

r̈12 ≡ dṙ12
dt

=
d2r12
dt2

≡ r̈ ≡ dṙ

dt
=

d2r

dt2
=

~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12
r12

. (2.30)

With these results Weber’s force given by equation (2.22) can be written as follows:

~F21 =
q1q2
4πεo

r̂12
r212

[

1 +
1

c2

(

~v12 · ~v12 −
3

2
(r̂12 · ~v12)2 + ~r12 · ~a12

)]

= − ~F12 . (2.31)

With this force law Weber succeeded in unifying electrostatic phenomena (interactions between charges
which are at rest relative to one another), electrodynamic phenomena (interactions between current elements)
and Faraday’s law of induction.

2.8.1 Weber’s Planetary Model of the Atom

It is relevant to mention here the connection of Weber’s electrodynamics with nuclear physics. Weber
developed in the second half of the XIXth century a planetary model of the atom in which a nucleus
composed of positive charges was surrounded by negative charges describing elliptical orbits around the
nucleus. The motion of the charges was considered with respect to an inertial frame of reference. The most
interesting aspect of his model was that the nucleus was held stable by purely electromagnetic forces, without
the necessity of postulating strong nor weak nuclear forces. In modern physics, on the other hand, nuclear
forces are postulated in order to stabilize the nucleus. Weber’s model was developed before the discovery of
the electron, proton and neutron. It was also created before the works of Rutherford and Bohr, being almost
forgotten nowadays.

Weber’s indissoluble molecule (that is, the positive nucleus of this ponderable molecule) would represent
the modern nuclei of the atomic elements. In Weber’s model there was no particle corresponding to the
neutron. On the other hand, it has the amazing advantage of being stable and held together by purely electric
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interactions, without the necessity of postulating independent forces like the weak and strong nuclear forces
of modern physics. To our knowledge this is the only model ever proposed of a positive nucleus stabilized
by purely electric interactions. Figure 2.18 illustrates a particular example of his planetary model of the
atom with two positive charges composing the nucleus and two negative charges moving in elliptical orbits
around this nucleus. The two positive charges of the nucleus orbit around one another in a very small region
of space, being accelerated relative to one another.

+

_

_

+

Figure 2.18: Weber’s planetary model of the atom with two positive charges orbiting around one another
and composing the nucleus, while two negative charges orbit around the nucleus in elliptical orbits, with
respect to an inertial frame of reference.

Weber could only succeed in obtaining this feature due to a unique property of his force law, equations
(2.22) and (2.31). This property is related to the fact that his force law depends not only upon the distance
between the interacting particles, but also upon their relative radial acceleration. The coefficient multiplying
this acceleration is proportional to µoq1q2/r. It has the same unit as that of inertial mass, namely, kg.
Moreover, this coefficient is proportional to the product of the two interacting charges, q1q2, and is inversely
proportional to their distance r12 = r. When they are very close to one another, this coefficient can have a
magnitude greater than the mechanical inertial mass of any of these particles. These charges can then behave
as if they had an effective inertial mass which is a function of the distance separating them. Moreover, this
effective inertial mass can be positive or negative, depending upon the sign of q1q2. In particular, charges of
the same sign moving relative to one another inside a sphere of diameter ρ will behave as having an effective
negative inertial mass. This magnitude ρ may be called “molecular distance” or “critical distance.” It is given
in the International System of Units by the following expression:

ρ ≡ q1q2
4πε0

(

1

m1

+
1

m2

)

1

c2
=

q1q2
4πε0

m1 +m2

m1m2

1

c2
, (2.32)

where m1 and m2 are the usual inertial masses of particles 1 and 2, respectively.
Consequently, when r < ρ, instead of repelling one another as usually observed at macroscopic distances,

charges q1 and q2 will attract one another, as they will behave as if they had negative inertial masses!
This is one of the most fascinating and unique properties of Weber’s electrodynamics, which does not

happen in any other electromagnetic theory ever proposed.46

A detailed discussion of Weber’s planetary model of the atom, with many relevant quotations and refer-
ences, can be found in a book published in 2011.47

46[Ass93a], [Ass94] and [Ass99a].
47[AW11].



42 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force



Chapter 3

Maxwell’s Equations and the Force

Acting on an Electrified Body based

upon Electromagnetic Fields

3.1 Multiple Definitions of the Field Concept

In this book we will deal essentially with the direct interaction between gravitational masses or between
electric charges. Despite this fact and in order to compare the treatment presented here with the presentation
of this subject found in most textbooks, we will also present some examples utilizing the field concept
(gravitational, electric and magnetic fields). This concept is due to Faraday, Maxwell (1831-1879), Lorentz
(1853-1928) and other scientists. The main difficulty arising with this formulation is the polysemy associated
with the field concept, that is, it has several meanings. These multiple meanings associated with the field
concept appear not only in the works of Faraday and Maxwell, but also in modern textbooks. Moreover,
these several meanings are usually contradictory with one another, although the authors do not seem to be
aware of these contradictions. We list here some of these definitions, meanings and properties associated
with the field concept:1

• The field is a region of space around gravitational masses, around electric charges, around magnetic
poles, around magnets, and around current carrying wires.

• A field is a real physical entity filling the space.

• The field is a vector quantity (with magnitude and direction).

• The electromagnetic field propagates in a material medium according to Maxwell.

• The electromagnetic field propagates in empty space according to Einstein.

• The field stores energy, linear momentum and angular momentum.

• The field mediates the action between gravitational masses, between electric charges, between magnetic
poles, between magnets, and between current carrying wires.

• Field is a magnitude with dimensions.

• The field as the lines of force taken together.

• The field as a state of the space.

• The field is generated or produced by source bodies like gravitational masses, electric charges, magnetic
poles, magnets and electric currents.

1[O’R65, Vol. 2, Chapter 13, Section 4: The ‘Field’, pp. 645-661], [Lar82], [Gar04], [KS05], [And], [SK07], [KS08], [Rib08],
[RVA08], [ARV09] and [AC11].
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• The field due to source bodies generates or produces a force on other test bodies like gravitational
masses, electric charges, magnetic poles, magnets and electric currents.

• A field can be transformed into another field.

• A field changing in time can produce or induce another field.

• Condensations of the electromagnetic field are the elementary particles of matter.

• Etc.

In this Section we discuss some of these definitions.

The Field Is a Region of Space Around Gravitational Masses, Electric Charges, Magnetic
Poles, Magnets, and Current Carrying Wires

Faraday utilized the word “field” for the first time in November 7, 1845, in his Diary.2 But much before this
time he already utilized analogous expressions such as “magnetic curves,” “lines of magnetic force,” or “lines
of force.” In a paper published in 1851 he defined the field as a region of space around the bodies he was
investigating:3

2806. I will now endeavour to consider what the influence is which paramagnetic and diamagnetic
bodies, viewed as conductors (2797), exert upon the lines of force in a magnetic field. Any portion
of space traversed by lines of magnetic power, may be taken as such a field, and there is probably
no space without them.

The same concept was adopted by Maxwell, as can be observed from his definition of the electric field in
his Treatise:4

44.] The electric field is the portion of space in the neighbourhood of electrified bodies, considered
with reference to electric phenomena.

Maxwell presented in the Treatise a similar definition of the magnetic field when interpreting Oersted’s
discovery of the deflection of a compass placed in the neighborhood of a long wire carrying a steady current,
our emphasis:5

476.] It appears therefore that in the space surrounding a wire transmitting an electric current
a magnet is acted on by forces depending on the position of the wire and on the strength of
the current. The space in which these forces act may therefore be considered as a magnetic field,
and we may study it in the same way as we have already studied the field in the neighbourhood
of ordinary magnets, by tracing the course of the lines of magnetic force, and measuring the
intensity of the force at every point.

In his article of 1864-1865 containing a dynamical theory of the electromagnetic field he had already
expressed similar views:6

(3) The theory I propose may therefore be called a theory of the electromagnetic field, because it
has to do with the space in the neighbourhood of the electric and magnetic bodies, and it may
be called a dynamical theory, because it assumes that in that space there is matter in motion, by
which the observed electromagnetic phenomena are produced.

(4) The electromagnetic field is that part of space which contains and surrounds bodies in electric
and magnetic conditions.

This definition was also followed by J. J. Thomson (1856-1940). After describing the basic triboelectric
phenomena he said:7

2[Nota 17] nersessian89.
3[Far52, §2806, p. 690].
4[Max54, Vol. 1, §44, p. 47].
5[Max54, Vol. 2, §476, p. 139].
6[Max65, p. 460] and [Max65a, p. 527].
7[Tho21, p. 1].
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The sealing-wax and the flannel are said to be electrified, or to be in a state of electrification, or
to be charged with electricity; and the region in which the attractions and repulsions are observed
is called the electric field.

James H. Jeans (1877-1946) also followed the definitions of Faraday and Maxwell:8

30. The space in the neighbourhood of charges of electricity, considered with reference to the
electric phenomena occurring in this space, is spoken of as the electric field.

Several other authors presented a similar definition of the field, as quoted by O’Rahilly.9

Heilbron combined these definitions as follows:10

Field in general signifies a region of space considered in respect to the potential behaviour of test
bodies moved about in it; the electricians of 1780 lacked the word but not the concept, which
they called ‘sphere of influence’, sphaera activitatis, or Wirkungskreis. [...]

Later on authors presented other definitions for the field concept, some of which are presented in the
sequence.

A Field Is a Real Physical Entity Filling the Space

Many modern physicists consider the field as some real physical entity filling the space. Einstein, for instance,
said the following:11

“If we pick up a stone and then let it go, why does it fall to the ground?” The usual answer to this
question is: “Because it is attracted by the Earth.” Modern physics formulates the answer rather
differently for the following reason. As a result of the more careful study of electromagnetic
phenomena, we have come to regard action at a distance as a process impossible without the
intervention of some intermediary medium. If, for instance, a magnet attracts a piece of iron, we
cannot be content to regard this as meaning that the magnet acts directly on the iron through
the intermediate empty space, but we are constrained to imagine—after the manner of Faraday—
that the magnet always calls into being something physically real in the space around it, that
something being what we call a “magnetic field.” [...] The effects of gravitation also are regarded
in an analogous manner.

Feynman, Leighton and Sands expressed themselves as follows:12

We can write the force F on a charge q moving with a velocity v as

F = q (E+ v ×B) . (1.1)

We call E the electric field and B the magnetic field at the location of the charge.

[...] It is precisely because E (or B) can be specified at every point in space that it is called a
“field.” A “field” is any physical quantity which takes on different values at different points in
space.

According to Griffiths:13

What exactly is an electric field? I have deliberately begun with what you might call the “min-
imal” interpretation of E, as an intermediate step in the calculation of electric forces. But I
encourage you to think of the field as a “real” physical entity, filling the space in the neighbor-
hood of any electric charge.

8[Jea41, p. 24].
9[O’R65, Vol. 2, p. 651].

10[Hei81, p. 187].
11[Ein20b] and [Ein20a, p. 74].
12[FLS64, pp. 1-2 and 1-4].
13[Gri89, p. 64].
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Field Is a Vector Quantity (with Magnitude and Direction)

Most authors consider the field as a vector quantity, having magnitude and direction. The gravitational
field is normally represented nowadays by ~g or g, the electric field by ~E or E, while the magnetic field is
represented by ~B or B.

Maxwell emphasized this point as follows in his Treatise:14

Let e be the charge of the body, and F the force acting on the body in a certain direction, then
when e is very small F is proportional to e, or

F = Re ,

where R depends on the distribution of electricity on the other bodies in the field. If the charge
e could be made equal to unity without disturbing the electrification of other bodies we should
have F = R.

We shall call R the resultant electromotive intensity at the given point of the field. When we
wish to express the fact that this quantity is a vector we shall denote it by the German letter E.

Instead of Maxwell’s E, nowadays the electric field is normally represented by the symbol ~E. The force
~F acting on a charge e would then be written as

~F = e ~E . (3.1)

Maxwell also considered the magnetic field as a vector. For instance, Chapter II of Volume 2 of his
Treatise on Electricity and Magnetism, devoted to the magnetic force and magnetic induction, has the
following statement:15

The three vectors, the magnetization I, the magnetic force H, and the magnetic induction B, are
connected by the vector equation

B = H + 4πI . (7)

Nowadays this equation connecting the field ~B (called magnetic field, magnetic induction or magnetic
flux density), the field ~M (called magnetic dipole moment per unit volume) and the auxiliary field ~H (called
magnetic intensity by some authors, while other authors call it magnetic field), in the cgs-Gaussian system
of units and in the International System of Units, is written as, respectively:16

~B = ~H + 4π ~M , (3.2)

and

~B = µo
~H + µo

~M . (3.3)

The Electromagnetic Field Propagates in a Material Medium According to Maxwell

Maxwell presented his electromagnetic theory of light in Chapter 20 of his book Treatise of Electricity and
Magnetism of 1873. He defended the existence of a material medium, the ether, existing in the space between
material bodies. This was an elastic medium that had a finite density of matter. According to Maxwell light
would be an electromagnetic perturbation in this medium, propagating relative to it:17

781.] In several parts of this treatise an attempt has been made to explain electromagnetic
phenomena by means of mechanical action transmitted from one body to another by means of
a medium occupying the space between them. The undulatory theory of light also assumes the
existence of a medium. We have now to shew that the properties of the electromagnetic medium
are identical with those of the luminiferous medium.

[...]

14[Max54, Vol. 1, §44, p. 48].
15[Max54, Vol. 2, §400, p. 25].
16[Jac75, p. 188], [Gri89, p. 258] and [HM95, p. 26].
17[Max54, Vol. 2, §781, p. 431].
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But the properties of bodies are capable of quantitative measurement. We therefore obtain the
numerical value of some property of the medium, such as the velocity with which a disturbance
is propagated through it, which can be calculated from electromagnetic experiments, and also
observed directly in the case of light. If it should be found that the velocity of propagation of
electromagnetic disturbances is the same as the velocity of light, and this not only in air, but in
other transparent media, we shall have strong reasons for believing that light is an electromagnetic
phenomenon, and the combination of the optical with the electrical evidence will produce a
conviction of the reality of the medium similar to that which we obtain, in the case of other kinds
of matter, from the combined evidences of the senses.

The Electromagnetic Field Propagates in Empty Space According to Einstein

In his paper of 1905 introducing the special theory of relativity, Einstein made the ether superfluous and
considered that light and the electromagnetic waves propagate in empty space, our emphasis:18

Examples of this sort, together with the unsuccessful attempts to discover any motion of the
Earth relatively to the “light medium,” suggest that the phenomena of electrodynamics as well
as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest
rather that, as has already been shown to the first order of small quantities, the same laws
of electrodynamics and optics will be valid for all frames of reference for which the equations
of mechanics hold good. We will raise this conjecture (the purport of which will hereafter be
called the “Principle of Relativity”) to the status of a postulate, and also introduce another
postulate, which is only apparently irreconcilable with the former, namely, that light is always
propagated in empty space with a definite velocity c which is independent of the state of motion
of the emitting body. These two postulates suffice for the attainment of a simple and consistent
theory of electrodynamics of moving bodies based on Maxwell’s theory for stationary bodies. The
introduction of a “luminiferous ether” will prove to be superfluous inasmuch as the view here to
be developed will not require an “absolutely stationary space” provided with special properties,
nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take
place.

Later on Einstein and Infeld expressed themselves as follows:19

Our only way out seems to be to take for granted the fact that space has the physical property
of transmitting electromagnetic waves, and not to bother too much about the meaning of this
statement.

The Field Stores Energy, Linear Momentum and Angular Momentum

There is a density of energy in the electromagnetic field.20 We can say that the electric field stores electric
energy, that is, it contains energy. Likewise, the magnetic field stores magnetic energy.

J. J. Thomson, for instance, expressed himself as follows:21

If, as I do, we believe with Faraday and Clerk Maxwell that the properties of charged bodies are
due to lines of force which spread out from them into the surrounding ether, we must place the
energy of the electron in the space outside the little sphere which is supposed to represent the
electron.

According to Einstein:22

For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the
magnet an electric field with a certain definite energy, producing a current at the places where
parts of the conductor are situated.

18[Ein52c, pp. 37-38] and [Ein78c, p. 48].
19[EI38, p. 159].
20[O’R65, Vol. 1, Chapter 8, Section 4: Localized energy, pp. 281-290], [Gri89, Section 7.5: Energy and momentum

in electrodynamics, pp. 320-333, and Subsection 8.2.2: Energy and momentum of electromagnetic waves, pp. 358-360],
[HM95, Section 4.6: Energy in the electromagnetic field, pp. 143-147, and Section 14.12: Energy-momentum tensor of the
electromagnetic field, pp. 522-527] and [CS02, Section 23.5: Energy and momentum in electromagnetic radiation, pp. 854-859].

21[Tho29, p. 12] and [O’R65, Vol. 1, p. 281].
22[Ein05], [Ein52c, p. 37] and [Ein78c].
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There is also a density of momentum in the electromagnetic field.23

J. J. Thomson expressed himself as follows:24

To take an example, according to Newton’s third law of motion, action and reaction are equal and
opposite, so that the momentum in any direction of any self-contained system is invariable. Now,
in the case of many electrical systems there are apparent violations of this principle; thus, take
the case of a charged body at rest struck by an electric pulse, the charged body when exposed
to the electric force in the pulse acquires velocity and momentum, so that when the pulse has
passed over it, its momentum is not what it was originally. Thus, if we confine our attention to
the momentum in the charged body, i. e., if we suppose that momentum is necessarily confined
to what we consider ordinary matter, there has been a violation of the third law of motion, for
the only momentum recognized on this restricted view has been changed. The phenomenon is,
however, brought into accordance with this law if we recognize the existence of momentum in the
electric field; for, on this view, before the pulse reached the charged body there was momentum in
the pulse, but none in the body; after the pulse passed over the body there was some momentum
in the body and a smaller amount in the pulse, the loss of momentum in the pulse being equal
to the gain of momentum by the body.

Jackson expressed himself as follows:25

[...] electromagnetic fields can exist in regions of space where there are no sources. They can
carry energy, momentum, and angular momentum and so have an existence totally independent
of charges and currents.

Griffiths expressed himself as follows:26

When a charge undergoes acceleration, a portion of the field “detaches” itself, in a sense, and
travels off at the speed of light, carrying with it energy, momentum, and angular momentum.
We call this electromagnetic radiation. Its existence invites (if not compels) us to regard
the fields as independent dynamical entities in their own right, every bit as “real” as atoms or
baseballs.

The Field Mediates the Action between Gravitational Masses, Electric Charges, Magnetic
Poles, Magnets, and Current Carrying Wires

This has been the point of view expressed by Maxwell, against the theories of action at a distance.27

This idea has also been presented by Griffiths as follows:28

The Field Formulation of Electrodynamics

The fundamental problem a theory of electromagnetism hopes to solve is this: I hold up a bunch
of electric charges here (and maybe shake them around)—what happens to some other charge,
over there? The classical solution takes the form of a field theory: We say that the space around
an electric charge is permeated by electric and magnetic fields (the electromagnetic “odor,” as
it were, of the charge). A second charge, in the presence of these fields, experiences a force; the
fields, then, transmit the influence from one charge to the other—they “mediate” the interaction.

Field Is a Magnitude with Dimensions

In the International System of Units, for instance, the unit of the gravitational field ~g is that of acceleration,
m/s2. The unit of the electric field ~E is that of V/m = kgmC−1s−2 = kgmA−1s−3. The unit of the
magnetic field ~B is that of T = Wm−2 = kgC−1s−1 = kgA−1s−2.

23[O’R65, Vol. 1, Chapter 8, Section 5: Electromagnetic momentum, pp. 291-304], [Gri89, Section 7.5: Energy and momentum
in electrodynamics, pp. 320-333, and Subsection 8.2.2: Energy and momentum of electromagnetic waves, pp. 358-360],
[HM95, Section 4.6: Energy in the electromagnetic field, pp. 143-147, and Section 14.12: Energy-momentum tensor of the
electromagnetic field, pp. 522-527] and [CS02, Section 23.5: Energy and momentum in electromagnetic radiation, pp. 854-859].

24[Tho04, pp. 24-25] and [O’R65, Vol. 1, p. 294].
25p. 3] jackson75.
26[Gri89, p. 4].
27[Max54, Vol. 1, Preface to the first edition, pp. v-xii, Vol. 2, §§641-646, pp. 278-283 and Chapter 23, §§846-866, pp.

480-493].
28[Gri89, p. 4].
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The Field as the Lines of Force Taken Together

Einstein and Infeld presented a definition of the field as the lines of force taken together:29

The Field as Representation

[...] We know that two particles attract each other and that this force of attraction decreases with
the square of the distance. We can represent this fact in a new way, and shall do so even though
it is difficult to understand the advantage of this. The small circle in our drawing represents

an attracting body, say, the Sun. Actually, our diagram should be imagined as a model in space
and not as a drawing on a plane. Our small circle, then, stands for a sphere in space, say, the
Sun. A body, the so-called test body, brought somewhere within the vicinity of the Sun will be
attracted along the line connecting the centres of the two bodies. Thus the lines in our drawing
indicate the direction of the attracting force of the Sun for different positions of the test body.
The arrow on each line shows that the force is directed toward the Sun; this means the force is an
attraction. These are the lines of force of the gravitational field. For the moment, this is merely
a name and there is no reason for stressing it further. There is one characteristic feature of our
drawing which will be emphasized later. The lines of force are constructed in space, where no
matter is present. For the moment, all the lines of force, or briefly speaking, the field, indicate
only how a test body would behave if brought into the vicinity of the sphere for which the field
is constructed.

Later on in the same book:30

In this way, the lines of force, or in other words, the field, enable us to determine the forces acting
on a magnetic pole at any point in space.

The Field as a State of the Space

According to Einstein, the field might be considered a particular state of the space:31

If we are here going to talk about the ether, we are not, of course, talking about the physical or
material ether of the mechanical theory of undulations, which is subject to the laws of newtonian
mechanics, to the points of which are attributable a certain velocity. This theoretical edifice has,
I am convinced, finally played out its role since the setting up of the special theory of relativity.
It is rather more generally a question of those kinds of things that are considered as physically
real, which play a role in the causal nexus of physics, apart from the ponderable matter that
consists of electrical elementary particles. Therefore, instead of speaking of an ether, one could
equally well speak of physical qualities of space. Now one could take the position that all physical
objects fall under this category, because in the final analysis in a theory of fields the ponderable
matter, or the elementary particles that constitute this matter, also have to be considered as
‘fields’ of a particular kind, or as particular ‘states’ of the space.

The Field Is Generated or Produced by Source Bodies Like Gravitational Masses, Electric
Charges, Magnetic Poles, Magnets and Electric Currents

Some scientists assume that “field” is a magnitude which is generated or produced in space by certain bodies.
The bodies producing the fields are called “source bodies.” Gravitational source masses, for instance, are
supposed to generate or produce gravitational fields. Electrified bodies or electric charges generate electric
fields. Moving electric charges, magnetic poles, magnets or current carrying wires generate magnetic fields.

29[EI38, pp. 129-131].
30[EI38, p. 135].
31[Ein24] and [Ein91, p. 13].
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We present here some quotations presenting this point of view.
Landau and Lifshitz expressed themselves as follows:32

The interaction of particles can be described with the help of the concept of a field of force.
Namely, instead of saying that one particle acts on another, we may say that the particle creates
a field around itself; a certain force then acts on every other particle located in this field.

Feynman, Leighton and Sands expressed this idea as follows:33

We then have two rules: (a) charges make a field, and (b) charges in fields have forces on them
and move.

The Field Due to Source Bodies Generates or Produces a Force on Other Test Bodies like
Gravitational Masses, Electric Charges, Magnetic Poles, Magnets and Electric Currents

The fields due to source bodies can affect other bodies called “test bodies.” Gravitational test masses, for
instance, are affected be gravitational fields due to other source masses. This field generates or produces a
force on these test masses, accelerating them relative to an inertial frame if they are free to move. Likewise,
test charges are affected by electric fields due to other source charges. Moving charges, magnetic poles,
magnets or current carrying wires are affected by magnetic fields due to other sources, being accelerated by
these fields if these test bodies are free to move relative to an inertial frame of reference.

This idea has been expressed clearly by Feynman, Leighton and Sands:34

More was discovered about the electrical force. The natural interpretation of electrical interaction
is that two objects simply attract each other: plus against minus. However, this was discovered
to be an inadequate idea to represent it. A more adequate representation of the situation is to
say that the existence of the positive charge, in some sense, distorts, or creates a “condition” in
space, so that when we put the negative charge in, it feels a force. This potentiality for producing
a force is called an electric field. When we put an electron in an electric field, we say it is “pulled.”

A Field can be Transformed into Another Field

Sometimes people say that an electric field may be transformed into a magnetic field and vice-versa. As
will be seen in Subsection 15.5.4, Einstein, for instance, argued in his paper of 1905 on the special theory
of relativity, that an electric field ~E might generate or be transformed into a magnetic field ~B through a
change of reference between two inertial systems. Likewise, the magnetic field ~B might be transformed into
an electric field ~E.35

This einsteinian idea has been adopted by many scientists.36

A Field Changing in Time can Produce or Induce Another Field

In order to explain Faraday’s law of induction, the textbooks usually state that a magnetic field changing in
time produces an induced electric field.37

Textbooks also state that an electric field changing in time produces an induced magnetic field.38

Einstein and Infeld expressed these ideas as follows:39

The electric and magnetic field or, in short, the electromagnetic field is, in Maxwell’s theory,
something real. The electric field is produced by a changing magnetic field, quite independently,
whether or not there is a wire to test its existence; a magnetic field is produced by a changing
electric field, whether or not there is a magnetic pole to test its existence.

32[LL75, p. 46].
33[FLS63, p. 2-5].
34[FLS63, p. 2-5].
35[Ein05], [Ein52c] and [Ein78c].
36[Jac75, Section 11.10, pp. 552-556: Transformation of electromagnetic fields], [Gri89, Section 10.3.2, pp. 491-499: How the

field transform] and [HM95, Section 14.6, pp. 508-510: Transformation properties of the field tensor].
37[Gri89, Section 7.2: Faraday’s law, pp. 284-291], [HM95, Section 4.2, pp. 130-132] and [CS02, Section 22.1: Changing

magnetic fields and curly electric fields, pp. 804-807].
38[Gri89, Section 7.3: Maxwell’s equations, pp. 304-314], [HM95, Section 4.3, pp. 132-135] and [CS02, Section 23.1, pp.

842-845].
39[EI38, p. 151].
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Condensations of the Electromagnetic Field Are the Elementary Particles of Matter

Einstein presented this view in an address delivered on May 5th, 1920, in the University of Leyden, as
follows:40

Since according to our present conceptions the elementary particles of matter are also, in their
essence, nothing else than condensations of the electromagnetic field, our present view of the
universe presents two realities which are completely separated from each other conceptually,
although connected causally, namely, gravitational ether and electromagnetic field, or—as they
might also be called—space and matter.

He expressed the same point of view in other publications:41

In the present situation we are de facto forced to make a distinction between matter and fields,
while we hope that later generations will be able to overcome this dualistic concept, and replace
it with a unitary one, such as the field theory of today has sought in vain.

Likewise, in his book The Evolution of Physics there are similar statements:42

Field and Matter

[...]

We have two realities: matter and field. There is no doubt that we cannot at present imagine
the whole of physics built upon the concept of matter as the physicists of the early nineteenth
century did. For the moment we accept both the concepts. Can we think of matter and field as
two distinct and different realities? Given a small particle of matter, we could picture in a naive
way that there is a definite surface of the particle where it ceases to exist and its gravitational
field appears. In our picture, the region in which the laws of field are valid is abruptly separated
from the region in which matter is present. But what are the physical criterions distinguishing
matter and field? Before we learned about the relativity theory we could have tried to answer this
question in the following way: matter has mass, whereas field has not. Field represents energy,
matter represents mass. But we already know that such an answer is insufficient in view of the
further knowledge gained. From the relativity theory we know that matter represents vast stores
of energy and that energy represents matter. We cannot, in this way, distinguish qualitatively
between matter and field, since the distinction between mass and energy is not a qualitative
one. By far the greatest part of energy is concentrated in matter; but the field surrounding the
particle also represents energy, though in an incomparably smaller quantity. We could therefore
say: Matter is where the concentration of energy is great, field where the concentration of energy
is small. But if this is the case, then the difference between matter and field is a quantitative
rather than a qualitative one. There is no sense in regarding matter and field as two qualities
quite different from each other. We cannot imagine a definite surface separating distinctly field
and matter.

The same difficulty arises for the charge and its field. It seems impossible to give an obvious
qualitative criterion for distinguishing between matter and field or charge and field.

[...]

We cannot build physics on the basis of the matter-concept alone. But the division into matter
and field is, after the recognition of the equivalence of mass and energy, something artificial and
not clearly defined. Could we not reject the concept of matter and build a pure field physics?
What impresses our senses as matter is really a great concentration of energy into a comparatively
small space. We could regard matter as the regions in space where the field is extremely strong. In
this way a new philosophical background could be created. Its final aim would be the explanation
of all events in nature by structure laws valid always and everywhere. A thrown stone is, from
this point of view, a changing field, where the states of greatest field intensity travel through
space with the velocity of the stone. There would be no place, in our new physics, for both field
and matter, field being the only reality. This new view is suggested by the great achievements of

40[Ein22, p. 22] and [O’R65, Vol. 2, p. 655].
41[Ein24] and [Ein91].
42[EI38, pp. 255-258].
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field physics, by our success in expressing the laws of electricity, magnetism, gravitation in the
form of structure laws, and finally by the equivalence of mass and energy. Our ultimate problem
would be to modify our field laws in such a way that they would not break down for regions in
which the energy is enormously concentrated.

But we have not so far succeeded in fulfilling this programme convincingly and consistently. The
decision, as to whether it is possible to carry it out, belongs to the future. At present we must
still assume in all our actual theoretical constructions two realities: field and matter.

Etc.

There are many other meanings associated with the field concept. But we stop here as the previous meanings
are the most common and frequent ones in the literature.

3.2 These Different Field Definitions Contradict One Another

Several definitions and properties of the fields presented in Section 3.1 contradict one another. They are also
against the basic definitions of Faraday and Maxwell. This Section presents some of these contradictions
and the many problems introduced in physics after the advent of the field concept.

A Real Physical Entity Filling the Space Cannot be Identified with Space Itself

Faraday, Maxwell and the creators of the field concept defined it as a region of space in the neighborhood
of source bodies like a gravitational mass, an electrified body, a magnet or a current carrying wire. That is,
field was equated with space. Einstein and many modern scientists, on the other hand, maintained that the
field is a real physical entity filling the space. That is, Einstein considered the field as something real in the
space. This is obviously a contradiction. The basic concepts we have are those of matter and empty space.
Matter is something that has physical properties (it can be hard or soft, it can be hot or cold, it can be solid
or liquid, it interacts with other matter, etc.) Space, on the other hand, has none of these properties. A
body can occupy a region of space. It can also move from one region of space to another. But matter is not
identical to space and should not be identified with it.

Therefore, if field is a region of space, as defined by Faraday and Maxwell, it cannot be a real physical
entity. If, on the other hand, field is a real physical entity filling the space, then it cannot be identified with
space itself. These two concepts exclude one another.

How Is it Possible for a Region of Space to Propagate in Space?

The basic definition of field according to Faraday, Maxwell and many other scientists, is that it in general
signifies a region of space considered in respect to the potential behavior of test bodies moved about in it.
According to Einstein, electromagnetic waves propagate in empty space. How is it possible for a region of
space to propagate in space? This has never been explained by Einstein nor by any other person.

How Is it Possible for a Region of Space to Have Magnitude and Direction?

The usual conception of space is that it is a vacuum or empty region between material bodies. Faraday and
Maxwell defined field as a region of space in the neighborhood of electrified bodies, magnets and current
carrying wires. Maxwell, Einstein and most scientists argued that field is a vector quantity, with magnitude
and direction. How is it possible for a region of empty space to have magnitude and direction?

How Is it Possible for a Region of Space, Something Immaterial, to Interact with a Material
Body?

Faraday and Maxwell defined field as a region of space around source bodies. Textbooks normally argue that
a test body like a gravitational mass suffers a force when it is in the presence of a gravitational field. This
test mass can, for instance, be accelerated relative to the ground due to this gravitational field. An electrified
test body, likewise, would feel the presence of an electric field, while a magnet and a current carrying wire
would feel the presence of a magnetic field. How is it possible for something immaterial, like a region of
space, to act on a material body?
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How Is it Possible for a Region of Space to Have Dimensions Different from Length, Area or
Volume?

If a field is a region of space, as defined by Faraday, Maxwell and many other scientists, it should have
dimension of “space.” That is, in the International System of Units, the unit of a field should coincide with
that of length, m, area, m2, or volume, m3.

But this is not what happens with the ordinary fields. The gravitational field ~g has the unit of acceleration,
m/s2, the electric field ~E has the unit V/m = kgmC−1s−2 = kgmA−1s−3, while the magnetic field ~B has
the unit Tesla, T = Wm−2 = kgC−1s−1 = kgA−1s−2. All these units are different from the units of length,
area and volume. Therefore, it is not possible to identify any of these “fields” with “space.”

As we have just seen, several problems with the field concept are related with its definition as “a region
of space.” This has been the basic definition of field according to Faraday and Maxwell. If we drop this
definition in order to avoid the previous problems, than we should no longer call it the “electromagnetic
theory of Faraday and Maxwell,” or the “Faraday-Maxwell field theory.” After all, this will be a new model
not compatible with the reasonings and concepts presented by Faraday and Maxwell. Those following this
new approach would be no longer following their ideas and should begin with a completely new conceptual
framework.

In any event, there are many other problems and contradictions also related with the other meanings
associated with the field concept presented in Section 3.1. Some of these problems are discussed in the sequel.

Maxwell Argued that an Electromagnetic Wave Propagates in a Material Medium Filling
All Space, the Ether. Einstein, On the Other Hand, Argued that an Electromagnetic Wave
Propagates in Empty Space

These are two completely different conceptions. Faraday and Maxwell believed strongly in a material medium
filling all space. Maxwell called it an ether.43 As he said in the Preface of his Treatise on Electricity and
Magnetism:44

For instance, Faraday, in his mind’s eye, saw lines of force traversing all space where the mathe-
maticians saw centres of force attracting at a distance: Faraday saw a medium where they saw
nothing but distance: Faraday sought the seat of the phenomena in real actions going on in the
medium, they were satisfied that they had found it in a power of action at a distance impressed
on the electric fluids.

In Maxwell’s electromagnetic theory of light, the electromagnetic wave propagates in this material
medium, the ether.45 The relevant quotation was presented in Section 3.1.

He finished his book with the following statement:46

[...] Hence all these theories lead to the conception of a medium in which the propagation takes
place, and if we admit this medium as an hypothesis, I think it ought to occupy a prominent
place in our investigations, and that we ought to endeavour to construct a mental representation
of all the details of its action, and this has been my constant aim in this treatise.

Einstein, on the other hand, made the ether superfluous in his special theory of relativity and argued that
the electromagnetic wave propagates in empty space:47 The relevant quotation was presented in Section 3.1.

These are two completely opposite points of view. Therefore, it is wrong to say that Einstein’s theories
of relativity are compatible with Maxwell’s electrodynamics. These are completely different conceptual
frameworks. It does not make sense to keep Maxwell’s equations, removing the material substance giving
support to it, while at the same time arguing that the new theory agrees with Maxwell’s points of view. To
state the opposite, as has been done by Einstein, is to confuse everybody.

43[Max54, Vol. 1, Preface to the first edition, pp. v-xii, Vol. 2, §§641-646, pp. 278-283 and Chapter 23, §§846-866, pp.
480-493].

44[Max54, Vol. 1, p. ix].
45[Max54, Vol. 2, §781, p. 431].
46[Max54, Vol. 2, §866, p. 493].
47[Ein52c, pp. 37-38] and [Ein78c, p. 48].
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The Dimensions of ~g, ~E and ~B are Different from One Another. This Means that They Are Not
Magnitudes of the Same Kind. Therefore, They Could Not Receive the Same Denomination
as that of “Field,” as They Are Magnitudes of Different Species

In physics there are several kinds of energy. We have, for instance, kinetic energy, gravitational potential
energy, elastic potential energy, electric potential energy, magnetic energy, nuclear energy, thermal energy
etc. All of these magnitudes have the same unit, Joule, represented by J . These different kinds of energy
can be converted or modified into one another. For instance, when we release a rock it falls to the ground.
We say that its initial gravitational potential energy is being transformed into kinetic energy as it falls to
the ground. It is also possible to compare two energies, saying which one is greater than the other.

We also have several kinds of force: gravitational force, electromagnetic force, elastic force, nuclear force,
frictional force, etc. All of these magnitudes have the same unit, Newton, represented by N . These forces, by
acting simultaneously in the same body, can combine their effects. An example is the law of the parallelogram
of forces which Newton presented in the first Corollary after his three laws of motion in the beginning of the
Principia, as quoted in Section 1.2. When a block of matter remains at rest in the ground we say that the
its downward weight is balanced by the upward normal force exerted by the floor. A force can be added or
subtracted from another force, it is possible to say how many times a certain force is greater than another
force etc.

The same behavior does not happen with ~g, ~E and ~B. In the International System, for instance, the
unit of the gravitational field ~g is that of acceleration, m/s2. The unit of the electric field ~E is that of
V/m = kgmC−1s−2 = kgmA−1s−3. The unit of the magnetic field ~B is that of T = Wm−2 = kgC−1s−1 =
kgA−1s−2. That is, these three magnitudes have different units. This means that they represent different
kinds of magnitude. Therefore, it does not make sense to classify them into the same category, namely, that
of “field.” They should receive different names. The magnitude ~g should receive the name acceleration or
xxx. The magnitude ~E should receive the name yyy. The magnitude ~B should receive the name zzz. We
then would have a gravitational acceleration or a gravitational xxx, an electric yyy and a magnetic zzz.

By calling ~g, ~E and ~B by the same generic name, field, creates only confusion and misunderstandings.

An Electric Field Can Not be Transformed into a Magnetic Field As They Have Different
Dimensions

Many problems of physics can be considered from the point of view of energy. For instance, it is possible
to utilize the energy concept in the study of free falling bodies, pendulums or bodies rolling down inclined
planes, etc. In these situations physicists normally say that the potential energy of the body has been
transformed into a kinetic energy. When there is a battery connected to a resistor in an electric circuit, it is
usual to study this problem considering the chemical energy stored in the battery being transformed into the
thermal energy dissipated in the resistor. If there is a charged capacitor being discharged through a resistor
connected with an inductor, we can study this problem considering the conversion of electric energy into a
thermal energy plus a magnetic energy. All of these studies make sense, as we are considering magnitudes
of the same kind, namely, different species of energy.

The same procedure cannot be applied to ~E and ~B. In the International System, for instance, an electric
field ~E has a unit different from that of a magnetic field ~B. Therefore ~E cannot be transformed into ~B.
Einstein, on the other hand, as will be seen in Subsection 15.5.4, argued in his paper of 1905 on the special
theory of relativity, that an electric field ~E is transformed into a magnetic field ~B and vice-versa under a
Lorentz transformation from one inertial frame of reference to another.48

The Time Variation of a Magnetic Field Has a Dimension Different from That of an Electric
Field. Therefore, a Changing Magnetic Field Cannot Induce an Electric Field

In the International System the time variation of a magnetic field, ∂ ~B/∂t, has unit T/s = Wm−2s−1 =
kgC−1s−2 = kgA−1s−3. The electric field, on the other hand, has unit V/m = kgmC−1s−2 = kgmA−1s−3.
As these units are different from one another, it is not possible to say that a changing magnetic field induces
an electric field, as is normally stated in order to explain Faraday’s law of induction. A changing magnetic
field can only induce something of the same kind, namely, something with unit given by T/s = Wm−2s−1 =
kgC−1s−2 = kgA−1s−3.

48[Ein05], [Ein52c] and [Ein78c].
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The Time Variation of an Electric Field Has a Dimension Different from That of a Magnetic
Field. Therefore, a Changing Electric Field Cannot Induce a Magnetic Field

In the International System the time variation of an electric field, ∂ ~E/∂t, has unit V/(ms) = kgmC−1s−3 =
kgmA−1s−4. The magnetic field, on the other hand, has unit T = Wm−2 = kgC−1s−1 = kgA−1s−2. As
they are different from one another, it is not possible to say that a changing electric field induces a magnetic
field, as is normally stated in order to explain Maxwell’s displacement current and his electromagnetic theory
of light. A changing electric field can only induce something of the same kind, namely, something with the
unit given by V/(ms) = kgmC−1s−3 = kgmA−1s−4.

How Is it Possible to Have Action and Reaction Between a Field and a Material Body?

Usually Newton’s third law of motion, the principle of action and reaction, is applied for the interaction
between two material bodies. The force that a body A exerts on another body B is equal and opposite
to the force exerted by B on A. This force can have several origins, namely, gravitational, elastic, electric,
magnetic, etc. If bodies A and B are initially at rest relative to an inertial frame of reference, being free to
move, their mutual interaction will cause them to be accelerated in this frame, moving in opposite directions.

Nowadays, on the other hand, this fact is described utilizing the field concept. Physicists then argue that
the field produced by body A propagates in space, normally at light velocity. When this field reaches body
B at a later time, the field interacts with B. How should we understand action and reaction in this field
formulation? Body B, for instance, is accelerated relative to an inertial frame of reference by this interaction.
What happens during this interaction with the field generated by A? Is this field accelerated relative to an
inertial frame of reference? Is there a force acting on this field and being generated by body B?

The Condensation of a Field Cannot Be an Elementary Particle of Matter

Einstein said that condensations of the electromagnetic field are elementary particles of matter.49

As O’Rahilly put it:50

The field started as the humble offspring, the shadowy penumbra surrounding a charge; it ends
by destroying not only electricity but matter!

This point of view presented by Einstein has been followed by many modern scientists.51 However, this
point of view does not make sense. What does it mean a condensation of the electromagnetic field? Is it
the electric field per unit volume, d ~E/dV or d| ~E|/dV ? Is it the magnetic field per unit volume, d ~B/dV or
|d ~B|/dV ? And what did Einstein mean by an elementary particle of matter? Was he meaning its inertial
mass mi? Or its gravitational mass mg? Or was he meaning its electric charge q? None of these choices
make sense, after all these magnitudes (d| ~E|/dV , d| ~B|/dV , m and q) have different dimensions. They cannot
be identified with one another. Therefore, it is incorrect to say that the elementary particles of matter are
in their essence nothing else than condensations of the electromagnetic field.

Etc.

We could present many more examples showing the mutual contradictions between the several meanings
associated with the field concept. But these are enough in order to indicate the logical problems associated
with the present day field theories.

3.3 Maxwell’s Equations

In classical electromagnetism it is usually considered that a volume charge density ρ (charge per unit volume)
and a volume current density ~J (current per unit area perpendicular to the direction of flow) generate the
electric and magnetic fields ~E and ~B, respectively. Maxwell presented a set of equations describing the fields
produced by these sources. Supposing the sources in vacuum, these differential equations in the International
System of Units and in vector notation are given by:

49[Ein22, p. 22], [Ein24], [Ein91] and [EI38, pp. 255-258].
50[O’R65, Vol. 2, p. 655].
51[O’R65, Vol. 2, Chapter 13, Section 4: The ‘Field’, pp. 645-661] and [Hob13].
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∇ · ~E =
ρ

εo
, (3.4)

∇× ~B = µo
~J +

1

c2
∂ ~E

∂t
, (3.5)

∇ · ~B = 0 , (3.6)

and

∇× ~E = −∂ ~B

∂t
. (3.7)

The integral form of these equations are given as:
∫

©
∫

S

~E · d~a =

∫ ∫ ∫

V

ρ

εo
dV , (3.8)

∮

C

~B · d~ℓ = µo

∫ ∫

~J · d~a+
1

c2
d

dt

∫ ∫

S

~E · d~a , (3.9)

∫

©
∫

S

~B · d~a = 0 , (3.10)

and
∮

C

~E · d~ℓ = − d

dt

∫ ∫

S

~B · d~a . (3.11)

Physicists usually suppose that these fields produced by the source charges and currents propagate at
light velocity in empty space. When these fields reach test charges and currents, they act on them. The
fields can, for instance, accelerate test charges relative to an inertial frame of reference.

The electric field ~E and the magnetic field ~B can also be written in terms of the scalar vector potential
φ and the magnetic vector potential ~A through the following equations:

~E = −∇φ− ∂ ~A

∂t
, (3.12)

and

~B = ∇× ~A . (3.13)

3.4 Force Acting on an Electrified Body based on Electromagnetic

Fields

Newton presented the universal law of gravitation in terms of a force acting between material bodies. Nowa-
days the gravitational force is usually expressed in terms of a gravitational field ~g generated by a source
gravitational mass Mg. when this field reaches another test gravitational mass mg it generates a force ~F on
this mass given by:

~F = mg~g . (3.14)

Analogously, the force ~F acting on an electrified body which has a charge q in the presence of an electric
field ~E and a magnetic field ~B is given by:

~F = q ~E + q~v × ~B = −q∇φ− q
∂ ~A

∂t
+ q~v × ~B . (3.15)

The history of this force and the meaning of the velocity ~v which appear in this equation will be discussed
in Section 15.5.



Chapter 4

Other Topics of Classical Mechanics

4.1 Conservation of Linear Momentum

Let us suppose a system of N particles interacting with one another in the absence of external forces acting
on this system. Let S be an inertial frame of reference with origin O. Let ~rp be the position vector of
particle p with inertial mass mip relative to the origin O of frame S, with p = 1, ..., N . Let ~vp ≡ d~rp/dt and
~ap ≡ d~vp/dt = d2~rp/dt

2 be the velocity and acceleration of p in frame S, figure 4.1.

mip

vp

ap

S
z

y

x

0

r p

1 2
3...

N

Figure 4.1: Position vector, velocity and acceleration of a particle p relative to an inertial frame of reference
S.

The total linear momentum ~pt of this system of particles is defined by:

~pt ≡
N
∑

p=1

mip~vp . (4.1)

Supposing constant inertial masses and applying Newton’s second law of motion in the form of equation
(1.5), the time derivative of the total linear momentum is given by:

d~pt
dt

=

N
∑

p=1

mip~ap = mi1~a1 +mi2~a2 + ...+miN~aN =

N
∑

p=1

p 6=1

~Fp1 +

N
∑

p=1

p 6=2

~Fp2 + ...+

N
∑

p=1

p 6=N

~FpN

=
(

~F21 + ~F31 + ...+ ~FN1

)

+
(

~F12 + ~F32 + ...+ ~FN2

)

+ ...+
(

~F1N + ~F2N + ...+ ~FN−1, N

)

. (4.2)

We now suppose that the forces between each pair of particles p and q satisfy the principle of action and
reaction, equation (1.6):

~Fpq = − ~Fqp . (4.3)

57
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Equation (4.3) applied into equation (4.2) yields a zero value. This means that

~pt = constant in time . (4.4)

That is, there is conservation of the total linear momentum of a system of particles when no external
force is acting on the system and when the force between each pair of particles satisfies the principle of action
and reaction given by equation (1.6).

4.2 Conservation of Angular Momentum

Let us continue with the same situation described in Section 4.1. The total angular momentum ~Lt of this
system of N particles is defined by:

~Lt ≡
N
∑

p=1

~rp × (mip~vp) . (4.5)

Utilizing that ~vp × ~vp = ~0 and supposing constant inertial masses, the time derivative of ~Lt yields:

d~Lt

dt
=

N
∑

p=1

~rp × (mip~ap) = ~r1 ×mi1~a1 + ~r2 ×mi2~a2 + ...+ ~rN ×miN~aN . (4.6)

Utilizing equation (4.6) together with equation (1.5) yields the following relation:

d~Lt

dt
= ~r1×

(

~F21 + ~F31 + ...+ ~FN1

)

+~r2×
(

~F12 + ~F32 + ...+ ~FN2

)

+...+~rN×
(

~F1N + ~F2N + ...+ ~FN−1, N

)

.

(4.7)
Utilizing ~rpq ≡ ~rp − ~rq and equation (4.3) in equation (4.7) yields the following relation:

d~Lt

dt
= ~r12 × ~F21 + ~r13 × ~F31 + ...+ ~rN−1, N × ~FN, N−1 . (4.8)

We now suppose that the forces between each pair of particles p and q satisfy the principle of action and
reaction in the strong form. That is, the force ~Fpq exerted by particle p on particle q is not only equal and
opposite the force ~Fqp exerted by q on p, equation (4.3), but is also along the direction connecting p and q,
namely:

~Fpq points along r̂pq . (4.9)

Each term on the right hand side of equation (4.8) goes to zero with the supposition given by equation
(4.9). This means that

~Lt = constant in time . (4.10)

That is, the total angular momentum of a system of particles is conserved in time when there are no
external forces acting on the system and when the force between each pair of particles satisfies the principle
of action and reaction in the strong form given by equations (1.6) and (4.9).

4.3 Center of Mass

Consider the system of N particles presented in Section 4.1. The position vector ~rcm which locates the center
of mass relative to the origin O of the inertial system S and its velocity ~vcm relative to this frame S are
defined by the following equations, respectively:

~rcm ≡
N
∑

p=1

mip~rp
mit

, (4.11)

and
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~vcm ≡ d~rcm
dt

=

N
∑

p=1

mip~vp
mit

, (4.12)

where mit ≡
∑N

p=1 mip is the total inertial mass of the system.
With these definitions the total linear momentum ~pt of this system of particles given by equation (4.1)

can be written as:

~pt =
N
∑

p=1

mip~vp = mit
d~rcm
dt

= mit~vcm . (4.13)

4.4 Energy

Newton based his mechanics in the concepts of force and acceleration. There is another formulation of
mechanics based on the concept of energy. This formulation was due originally to Huygens and Leibniz,
although it has been later on incorporated in newtonian mechanics. The unit of energy in the International
System is the Joule, represented by J . This Section presents the main aspects related with the concepts of
potential and kinetic energies.

4.4.1 Kinetic Energy

The basic concept of energy is that of kinetic energy T . Let us suppose that we are in an inertial frame of
reference S and that a particle of inertial mass mi moves relative to this reference frame S with a velocity
~v. In this situation its kinetic energy T is defined by:

T ≡ miv
2

2
= mi

~v · ~v
2

. (4.14)

This kinetic energy is an energy of pure motion in classical mechanics. That is, it is not connected with
any kind of interaction (gravitational, electric, magnetic, elastic, nuclear, etc.). As such, it depends on the
system of reference, because the same body, at the same moment of time, can have different velocities relative
to different inertial systems. This means that his kinetic energy relative to each one of these reference frames
can have a different value.

The total kinetic energy Tt of a system of N particles is defined by:

Tt ≡
N
∑

p=1

mipv
2
p

2
=

N
∑

p=1

mip
~vp · ~vp

2
, (4.15)

where mip is the inertial mass of particle p and ~vp is the velocity of this particle relative to the inertial frame
of reference S, with p = 1, ..., N .

4.4.2 Potential Energy

The other kinds of energy are based on how the test particle interacts with other bodies. In this Subsection
we consider some kinds of potential energy.

Gravitational Potential Energy

The gravitational potential energy Ug between two point bodies having gravitational masses mg1 and mg2

separated by a distance r is given by:

Ug = −G
mg1mg2

r
. (4.16)

If the body mg1 is outside the Earth at a distance r1 from its center, this equation may be integrated
replacing mg2 by dmg2, where dmg2 means an infinitesimal quantity of gravitational mass in each point
inside the Earth and along its surface. Let us now suppose an isotropic distribution of gravitational mass
over the body of the Earth. Integration of this energy for all elements of mass dmg2 belonging to the Earth
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and interacting with an external point gravitational mass mg1 yields the gravitational potential energy Ug

of mg1 interacting with the Earth as given by:

Ug = −G
mg1MgE

r1
, (4.17)

where MgE represents the gravitational mass of the Earth.
Suppose the test body is located at a distance h from the surface of the Earth, r1 = RE + h, where RE

represents the Earth’s radius. By supposing h ≪ RE , equation (4.17) can be approximated as follows:

Ug = −G
mg1MgE

RE + h
≈ −Gmg1MgE

RE
+mg1gh , (4.18)

where g = GMgE/R
2
E ≈ 9.81 m/s2 is the value of the gravitational force per unit of gravitational mass

acting at the surface of the Earth. Besides the constant term −Gmg1MgE/RE, this equation shows that the
gravitational potential energy close to the Earth is given by mg1gh.

Elastic Potential Energy

Consider a spring of elastic constant k fixed horizontally relative to the ground. Let ℓo be its normal relaxed
length and ℓ its length when it is compressed or stretched. Suppose one extremity of this spring is fixed
relative to the ground, while a body of inertial mass mi is fixed at the other extremity of the spring. Let
x ≡ ℓ− ℓo be the displacement of the body relative to the equilibrium position of the spring, as in figure 2.7.
The elastic potential energy Uk of this inertial mass interacting with this spring is given by:

Uk =
kx2

2
. (4.19)

Electrostatic Potential Energy

The electrostatic potential energy Ue describing the interaction between two point bodies electrified with
charges q1 and q2 separated by a distance r is given by:

Ue =
1

4πεo

q1q2
r

. (4.20)

Here εo = 8.85× 10−12 A2s4/kgm3 is the constant called vacuum permittivity.
This expression is analogous to equation (4.16) describing the potential energy between two gravitatinal

masses.

Magnetostatic Potential Energy

The magnetostatic potential energy Um describing the interaction between two magnetic poles p1 and p2
separated by a distance r is given by:

Um =
µo

4π

p1p2
r

. (4.21)

Here µo ≡ 4π × 10−7 kgm/(A2s2) is the constant called vacuum permeability.
As mentioned in Section 2.5, a magnetic pole has never been isolated in nature. The basic, fundamental or

smallest magnetic entity found in nature is a magnetic dipole. Consider two magnetic dipoles with magnetic
moments ~m1 and ~m2. Each magnetic dipole j, with j = 1, 2, is composed of a North pole pNj and a South
pole pSj of the same intensity, pSj = −pNj , separated by a distance ℓj . Let ℓ̂j be a unit vector pointing
from the South pole to the North pole of each dipole. The magnetic moment ~mj of each dipole was defined
by equation (2.14), namely, ~mj = pNjℓℓ̂j. The magnetic potential energy Um describing the interaction of
two magnetic dipoles ~m1 and ~m2 separated by a distance r, as represented in figure 2.12, is given by:

Um =
µo

4π

~m1 · ~m2 − 3(~m1 · r̂)(~m2 · r̂)
r3

. (4.22)

Here r̂ is the unit vector pointing from the center of dipole 2 to the center of dipole 1. This relation is valid
when the distance r between the centers of the dipoles is much larger than their lengths, that is, when r ≫ ℓ1
and r ≫ ℓ2.
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Electrodynamic Potential Energy

Let C1 and C2 be two closed electric circuits carrying steady currents i1 and i2, respectively. Let i1d~ℓ1 be a
current element of circuit C1 located at the position vector ~r1 relative to the origin O of an inertial system S.
The infinitesimal length of this current element is dℓ1 = |d~ℓ1| and it points along the direction of the current
i1 in each point of circuit 1. Analogously i2d~ℓ2 is an infinitesimal current element of circuit C2 located at
~r2, of length dℓ2 = |d~ℓ2| and pointing along the direction of the current i2 in each point of circuit 2. The
electrodynamic potential energy U describing the interaction between two closed circuits C1 and C2 is given
by:

U = i1i2M , (4.23)

where M is called the coefficient of mutual inductance between the two circuits. It is defined by:

M ≡ µo

4π

∮

C1

∮

C2

(r̂ · d~ℓ1)(r̂ · d~ℓ2)
r

=
µo

4π

∮

C1

∮

C2

d~ℓ1 · d~ℓ2
r

. (4.24)

Here ~r ≡ ~r1 − ~r2 is the vector pointing from i2d~ℓ2 to i1d~ℓ1, r = |~r| is the distance between the two current
elements and r̂ = ~r/r is the unit vector pointing from i2d~ℓ2 to i1d~ℓ1.

Let us consider the particular case in which there are two small closed loops of areas a1 and a2 carrying
currents i1 and i2. Let n̂1 and n̂2 be the unit vectors normal to these areas, figure 2.15. Moreover, let r
be the distance between the centers of these two loops and r̂ be the unit vector pointing from the center of
loop 2 to the center of loop 1. Let us suppose, moreover, that the distance r between these loops is much
larger than their typical sizes, that is, r ≫ √

a1 and r ≫ √
a2. In this case the electrodynamic potential

energy between these two loops is given by equation (4.22) with the magnetic moment ~mj of loop j given
by equation (2.19), that is, ~mj = ijajn̂j with j = 1, 2.

Magnetic Potential Energy between a Magnetic Dipole and a Small Current Loop

Consider now a magnetic dipole of length ℓ and magnetic moment given by equation (2.14) which is inter-
acting with a small loop of area a carrying a current i and having a magnetic moment given by equation
(2.19), figure 2.16. The magnetic potential energy describing their interaction is also given by equation
(4.22), provided they are separated by a large distance r, such that r ≫ ℓ and r ≫ √

a.

Weber’s Potential Energy

Weber’s potential energy UW describing the interaction between two point bodies electrified with charges q1
and q2 located at ~r1 and ~r2, respectively, was introduced by him in 1848.1 In the International System of
Units it is given by:

UW =
1

4πεo

q1q2
r

(

1− ṙ2

2c2

)

=
1

4πεo

q1q2
r12

(

1− ṙ212
2c2

)

. (4.25)

Here r12 = |~r1 − ~r2| ≡ r is the distance between q1 and q2, while ṙ12 ≡ dr12/dt ≡ ṙ ≡ dr/dt is the relative
radial velocity between them.

As discussed in Section 2.8, the constant c which appears in equation (4.25) is the ratio of electromagnetic
and electrostatic units of charge. Its experimental value was presented in equation (2.23), namely, c =
2.998× 108 m/s.

4.4.3 Relation between Force and Potential Energy

A conservative force ~F and the corresponding potential energy U are related through the gradient or direc-
tional derivative, namely:

~F = −∇U = −
(

∂U

∂x
x̂+

∂U

∂y
ŷ +

∂U

∂z
ẑ

)

. (4.26)

1[Web48], with English translation in [Web66].
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In this equation ~F is the force acting on a particle located at ~r = xx̂+ yŷ + zẑ, while U is the total energy
describing its interaction with all other bodies around it. The gradient of U is considered as acting at the
position of the test particle.

This relation is especially useful when the potential energy and the force depend only on the positions
of bodies. One example of this situation happens when the force between two bodies is central, satisfies the
principle of action and reaction, and depends only on the distance r between them. In this case the force
~F21 exerted by 2 on 1 can be obtained from the mutual potential energy U between these bodies utilizing
the following expression:

~F21 = −dU

dr
r̂ = − ~F12 , (4.27)

where ~F12 is the force exerted by 1 on 2, while r̂ is the unit vector pointing from 2 to 1.
Suppose there is a system of N particles interacting with one another through conservative forces. Let p

and q be two of these bodies, p = 1, ..., N and q = 1, ..., N , with q 6= p. Let Upq be the potential energy for
each pair of particles p and q. The total potential energy Ut of this system of particles is defined by:

Ut ≡
1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq =

N
∑

p=1

N
∑

q=1

q>p

Upq . (4.28)

The factor 1/2 in the central term of this expression is due to the fact that Upq = Uqp. Therefore (Upq +
Uqp)/2 = Upq for all p and for all q 6= p. The factor 1/2 guarantees that the energy of interaction of each
pair of particles is counted only once in the total energy of the system.

Let k be a particle located at ~rk = xkx̂ + ykŷ + zkẑ in relation to the origin O of an inertial system S,
with k = 1, ..., N . The force ~Fk acting on k and being due to all N − 1 particles of the system is given by:

~Fk = −∇kUt = −
(

∂Ut

∂xk
x̂+

∂Ut

∂yk
ŷ +

∂Ut

∂zk
ẑ

)

. (4.29)

4.4.4 Conservation of Energy

In this formulation of mechanics the basic equation of motion is the equation for the conservation of energy,
instead of Newton’s three laws of motion. The theorem for the conservation of energy is utilized in the case
of conservative systems. Suppose there are N particles interacting with one another. Let Upq represent the
potential energy of interaction between particles p and q, with p = 1, ..., N and q = 1, ..., N . Let Ut be the
total potential energy of this system of particles given by equation (4.28), while Tt is the total kinetic energy
of this system of particles given by equation (4.15). The total energy Et of this system of particles is defined
by:

Et ≡ Ut + Tt =
1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq +

N
∑

p=1

mip
~vp · ~vp

2
, (4.30)

where mip is the inertial mass of particle p moving with velocity ~vp relative to an inertial frame of reference
S.

The theorem of the conservation of energy for a conservative system states that the total energy (sum
of potential energies with the kinetic energies of all the particles of this system) is a constant in time.
Mathematically this theorem can be written as follows:

Et ≡
1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq +

N
∑

p=1

mip
~vp · ~vp

2
= constant in time . (4.31)

4.5 Numerical Values of Terrestrial, Planetary and Cosmological

Magnitudes

This Section presents the approximate numerical values of several magnitudes connected with the Earth, the
solar system, our galaxy and the universe as a whole.
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Mean radius of the Earth: RE = 6.37× 106 m. Radius of the Moon: RM = 1.74× 106 m. Radius of the
Sun: RS = 6.96× 108 m. Mean Earth-Sun distance, also called an astronomical unit, AU : dES = 1 AU =
1.50× 1011 m. Distance from the Sun to the center of the Milky Way: dSMW = 2.5× 1020 m.

There is still a cosmological distance Ro which can be defined by the following relation connecting Hubble’s
constant Ho and light velocity c in vacuum, namely:

Ro ≡ c

Ho
. (4.32)

This constant Ro is sometimes called Hubble’s radius, Hubble’s length or Hubble’s distance. There is a great
uncertainty in the value of Hubble’s constant Ho. Nowadays its value is estimated between 50 kms−1Mpc−1

and 100 kms−1Mpc−1, that is:2

1.6× 10−18 s−1 < Ho < 3.2× 10−18 s−1 . (4.33)

Equations (4.32) and (4.33) yield:

9.8× 1025 m < Ro < 1.9× 1026 m . (4.34)

Sometimes physicists mention that Ro would be the radius of the known universe. But it should be
emphasized here that Edwin Hubble himself preferred a cosmological model in which the universe extended
indefinitely in all directions of space and also in time. It was infinite in space and in time. His preferred model
was that of an universe without expansion, homogeneous in large scale.3 This means that for Hubble himself
there was no radius of the universe, as the universe would extend itself indefinitely in all directions, having
an infinite size. In any event, after clarifying this aspect, as the constant Ro was defined by equation (4.32)
utilizing Hubble’s constant Ho, it makes sense to call Ro Hubble’s length or Hubble’s distance, provided this
is not associated with the size of the universe.

Earth’s gravitational or inertial mass: ME = 5.98× 1024 kg. Moon’s mass: MM = 7.36× 1022 kg. Sun’s
mass: MS = 1.99× 1030 kg. Mass of the Milky Way galaxy: MMW ≈ 4× 1041 kg.

Mean volume density of gravitational or inertial mass of the Earth: ρE = 5.52×103 kg/m3. Moon’s mean
volume density of mass: ρM = 3.33×103 kg/m3. Sun’s mean volume density of mass: ρS = 1.41×103 kg/m3.
Mean volume density of mass of the Milky Way near the Sun: ρMW ≈ 0.2MS/parsec

3 ≈ 1.4× 10−20 kg/m3.
It is usual in cosmology to define a theoretical magnitude called the critical mass density, represented by

ρc, through the following equation:

ρc ≡
3H2

o

8πG
. (4.35)

The value of ρc depends upon the value of Hubble’s constant Ho.
The value of the average volume density of visible gravitational mass of the universe is still uncertain.

Let us represent this magnitude by ρgo. The uncertainty in its value is connected with the uncertainty in the
determination of the distances between the galaxies and the Earth. Normally these distances are determined
utilizing Hubble’s law of redshifts. The value of ρgo depends on the assumed value of Hubble’s constant Ho,
being in particular proportional to H2

o . The value of ρgo/ρc, on the other hand, does not depend upon the
assumed value of Hubble’s constant. Modern observations indicate that the value of this ratio is between
0.1 and 0.3, namely:4

0.1 <
ρgo
ρc

< 0.3 . (4.36)

Equations (4.33), (4.35) and (4.36) yield the following limits for ρgo:

4.6× 10−28 kg

m3
< ρgo < 5.5× 10−27 kg

m3
. (4.37)

The mass of a hydrogen atom is 1.67× 10−27 kg. Accordingly, equation (4.37) can also be expressed as
follows:

0.28
hydrogen atoms

m3
< ρgo < 3.3

hydrogen atoms

m3
. (4.38)

2[Bor88, Section 2.2: The Hubble Constant Ho - How Big is the Universe?].
3See [ANS08], [ANS09] and [ANS13] for the relevant references and quotations.
4[Bor88, Section 2.3, see especially pp. 69, 71 and 74].
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Consider a sphere of radius given by Hubble’s distance Ro and having the mean mass density ρgo of
visible matter observed in the universe. Its mass Mgo will be given by Mgo = 4πρgoR

3
o/3. Equations (4.34)

and (4.37) yield the following limits for this mass:

1.8× 1051 kg < Mgo < 1.6× 1053 kg . (4.39)

The Earth spins daily around its axis, relative to the fixed stars, with a period of one sidereal day
(Tday = 8.6164 × 104 s), or with an angular velocity given by ωday = 2π/Tday = 7.29 × 10−5 rad/s. The
Earth describes an orbit around the Sun, relative to the background of fixed stars, with a period of one
year (Tyear = 365d 6h 9m = 3.156 × 107 s), or with an angular velocity given by ωyear = 2π/Tyear =
2.0 × 10−7 rad/s. The solar system describes an orbit around the center of our galaxy, relative to the
background of distant galaxies, with a period Tgalaxy given by Tgalaxy = 2.5 × 108 years = 7.9× 1015 s, or
with an angular velocity ωgalaxy = 2π/Tgalaxy ≈ 8.0× 10−16 rad/s. Therefore:

Tgalaxy ≫ Tyear ≫ Tday , (4.40)

and

ωgalaxy ≪ ωyear ≪ ωday . (4.41)

The free fall acceleration of a heavy body near the ground at 50o latitude, relative to an inertial frame
of reference, is given by a = g = 9.81 m/s2, figure 4.2. The free fall acceleration gM near the surface of the
Moon, relative to an inertial frame of reference, has approximately 1/6 of this value, namely: gM = 1.6m/s2.

a = g

m

Figure 4.2: Acceleration of free fall near the Earth.

A particle located in the Equator of the Earth, at rest relative to the ground, is not accelerated relative
to the Earth. But the Earth itself spins once a day around its North-South axis in relation to the frame of
the fixed stars. This means that this particle has a centripetal acceleration in the frame of the fixed stars,
describing a circular orbit around the axis of the Earth, figure 4.3.

N

S
a

m

w

a
mN

w

(a) (b)

Figure 4.3: Centripetal acceleration, a, of a particle located at the terrestrial Equator, at rest relative to the
ground, due to the diurnal rotation of the Earth in relation to the frame of distant stars. (a) Situation seen
along a Meridian plane. (b) Situation in the equatorial plane, seen from the North pole.

The value of this centripetal acceleration due to the diurnal rotation of the Earth relative to the fixed
stars is given by (utilizing equation (9.8) which will be presented in Section 9.1):

adaily centripetal = REω
2
day ≈ 3.4× 10−2 m/s2 . (4.42)

The Earth describes an elliptical orbit around the Sun, relative to the fixed stars, with a period of one
year. This orbit is almost circular, as the eccentricity of this ellipsis is very small. This means that the
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S
a E

w

Figure 4.4: Earth’s centripetal acceleration, a, relative to the fixed stars, due to its annual orbit around the
Sun.

Earth-Sun distance is almost constant along the year. The Earth itself has a centripetal acceleration relative
to the fixed stars, figure 4.4.

The centripetal acceleration of the Earth, relative to the fixed stars, due to its annual translation around
the Sun, is given by:

aannual centripetal = dESω
2
year ≈ 6.0× 10−3 m/s2 . (4.43)

Nowadays it is known that the solar system is not at the center of our galaxy, the Milky Way. Moreover,
the solar system describes an orbit, relative to the background of distant galaxies, around the center of our
galaxy. This means that the solar system has a centripetal acceleration, relative to the frame of distant
galaxies, due to its orbit around the center of our galaxy, figure 4.5.

a

w

Figure 4.5: Centripetal acceleration a of the solar system, relative to the background of distant galaxies, due
to its orbit around the center of our galaxy.

This centripetal acceleration of the solar system relative to the universal frame of distant galaxies is given
by:

agalaxy centripetal = dSMWω2
galaxy ≈ 2.5× 1020(8.0× 10−16)2 ≈ 1.6× 10−10 m/s2 . (4.44)

Therefore:

g ≫ adaily centripetal > aannual centripetal ≫ agalaxy centripetal . (4.45)

It can be defined an acceleration ao utilizing Hubble’s constant Ho and Hubble’s length Ro ≡ c/Ho by
the following expression:

ao ≡ RoH
2
o = cHo . (4.46)

Utilizing the limits given by equation (4.33), we can obtain the following boundaries for the value of ao
from equation (4.46):

4.8× 10−10m

s2
< ao < 9.6× 10−10m

s2
. (4.47)
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Part II

Applications of Newtonian Mechanics

67





Chapter 5

Bodies at Rest Relative to the Ground

We initially consider the Earth as a good inertial frame of reference. Consider a body of inertial mass mi

at rest relative to the ground. If there is no resultant force acting on it, equation (1.4) indicates that it will
remain at rest.

5.1 Body at Rest

Figure 5.1 presents a block of inertial mass mi and gravitational mass mg at rest relative to the ground.
In this situation the weight ~Fg = mg~g of the body, which is the downward force exerted by the Earth on
it, is balanced by the upward normal force ~Fn ≡ ~N exerted by the ground on the body. This normal force
prevents the body from penetrating the surface. Although the normal force acts in the region of contact
between the body and the ground, it is being represented in this figure as acting on the center of the body
in order illustrate more clearly the equilibrium of the two forces.

mi

N

m gg

Figure 5.1: Body at rest relative to the ground. The downward weight mgg exerted gravitationally by the
Earth is balanced by the upward normal force N exerted by the contact with the ground.

5.2 Body Suspended by a String or Spring

According to Newton’s law of gravitation, equation (1.17), the force exerted by the Earth on a particle
outside it varies with the square of the distance between this particle and the center of the Earth. Let r1
be the initial distance from the particle to the center of the Earth and r2 its final distance. If r2 = r1 + h,
with h ≪ r1, then this force may be considered as essentially constant. This is illustrated in figure 5.2. In
situation (a) there is a normal equal arm balance which is in equilibrium with two equal weights which are
at the same distance from the ground. In situation (b) one of these weights was placed at another pan of the
balance. After releasing the balance, it remains in equilibrium, with its arms horizontal and at rest relative
to the ground.1 This experiment indicates that close to the ground the weight of a body changes very little
by changing the height of the body above the ground.

1[Ass08, pp. 147-148], [Ass10a, pp. 153-154] and [Ass11a, pp. 137-138].
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(a) (b)

Figure 5.2: (a) Equal arm balance in equilibrium with two equal weights. (b) The balance remains in
equilibrium by placing one body at a higher pan of the balance.

Only extremely sensitive balances might indicate a difference in situations (a) and (b) of figure 5.2. Let
us suppose that we begin with the equilibrium configuration of figure 5.2 (a). The body on the right hand
side is then placed at a higher pan, as in figure 5.2 (b), with the balance released from rest. If the balance
were extremely sensitive, it would no longer remain in equilibrium in this new situation. The body closer to
the ground would move towards the Earth, while the higher body would move away from it.

There is another procedure which indicates that in practical situations the weight of a body does not
depend upon its height above the ground, if the body is close to the Earth. This is shown in figures 5.3
and 5.4. In figure 5.3 (a) there is a spring with elastic constant k and relaxed length ℓo when its superior
extremity is fixed in a support at a distance d from the ground, with d > ℓo. In situation (b) the upper
extremity of this spring is fixed at a height D above the ground, with D > d > ℓo. The relaxed length of the
spring remains the same, namely, ℓo. We are here supposing D ≪ RE , that is, with D much smaller than
the Earth’s radius.

ℓo
d

D

(a) (b)

ℓo

Figure 5.3: The same spring suspended vertically at different heights above the ground.

The same procedure is repeated, but now suspending a body of gravitational mass mg and inertial mass
mi in the lower extremity of this spring. After the body and spring reach equilibrium, remaining at rest
relative to the ground, the spring acquires a stretched length ℓ, figure 5.4 (a).

mg

ℓ

ℓ

d

D

(a) (b)

mg

Figure 5.4: The same spring suspended vertically at different heights above the ground, now with a body
fixed in its lower extremity.

The forces acting on the body are its weight Fg = mgg pointing downwards due to its gravitational
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interaction with the Earth, and the elastic force F pointing upwards due to its interaction with the stretched
spring. As we are considering the equilibrium situation when the body and spring are at rest relative to the
ground, these two forces must balance one another. According to equation (2.6), the stretched length ℓ of
the spring is given by:

ℓ− ℓo =
Fg

k
=

mgg

k
. (5.1)

Suppose now this spring is fixed at a higher distance D above the ground and supports the same gravi-
tational mass mg in its lower extremity, with the equilibrium situation being represented by figure 5.4 (b).
The stretched length ℓ of this spring is the same as the stretched length of the spring of figure 5.4 (a), being
given by equation (5.1). This length does not depend upon the values of d nor D, provided D ≪ RE .

This fact indicates once more that close to the surface of the Earth the weight of a body is essentially
independent of its height h above the ground.

Instead of suspending the body by a spring, we can also suspend it by an ideal inextensible string, figure
5.5.

ℓ

m g

Figure 5.5: Body suspended by an inextensible ideal string of length ℓ.

Once more the downward weight Fg = mgg of the body is balanced by the upward tension T exerted by
the stretched string:

T = Fg = mgg . (5.2)

The only difference of this case in comparison with the situation of the spring is that the tension in the
string cannot be visualized by a change in its length, as we are considering an ideal inextensible string. In
order to measure this tension it would be necessary a dynamometer connected to this string.

5.2.1 String Inclined to the Vertical when a Horizontal Force Acts on the Sus-

pended Body

Figure 5.6 presents several situations in which the string supporting a body is inclined to the vertical. The
ideal inextensible string has a fixed length ℓ. It supports a body of gravitational mass mg and inertial mass
mi. In all cases considered here there is no motion relative to the ground. This inclination at an angle θ to
the vertical is caused by a horizontal force F acting on the body supported by the string.

m g m g
_

+ N SN S

(a) (b) (c) (d)

mg2

q qq q

Figure 5.6: Strings inclined to the vertical due to horizontal forces of several origins, namely, (a) gravitational,
(b) elastic, (c) electric and (d) magnetic.

In figure 5.6 (a) there is a second body of gravitational mass mg2 supported at the lower extremity
of a second string, while the upper extremity of this second string is fixed horizontally to the first body
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of gravitational mass mg. The weight of this second body is transmitted to the first body by the second
stretched string, inclining the string supporting the first body. In situation (b) there is a stretched horizontal
spring with its extremities connected to the body and to a wall. The elastic force exerted by this spring
inclines the string. In situation (c) we suppose that the body supported by the string made of an insulating
material has been electrified. This electrified body is electrically attracted by a horizontal force exerted by
another electrified body fixed close to it. This electric force inclines the string. In situation (d) we suppose
that the body supported by the string is a magnet which is being attracted by a second magnet fixed close
to it. This magnetic force inclines the string to the vertical.

Let F be the magnitude of this horizontal force acting on the body of gravitational mass mg, while
Fg = mgg is the downward gravitational force exerted by the Earth and T is the force exerted by the
stretched string. This tension T points along the direction of the string. Figure 5.7 presents these three
forces acting on the body.

m gg

q

T

m i
F

Figure 5.7: Forces acting on the body supported by the inclined string.

In equilibrium the body remains at rest relative to the ground, in such a way that these three forces
balance one another. Utilizing the angle θ presented in figure 5.7 yields:

T sin θ = F , (5.3)

and

T cos θ = Fg . (5.4)

These two equations yield the angle θ as a function of the weight Fg = mgg and the horizontal force F ,
namely:

tan θ =
F

Fg
=

F

mgg
. (5.5)

The tension T in the string is obtained from equations (5.3) and (5.4), namely:

T =
√

F 2 + F 2
g =

√

F 2 + (mgg)2 . (5.6)

This tension can be measured utilizing a dynamometer connected to the string.
This tension can also be visualized replacing the string by a spring of elastic constant k and relaxed length

ℓo. We will suppose that the inertial and gravitational masses of the spring are negligible in comparison
with the inertial and gravitational masses of the body connected to the spring. Therefore we can neglect
the weight of the spring in comparison with the weight of the body connected to it. We can also neglect the
variation in the length of the spring when it changes from a horizontal to a vertical position, in comparison
with its change of length by placing the test body which is being considered here connected to the spring.
The tension T in the spring is given by k(ℓ− ℓo), where ℓ represents its stretched length. We can then write:

T = k(ℓ− ℓo) =
√

F 2 + F 2
g =

√

F 2 + (mgg)2 . (5.7)

Therefore, a greater change of length ℓ− ℓo of the spring will indicate a greater tension T .

5.3 Vessel at Rest Filled with a Fluid

Figure 5.8 presents a vessel at rest relative to the ground, partially filled with a liquid. In our figures we will
suppose the vessel to be cubic or in the shape of a parallelepiped, although its form is not so relevant. The
free surface of the liquid remains horizontal.
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dFb
dmi

dFg

z

x
0

Figure 5.8: Vessel at rest relative to the ground partially filled with a liquid. The downward gravitational
force dFg is balanced by the upward buoyant force dFb.

We will consider this problem in newtonian mechanics considering an ideal incompressible fluid. Water,
milk and oil behave reasonably well as incompressible fluids. We will consider an infinitesimal element of
liquid with inertial mass dmi, gravitational mass dmg and infinitesimal volume dV . In this case the weight
d~Fg = dmg~g of this element, which is a force exerted gravitationally by the Earth, is balanced by the buoyant
force d~Fb exerted on this element by the remainder of the fluid around it.

Application of Newton’s second law of motion, equation (1.4), yields:

d~Fg + d~Fb = dmi~a = ~0 . (5.8)

We will consider a rectangular coordinate system with the xy plane horizontal and the vertical z axis
pointing upwards, with its origin at the free surface of the fluid. Utilizing ~g = −|~g|ẑ = −gẑ, the weight of
this element can be written as d~Fg = dmg~g = −dmggẑ. In order to obtain the pressure anywhere inside the
fluid we utilize equations (1.17), (2.3) and (5.8), yielding:

−dmggẑ −
(

∂p

∂x
x̂+

∂p

∂y
ŷ +

∂p

∂z
ẑ

)

dV = ~0 . (5.9)

This equation yields ∂p/∂x = 0 and ∂p/∂y = 0. Therefore the pressure p does not depend on x nor on
y. It remains only the z dependence, in such a way that the partial derivative can be written as a total
derivative, yielding:

dp

dz
= −dmg

dV
g ≡ −ρgg , (5.10)

where the volume gravitational mass density of the fluid, dmg/dV , has been represented by ρg. Representing
the pressure at the free surface of the liquid by po = 1 atm = 760 mm Hg = 1× 105 N/m2, equation (5.10)
yields:

p(z) = po − ρggz . (5.11)

This equation indicates that the pressure changes linearly with the depth of the liquid.
A constant pressure surface is called an isobaric surface. Equation (5.11) indicates that the surfaces with

p(z) = p1 = constant, are horizontal planes parallel to the fluid’s free surface located at a height z1 given by:

z1 =
po − p1
ρgg

. (5.12)

This procedure completes the solution of the problem.
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Chapter 6

Bodies in Rectilinear Motion with

Constant Velocity Relative to the

Ground

Suppose there are no external forces acting on a particle or that the resultant force acting on it is zero.
According to Newton’s second law of motion, equation (1.4), there will be no acceleration of this particle
relative to absolute space nor relative to any inertial frame of reference moving along a straight line with
a constant velocity relative to absolute space. Therefore the particle will move with a constant velocity ~v
relative to any inertial frame of reference. It will move in rectilinear motion with constant velocity. This
result is compatible with Newton’s first law of motion.

In this situation equation (1.4) leads to the following results:

~a = ~0 , (6.1)

~v =
d~r

dt
= constant , (6.2)

and

~r = ~ro + ~vt . (6.3)

Here ~ro is the initial position vector of the particle relative to the origin O of an inertial system of
reference, while ~r(t) represents its position in time t. The constant velocity ~v represents the velocity of the
particle relative to Newton’s absolute space or relative to an inertial frame of reference.

In this Chapter we will consider the Earth as a good inertial frame. This means that this velocity ~v may
be considered to represent the velocity of the particle relative to the ground.

6.1 Body Sliding Relative to the Ground while Connected to a

Spring

Consider a block of inertial mass mi sliding horizontally in an ideal air track, which removes friction with
the ground, figure 6.1. The downward gravitational force exerted by the Earth is balanced by the upward
normal force exerted by the ground. In this situation there is no net force acting on the body. It will move
in rectilinear motion with a constant velocity relative to the ground.

mi

v

Figure 6.1: Block sliding with a constant velocity when there is no net force acting on it.
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The analogous situation of an isolated celestial body in rectilinear motion, moving relative to the fixed
stars belonging to our galaxy with a constant velocity, is represented in figure 6.2.

v

mi

Figure 6.2: Celestial body moving with a constant velocity relative to the frame of fixed stars.

The analogous situation of an isolated celestial body in rectilinear motion, moving with a constant velocity
relative to the background of distant galaxies, is represented in figure 6.3.

v

mi

Figure 6.3: Celestial body moving with a constant velocity relative to the frame of distant galaxies.

The direction and magnitude of this velocity remain constant in time. This result, conclusion or prediction
only makes sense if we know when (or in which conditions) a particle is free from external forces, without
utilizing Newton’s first law of motion. We also need to obtain an inertial frame of reference without utilizing
Newton’s first law of motion, in order to avoid vicious circles. Nothing of this is simple or trivial.1

Consider now two bodies having the same inertial mass mi inside a frictionless wagon of a train. Each
body is connected to a horizontal spring of relaxed length ℓo when the wagon is at rest relative to the ground,
figure 6.4 (a).

A force is applied to the wagon in order to give it a velocity relative to the ground. We now consider the
observed situation when the wagon is moving relative to the ground along a straight line with a constant
velocity v. After the situation has been stabilized, each spring is found to remain relaxed with its normal
length ℓo, figure 6.4 (b). The cylinder represents an external body at rest relative to the ground.

(a)

v
ℓo ℓo

mi mi

(b)

ℓo ℓo

mi mi

Figure 6.4: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant velocity relative to
the ground.

1[Chi99].
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6.2 Body Suspended by a String or by a Spring while It Slides

Relative to the Ground

Consider a body of gravitational mass mg and inertial mass mi suspended by an ideal string of inextensible
length ℓ, as in figure 5.5. Its downward weight Fg = mgg is balanced by the upward tension T exerted by
the stretched string.

Suppose now the upper extremity of this string is fixed to the ceiling of a wagon. A force is applied to the
wagon to remove it from rest. Consider that the wagon is now moving along a straight line with a constant
velocity v relative to the ground, with no longer an external force applied to it. We are supposing a closed
wagon, in such a way that we can neglect wind effects. After the situation stabilizes, the string is observed
to remain vertical, figure 6.5.

ℓ

mi

v

Figure 6.5: Wagon moving along a straight line with a constant velocity relative to the ground. The string
remains vertical.

Consider a vertical spring of elastic constant k and relaxed length ℓo when it is in the vertical orientation
with its upper extremity fixed to a support, without any body in its lower extremity. When a body of
gravitational mass mg and inertial mass mi is suspended by this spring, it acquires a stretched length ℓ in
equilibrium, when there is no motion relative to the ground, as in figure 2.4. Its downward weight Fg = mgg
is balanced by the upward elastic force Fe = k(ℓ− ℓo) exerted by the stretched spring.

Suppose now this spring is fixed at the ceiling of a closed wagon. A force is applied to the wagon to
remove it from rest, until it reaches a linear velocity v relative to the ground. After the situation stabilizes
and it moves with a constant velocity v relative to the ground, the spring is seen vertical and having the
same stretched length ℓ it had when the wagon was at rest relative to the ground, figure 6.6. This length ℓ
is given by equation (5.1) not only when the wagon is at rest, but also when it is moving along a straight
line with a constant velocity v relative to the ground.

ℓ

mi
v

Figure 6.6: Spring sliding with a constant velocity relative to the ground supporting a body in its lower
extremity.

6.3 Vessel Sliding Relative to the Ground Partially Filled with Liq-

uid

Figure 6.7 shows a vessel partially filled with a liquid. It is moving along a straight line with a constant
velocity relative to the ground. In this situation we observe that the free surface of the liquid remains flat
and horizontal, as it happened when the fluid was at rest relative to the Earth. This situation is observed
ordinarily in transatlantic flights. The airplane can be traveling with a constant velocity of, for instance,
700 km/h relative to the ground. Despite this high velocity, the water in the glass of a passenger remains
flat and horizontal.

It is easy to solve this problem in newtonian mechanics utilizing the same procedure adopted in Section
5.3. We then conclude once again that the pressure of the liquid varies linearly with depth according to
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Figure 6.7: Vessel moving with a constant velocity relative to the ground, partially filled with liquid.

equation (5.11). The isobaric surfaces are once more horizontal planes parallel to the free surface of the fluid.
All of these aspects present the same behavior as when the liquid was at rest relative to the ground.

6.4 Galileo and Newton on the Ship Experiment

Figure 6.8 summarizes what we saw in this Chapter. There are two horizontal springs connected to the
wagon resting on a frictionless surface. Their free extremities are connected to test bodies which can move
relative to the wagon. There is a vertical string connected to the ceiling with its lower extremity supporting
a test body. There is also a vessel partially filled with a liquid. By observing test bodies inside a closed room
we cannot detect if the wagon is at rest or moving uniformly along a straight line with a constant velocity
v relative to the ground. For instance, there are no observable effects in deformable or elastic bodies which
might depend on the value of this velocity v.

(a) (b)

v

Figure 6.8: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant linear velocity v
relative to the ground.

Galileo Galilei (1564-1642) in his 1632 book Dialogue Concerning the Two Chief World Systems discussed
a fact similar to what we are discussing in this Section:2

Shut yourself up with some friend in the main cabin below decks on some large ship, and have
with you there some flies, butterflies, and other small flying animals. Have a large bowl of water
with some fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath it.
With the ship standing still, observe carefully how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in all directions; the drops fall into the vessel
beneath; and, in throwing something to your friend, you need throw it no more strongly in one
direction than another, the distances being equal; jumping with your feet together, you pass equal
spaces in every direction. When you have observed all these things carefully (though doubtless
when the ship is standing still everything must happen in this way), have the ship proceed with
any speed you like, so long as the motion is uniform and not fluctuating this way and that. You
will discover not the least change in all the effects named, nor could you tell from any of them
whether the ship was moving or standing still. In jumping, you will pass on the floor the same
spaces as before, nor will you make larger jumps toward the stern than toward the prow even
though the ship is moving quite rapidly, despite the fact that during the time that you are in the
air the floor under you will be going in a direction opposite to your jump. In throwing something
to your companion, you will need no more force to get it to him whether he is in the direction
of the bow or the stern, with yourself situated opposite. The droplets will fall as before into the
vessel beneath without dropping toward the stern, although while the drops are in the air the
ship runs many spans. The fish in their water will swim toward the front of their bowl with no

2[Gal53, pp. 186-187].
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more effort than toward the back, and will go with equal ease to bait placed anywhere around the
edges of the bowl. Finally the butterflies and flies will continue their flights indifferently toward
every side, nor will it ever happen that they are concentrated toward the stern, as if tired out
from keeping up with the course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air. And if smoke is made by burning some incense, it
will be seen going up in the form of a little cloud, remaining still and moving no more toward one
side than the other. The cause of all these correspondences of effects is the fact that the ship’s
motion is common to all the things contained in it, and to the air also. That is why I said you
should be below decks; for if this took place above in the open air, which would not follow the
course of the ship, more or less noticeable differences would be seen in some of the effects noted.

Newton mentioned the ship experiment in Corollary V after his 3 laws of motion (presented in Section
1.2):3

Corollary 5

The motions of bodies included in a given space are the same among themselves, whether that
space is at rest, or moves uniformly forwards in a right line without any circular motion.

For the differences of the motions tending towards the same parts, and the sums of those that
tend towards contrary parts, are, at first (by supposition), in both cases the same; and it is
from those sums and differences that the collisions and impulses do arise with which the bodies
impinge one upon another. Wherefore (by Law II), the effects of those collisions will be equal
in both cases; and therefore the mutual motions of the bodies among themselves in the one case
will remain equal to the motions of the bodies among themselves in the other. A clear proof of
this we have from the experiment of a ship; where all motions happen after the same manner,
whether the ship is at rest, or is carried uniformly forwards in a right line.

Galileo and Newton mentioned that the motion of a test body relative to the Earth, or the motion of one
test body relative to one another test body, is the same no matter if the ship is at rest or moving linearly
with a constant velocity relative to the ground. In this Chapter we considered similar effects relative to
deformable bodies (springs, the free surface of water in a vessel or the inclination of a pendulum to the
vertical). That is, no matter if the vessel is at rest or moving linearly with a constant velocity relative to the
ground, there is no visible deformation in these bodies, as indicated in figure 6.8. In the next Chapter we
will see that when the vessel is accelerated relative to the ground, deformations arise in these elastic bodies.

3[New34, pp. 20-21].
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Chapter 7

Bodies in Rectilinear Uniformly

Accelerated Motion Relative to the

Ground

Equation (1.4) can be easily integrated when a constant force ~F acts on a body of inertial mass mi. This
body acquires a constant acceleration ~a relative to an inertial frame of reference, moving along a straight
line in this frame of reference. This constant acceleration is given by:

~a =
d~v

dt
=

~F

mi
= constant . (7.1)

The velocity ~v relative to this frame of reference and the position vector ~r of the test body relative to
the origin O of this inertial frame are given by, respectively:

~v = ~vo + ~at , (7.2)

and

~r = ~ro + ~vot+
~at2

2
. (7.3)

Here ~vo represents the initial velocity of the body and ~ro its initial position vector.
We will suppose that the Earth is a good inertial frame in order to describe the motion of bodies along

its surface.

7.1 Galileo’s Free Fall Experiments

7.1.1 A Body in Free Fall Moves with a Constant Acceleration Relative to the

Ground

Galileo was the first scientist to conclude that bodies near the surface of the Earth fall towards the ground
with constant accelerations when the resistance of the medium can be neglected. Some of his main exper-
imental and theoretical researches related to mechanics were made between 1600 and 1610. But only in
1638 did he publish the results of his experiments in the book Two New Sciences. He defined uniformly
accelerated motion as follows:1

A motion is said to be uniformly accelerated, when starting from rest, it acquires, during equal
time-intervals, equal increments of speed.

Let vi be the body’s velocity in time ti. If v4 − v3 = v2 − v1 when t4 − t3 = t2 − t1, no matter the values
of these time intervals, the motion of this body is called uniformly accelerated. A motion can also be said
to be uniformly accelerated when the acquired velocities are to one another as the time intervals, namely:

1[Gal54, p. 162] and [Gal85, p. 127].
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v1
v2

=
t1
t2

. (7.4)

Galileo then proved the following theorem:2

Theorem II, Proposition II

The spaces described by a body falling from rest with a uniformly accelerated motion are to each
other as the squares of the time-intervals employed in traversing these distances.

Let d1 be the distance traversed in time t1, while d2 is the distance traversed in time t2. This theorem
can then be expressed algebraically as follows:

d1
d2

=

(

t1
t2

)2

. (7.5)

The definition of uniformly accelerated motion and this theorem are theoretical results. In order to know
if nature behaves according to this rule, Galileo performed experiments with balls rolling down inclined
planes. His results were as follows:3

[...] So far as experiments go they have not been neglected by the Author; and often, in his
company, I have attempted in the following manner to assure myself that the acceleration actually
experienced by falling bodies is that above described.

A piece of wooden moulding or scantling, about 12 cubits long, half a cubit wide, and three finger-
breadths thick, was taken; on its edge was cut a channel a little more than one finger in breadth;
having made this groove very straight, smooth, and polished, and having lined it with parchment,
also as smooth and polished as possible, we rolled along it a hard, smooth, and very round bronze
ball. Having placed this board in a sloping position, by lifting one end some one or two cubits
above the other, we rolled the ball, as I was just saying, along the channel, noting in a manner
presently to be described, the time required to make the descent. We repeated this experiment
more than once in order to measure the time with an accuracy that the deviation between two
observations never exceeded one-tenth of a pulse-beat. Having performed this operation and
having assured ourselves of its reliability, we now rolled the ball only one-quarter the length of
the channel; and having measured the time of its descent, we found it precisely one-half of the
former. Next we tried other distances, comparing the time for the whole length with that for the
half, or with that for two-thirds, or three-fourths, or indeed for any fraction; in such experiments,
repeated a full hundred times, we always found that the spaces traversed were to each other as
the squares of the times, and this was true for all inclinations of the plane, i. e., of the channel,
along which we rolled the ball. We also observed that the times of descent, for various inclinations
of the plane, bore to one another precisely that ratio which, as we shall see later, the Author had
predicted and demonstrated for them.

For the measurement of time, we employed a large vessel of water placed in an elevated position;
to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of water, which
we collected in a small glass during the time of each descent, whether for the whole length of the
channel or for a part of its length; the water thus collected was weighed, after each descent, on
a very accurate balance; the differences and ratios of these weights gave us the differences and
ratios of the times, and this with such accuracy that although the operation was repeated many,
many times, there was no appreciable discrepancy in the results.

Consider an inclined plane of length ℓ, height h and angle of inclination to the horizontal given by θ
figure 7.1. Galileo utilized ℓ = 12 cubits and h = 1 or 2 cubits. When h = 1 cubit, the angle of inclination
was θ1 = 4.78o ≈ 5o. When h = 2 cubits, θ2 = 9.59o ≈ 10o.

The results of Galileo’s experiments were in agreement with equation (7.5). Therefore spheres rolling
down inclined planes are examples of uniformly accelerated motions.

Galileo also considered planes of the same height but with different inclinations to the horizon. Consider
two inclined planes having the same height h. Let ℓ1 and ℓ2 be their lengths, while their angles of inclination
to the horizontal are θ1 and θ2, respectively, as in figure 7.2.

2[Gal54, p. 174] and [Gal85, p. 136].
3[Gal54, pp. 178-179] and [Gal85, pp. 140-141].
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Figure 7.1: Ball rolling down an inclined plane.
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Figure 7.2: Planes having the same height and different inclinations to the horizontal.

Galileo proved the following result:4

Theorem III, Proposition III

If one and the same body, starting from rest, falls along an inclined plane and also along a
vertical, each having the same height, the times of descent will be to each other as the lengths of
the inclined plane and the vertical.

[...]

Corollary

Hence we may infer that the times of descent along planes having different inclinations, but the
same vertical height stand to one another in the same ratio as the lengths of the planes. [...]

Let t1 and t2 be the time intervals required for the same body to describe lengths ℓ1 and ℓ2 of figure 7.2,
respectively. Galileo’s result can be expressed as follows:

t1
t2

=
ℓ1
ℓ2

. (7.6)

Galileo also considered planes of the same length and different heights. Consider two inclined planes
having the same length ℓ. Let h1 and h2 be their heights when they are inclined at angles θ1 and θ2 to the
horizontal, as in figure 7.3.

h2

ℓ

q1

q2

h1

ℓ

Figure 7.3: Inclined planes having the same length and different heights.

Galileo proved the following result:5

Theorem IV, Proposition IV

The times of descent along planes of the same length but of different inclinations are to each
other in the inverse ratio of the square roots of their heights.

Let t1 and t2 be the time intervals required to move along the same length ℓ of two inclined planes of
heights h1 and h2, respectively, as in figure 7.3. Galileo’s result can be expressed as follows:

4[Gal54, pp. 185-187] and [Gal85, p. 146].
5[Gal54, p. 187] and [Gal85, p. 147].
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t1
t2

=

√

h2

h1

. (7.7)

Galileo generalized these results considering two planes having different inclinations, lengths and heights.
In all cases Galileo obtained experimentally that balls rolling down inclined planes move with uniform
accelerations relative to the ground, namely:

~a = constant . (7.8)

The value of this acceleration might depend on the angle θ of inclination to the horizontal. But considering
a fixed inclination, Galileo always found an uniformly accelerated motion. A particular case is that of free
fall, when θ = 90o. In this situation the inclined plane does not affect the falling body.

7.1.2 The Free Fall Acceleration Is Independent of the Weight of the Body

From his experiments with inclined planes Galileo concluded that a body in free fall moves with a constant
acceleration relative to the ground. But in principle the value of this acceleration might depend on the weight
of the body. With other experiments Galileo was also the first to conclude that the free fall acceleration
was independent of the body’s weight. In one of his experiments he compared the times of fall of two iron
spheres falling from a height of 100 cubits, one ball of 100 pounds and the other with 1 pound. Although
one ball was 100 times heavier than the other, their times of fall were essentially the same:6

[...] Aristotle says that “an iron ball of one hundred pounds falling from a height of one hundred
cubits reaches the ground before a one-pound ball has fallen a single cubit.” I say that they arrive
at the same time. You find, on making the experiment, that the larger outstrips the smaller by
two finger-breadths, that is, when the larger has reached the ground, the other is short of it by
two finger-breadths; now you would not hide behind these two fingers the ninety-nine cubits of
Aristotle, nor would you mention my small error and at the same time pass over in silence his
very large one. [...]

Galileo mentioned correctly that this small time difference was due to air friction.
Galileo’s conclusion as regards bodies of the same shape, and having the same chemical composition (like

two iron balls), combined with equation (7.8), can then be written as follows:

~a = constant, no matter the weight of the body . (7.9)

7.1.3 The Free Fall Acceleration Is Independent of the Chemical Composition

of the Body

Galileo was also the first to discover another very important aspect connected with free fall, namely, that it
has the same value for all bodies, no matter their density nor chemical composition. This conclusion is highly
non trivial. Galileo compared the times of fall of bodies having different specific gravities, such as gold, lead,
stone, etc. He released these bodies in a certain medium, from the same height, and compared their different
times of fall. He then repeated the experiment, now changing the medium. As media he considered air,
water, quicksilver, etc. Each time he released the same pair of bodies, like a ball of gold and another of lead,
and compared their different times of fall. He concluded that, for two bodies of different specific gravities,
there was a greater time difference when the medium was more resistant. And the resistance of the medium
increase with its density. From these experiments he made a remarkable conclusion, namely:7

We have already seen that the difference of speed between bodies of different specific gravities
is most marked in those media which are the most resistant: thus, in a medium of quicksilver
gold not merely sinks to the bottom more rapidly than lead but it is the only substance that will
descend at all; all other metals and stones rise to the surface and float. On the other hand the
variation of speed in air between balls of gold, lead, copper, porphyry, and other heavy materials
is so slight that in a fall of 100 cubits a ball of gold would surely not outstrip one of copper by
as much as four fingers. Having observed this I came to the conclusion that in a medium totally
devoid of resistance all bodies would fall with the same speed.

6[Gal54, pp. 64-65] and [Gal85, p. 57].
7[Gal54, pp. 71-72] and [Gal85, p. 62].
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He reached this conclusion not only with these experiments of bodies of different specific gravities falling
in different media, but also with his measurements of the periods of oscillation of simple pendulums, as will
be seen in Section 8.2.

His experimental conclusions as regards the fall of bodies moving freely in vacuum near the surface of
the Earth can then be expressed as follows:

~a = constant, no matter the weight, shape or density of the body . (7.10)

That is, all bodies fall to the ground in vacuum with the same constant acceleration, no matter the
chemical composition of the bodies. This means that not only a lead ball with a gravitational mass of 3 kg
will fall freely to the ground with the same acceleration of another lead ball of 1 kg, but also with the same
acceleration of a wooden block with a mass of 200 g. This is one of the most important and mysterious facts
of classical mechanics.

Figure 7.4 represents this equality in the acceleration of free fall.

1

a 1

a 2 a 1

2

Figure 7.4: Two bodies fall freely towards the ground in vacuum with the same constant acceleration, no
matter their weights, shapes, densities or chemical compositions.

7.1.4 Newton and the Experiments of Free Fall

Otto von Guericke (1602-1686) invented the air pump in the early 1650’s. Robert Boyle (1627-1691) asked
his assistant, Robert Hooke, to build a machine similar to that of Guericke. Boyle verified in 1669 with this
air pump that a feather falls in vacuum along a straight line in the same way as dense bodies fall in air.
Other scientists showed also that a feather and a coin fall together in vacuum after being released at rest
from the same height, taking the same time to cover equal distances. This fact was expressed by Newton in
Proposition 6, Theorem 6 of Book III of the Principia as follows:8

It has been, now for a long time, observed by others, that all sorts of heavy bodies (allowance
being made for the inequality of retardation which they suffer from a small power of resistance
in the air) descend to the Earth from equal heights in equal times; and that equality of times we
may distinguish to great accuracy, by the help of pendulums. [...]

In Proposition 10, Theorem 10, of Book III of the Principia, Newton said:9

[...] In the spaces near the Earth the resistance is produced only by the air, exhalations, and
vapors. When these are carefully exhausted by the air pump from under the receiver, heavy
bodies fall within the receiver with perfect freedom, and without the least sensible resistance:
gold itself, and the lightest down, let fall together, will descend with equal velocity; and though
they fall through a space of four, six, and eight feet, they will come to the bottom at the same
time; as appears from experiments. [...]

In the General Scholium at the end fo the Principia he also discussed this topic:10

8[New34, p. 411] and [New08b, p. 200].
9[New34, p. 419] and [New08b, p. 208].

10[New34, p. 543] and [New08b, pp. 327-328].
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Bodies projected in our air suffer no resistance but from the air. Withdraw the air, as is done in
Mr. Boyle’s vacuum, and the resistance ceases; for in this void a bit of fine down and a piece of
solid gold descend with equal velocity. [...]

In Query 28 of his book Opticks Newton expressed himself as follows:11

[...] The open air which we breathe is eight or nine hundred times lighter than water, and by
consequence eight or nine hundred times rarer, and accordingly its resistance is less than that of
water in the same proportion, or thereabouts; as I have also found by experiments made with
pendulums. And in thinner air the resistance is still less, and at length, by rarefying the air,
becomes insensible. For small feathers falling in the open air meet with great resistance, but in
a tall glass well emptied of air, they fall as fast as lead or gold, as I have seen tried several times.
[...]

7.1.5 The Numerical Value of the Free Fall Acceleration

Although Galileo was the first to show that two bodies fall with the same constant acceleration towards the
ground when air resistance can be neglected, he did not obtain a precise value for this acceleration. The first
to obtain the precise value corresponding to an acceleration of 9.8 m/s2 were Christian Huygens (1629-1695)
and Isaac Newton, based on their pendulum’s experiments. Although their results were not expressed in
the International System of Units, which had not yet been created, their numerical values were equivalent
to our modern value of 9.8 m/s2. Huygens’s main works related with pendulum clocks were made between
1650 and 1670. His main work on this subject, the book Horologium Oscillatorum [The Pendulum Clock],
was published in 1673, before the publication of Newton’s Principia. Huygen’s book has been published into
French, German and English. The modern precise value of the free fall acceleration near the surface of the
Earth appeared for the first time in this book.12

7.2 Free Fall in Newtonian Mechanics

7.2.1 Results Obtained from Newton’s Laws of Motion

We consider here the problem of free fall utilizing Newton’s mechanics, figure 7.5.

Fg

mi mg

Figure 7.5: A freely falling body.

A body of inertial mass mi and gravitational mass mg is falling freely near the surface of the Earth.
The only force acting on this test body is the gravitational force Fg exerted by the Earth. If the body is
falling from a height of 10 meters, we can suppose that the gravitational force exerted on it by the Earth is
essentially constant during the fall, as seen in Section 5.2. In this problem we can disregard the variation
of this gravitational force because this distance of 10 m is negligible compared with the Earth’s radius of
6.37× 106 m. Therefore the gravitational force exerted on this body by the Earth can be written as:

~Fg = −G
MgEmg

R2
E

r̂ = mg~g(RE) . (7.11)

In this equation ~g(RE) is the force per unit gravitational mass near the surface of the Earth, which can be
written as:

11[New79, Query 28, p. 366] and [New96, Query 28, pp. 268-269].
12[Huy13, pp. 180-186 and 264 Note 175], [Huy34, pp. 348-359], [Huy86, pp. xiii-xiv, xviii-xix and 167-172] and [Bar89, pp.

454 and 528-530].
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~g(RE) = −G
MgE

R2
E

r̂ . (7.12)

The free fall acceleration can be obtained utilizing equation (7.11) and Newton’s second law of motion
in the form of equation (1.4), namely:

~a =
~Fg

mi
= −mg

mi

GMgE

R2
E

r̂ =
mg

mi
~g(RE) = constant . (7.13)

From equation (7.13), obtained from newtonian mechanics, we conclude that each body will fall freely
towards the ground with a constant acceleration. This conclusion agrees with Galileo’s experimental result
expressed by equation (7.8).

7.2.2 The Proportionality between Weight and Inertial Mass Obtained from

Free Fall Experiments

The value of ~g given by equation (7.12) depends only on the gravitational mass MgE of the Earth, on its
radius RE and on the location of the test body. That is, the value of ~g does not depend on the properties
of the test body like its gravitational mass mg nor on its inertial mass mi.

Let us suppose a lead coin of weight Fgl = |~Fgl|, gravitational mass mgl and inertial mass mil falling freely
towards the ground with a constant acceleration al = |~al|. A feather of weight Fgf = |~Fgf |, gravitational
mass mgf and inertial mass mif falls freely with a constant acceleration af = |~af | towards the ground.
According to equation (7.13), the ratio of these two accelerations is given by:

al
af

=
Fgl/mil

Fgf/mif
=

mgl/mil

mgf/mif
. (7.14)

Utilizing only newtonian mechanics, it is not possible to predict the value of the ratio of these accelera-
tions.

We now utilize Galileo’s result that all bodies fall freely in vacuum towards the Earth with the same ac-
celeration, no matter their weights, shapes, densities and chemical compositions, equation (7.10). Equations
(7.10) and (7.14) yield:

al
af

=
Fgl/mil

Fgf/mif
=

mgl/mil

mgf/mif
= 1 . (7.15)

Equation (7.15) can also be written in two alternative forms, namely:

Fgl

mil
=

Fgf

mif
, (7.16)

or

mgl

mil
=

mgf

mif
. (7.17)

Equations (7.16) and (7.17) are valid not only for lead (l) and feather (f), but also for any other body
of weight Fg, gravitational mass mg and inertial mass mi, no matter its weight, shape or density. Equation
(7.16) can then be written as:

Fgl

mil
=

Fgf

mif
=

Fg

mi
= constant for all bodies . (7.18)

Equations (7.17) and (7.18) can also be expressed equating the ratio of inertial masses with the ratio of
weights and with the ratio of gravitational masses, that is:

mi1

mi2
=

Fg1

Fg2
=

mg1

mg2
. (7.19)

As mentioned in Section 1.2, equations (7.18) and (7.19), obtained from newtonian mechanics combined
with Galileo’s experimental conclusion that all bodies fall freely in vacuum with the same constant acceler-
ation towards the ground, was presented by Newton in the first definition of the Principia by an equivalent



88 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

statement, namely, that the mass of a body is known by its weight, for it is proportional to the weight of the
body.13 If body A, for instance, is 5 times heavier than body B, as determined with an equal arm balance,
then necessarily the inertial mass of body A is 5 times larger than the inertial mass of B, no matter their
densities or chemical compositions.

In the International System of Units the ratio of the gravitational mass mg of any body to its inertial
mass mi is defined as having the dimensionless numerical value 1. Therefore equation (7.17) can be written
as follows:

mgl

mil
=

mgf

mif
=

mg

mi
= constant for all bodies ≡ 1 . (7.20)

This means that the proportionality between inertial mass and weight, as expressed by Newton, can also
be phrased as follows: The inertial mass of a body is known by its gravitational mass, for the inertial mass
is proportional to the gravitational mass.

With the ratio of the gravitational mass of a body to its inertial mass being defined as 1, equation (7.20),
the inertial mass of a body becomes equal to its gravitational mass. In the International System these two
magnitudes have the same unit, the kilogram, represented by kg:

mg = mi ≡ m . (7.21)

Therefore it is possible to utilize a single magnitude to indicate not only the inertial mass of a body, but
also its gravitational mass. This magnitude can be called simply mass, being here represented by m.

In the case of two bodies A and B falling freely in vacuum at the same location of the Earth, the
experimental value of this constant acceleration is given by:

aA = aB = 9.8
m

s2
. (7.22)

The exact value of this acceleration depends upon the latitude, as seen in Section 1.4. At the poles its
value is 9.83 m/s2, at a latitude of 50o its value is 9.81 m/s2, while at the Equator its value is 9.78 m/s2,
supposing always a free fall at sea level.

Let us suppose an hypothetical situation in which Galileo had found that all bodies did fall freely to the
ground with constant accelerations, but in which these accelerations might have different values for different
bodies. A heavier piece of gold, for instance, might fall to the ground in vacuum with a greater acceleration
than that of a lighter piece of gold. A weight of gold might also fall to the ground with an acceleration
which was different from the acceleration of the same weight of silver. Even in this hypothetical situation
the whole structure of newtonian mechanics might remain the same. But now the weight of a body would
not be proportional to its inertial mass. The ratio of gravitational mass to inertial mass might change from
one body to another. Mechanics would be more complicated. In this hypothetical situation it would be
necessary to consider gravitational and inertial masses as independent concepts. There would be no relation
between gravitational mass and inertial mass. Despite this fact, the essence of newtonian mechanics would
remain essentially the same.

This hypothetical situation would be equivalent to what happens nowadays with the concepts of electric
charge and inertial mass, which are independent of one another. It is possible to increase the electrification
of a body without affecting its inertial mass. Two bodies with the same electric charge do not need to have
the same inertial mass. There is no relation between the electric charge of a body and its inertial mass.

What we want to emphasize here is that the proportionality between weight and inertial mass, no matter
the density nor the chemical composition of bodies, is not a necessary consequence of newtonian mechanics,
as it cannot be deduced from its postulates or axioms. This fact has an empirical origin which must be
appended to Newton’s formulation.

7.2.3 Two Bodies Attracting One Another in the Frame of Fixed Stars

The free fall acceleration of a body was considered in Subsection 7.2.1 in the Earth’s frame of reference. The
motion of the Earth relative to an external inertial frame of reference was not considered in that Subsection.

A more general situation which can be easily solved is the gravitational attraction of two bodies, like the
Earth and an apple, by taking into account the motion of both bodies relative to absolute space or relative
to an inertial frame of reference. This situation will be considered in this Subsection considering the frame
F of the fixed stars as a good inertial system of reference. The interacting bodies will be called 1 and 2.

13[New34, p. 1] and [New90, p. 1].
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Body 1 exerts a force on body 2, accelerating it relative to F . By Newton’s third law of motion, body 2
exerts an equal and opposite force on body 1, accelerating it relative to F . The inertial mass of body 1 will
be represented by mi1, while its gravitational mass will be represented by mg1. Likewise mi2 will represent
the inertial mass of body 2 and its gravitational mass will be represented by mg2. These two bodies will be
considered as point particles located at their centers of mass.

According to equations (4.16) and (4.30), the total energy Et of this system is given by:

Et ≡ −G
mg1mg2

r12
+mi1

~v1 · ~v1
2

+mi2
~v2 · ~v2

2
. (7.23)

In this equation the velocities are considered relative to the inertial frame of the fixed stars, being r12 the
distance between 1 and 2.

Deriving equation (7.23) with respect to time, utilizing equations (1.4), (1.7) and (2.29), together with
the definition ~v12 ≡ ~v1 − ~v2, yields:

dEt

dt
= G

mg1mg2

r212
ṙ12 + ~v1 ·mi1~a1 + ~v2 ·mi2~a2 = G

mg1mg2

r212
r̂12 · ~v12 − ~v12 ·

(

G
mg1mg2

r212
r̂12

)

= 0 . (7.24)

This means that Et is a constant which does not depend on the time t. That is, Et is always the same,
no matter the values of r12, ~v1 or ~v2:

Et ≡ −G
mg1mg2

r12
+mi1

~v1 · ~v1
2

+mi2
~v2 · ~v2

2
= constant in time . (7.25)

The force ~F21 exerted by 2 on 1 is given by equation (1.7):

~F21 = −G
mg1mg2

r212
r̂12 = − ~F12 , (7.26)

where r̂12 = (~r1 − ~r2)/r12 is the unit vector pointing from 2 to 1, while ~F12 is the force exerted by 1 on 2.
The equations of motion for particles 1 and 2 can be obtained combining equation (7.26) with Newton’s

second law of motion, equation (1.4), and utilizing that r̂21 = −r̂12, yielding:

~F21 = G
mg1mg2

r212
r̂21 = mi1~a1 , (7.27)

and

~F12 = −G
mg1mg2

r212
r̂21 = mi2~a2 . (7.28)

Newton’s law of gravitation, equation (7.26), satisfies the principle of action and reaction in the strong
form. According to equations (4.4) and (4.10), this means that also the total linear momentum ~pt and the
total angular momentum ~Lt are constant in time. Supposing particles beginning from rest, ~v1(t = 0) =
~v2(t = 0) = ~0, the total linear momentum will always have a zero value, the same happening for the total
angular momentum. Moreover, let us suppose that the center of mass of this system is located at the origin
O of the frame of reference of the fixed stars, ~rcm = ~0, where ~rcm was defined by equation (4.11). These
suppositions yield the following relations:

~rcm = mi1~r1 +mi2~r2 = ~0 , (7.29)

and

~r2 = −mi1

mi2
~r1 , ~v2 = −mi1

mi2
~v1 , ~a2 = −mi1

mi2
~a1 . (7.30)

This situation is represented in figure 7.6.
Utilizing that in the International System of Units the inertial mass is equal to the gravitational mass,

equation (7.21), defining r1 ≡ |~r1| and r2 ≡ |~r2|, and using also equations (1.4) and (7.26), yields:

~a2 = −G
mg1

(r1 + r2)2
r̂21 = −mi1

mi2
~a1 . (7.31)
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m1

0
a1

a2

m2

Figure 7.6: Two bodies interacting in the frame of the fixed stars.

If, for instance, m1 = 3m2, then ~a2 = −3~a1. On the other hand, when m1 ≫ m2, we get r1 ≪ r2,
|~v1| ≪ |~v2| and |~a1| ≪ |~a2|. For example, let us suppose an apple with an inertial mass mi2 = 100 g = 0.1 kg
interacting with the Earth of mass mi1 = 6 × 1024 kg. We will also utilize the free fall acceleration of the
apple as given by |~a2| = 9.8 m/s2. In this situation equation (7.30) yields a negligible acceleration for the
Earth relative to the fixed stars given by |~a1| = 1.666× 10−26|~a2| = 1.6× 10−25 m/s2. When mass 1 is much
larger than mass 2, it is possible to neglect the acceleration of body 1 compared with the acceleration of
body 2. But it should be kept in mind that these two bodies are accelerated relative to an inertial frame of
reference. The conservation of linear momentum happens in this inertial frame.

7.3 Electrified Body Inside a Capacitor

7.3.1 Electrostatic Force per Unit Charge

We discuss here another example of a constant force.
Figure 7.7 presents an ideal plane capacitor at rest relative to the ground. It has two square plates of side

L separated by a small distance d, with d ≪ L. We consider a cartesian coordinate system at rest relative
to these plates, with the z axis orthogonal to the plates, origin at the center of the plates, pointing from
the negative to the positive plate, which is the direction of the unit vector ẑ. Plates situated at z = zo and
z = −zo are uniformly electrified carrying total charges Q and −Q, respectively. In the positive plate there
is a constant surface charge density given by σ+ ≡ σ ≡ Q/L2. In the negative there is an opposite surface
charge density, namely, σ− = −σ. We suppose these charges to remain fixed over this ideal capacitor, not
being affected by other charges. That is, we suppose the plates of this capacitor to be made of an insulating
material, in such a way that the charges spread over these plates remain fixed no matter the position nor
the motion of the nearby test charges.

E

Q

0
Z
^

Q

E

Figure 7.7: Ideal plane capacitor at rest relative to the ground.

The electrostatic force between two point charges is given by equation (2.12). Integration of this equation
yields the well known electric force ~F exerted by this capacitor on a point body electrified with a charge q
located inside it, namely:



Ch. 7: Rectilinear Motion Uniformly Accelerated Relative to the Ground 91

~F = −q
σẑ

εo
≡ q ~E . (7.32)

Here ~E is the electrostatic force per unit charge, also called the electric field, defined by:

~E ≡
~F

q
= − σ

εo
ẑ . (7.33)

The vector ~E points from the positive to the negative plate, as indicated in figure 7.7. In order to arrive
at this result border effects were neglected.

This force ~F has the same value in all points inside the capacitor. An analogous calculation yields a zero
force exerted by this capacitor and acting on a charge located anywhere outside these plates.

Equations (3.4) and (3.8) can also be utilized in order to calculate the electric field inside the capacitor.
The final result agrees with equation (7.33). The force acting on a test charge inside the capacitor can also be
obtained utilizing the electromagnetic force given by equation (3.15) and the electric field given by equation
(7.33). This force is also given by equation (7.32).

In classical electromagnetism (Maxwell’s equations together with the electromagnetic force acting on
a charge) this will be the total force exerted by this ideal capacitor on any test charge located inside the
capacitor. This is a constant force, no matter the position, velocity nor acceleration of the test charge relative
to the plates of the capacitor.

In Weber’s electrodynamics, on the other hand, this charged capacitor exerts a force on an internal test
charge which depends on the velocity and acceleration of the test charge relative to the plates of the capacitor.
Let ~r = zẑ, with −zo < z < zo, be the position vector of the internal test charge relative to the origin O
of the inertial frame of reference being considered here. The velocity and acceleration of this test charge
relative to this frame of reference are given by, respectively, ~v = vxx̂+ vy ŷ + vz ẑ and ~a = axx̂ + ay ŷ + az ẑ.
In this situation Weber’s force exerted by this capacitor on the internal test charge is given by:14

~F = −q
σ

εo

{

ẑ +
1

c2

[

v2

2
ẑ − vz(vxx̂+ vy ŷ) + 2zazẑ − z~a

]}

. (7.34)

We now suppose that the test charge is moving relative to the capacitor with a small velocity and a small
acceleration such that v2 ≪ c2 and |z~a| ≪ c2. In this situation Weber’s force reduces to the classical value
given by equation (7.32). In this approximation the case being considered here will be another example of
a constant force, no matter the position of the test charge inside the capacitor.

The tension or electric potential difference between the plates of this capacitor, represented by ∆φ, is
given by:

∆φ = Ed =
σd

εo
=

Qd

L2εo
. (7.35)

7.3.2 Stationary Charge Inside the Capacitor

There are several experiments showing that there is no relation between the electric charge of a body and
its weight, or that there is no relation between the charge of a body and its gravitational mass.

A simple experiment showing this fact is the electrification of a plastic rod by rubbing it in our hair. By
this procedure we can change its electrification without changing its weight. Its degree of electrification is
indicated by the amount of bits of paper it attracts when close to them.15

We now present a more sophisticated experiment illustrating that these two magnitudes are independent
from one another. Between 1908 and 1913 Robert Millikan (1868-1953) performed some experiments in order
to determine the electron’s charge. An electrified oil drop was held in vertical equilibrium between the plates
of a charged capacitor. The drop’s weight was balanced by the buoyant force exerted by the surrounding air
and by the electric force exerted by the capacitor. In other situations the oil drop moved vertically with a
constant dragging velocity. Here we consider only the situation in which the oil drop was kept essentially at
rest relative to the plates of the capacitor. This equilibrium was unstable. It is represented in figure 7.8.

Let mgo be the gravitational mass of the oil’s drop. Supposing this drop is a sphere of radius r, its
volume is given by 4πr3/3. The volume density of the gravitational mass of the oil is given by ρgo. Its

14[Ass89b], [AC91], [AC92], [Ass92b, Section 5.6], [Ass94, Sections 6.7 and 7.2] and [Ass95b, Section 5.5].
15[Ass10b], [Ass10a] and [Ass11c].
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Fg

Fb
Fe

-q

Figure 7.8: An oil drop electrified with a charge −q. Force acting on the electrified oil drop: The downward
weight Fg = mgog due to the Earth, the upward buoyant force Fb = mgfg exerted by the surrounding air
and the upward electric force Fe exerted by the capacitor.

downward weight in vacuum is given by Fg = mgog = 4πr3ρgog/3. If the air or fluid around this drop has
a gravitational mass density ρgf , the upward buoyant force exerted by this fluid on the drop is given by
Fb = mgfg = 4πr3ρgfg/3, where mgf is the gravitational mass of fluid occupying the volume of the oil drop.
According to equations (7.32) and (7.33), the upward electric force acting on the oil drop electrified with a
charge −q is given by Fe = qE = qσ/εo.

According to Newton’s second law of motion, equation (1.4), the equilibrium situation is characterized
by the following relation:

Fap − Fe = mioa = 0 , (7.36)

where mio is the inertial mass of the oil drop and Fap = Fg − Fb = mgog −mgfg is the apparent weight of
the drop, namely, its weight in vacuum minus the buoyant force exerted by the surrounding fluid.

The ratio between the apparent weight of the oil drop and its electric charge can be obtained from
equations (7.35) and (7.36), namely:

Fap

q
=

4πr3g(ρgo − ρgf )

3q
=

σ

εo
=

∆φ

d
. (7.37)

Experiments show that different tensions are required in order to balance different drops. That is,
different surface charge densities of the plates are required in order to keep different drops in equilibrium
relative to the ground. According to equation (7.37), this means that there is no relation between the drop’s
electric charge q and its weight in vacuum Fg. There is also no relation between the drop’s charge q and
the its apparent weight Fap = Fg − Fb in air. We can change q independently from Fg by increasing the
electrification of the drop. It is also possible to change Fg independent from q, considering drops of different
sizes but with the same electrification. This means that the tension required to balance a drop 1 will be
different from the tension required to balance another drop 2 if the ratio q1/Fg1 is different from the ratio
q2/Fg2, that is, if they have different ratios of charge to weight. This is represented in figure 7.9.

+ + + + + + + + + + + + +

_ _ _ _ _ _ _ _ _ _ _ _ _ _

q1

+ + + + + + + + + + + + +

_ _ _ _ _ _ _ _ _ _ _ _ _ _

q1 Fg1

_   _   _   _   _   _   _

q2q

+ + + + + + + + + + + + + +   +   +   +   +   +   +

(a) (b)

Fg2

Figure 7.9: Drop 1 has a ratio of charge to weight different from the ratio of charge to weight of drop 2.
They can only be equilibrated vertically in capacitors which have different tensions, that is, capacitors with
different surface charge densities.

Another simple situation showing that there is no relation between the electric charge of a body and its
weight is illustrated in figure 7.10. A body of gravitational mass mg, inertial mass mi and electric charge q
connected to a string of length ℓ is located inside an ideal capacitor with charge densities ±σ over its two
plates. The force per unit charge generated by this capacitor is given by E.

The body electrified with a charge q is inside the ideal capacitor with vertical plates. The forces acting
on the electrified body are represented in figure 7.10 (b). There is the body’s downward weight ~Fg exerted
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Figure 7.10: (a) Electrified body of charge q and weight Fg in equilibrium inside a capacitor. (b) Forces
acting on the body.

by the Earth, the tension ~T exerted by the stretched string along its length, and the horizontal electric force
~Fe exerted by the charged capacitor. In equilibrium:

~Fg + ~T + ~Fe = mi~a = ~0 . (7.38)

According to equations (1.17), (7.32) and (7.33), together with figure 7.10 (b), we have:

T sin θ = Fe = qE = q
σ

εo
, (7.39)

and

T cos θ = Fg = mgg . (7.40)

By squaring equations (7.39) and (7.40) we can obtain the tension T along the string, namely:

T =
√

q2E2 + F 2
g =

√

q2
(

σ

εo

)2

+m2
gg

2 . (7.41)

This tension can be measured with a dynamometer connected to the string.
Dividing equation (7.39) by equation (7.40) and utilizing equation (7.35) yields:

tan θ =
q

Fg
E =

q

mg

E

g
=

q

mg

σ

gεo
=

q

mg

∆φ

gd
. (7.42)

Experiments show that this angle of inclination to the vertical can have different values for different
bodies, figure 7.11, even when these bodies are placed inside the same capacitor having the same tension
between its plates.

According to equation (7.42), this difference in the angles of inclination of the strings to the vertical means
that these two bodies have different ratios of charge to weight, or different ratios of charge to gravitational
mass, namely:

q1
Fg1

6= q2
Fg2

, (7.43)

or

q1
mg1

6= q2
mg2

. (7.44)

These experiments show that there is no relation between the electric charge of a body and its weight.
Likewise, there is no relation between the electric charge of a body and its gravitational mass.
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Figure 7.11: Two bodies having different ratios of charge to weight are supported by strings of the same
length inside the same capacitor. The angles of inclination of these strings to the vertical have different
values.

7.3.3 Electrified Body Accelerated Inside a Capacitor

In this Subsection we present a situation showing that there is no relation between the electric charge q
of a body and its inertial mass mi. We now consider a charge in vacuum inside an ideal capacitor. The
capacitor will be always at rest relative to an inertial frame of reference. We will consider the Earth as a
good inertial frame to study this problem. The test charged body may be accelerated relative to the plates
of the capacitor. We suppose that the electrical force acting on this charged body is much larger than its
weight, so that we can neglect the gravitational force acting on it. Utilizing equations (1.4) and (7.32) we
obtain the acceleration ~a of this body relative to the ground as given by:

~a =
q

mi

~E . (7.45)

According to equation (7.33), the electric force per unit charge, ~E, depends only on the surface charge
density over the plates of the capacitor, being independent of q and mi. This force per unit charge is
analogous to the force per unit gravitational mass at the surface of the Earth in the situation of free fall
discussed in Sections 7.1 and 7.2.

However, there is a great difference between the free fall acceleration in a region of constant gravitational
force and the acceleration of an electrified body in a region of constant electric force (that is, in a region
for which the force on a body does not depend upon the location of this body). In the case of bodies being
attracted by the Earth in vacuum, all bodies fall with the same acceleration, no matter their weights or
chemical compositions. But in the case of two electrified bodies being accelerated in the same region of
constant electric force, these bodies can have different accelerations. A proton (p), for instance, has an
acceleration twice as great as the acceleration of an alpha particle (α) which is being accelerated inside the
same capacitor, figure 7.12. The alpha particle is the nucleus of the helium atom, with two protons and two
neutrons.

N

N

ap

aα

ap

2

α
p

Figure 7.12: Two charged particles having different accelerations inside the same capacitor.
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According to equation (7.45), the ratio between the accelerations of the proton and alpha particle inside
the same capacitor is given by, with a = |~a|:

ap
aα

=
qp/mip

qα/miα
. (7.46)

Utilizing that qα = 2qp and that miα = 4mip yields:

~ap = 2~aα . (7.47)

This difference between these two accelerations is due to the fact that the charge of an alpha particle
is twice that of a proton, while its inertial mass is four times the inertial mass of the proton, as it has two
neutrons and two protons.

This effect does not happen in free fall. All bodies fall freely towards the ground with the same acceler-
ation, no matter their weight, shape, density or chemical composition.

This is an extremely important fact. Comparing these two examples represented in figures 7.4 and 7.12,
we can conclude that the inertial mass mi of a test body is proportional to its weight Fg or to its gravitational
mass mg, as indicated by equation (7.19). The example of the proton and alpha particles being accelerated
inside the same capacitor, on the other hand, shows that the inertial mass of an electrified body is not
proportional to its electric charge q, namely:

mi1

mi2
6= q1

q2
. (7.48)

These facts suggest that the inertial mass of a body is connected to its weight or to its gravitational
mass, but not to its electric properties.

7.4 Body Accelerated Relative to the Ground while Connected to

a Spring

Consider now two bodies having the same inertial mass mi supported over a frictionless wagon. Each body
is connected to a horizontal spring of elastic constant k and relaxed length ℓo when the wagon is at rest
relative to the ground, figure 7.13 (a). The other extremities of the springs are connected to the wagon. We
will neglect the inertial mass mis of each spring in comparison with the inertial of the body connected to it,
namely, mis ≪ mi.

A force is applied to the wagon until it reaches a velocity v relative to the ground. The external force
no longer acts after this point. The wagon then moves forward with a constant velocity v relative to the
ground. After the situation is stabilized and the wagon is moving with this constant velocity relative to
the ground, the springs and the two bodies will also be moving with this constant velocity v relative to
the ground, as they are connected to the wagon. Experimentally it is found that these two springs remain
relaxed, maintaining their initial lengths ℓo, figure 7.13 (b). The cylinder represents an external body fixed
relative to the ground.

(a)

v
ℓo ℓomi mi

(b)

ℓo ℓomi mi a

(c)

ℓ > ℓo

ℓ < ℓo

mimi

Figure 7.13: (a) Wagon at rest in the ground. (b) Wagon moving at a constant velocity relative to the
ground. (c) Wagon uniformly accelerated relative to the ground.

We now make the wagon move along a straight line with a constant acceleration a relative to the ground.
Experiments show that one spring will be compressed while the other will be stretched, figure 7.13 (c). The
wagon is uniformly accelerated towards the cylinder, to the right in this figure. The left spring is compressed
while the right spring is stretched. The extremity of the left spring connected to the wagon is at a larger
distance from the cylinder than its extremity connected to the body of inertial mass mi. For the right spring,
on the other hand, the extremity connected to the wagon is at a shorter distance from the cylinder than its
extremity connected to the body.
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We consider as positive the direction pointing from the wagon to the cylinder. The compression of the
left spring can be obtained utilizing Newton’s second law of motion together with Hooke’s law, equations
(1.4) and (2.6):

−k(ℓ− ℓo) = mia . (7.49)

The elongation of the right spring can also be obtained from equations (1.4) and (2.6):

k(ℓ− ℓo) = mia . (7.50)

That is, the lengths of both springs undergo the same variation, namely:

|ℓ− ℓo| =
mi|a|
k

. (7.51)

7.4.1 Distinction between Velocity and Acceleration from the Deformation of

a Spring

There is a very important distinction which can be made comparing the three situations of figure 7.13. A
constant velocity v of the wagon relative to the ground does not have any dynamic effect, no matter the
value of v, as can be seen comparing figures 7.13 (a) and (b). A constant acceleration, on the other hand,
generates a dynamic effect, namely, a change in the length of both springs indicated by figure 7.13 (c) and
given numerically by equation (7.51). This means that we can know if the wagon is accelerated relative to
the ground even in a closed wagon without windows. To this end we only need to observe if the springs
connected to it are compressed or stretched, as in figure 7.13 (c). On the other hand, if we are inside a closed
wagon, we cannot know if it is at rest or if it is moving at a constant velocity v relative to the ground. The
springs inside the wagon remain in the same situation, they are not compressed nor stretched, no matter
if the wagon is at rest or if it is moving along a straight line at a constant velocity relative to the ground,
figure 7.13 (a) and (b).

7.4.2 Distinction between Relative Acceleration and Absolute Acceleration from

the Deformation of a Spring

Figure 7.14 indicates how is it possible to distinguish the relative acceleration of a test body relative to
other material bodies, from the absolute acceleration of a test body relative to Newton’s absolute space.
There are two equal test bodies of gravitational mass mg and inertial mass mi connected to the extremities
of two equal horizontal springs of relaxed length ℓo. The other extremity of each spring is connected to a
wagon which can move relative to the ground. In this figure the paper coincides with the frame of absolute
space. In situation (a) the wagon has a linear acceleration ~a relative to absolute space, being accelerated
towards a cylinder which is at rest in the ground, while the Earth has no acceleration relative to absolute
space. The springs are deformed as given by equation (7.51). In situation (b), on the other hand, we present
the prediction of a thought experiment of what would happen, according to classical mechanics, if it were
possible to accelerate the Earth relative to absolute space. While the wagon has no acceleration relative to
absolute space, the Earth has a linear acceleration −~a relative to absolute space, with the cylinder which is
fixed in the ground being accelerated towards the wagon. No matter if the Earth is at rest or has a linear
horizontal acceleration relative to absolute space, it only exerts a vertical gravitational force on the test body
pointing downwards, equation (1.20). This force is balanced by the upward vertical force exerted by the floor
of the wagon. Therefore, the springs inside the wagon should not be deformed, having their relaxed length
ℓo.

There is the same relative acceleration ~a between the Earth and the wagon in situations (a) and (b) of
figure 7.14. Despite this fact, these two situations are not dynamically equivalent. While the springs of
situation (a) are deformed according to equation (7.51), no such deformation takes place in the springs of
situation (b) according to classical mechanics. In newtonian mechanics we explain the deformation of the
springs of figure 7.14 (a) as being due to the absolute acceleration of the test bodies relative to empty space.
There would be no such absolute acceleration of the test bodies relative to Newton’s absolute space in the
situation of figure 7.14 (b).

We can also include the stars and galaxies in this analysis without affecting the final results, as indicated
by figure 7.15. Situation (b) is the prediction of what would happen, according to newtonian mechanics, it
if were possible to give a common linear acceleration, relative to absolute space, to the Earth, to the set of
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Figure 7.14: Paper coincides with absolute space. (a) Wagon uniformly accelerated to the right relative to
absolute space while the Earth has no acceleration relative to absolute space. The springs are deformed. (b)
Wagon without acceleration relative to absolute space, while the Earth is uniformly accelerated to the left
relative to absolute space. The springs should not be deformed according to classical mechanics.

fixed stars and to the set of galaxies. No matter if the Earth is at rest or accelerated to the left relative to
absolute space, it should exert only the downward vertical force acting on the test body, equation (1.20).
This force is balanced by the upward vertical force exerted by the floor of the wagon. The sets of stars and
galaxies, accelerated relative to absolute space, exert no net gravitational force on bodies located at the solar
system, according to equation (1.20). As there is no force acting on the test bodies of mass m connected to
the springs, the springs should remain relaxed according to classical mechanics.
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Figure 7.15: Paper coincides with absolute space. (a) Wagon uniformly accelerated to the right relative to
absolute space. The Earth, the set of fixed stars and the set of galaxies have no acceleration relative to
absolute space. The springs are deformed. (b) Wagon without acceleration relative to absolute space. The
Earth, the set of fixed stars and the set of galaxies are uniformly accelerated to the left relative to absolute
space. The springs should not be deformed according to classical mechanics.

In situations (a) and (b) of figure 7.15 there is the same relative acceleration ~a between the wagon and
the Earth, between the wagon and the set of fixed stars, and between the wagon and the set of galaxies.
Although these two situations are kinematically equivalent, they are not dynamically equivalent. After all,
while the springs of figure 7.15 (a) are deformed, the same does not happen with the springs of figure 7.15
(b). This dynamic difference in the behavior of the springs is explained in classical mechanics by saying that
while the test bodies of figure 7.15 (a) are accelerated relative to absolute empty space, the same does not
happen with the test bodies of figure 7.15 (b).

7.4.3 What is the Origin of the Force which is Stretching the Spring?

Figure 2.5 showed springs being stretched by forces of different nature, namely, (a) gravitational, (b) electric
and (c) magnetic. A spring does not stretch itself. It can only be stretched by two external forces acting on
the extremities of the spring in opposite directions. The force acting on each extremity must be pointing in
the direction going from the center of the spring to this extremity, as shown in figure 2.4 (c) and in figure
2.6.

We can now make an interesting question. What is the origin of the force which is stretching the right
spring of figure 7.13 (c)? Has this force a gravitational, electric, magnetic or nuclear origin?

We can also ask what is the origin of the force which is compressing the left spring of figure 7.13 (c)? A
spring does not compress itself. It can only be compressed by two external forces acting on the extremities
of the spring and pointing in opposite directions. The force acting on each extremity must be pointing in
the direction which goes from this extremity to the center of the spring.

The answer to these questions in classical mechanics is that the right spring of figure 7.13 (c) is not being
stretched by any force of interaction, in contrast to what happened with the springs of figure 2.5. According
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to newtonian mechanics the right spring of figure 7.13 (c) is being stretched due to the inertia of the body
of inertial mass mi connected to it. Initially the wagon, spring and mass mi were at rest in the ground. A
force is applied to the wagon in order to accelerate it relative to the Earth. When the wagon moves to the
right with an acceleration a relative to the ground, initially the body of inertial mass mi tends to remain
at rest. But the right extremity of the spring is connected to the wagon, in such a way that the spring also
begins to move to the right with the wagon. The spring then begins to stretch as the wagon is in motion
and the body at rest. The spring then begins to exert an elastic force on the body, accelerating it relative
to the ground. The initial acceleration of the body is smaller than a. As time goes by, the stretching of the
spring increases, the same happening with the acceleration of the test body, until the spring and the body
move relative to the ground with the same acceleration a given to the wagon. From this moment onwards
the spring remains stretched exerting a force k(ℓ − ℓo) to the right on the body, while the whole system
composed of wagon, spring and body of inertial mass mi maintain the same acceleration a relative to the
ground. According to Newton’s second law of motion we have k(ℓ− ℓo) = mia. By action and reaction, the
body exerts a force on the spring pointing to the left and having magnitude k(ℓ− ℓo). Mathematically it is
possible to say that the right spring is stretched due to an inertial force −mia exerted by the body on the
spring, pointing to the left. There is a force of equal magnitude acting on the right extremity of the spring,
exerted by the wall of the wagon, pointing to the right.

The main difference between this case of figure 7.13 (c) and the three situations of figure 2.5 is that
this inertial force −mia does not originate in any kind of interaction of the test body and other bodies
around it. This inertial force acting on the test body of inertial mass mi is not due to its interaction with
the wagon, with the Earth, with the stars nor with the galaxies. In figure 2.5 (a), on the other hand, the
gravitational force exerted by the Earth on each heavy body suspended by the spring is transmitted to the
spring, stretching it. The electric force acting on each electrified body of figure 2.5 (b) is transmitted to the
spring, stretching it. Likewise, the magnetic force acting on each magnet of figure 2.5 (c) is transmitted to
the spring, stretching it.

7.5 Body Accelerated Relative to the Ground while Suspended by

a String

We now consider an ideal inextensible string of constant length ℓ with its upper extremity fixed at the ceiling
of a closed wagon. The wagon can move relative to the ground. A body of gravitational mass mg and inertial
mass mi is connected at the lower extremity of the string. The Earth exerts a gravitational force Fg on
this body, namely, its weight. A force is applied to the wagon giving it a constant horizontal acceleration a
relative to the ground. The string is found to remain inclined to an angle θ to the vertical, as in figure 7.16.
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Figure 7.16: (a) Wagon accelerated relative to the ground, with the string inclined of an angle θ to the
vertical. (b) Forces acting on the test body.

We are supposing the body being accelerated in vacuum or that we can neglect the buoyant force and
the resistive force due to air currents acting on it. There are then only two forces acting on the test body,
namely, its downward weight ~Fg and the tension ~T exerted by the stretched string and pointing along its
length, figure 7.16 (b). According to Newton’s second law of motion we get:

~Fg + ~T = mi~a . (7.52)

Utilizing the angle θ shown in figure 7.16 and the fact that the acceleration is horizontal yields:

T sin θ = mia , (7.53)
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and

T cos θ = Fg . (7.54)

Dividing equation (7.53) by equation (7.54) and utilizing that Fg = mgg yields the tangent of the angle,
namely:

tan θ =
mia

Fg
=

mi

mg

a

g
. (7.55)

That is, tan θ is proportional to the acceleration of the string relative to the ground. This acceleration
can be controlled by changing the horizontal force applied to the wagon. Therefore, it is possible to control
this angle θ of inclination.

Squaring equations (7.53) and (7.54) yields the tension T of the string, namely:

T =
√

m2
i a

2 + F 2
g =

√

m2
i a

2 +m2
gg

2 . (7.56)

A dynamometer connected to the string can be utilized to measure this tension.

7.5.1 Proportionality between Weight and Inertial Mass by the Inclination of

the String

A string of length ℓ remains inclined at an angle θ1 to the vertical, as given by equation (7.55), when it is
moving with an acceleration a1 relative to the ground supporting a body 1 of weight Fg1, gravitational mass
mg1 and inertial mass mi1. Analogously, another string of length ℓ remains inclined at an angle θ2 to the
vertical when it is moving with an acceleration a2 relative to the ground while supporting a body 2. From
equation (7.55) the ratio of the tangents of these inclinations is given by:

tan θ1
tan θ2

=
mi1a1
mi2a2

Fg2

Fg1
=

mi1/mg1

mi2/mg2

a1
a2

. (7.57)

This result is obtained from the theoretical structure of newtonian mechanics. We now utilize an addi-
tional empirical information, namely, that all bodies connected to strings remain inclined at the same angle
θ to the vertical when the wagons to which they are attached move with the same acceleration a relative to
the ground, no matter the shapes, weights, densities nor chemical compositions of the bodies connected to
them. This experimental fact cannot be deduced from Newton’s laws of motion. It is an empirical datum
which is independent from these laws. This equality of angles is represented in figure 7.17.
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Figure 7.17: Strings supporting different bodies are inclined to the vertical by the same angle when they
move with the same acceleration relative to the ground, no matter the weights or chemical compositions of
the bodies connected to them.

That is, when a1 = a2 = constant, it is found experimentally that θ1 = θ2, no matter the values of Fg1,
Fg2, mi1, mi2, mg1 or mg2. This equality of angles happens also for bodies of different shapes, densities or
chemical compositions. Utilizing this experimental fact in equation (7.57) yields:

mi1

mi2
=

Fg1

Fg2
=

mg1

mg2
, (7.58)

no matter the weights nor chemical compositions of bodies 1 and 2.
Utilizing equation (7.21) or equation (7.58) into equation (7.55) yields:

tan θ =
a

g
. (7.59)
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Equation (7.58) is analogous to equation (7.19). But now this result has been obtained from an experiment
which is conceptually different from that of free fall. When two bodies are released in vacuum near the
surface of the Earth, they fall with the same constant acceleration relative to the ground. The value of this
acceleration on the surface of the Earth cannot be controlled, as it depends only on the properties of the
Earth, namely, its gravitational mass and radius.

The acceleration of the wagon discussed in this Section, on the other hand, can be changed at will by
controlling the force applied to the wagon. Given a certain acceleration a, then the angle of inclination will
be given by equation (7.59). By increasing or decreasing the acceleration a of the wagon relative to the
ground, the angle of inclination will change accordingly. In any event, given this acceleration a, the angle
θ of inclination will have the same value for all bodies connected to the string, no matter their weight nor
chemical composition. The theoretical consequences of this experimental fact are represented by equations
(7.58) and (7.59).

7.5.2 Distinction between Velocity and Acceleration by the Inclination of the

String

Sections 5.2 and 6.2 showed that a string connected to a wagon with its lower extremity supporting a test
body remains vertical not only when the wagon is at rest, but also when it is moving along a straight line
with a constant velocity relative to the ground, figures 5.5 and 6.5. When the wagon moves along a straight
line with a constant acceleration a relative to the ground, on the other hand, the string remains inclined to
the vertical at an angle θ, figure 7.16. This angle is specified by equation (7.59), namely, tan θ = a/g. Figure
7.18 compares these three situations.
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Figure 7.18: Motion of a wagon relative to the ground. (a) Wagon at rest. (b) Moving with a constant
velocity v. (c) Moving with a constant acceleration a.

These three situations exhibit an important distinction, namely, an acceleration causes a dynamic mea-
surable effect. This visible effect is the inclination of the string to the vertical. This inclination does not
appear when the wagon is at rest nor when it is moving at a constant velocity v relative to the ground, no
matter the value of this velocity.

Another important aspect to be emphasized here is related with the measurement of motion. In general,
in order to know if there is motion between two bodies 1 and 2, it is necessary to analyze the distance r
between them, comparing it with another distance between other bodies which is considered as the standard
of length. When the distance between 1 and 2 changes in time, compared with our standard of length, we
say that they are moving relative to one another. We can say, for instance, that a body is moving relative
to the ground when its distance to objects fixed in the ground change as a function of time. The test body
can, for instance, be moving towards a wall.

In the situation of figure 7.18 a person in the ground can know if the wagon is at rest or moving relative
to the ground by comparing the distance between the wagon and a tree. A person inside the wagon can
also know if the wagon is at rest or moving relative to the ground if this person can look at the outside and
observe the positions of the trees around the wagon.

In a closed wagon without windows, on the other hand, a person inside the wagon cannot know if the
wagon is at rest or moving along a straight line with a constant velocity relative to the ground. Objects
inside the wagon do not give any hint nor visible indication of this velocity. An example can be seen in
figures 7.18 (a) and (b). The string remains vertical not only when the wagon is at rest, but also when it is
moving at a constant velocity relative to the ground.

The acceleration of the wagon relative to the ground, on the other hand, can be obtained by a person
inside the wagon not only kinematically but also dynamically. The kinematic determination is by looking
at the trees outside the wagon and observing how the distance between the wagon and each tree varies as
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a function of time. But even inside a closed wagon without windows, it is possible for a person to know its
acceleration relative to the ground. To this end the person must measure the inclination to the vertical of
a body supported by a string. The vertical can be indicated, for instance, by a door or wall of the wagon.
The value of this acceleration will be indicated by equation (7.59), namely:

a = g tan θ . (7.60)

It is also possible to know the direction of this acceleration. To this end it is necessary to know to which
side of the vertical the string is inclined. In the situation of figure 7.18 (c), for instance, the person inside
the wagon would detect the inclination of the string to the left, that is, with the supported body staying
closer to a certain wall of the wagon. The person would then conclude that the wagon was accelerated to
the right, that is, towards the opposite wall of the wagon.

In the next Subsection we discuss the meaning of the acceleration indicated by this experiment and given
by equation (7.60).

7.5.3 Distinction between Relative Acceleration and Absolute Acceleration from

the Inclination of the String

By detecting a change in the distance between two bodies, it is possible to say that there is a relative motion
between them. In principle this motion can be attributed to anyone of these bodies. This is illustrated in
figure 7.19. A test body of mass m is supported by a string inside a wagon which moves along a straight line
relative to the ground at a constant velocity v. The cylinder represents a body fixed relative to the ground.

m v
-v

(a) (b)

m
-v

Figure 7.19: Relative velocity between the wagon and the ground. (a) Situation seen by a person in the
ground. (b) Situation seen by a person inside the wagon.

Figure 7.19 (a) shows the situation from the point of view of a person at rest relative to the ground,
while the wagon, string and test body move towards the cylinder at a constant velocity v. Figure 7.19 (b)
shows the situation from the point of view of a person inside the wagon. This person observes the wagon,
string and test body at rest relative to himself, while the cylinder and the Earth move towards the wagon
at a constant velocity −v. There is the same relative velocity between the ground and the string in both
situations. The motion can be attributed to the wagon or to the ground.

We now consider the situation of an uniformly accelerated motion. Figure 7.20 (a) shows the situation
from the point of view of a person at rest relative to the ground, while the wagon, string and test body
move towards the cylinder at a constant acceleration a. We can suppose the value of this acceleration to be
5 m/s2. The string is inclined to the vertical at an angle θ. Figure 7.20 (b) presents this situation from the
point of view of a person inside the wagon. This person observes the wagon, string and test body at rest
relative to himself, while the cylinder and the Earth move towards the wagon at a constant acceleration −a.
The string is inclined relative to the vertical at an angle θ. There is the same relative acceleration a between
the wagon and the ground in both situations. Can this acceleration be equally attributed to the wagon or
to the Earth?

In principle situations (a) and (b) of figure 7.20 are equivalent. It might be thought that the angle θ
of inclination of the string to the vertical might be due to this relative acceleration between the wagon and
the Earth, no matter which one of them were really accelerated relative to Newton’s absolute space. But
this equivalence does not happen in classical mechanics. Newton argued that the dynamic effects arise on
the accelerated bodies. These dynamic effects should only arise, according to Newton, when the bodies
themselves were accelerated relative to absolute space. These dynamic effects would not arise on the test
bodies if they were at rest relative to absolute space, even if the Earth and the surrounding astronomical
bodies were accelerated relative to absolute space, in such a way that the same relative acceleration existed
between the test bodies and the Earth, or between the test body and the surrounding astronomical bodies.
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Figure 7.20: Wagon moving with a constant acceleration a relative to the ground with the string inclined to
the vertical at an angle θ. (a) Situation seen from a person in the ground. (b) Situation seen from a person
inside the wagon.

Newton illustrated his points of view utilizing circular motions. We present here his arguments utilizing
motions which are uniformly accelerated along a straight line.

When the wagon was at rest relative to the ground, a string connected to the wagon with a test body of
mass m connected to its lower extremity remained vertical. Figure 7.20 (a) showed that the string becomes
inclined to the left at an angle θ to the vertical when the wagon is moving to the right relative to the ground
at a constant acceleration a. Let us suppose now an hypothetical situation (thought experiment) in which
the wagon were at rest relative to Newton’s absolute space, but in which the Earth were moving to the
left at a constant acceleration −a. Would the string be inclined at an angle θ to the vertical? According
to newtonian mechanics, the string would remain vertical, although there is the same relative acceleration
between the Earth and the wagon in both situations, namely, in figures 7.20 (a) and (b). Figure 7.21 presents
the outcome of these experiments according to newtonian mechanics and considering the paper in which this
drawing has been made to be at rest relative to absolute space. Situation (a) is the situation when the wagon
has an uniform acceleration a to the right and the string is inclined to the vertical. The value of a can be
5 m/s2. Situation (b) presents the prediction of what would happen in the hypothetical situation in which
the wagon were at rest relative to absolute space and the Earth were uniformly accelerated to the left with
a constant acceleration −a.
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Figure 7.21: Paper at rest relative to absolute space. (a) Wagon accelerated to the right with the string
inclined at an angle θ to the vertical. (b) Wagon at rest and Earth accelerated to the left, with the string
vertical.

Although the relative acceleration between the Earth and the wagon is the same in both situations, the
string remains inclined only in case (a) in which the test mass m is accelerated relative to Newton’s absolute
space. In situation (b) newtonian mechanics predicts that the string will remain vertical. It is easy to
understand this prediction utilizing classical mechanics. The force exerted by the Earth on the mass m of
figure 7.21 is the downward weight Fg = mg. As Newton’s law of gravitation does not depend on velocity nor
acceleration, the Earth will remain attracting the test body downwards, no matter the horizontal acceleration
of the Earth indicated in figure 7.21 (b), as seen by equation (1.20). This fact indicates that the angle θ of
inclination of the string to the vertical given by tan θ = a/g is not due to the relative acceleration between
the Earth and the wagon.

There is a second possibility to interpret this angle θ to the vertical. It might depend upon the relative
acceleration between the wagon and the set of fixed stars belonging to our galaxy. However, as seen in
Subsection 1.4.4, the fixed stars exert no influence upon terrestrial bodies. In order to understand this fact,
figure 7.22 presents a new hypothetical situation, once again considering the paper to be at rest relative to
absolute space.
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Figure 7.22: Paper at rest relative to absolute space. (a) Wagon accelerated to the right with the string
inclined to the vertical at an angle θ. (b) Wagon, string and test body at rest, while the Earth and fixed
stars are accelerated to the left. The string remains vertical.

Once more situations (a) and (b) of figure 7.22 are kinematically equivalent. In both situations there
is the same relative acceleration between the wagon and the Earth, or between the wagon and the fixed
stars. However, these situations are not dynamically equivalent. In situation (a) the string is inclined to
the vertical, while in situation (b) it is vertical. According to newtonian mechanics the Earth accelerated to
the left exerts only a downward gravitational force on the test body, while the accelerated fixed stars exert
no net force on the test body according to equation (1.20). Therefore the angle θ of inclination given by
tan θ = a/g is not due to the relative acceleration between the wagon and the fixed stars.

A third possibility might be to suppose this angle to depend upon the relative acceleration between the
wagon and the set of distant galaxies. However, as seen in Subsection 1.4.4, the set of distant galaxies
exert no net force on the test body m. Figure 7.23 presents another hypothetical situation, once more
considering the paper at rest relative to absolute space. Situation (a) presents the wagon, string and mass
m accelerated to the right, while the Earth, stars and galaxies are at rest. The string is inclined at θ to the
vertical. Situation (b) presents the wagon, string and mass m at rest, while the Earth, stars and galaxies
are accelerated to the left. The string remains vertical according to newtonian mechanics.
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Figure 7.23: Paper at rest relative to absolute space. (a) Wagon accelerated to the right with the string
inclined at θ to the vertical. (b) Wagon at rest, while the Earth, stars and galaxies are accelerated to the
left. The string remains vertical.

Once more situations (a) and (b) of figure 7.23 are kinematically equivalent as there is the same relative
acceleration between the wagon and the Earth, between the wagon and the set of fixed stars, and between the
wagon and the set of distant galaxies. But these two situations are not dynamically equivalent. While the
string is inclined at θ to the vertical in situation (a), it is vertical in situation (b). According to newtonian
mechanics, the Earth accelerated to the left exerts only the downward gravitational force on the gravitational
mass m. The set of stars and galaxies accelerated to the left exert no net gravitational force on the test
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body m, according to equation (1.20).
This discussion shows that the acceleration a which appears in equation (7.60) is not the acceleration of

the test body m relative to the Earth, its acceleration relative to the set of fixed stars, nor its acceleration
relative to the set of distant galaxies. In newtonian mechanics this acceleration must be interpreted as
the acceleration of the test body of inertial mass m relative to absolute space. We can now understand
Newton’s statement16 that absolute space, without relation to anything external, remains always similar and
immovable, as seen in Section 1.2. That is, absolute space is not related to the Earth, is not related to the
fixed stars and is not related to the distant galaxies. Absolute space can only be identified with empty space
or with the vacuum.

Therefore the acceleration which appears in Newton’s second law of motion in the form of equation (1.4)
must be interpreted as the acceleration of the test body of inertial mass mi relative to Newton’s absolute
space, or relative to any inertial frame of reference which is moving along a straight line with a constant
velocity relative to absolute space. There is no other alternative to interpret the meaning of this acceleration
in newtonian mechanics due to the cosmological implications of Proposition 70, Theorem 30, of Book I of
the Principia discussed in Subsection 1.4.4.

7.5.4 What Would Be the Inclination of the String to the Vertical If All Stars

and Galaxies Around the Earth Were Annihilated?

The distinction between relative acceleration and absolute acceleration can also be seen considering other
thought experiments. Suppose we could annihilate all stars and galaxies from the universe, remaining only
the Earth, the wagon, the string and the test body. Even in this situation the string would remain inclined
at θ to the vertical when the wagon moved at a constant acceleration a relative to absolute space, while the
Earth remained stationary or moving at a constant velocity relative to absolute space, as indicated in figure
7.21 (a). The string would remain vertical, on the other hand, when the wagon remained stationary relative
to absolute space, while the Earth were moved with a constant acceleration −a relative to absolute space,
as indicated in figure 7.21 (b).

We could also double the amount of stars and galaxies around the Earth, compared with the situation of
the real universe observed around the Earth, without affecting the inclination of strings accelerated relative
to the ground, provided the new stars and galaxies were also distributed isotropically around the Earth.

Suppose all the stars and galaxies around the Earth were annihilated, remaining only the Earth, the
wagon, the string and the test body m. If the wagon remained at rest relative to absolute space, the string
would be vertical, as in figure 7.24 (a). In this situation there is no motion between the test body and the
wagon, nor between the test body and the Earth. However, if the wagon, string, test body m and the Earth
were all placed in motion relative to absolute space, moving together along a straight line with a constant
acceleration a, the string would be inclined at an angle θ to the vertical, as indicated in figure 7.24 (b).
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Figure 7.24: Paper at rest relative to absolute space. (a) Earth and wagon at rest with the string vertical.
Wagon and Earth accelerated together to the right, with the string inclined at θ to the vertical.

Situations (a) and (b) of figure 7.24 are visually or dynamically equivalent, as there is no motion between
the wagon and the Earth in both cases. The Earth, wagon, string and test body are at rest relative to
one another in these two configurations. However, these two situations are not dynamically equivalent. In

16[New90, p. 6].
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situation (a) the string remains vertical, parallel to the walls of the wagon. In situation (b) the string remains
inclined at an angle θ to the vertical and to the walls of the wagon.

We can add stars and galaxies around the Earth in this hypothetical situation that nothing would be
changed. These new stars and galaxies must be distributed uniformly or isotropically around the Earth.
They can be at rest or moving together relative to the Earth, it does not matter. The string of figure 7.24
(a) will remain vertical, while the string of figure 7.24 (b) will remain inclined at an angle θ to the vertical.

7.5.5 What Is the Origin of the Force Inclining the String?

Figures 5.6 and 5.7 showed a string inclined at an angle θ to the vertical when three forces were acting on the
suspended body of gravitational mass mg, namely, the downward vertical weight Fg due to the gravitational
attraction of the Earth, the horizontal force F and the force T along the string due to its tension. The
horizontal force F might have several origins, namely, gravitational, elastic, electric or magnetic.

We can ask an interesting question here, namely, what is the origin of the force which is inclining the
string of figure 7.16? In classical mechanics there is no physical origin for this force. That is, it is not due
to any kind of interaction between the test body and other bodies in the universe. The classical explanation
for this inclination of the string is related to the inertia of the body attached to it. Initially the wagon,
string and test body are at rest relative to an inertial frame of reference connected to the Earth. When a
force is applied to the wagon making it move at a constant acceleration a relative to this inertial frame of
reference, the test body of inertial mass mi suspended in the string tends to remain at rest relative to the
ground. However, as it is connected to the string and the upper extremity of the string is connected to the
wagon, the string begins to incline to the vertical, increasing its tension. The test body then begins to have
a small acceleration relative to the ground. The inclination and tension of the string increase together with
the acceleration of the test body relative to this inertial frame. When the body reaches the same acceleration
a of the wagon, the tension T of the string and the tangent of its angle of inclination attain their highest
values given by equations (7.56) and (7.59), respectively. In this final situation there is a maximal tension
in the string and zero relative motion between the test body and the wagon.

The horizontal force acting on the body is the horizontal component of the tension in the string, namely,
T sin θ. By Newton’s second law of motion we have T sin θ = mia. By action and reaction, the test body
exerts an equal and opposite force force on the string. Mathematically this inertial force exerted by the
body on the string can be written as −mia. This inertial force −mia acting on the string of figure 7.16 is
analogous to the horizontal force F of figures 5.6 and 5.7, as all of them incline the string. This analogy can
also be seen comparing the expressions yielding the tension T of the stretched strings given by equations

(5.6) and (7.56). While the tension T of the strings of figures 5.6 and 5.7 is given by T =
√

F 2 + F 2
g , that

of figure 7.16 is given by T =
√

m2
i a

2 + F 2
g . This means that the inertial force −mia plays the same role

as a real force of interaction represented by F , as both forces increase the tension T of the string. The
only difference between a real force F and the inertial force −mia is that we cannot find the material agent
responsible for this inertial force. That is, we cannot find the other material body in the universe which is
interacting with the test body and generating this inertial force −mia, which would then be transferred to
the string, stretching it and increasing its tension. We cannot find as well the physical origin for this inertial
force. That is, in classical mechanics it is not a gravitational, elastic, electric, magnetic or nuclear force, nor
a force of any other known nature.

7.6 Body Accelerated Relative to the Ground while Suspended by

a Spring

The situation discussed in Section 7.5 can also be considered replacing the string by a spring of elastic
constant k and relaxed length ℓo, as in figure 5.3. In this Section we will neglect the weight and inertial mass
of this spring compared with the weight and inertial mass of the body connected to it. This means that we
can neglect the deformation of this spring, due to its own weight and inertia, compared with its deformation
by connecting it to a test body of weight Fg = mgg and inertial mass mi.

The upper extremity of the spring is connected to the ceiling of a wagon, with its lower extremity
connected to a body of gravitational mass mg and inertial mass mi. When the wagon is at rest or moving
with a constant velocity relative to the ground, the spring is found experimentally to remain vertical, as in
figure 7.25 (b) and (c).
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(a) (b) (c)

Figure 7.25: (a) Spring vertical with relaxed length ℓo. (b) Spring at rest relative to the ground supporting
a body and stretched to a length ℓ1. (c) Spring moving at a constant velocity v relative to the ground and
stretched to a length ℓ1.

The stretched length ℓ1 of the spring is given by equation (5.1), namely:

ℓ1 − ℓo =
Fg

k
=

mgg

k
. (7.61)

A horizontal force is applied to the wagon making it move horizontally along a straight line with a
constant acceleration a relative to the ground. We wait until the situation stabilizes, with the wagon, spring
and test body moving together relative to the ground with this constant acceleration a. The spring is found
inclined at an angle θ to the vertical and having a total length ℓ2, figure 7.26 (a).

a
ℓ2

mi

Fg

q
T

mi

(b)(a)

Figure 7.26: (a) Wagon, spring and test body moving with a constant acceleration a relative to the ground,
with the spring inclined at an angle θ to the vertical. (b) Forces acting on the stretched spring.

We consider here the situation in which the wagon, spring and test body have the same constant accel-
eration a relative to the ground, in such a way that there is no relative motion between the wagon, spring
and test body. The spring is not oscillating and is inclined at a constant angle θ to the vertical. In classical
mechanics there are two forces acting on the test body, namely, the downward weight of the body ~Fg = mg~g

due to the gravitational attraction of the Earth and the elastic force of the stretched spring, ~Fe = ~T , acting
along the length of the spring, figure 7.26 (b). The equation of motion is given by:

~Fg + ~T = mi~a . (7.62)

Utilizing the angle θ of figure 7.26 yields:

T sin θ = mia , (7.63)

and

T cos θ = Fg . (7.64)

Dividing equation (7.63) by equation (7.64) and utilizing that Fg = mgg yields the tangent of the angle
as given by:

tan θ =
mia

Fg
=

mi

mg

a

g
. (7.65)

Utilizing the experimental fact that the angle θ has the same value for all bodies moving with the same
acceleration relative to the ground, no matter their weights, shapes or chemical compositions (neglecting the
buoyant force of air and the dragging friction), yields once more the conclusion that the inertial mass of a
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body is proportional to its weight, or that the inertial mass of a body is proportional to its gravitational
mass. Combining equations (7.21) and (7.65) yields once again equation (7.59), namely, tan θ = a/g.

The tension in the spring is given by equation (2.5), namely:

T = k(ℓ2 − ℓo) , (7.66)

where ℓo represents its relaxed length and ℓ2 its stretched length indicated in figure 7.26 (a). Equations
(7.63), (7.64) and (7.66) yield:

T = k(ℓ2 − ℓo) =
√

m2
i a

2 + F 2
g =

√

m2
i a

2 +m2
gg

2 . (7.67)

This equation indicates that the tension in the spring changes according to its acceleration relative to
the ground. This tension can be visualized or measured by the spring’s deformation ℓ2 − ℓo.

The whole discussion of Section 7.5 can also be made utilizing a spring instead of an inextensible string.
The stars and galaxies, in particular, have no relation with the tension or stretching of the spring. The stars
and galaxies can be annihilated without affecting the spring or its length. The acceleration a appearing
in equations (7.65) and (7.67) is the acceleration of the test body of inertial mass mi relative to Newton’s
absolute space or relative to an inertial frame of reference. This acceleration is not related to the acceleration
of the test body relative to the ground, relative to the fixed stars, nor relative to the frame of distant galaxies.

The main advantage of utilizing a spring instead of an ideal inextensible string is that the tension in the
spring can be measured or indicated by its deformation ℓ2 − ℓo.

7.7 Vessel Partially Filled with Liquid Accelerated Relative to the

Ground

7.7.1 Shape of the Liquid’s Free Surface and Pressure Inside It

We consider a vessel partially filled with an ideal incompressible liquid. When the vessel is at rest relative
to the ground, its free surface remain horizontal and the pressure inside it varies linearly with the depth. A
force is applied to the vessel to make it move horizontally along a straight line with a constant acceleration
a relative to the ground. We wait until the situation stabilizes, with the liquid moving together with the
vessel at this constant acceleration a relative to the ground. In this equilibrium configuration the liquid’s
free surface is found to be inclined at an angle α to the horizontal. The tangent of this angle is given
by tanα = h/ℓ, where h is the vertical gap between the higher and lower portions of the liquid, while ℓ
represents the width of the recipient along the direction of the acceleration, as represented in figure 7.27.

a

a

x

z

0h a

ℓ

dFb

dFg

a

(a) (b)

Figure 7.27: Vessel partially filled with liquid moving with a constant acceleration relative to the ground.
(a) Perspective view. (b) Side view.

This problem will be considered in newtonian mechanics supposing once again an ideal incompressible
liquid.17 We consider an inertial frame of reference at rest relative to the ground, with horizontal x axis
along the direction of the acceleration of the vessel and vertical z axis. At a certain moment the vessel is
moving through this frame of reference in the situation represented in figure 7.27 (b), that is, with the origin
of the coordinate system at the lowest point of the free surface of the liquid and with the frontal side of the
vessel along the z axis.

17[Luc80, pp. 418-421].
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In order to obtain the equation describing the free surface of the liquid, we consider an infinitesimal
element of fluid with volume dV , inertial mass dmi and gravitational mass dmg situated just below the free
surface of the fluid, anywhere along this free surface. The forces acting on this element are its downward
weight d~Fg due to its gravitational interaction with the Earth and the forces due to the pressure gradient
of the surrounding fluid and air around it. This buoyant force will be represented by d~Fb. This buoyant
force is orthogonal to the free surface of the fluid, making an angle α to the upward vertical, figure 7.27 (b).
Equation (1.4) yields:

d~Fg + d~Fb = dmi~a . (7.68)

Utilizing dFg = |d~Fg |, dFb = |d~Fb|, a = |~a| and figure 7.27 this equation can be written as:

dFb sinαx̂+ dFb cosαẑ − dFg ẑ = dmiax̂ . (7.69)

Utilizing dFg = dmgg, the equations of motion along the x and z directions can be written as, respectively:

dFb sinα = dmia , (7.70)

and

dFb cosα = dmgg . (7.71)

Dividing equation (7.70) by equation (7.71) and utilizing figure 7.27 yields the tangent of the inclination
angle of the fluid to the horizontal as given by:

tanα =
dmi

dmg

a

g
=

ρi
ρg

a

g
=

h

ℓ
, (7.72)

where ρi = dmi/dV is the volume density of inertial mass of the fluid ρg = dmg/dV its volume density of
gravitational mass.

We now obtain the pressure anywhere inside the fluid. To this end the infinitesimal element of fluid of
volume dV will be considered anywhere inside the liquid. Applying equations (1.17) and (2.3) to equation
(7.68) yields, with d~Fg = dmg~g = −dmggẑ and ~a = ax̂:

−dmggẑ −
∂p

∂x
dV x̂− ∂p

∂y
dV ŷ − ∂p

∂z
dV ẑ = dmiax̂ . (7.73)

This equation along the x, y and z axes can be written as, respectively:

∂p

∂x
= −ρia , (7.74)

∂p

∂y
= 0 , (7.75)

and

∂p

∂z
= −ρgg . (7.76)

Integration of equations (7.74) up to (7.76) yields:

p(x, y, z) = −ρiax+ f1(y, z) , (7.77)

p(x, y, z) = f2(x, z) , (7.78)

and

p(x, y, z) = −ρggz + f3(x, y) , (7.79)

where f1(y, z), f2(x, z) and f3(x, y) are arbitrary functions of y and z; x and z; and x and y, respectively.
Combining these three equations one gets:

p(x, y, z) = −ρiax− ρggz + k1 , (7.80)
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where k1 is a constant. Utilizing that in the lowest point (x, y, z) = (0, 0, 0) we are at the free surface of
the fluid where the pressure is po, the atmospheric pressure, yields k1 = po. Therefore the pressure anywhere
inside the fluid and along its surface is given by:

p(x, y, z) = −ρiax− ρggz + po . (7.81)

Utilizing in equation (7.81) that in all points along the free surface of the fluid the pressure is that of the
atmosphere, namely, p(x, y, z) = po, we can obtain the equation of this free surface as given by (utilizing
also equation (7.72)):

z = − ρi
ρg

a

g
x = −(tanα)x = −h

ℓ
x . (7.82)

When x = −ℓ this equation yields z = h. This last conclusion is compatible with figure 7.27 and with
equation (7.72).

The equation satisfied by the isobaric surfaces can be obtained imposing p(x, y, z) = p1 = constant into
equation (7.81), namely:

z = − ρi
ρg

a

g
x+

po − p1
ρgg

= −(tanα)x + k2 , (7.83)

where k2 ≡ (po − p1)/ρgg = constant. These isobaric surfaces are then seen to be planes parallel to the free
surface of the liquid given by z = −(tanα)x.

These equations complete the solution of this problem utilizing the theoretical structure of newtonian
mechanics. The important aspect to be kept in mind is that the free surface of the liquid remains inclined
to the horizontal only when the vessel is accelerated relative to an inertial frame of reference. According to
equation (7.72), tanα is proportional to the acceleration of the fluid relative to the Earth.

7.7.2 Obtaining the Proportionality between Inertial Mass and Gravitational

Mass from Experiments with Accelerated Fluids

Consider two vessels side by side partially filled with ideal incompressible liquids of different chemical com-
positions. Fluid 1 can be, for instance, water and fluid 2 can be oil. External forces are applied to these two
vessels making them move along a straight line with the same constant acceleration a relative to the ground.
Let α1 be the angle of inclination of fluid 1 to the horizontal and α2 the inclination of fluid 2. Equation
(7.72) yields:

tanα1

tanα2

=
ρi1/ρg1
ρi2/ρg2

. (7.84)

This is the result obtained from Newton’s second law of motion together with his law of universal
gravitation.

It is an observational fact that all incompressible fluids remain inclined at the same angle α to the
horizontal when they move with the same acceleration relative to the ground, no matter their densities nor
chemical compositions:

α1 = α2 = constant for all fluids . (7.85)

That is, water, oil, honey, liquid mercury and other fluids remain inclined at the same angle to the horizontal
when they move with the same constant acceleration, figure 7.28.

Therefore, even when the fluids have different volume densities of gravitational mass, ρg1 6= ρg2, experi-
ments show that α1 = α2, provided a1 = a2. Applying the experimental result expressed by equation (7.85)
into equation (7.84) yields:

tanα1

tanα2

=
ρi1/ρg1
ρi2/ρg2

= 1 . (7.86)

That is:

ρi1
ρg1

=
ρi2
ρg2

≡ ρi
ρg

. (7.87)
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Figure 7.28: Two incompressible fluids 1 and 2 remain inclined at the same angle α to the horizontal when
they move relative to the ground with the same constant acceleration a, no matter their densities nor chemical
compositions.

This result is analogous to equation (7.17) which was obtained from the fact that all bodies fall freely
towards the ground with the same acceleration. A lead coin and a feather, for instance, are released from
rest simultaneously from the same height above the ground. Experiments show that they fall freely with the
same constant acceleration of 9.8 m/s2 near the surface of the Earth. The value of this free fall acceleration
cannot be controlled externally, as it depends only on the gravitational mass of the Earth and its radius.

Equation (7.87), on the other hand, has been obtained from a new kind of experiment. The fact that
tanα1 = tanα2 for two fluids, no matter their densities nor chemical compositions, is obtained for all values
of the common acceleration a given to the two vessels. The value of this acceleration relative to the ground
is controlled by the person applying the force on the vessels. This acceleration can have an arbitrary value.
The value of the angle α of inclination depends on the value of a according to equation (7.72). Therefore,
increasing the value of a, the value of the angle α increases simultaneously. On the other hand, no matter
the value of the acceleration a given to the vessels, it is always observed that tanα1 = tanα2, according to
equation (7.85). Two fluids having different chemical compositions will be inclined by the same angle relative
to the horizontal, provided they are moving with the same acceleration relative to the ground.

Utilizing equations (7.20) and (7.21), which are valid in the International System of Units, together
with equation (7.72), the tangent of the angle of inclination of an arbitrary incompressible fluid accelerated
relative to the ground is given by:

tanα =
a

g
=

h

ℓ
. (7.88)

According to equations (7.20) and (7.21), the volume density of inertial mass, ρi, and the volume density
of gravitational mass, ρg, can be represented by a single symbol, namely, ρ:

ρi = ρg ≡ ρ . (7.89)

Utilizing equation (7.89) in equation (7.81), the pressure anywhere inside the fluid can be written as:

p(x, y, z) = −ρax− ρgz + po . (7.90)

Analogously, equation (7.83) for the isobaric surfaces having a constant pressure p1 is given by:

z = −a

g
x+

po − p1
ρg

= −(tanα)x + k2 , (7.91)

where k2 ≡ (po − p1)/ρg = constant. That is, these isobaric surfaces are parallel to the plane z = −(tanα)x
characterizing the free surface of the fluid.

7.7.3 Distinction between Velocity and Acceleration from the Inclination of the

Fluid

It is possible to distinguish between velocity and acceleration utilizing this experiment of an accelerated
vessel with liquid, as was done in Subsection 7.5.2 utilizing a body suspended by a string. Figure 7.29
presents a vessel partially filled with a liquid in three situations: (a) At rest in the ground, (b) moving with
a constant velocity v, and (c) moving with a constant acceleration a relative to the ground.

A person inside the wagon of a train or inside an airplane can know its velocity and acceleration by
looking at bodies located outside the train or airplane and observing how these bodies change their distances
to the train or airplane. But suppose now the train or airplane are closed without windows. The passenger
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Figure 7.29: (a) Vessel at rest relative to the ground, (b) vessel moving at a constant velocity, and (c) vessel
uniformly accelerated relative to the ground.

observing the free surface of water in a glass cannot know if he is at rest or moving along a straight line at
a constant velocity relative to the ground. The surface of the water remains horizontal not only when it is
at rest in the ground, but also when it is moving at a constant velocity v relative to the ground, no matter
the value of v. While a person is flying from Brazil to Europe, for instance, with the airplane moving at 700
km/h relative to the ground, the water in a glass remains horizontal, as it was when the plane was at rest in
the ground. Only during taking off, turbulences and landing does the water surface change its shape, that
is, when the airplane is accelerated relative to the ground.

But even in this closed train or airplane without windows the person can know its acceleration relative
to the ground by observing the water surface. When the water is inclined at an angle α to the horizontal,
the person knows that he is moving with a constant acceleration given by:

a = g tanα . (7.92)

The person can also know the direction of this acceleration relative to the ground, namely, from the higher
side of the water to the lower side.

7.7.4 Distinction between Relative Acceleration and Absolute Acceleration from

the Inclination of the Fluid

It is possible to distinguish relative acceleration from absolute acceleration utilizing this experiment of an
accelerated vessel, as was done in Subsection 7.5.3 utilizing a body suspended by a string.

What we want to discuss here is the meaning of the acceleration a appearing in equation (7.92). In
newtonian mechanics this is the acceleration of the fluid relative to absolute space or relative to any inertial
frame of reference which moves along a straight line with a constant velocity relative to absolute space. This
acceleration a is not the acceleration of the fluid relative to the vessel, relative to the Earth, relative to the
fixed stars, nor relative to the frame of distant galaxies. This conclusion can be understood and visualized
utilizing some thought experiments. The behavior of the fluid in these thought experiments will be predicted
utilizing newtonian mechanics.

We consider the paper where we make the drawings to be at rest relative to absolute space. Figure 7.30
(a) presents the vessel moving together with the fluid with an uniform acceleration a while the Earth, stars
and galaxies are at rest relative to absolute space. The Earth attracts the fluid downwards, while the set
of stars and galaxies make no net force on the fluid according to equation (1.15). The surface of the fluid
remains inclined at an angle α to the horizontal. Figure 7.30 (b) presents the vessel and the fluid at rest
relative to absolute space, while the Earth, stars and galaxies move together with an acceleration −a. The
accelerated Earth attracts the fluid downwards, while the set of stars and galaxies exert no net force on the
fluid according to equation (1.20). The surface of the fluid should remain flat and horizontal, parallel to the
bottom of the vessel.

Situations (a) and (b) of figure 7.30 are visually or kinematically equivalent, as there is no motion between
the fluid and the vessel in both cases. Moreover, there is the same relative acceleration in both cases between
the fluid and the Earth, between the fluid and the stars, and between the fluid and the distant galaxies.
However, these two situations are not dynamically equivalent. In situation (a) the free surface of the fluid
in inclined to the horizontal and to the bottom surface of the vessel. The fluid can even spill out of the
vessel if the acceleration is great enough. In situation (b), on the other hand, the free surface of the fluid is
horizontal and parallel to the bottom surface of the vessel.

Figure 7.31 presents another way of showing this distinction between relative acceleration and absolute
acceleration. Once again the reference frame of the paper coincides with Newton’s absolute space. In
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Figure 7.30: The paper is at rest in absolute space. (a) Inclined fluid. (b) Horizontal fluid.

situation (a) the vessel, the fluid, the Earth, the stars and galaxies are at rest relative to absolute space.
The free surface of the fluid is horizontal and parallel to the bottom side of the vessel. In situation (b) the
vessel, the fluid, the Earth, the stars and galaxies are moving together along a straight line with a constant
acceleration a relative to absolute space. The free surface of the fluid is inclined at an angle α to the
horizontal and to the bottom surface of the vessel. The Earth pulls the fluid downwards in both situations,
while the set of stars and galaxies exert no net force on the fluid in both situations, according to equations
(1.15) and (1.20).
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Figure 7.31: Paper at rest relative to absolute space. (a) Horizontal fluid. (b) Inclined fluid.

Situations (a) and (b) of figure 7.31 are visually or kinematically equivalent. The vessel, fluid, Earth,
stars and galaxies are at rest relative to one another in both situations. However, these two situations are
not dynamically equivalent. In situation (a) the free surface of the fluid is horizontal and parallel to the
bottom side of the vessel. In situation (b), on the other hand, the free surface of the fluid is inclined to the
horizontal and to the bottom side of the vessel. The fluid can even spill out of the vessel if the acceleration
is high enough.

7.7.5 What Would Be the Inclination of the Fluid If All Stars and Galaxies

Around the Earth Were Annihilated?

There is another way of realizing that the set of stars and galaxies have no influence upon the angle α of
inclination of the fluid to the horizontal given by equation (7.92). To this end it is only necessary to observe
that if all the stars and galaxies around the Earth were annihilated of the universe, remaining only the
vessel, the fluid and the Earth, there would be no change in this angle. That is, provided the vessel and
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the fluid remained with the same constant acceleration a relative to absolute space, the angle of inclination
would remain with its value α given by equation (7.92), as represented in figure 7.32. The frame of the
paper coincides with absolute space. In situation (a) the vessel, the fluid and the Earth are at rest relative
to absolute space and the free surface of the fluid is horizontal. In situation (b) the vessel, the fluid and
the Earth are moving together relative to absolute space with a linear constant acceleration ~a. In this case
newtonian mechanics predicts that the free surface of the fluid will be inclined at an angle α to the horizontal
and to the bottom surface of the fluid, with this angle given by equation (7.92).

(a) (b)

a

a

a

Figure 7.32: Paper at rest relative to absolute space. (a) Horizontal fluid. (b) Inclined fluid.

All conclusions of this Subsection are due to equations (1.15) and (1.20). They show that spherical shells
exert no net force on internal bodies, no matter the accelerations of these bodies or the accelerations of these
spherical shells relative to an inertial frame of reference. This means that we can add or remove material
spherical shells around the vessel without affecting the behavior of the internal fluid.

7.8 Summary of the Distinction Between Velocity and Acceleration,

and Between Relative Acceleration and Absolute Acceleration

Figure 7.33 summarizes the conclusion of Chapter 6. In figure 7.33 (a) there are two horizontal springs on
a frictionless surface. They are fixed to the wagon and their free extremities are connected to test bodies
which can move relative to the wagon. There is a vertical string fixed at the ceiling and supporting a test
body in its lower extremity. There is also a vessel partially filled with a liquid. The wagon is at rest relative
to the ground. We represented a rectangular block and a cylinder at rest relative to the ground. To simplify
the analysis we include the set of galaxies also at rest relative to the ground.

(a) (b)

v

Figure 7.33: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant linear velocity v
relative to the ground.

Figure 7.33 (b) presents the situation when the wagon is moving with a constant linear velocity v relative
to the ground, going from the rectangular block towards the cylinder. Nothing happens inside the wagon,
no matter the value of v. Therefore, by observing only the test bodies inside the wagon it is not possible to
know if the wagon is at rest or moving with a constant velocity v relative to the ground.

Figure 7.34 indicates how it is possible to distinguish from rest and acceleration, or how it is possible
to distinguish from constant velocity and acceleration, by observing the behavior of deformable test bodies
located inside the wagon. In situation (a) all bodies are at rest relative to the ground. In situation (b)
the wagon and all bodies inside it are moving together with a constant linear acceleration a relative to the
ground. They are accelerated from the rectangular block towards the cylinder. The deformation of the
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horizontal springs, the inclination of the string and the inclination of the free surface of water depend on the
acceleration of the wagon.

a

(a) (b)

Figure 7.34: (a) Wagon at rest relative to the ground. (b) Wagon moving with a constant linear acceleration
a relative to the ground.

Figure 7.35 presents the result of a thought experiment. This prediction is based on newtonian mechanics.
We consider the paper where this drawing has been made as staying at rest relative to Newton’s absolute
space. Now the wagon is supposed to remain at rest relative to absolute space, while the Earth and the
set of galaxies have a common and constant linear acceleration −a relative to absolute space. The cylinder
fixed in the Earth is moving towards the wagon with acceleration −a. Nothing should happen with the test
bodies inside the wagon. That is, the horizontal springs should not be deformed, the string should remain
vertical and the free surface of water should remain horizontal, parallel to the floor.

(a) (b)
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Figure 7.35: (a) Wagon, Earth and galaxies at rest relative to Newton’s absolute space. (b) Wagon at rest
relative to absolute space, while the Earth and the set of galaxies have a common constant acceleration −a
relative to absolute space.

Figure 7.34 (b) is kinematically equivalent to figure 7.35 (b). After all, there is the same relative acceler-
ation a between the wagon and the Earth, and between the wagon and the set of galaxies. However, these
two configurations are not dynamically equivalent. After all, in figure 7.35 (b) the springs have their relaxed
lengths, the string is vertical and the free surface of water is horizontal. In figure 7.34 (b), on the other
hand, the springs are deformed, the string is inclined relative to the wall of the wagon and the free surface
of the water is no longer horizontal.

In newtonian mechanics the effects indicated in figure 7.34 (b) are not due to the set of galaxies. After all
they exert no net gravitational force on any body of the solar system, no matter if they are at rest or being
accelerated as a whole relative to absolute space. This is due to Newton’s theorem 30, equations (1.11) and
(1.20). Therefore, the set of galaxies might be annihilated without affecting the configurations of the bodies
presented in figures 7.34 and 7.35.



Chapter 8

Bodies in Oscillatory Motions

In this Chapter we consider forces depending on position and generating oscillatory motions.

8.1 Spring

8.1.1 Period and Frequency of Oscillation of a Spring

The first example to be considered here is that of a body with inertial mass mi connected to one extremity
of a spring, with the other extremity of the spring fixed to the Earth, figure 8.1. The spring has an elastic
constant k and a relaxed length ℓo. Let ℓ be its length when stretched (ℓ > ℓo) or compressed (ℓ < ℓo). The
weight of the test body is balanced by the normal upward force exerted by the frictionless surface. The only
remaining force acting on the body is the horizontal elastic force exerted by the spring.

0 x

k
mi

x

ℓo

ℓ

F

Figure 8.1: Body connected to one extremity of a spring, while the other extremity of the spring is fixed
relative to the ground.

The elastic force exerted on the body by the spring is given by:

~F = −kxx̂ , (8.1)

where x̂ is the unit horizontal vector along the length of the spring. The displacement of the body from the
equilibrium position is represented by x, namely, x ≡ ℓ− ℓo. Combining this equation with Newton’s second
law of motion given by equation (1.4) and utilizing ~a = (d2x/dt2)x̂ = ẍx̂ yields the one dimensional equation
of motion given by:

miẍ+ kx = 0 . (8.2)

The solution of this equation is given by:

x(t) = A cos(ωt+ θo) , (8.3)

where

ω =

√

k

mi
=

2π

T
. (8.4)
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The constant A represents the amplitude of oscillation, θo is the initial phase, ω is the angular frequency
of oscillation, while T represents the period of a complete oscillation, that is, the time interval required for
the test body to return to its initial configuration. This period of oscillation can be written as:

T = 2π

√

mi

k
=

2π

ω
. (8.5)

The constant magnitudes A and θo are related to the total energy E of the body and to its initial position
xo by the following equations:

E =
miẋ

2

2
+

kx2

2
=

kA2

2
, (8.6)

and

xo = A cos θo . (8.7)

8.1.2 The Ratio of the Periods of Oscillation of Two Bodies Connected to the

Same Spring Depends on the Ratio of Their Inertial Masses

Consider two test bodies of inertial masses mi1 and mi2 connected separately to the same spring. The ratio
of their periods of oscillation T1 and T2 and the inverse ratio of their frequencies of oscillation ω1 and ω2 can
be obtained from equations (8.4) and (8.5), namely:

T1

T2

=
ω2

ω1

=

√

mi1

mi2
. (8.8)

Equations (8.4) and (8.8) show that the period and angular frequency of oscillation of a spring depend
on the value of the inertial mass of the test body connected to it, because the elastic constant k is a property
of the spring which is independent of the value of the inertial mass of the body connected to it. Suppose
a test body 1 of inertial mass m1 = mi connected to a spring has a frequency of oscillation given by ω1 =
√

k/m1 =
√

k/mi, figure 8.2 (a). Another body 2 having twice the inertial mass of the first body, m2 = 2mi,
oscillates in the same spring with a frequency of oscillation given by ω2 =

√

k/m2 =
√

k/2mi = ω1/
√
2,

figure 8.2 (b).
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Figure 8.2: Two different inertial masses m1 = mi and m2 = 2mi oscillating in the same spring.

Equation (8.8) means that ω2 6= ω1 when mi2 6= mi1. Therefore it is possible to change the period and
frequency of oscillation of a spring by changing the value of the inertial mass of the test body connected to
it.

8.2 Galileo’s Pendulum Experiments

Galileo was the first scientist to study systematically the oscillatory motion of pendulums. His motivation
for this study was related to his interest in free falling bodies:1

1[Gal54, p. 84] and [Gal85, p. 71].
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The experiment made to ascertain whether two bodies, differing greatly in weight will fall from a
given height with the same speed offers some difficulty; because, if the height is considerable, the
retarding effect of the medium, which must be penetrated and thrust aside by the falling body,
will be greater in the case of the small momentum of the very light body than in the case of the
great force [violenza] of the heavy body; so that, in a long distance, the light body will be left
behind; if the height be small, one may well doubt whether there is any difference; and if there
be a difference it will be inappreciable.

It occurred to me therefore to repeat many times the fall through a small height in such a way
that I might accumulate all those small intervals of time that elapse between the arrival of the
heavy and light bodies respectively at their common terminus, so that this sum makes an interval
of time which is not only observable, but easily observable. In order to employ the slowest speeds
possible and thus reduce the change which the resisting medium produces upon the simple effect
of gravity it occurred to me to allow the bodies to fall along a plane slightly inclined to the
horizontal. For in such a plane, just as well as in a vertical plane, one may discover how bodies
of different weight behave: and besides this, I also wished to rid myself of the resistance which
might arise from contact of the moving body with the aforesaid inclined plane.

Galileo then arrived at his study of a simple pendulum.

8.2.1 Relation between the Period of Oscillation and the Length of the Pendu-

lum

After performing experiments with simple pendulums of different lengths, Galileo arrived at the following
law:2

As to the times of vibration of bodies suspended by threads of different lengths, they bear to
each other the same proportion as the square roots of the lengths of the thread; or one might
say the lengths are to each other as the squares of the times; so that if one wishes to make the
vibration-time of one pendulum twice that of another, he must make its suspension four times
as long. In like manner, if one pendulum has a suspension nine times as long as another, this
second pendulum will execute three vibrations during each one of the first; from which it follows
that the lengths of the suspending cords bear to each other the [inverse] ratio of the squares of
the number of vibrations performed in the same time.

Let ℓ1 and ℓ2 be the lengths of two simple pendulums, figure 8.3.

ℓ1
T1

ℓ2

T2

Figure 8.3: Two simple pendulums of lengths ℓ1 and ℓ2 oscillating with periods T1 and T2, respectively.

Let T1 and T2 be their periods of oscillation. Galileo’s experimental result can be expressed algebraically
as follows:

T1

T2

=

√

ℓ1
ℓ2

. (8.9)

8.2.2 The Period of Oscillation of a Pendulum Is Independent of Its Weight

and Chemical Composition

In principle this period of oscillation of a simple pendulum might depend on other factors, such as the weight
of the body suspended in the pendulum, the density or chemical composition of this body. This period of
oscillation might also depend on the amplitude of oscillation.

2[Gal54, p. 96] and [Gal85, p. 79].
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We quote here some other experimental conclusions of Galileo:3

Accordingly I took two balls, one of lead and one of cork, the former more than a hundred times
heavier than the latter, and suspended them by means of two equal fine threads, each four or five
cubits long. Pulling each ball aside from the perpendicular, I let them go at the same instant, and
they, falling along the circumferences of the circles having these equal strings for semi-diameters,
passed beyond the perpendicular and returned along the same path. This free vibration [per lor
medesime le andate e le tornate] repeated a hundred times showed clearly that the heavy body
maintains so nearly the period of the light body that neither in a hundred swings nor even in a
thousand will the former anticipate the latter by as much as a single moment [minimo momento],
so perfectly do they keep step. We can also observe the effect of the medium which, by the
resistance which it offer to motion, diminishes the vibration of the cork more than that of the
lead, but without altering the frequency of either; even when the arc traversed by the cork did
not exceed five or six degrees while that of the lead was fifty or sixty, the swings were performed
in equal times.

Galileo’s conclusion obtained from experiments like these utilizing pendulums of the same length can be
expressed as follows:

• The period of oscillation is independent of the amplitude of oscillation. In Galileo’s experiment the
periods of the pendulums had the same value for arcs of sixty or five degrees. Therefore the period of
oscillation is independent of the initial angle θo of inclination of the string to the vertical.

• The period of oscillation is independent of the weight of the test body. In Galileo’s experiment the
periods of the pendulums had the same value for two bodies of different weights, even when one body
was a hundred times heavier than the other. Therefore the period of oscillation is independent of the
gravitational force Fg exerted by the Earth on the test body.

• The period of oscillation is independent of the volume density of gravitational mass of the test body
and is also independent of the chemical composition of this test body. In Galileo’s experiment the
periods of the pendulums had the same value, although one of them was a lead ball and the other a
cork ball.

Later experiments performed by other scientists showed that the first conclusion was valid only for
small oscillations, that is, when θ ≪ 1 rad. When this approximation is valid, the period of oscillation is
essentially independent of the amplitude of oscillation. As the amplitude of oscillation θ becomes large, the
period becomes slightly longer than for small oscillations. At large amplitudes the frequency of oscillation,
on the other hand, is slightly lower than at small amplitudes.

Galileo’s two other conclusions, namely, that the period of oscillation is independent of the weight and
chemical composition of the test body, have been shown to be true in all situations. Let T be the period
of a complete oscillation of the pendulum oscillating in vacuum. Experiments with simple pendulums have
shown that:

T = constant no matter the weight, density or chemical composition of the body . (8.10)

The most important aspect related to the period of oscillation of simple pendulums oscillating in vacuum
is that it is independent of the weight and chemical composition of the test body. These properties are
not intuitive. Nature might behave differently. Galileo did not offer any explanation for this remarkable
behavior.

8.2.3 Relation between the Period of Oscillation of a Simple Pendulum, Its

Length and the Free Fall Acceleration

As shown in Subsection 8.2.1, Galileo obtained that the period T of oscillation of a simple pendulum is
proportional to the square root of its length ℓ. He also showed that this period is independent of the weight,
density and chemical composition of the test body. But he did not relate this period with the acceleration
g of free fall. The first scientist to obtain this relation was Huygens, in 1659, publishing his result in 1673

3[Gal54, pp. 84-85] and [Gal85, p. 71].



Ch. 8: Oscillatory Motions 119

in his book The Pendulum Clock.4 Huygens’s expression for the period of oscillation of a simple pendulum
can be expressed as follows in modern algebraic notation:

T = 2π

√

ℓ

g
. (8.11)

The acceleration of free fall can be obtained inverting this equation, namely:

g = 4π2 ℓ

T 2
. (8.12)

Section 8.3 will show how to obtain these results from newtonian mechanics. Two aspects should be
emphasized here. The first one is that Huygens obtained this result before Newton. The second aspect is
that Huygens obtained the modern value of g utilizing this expression together with his measurements of
the length and period of oscillation of pendulums. The value of g obtained by Huygens5 in the International
System of Units can be expressed as g = 9.81 m/s2.

8.3 Simple Pendulum in Newtonian Mechanics

8.3.1 Period and Angular Frequency of Oscillation

This Section considers the motion of a simple pendulum according to Newton’s formulation. We will suppose
that the pendulum is located at the terrestrial Equator. The Earth at the Equator can be considered a good
inertial frame of reference to analyze this problem. A small body of typical size d (length, radius or maximal
diameter) oscillates in a vertical plane connected to an inextensible string of length ℓ such that d ≪ ℓ. The
test body has inertial mass mi and gravitational mass mg. Let θ be the angle of inclination of the string to
the vertical, figure 8.4.

Fg

miT

ℓ
θ

Figure 8.4: Simple pendulum.

Neglecting air resistance, there are two forces acting on the test body, namely, its downward weight
~Fg = mg~g = −mggẑ and the tension ~T acting along the stretched string, pointing towards its point of
support fixed relative to the ground. The equation of motion is given by:

~Fg + ~T = mi~a . (8.13)

We utilize the angle θ represented in figure 8.4, the constant length ℓ of the string and a polar coordinate
system with its origin O at the upper point of support of the string which is fixed relative to the ground.
The length of arc from the vertical described by the test body inclined at an angle θ to the vertical is given
by s = ℓθ, its tangential velocity at the angle θ is given by vθ = ℓθ̇, its tangential acceleration along the
circumference of the trajectory is given by aθ = ℓθ̈, while its centripetal acceleration towards the center of
the circle is given by ac = ℓθ̇2 (utilizing equation (9.8) which will be presented in Section 9.1). The tangential
and radial components of equation (8.13) are then given by, respectively:

−Fg sin θ = miaθ = miℓθ̈ , (8.14)

and
4[Huy13, pp. 180-186], [Huy34, pp. 348-359], [Huy86, pp. xiii-xiv, xviii-xix and 167-172] and [Bar89, pp. 454 and 528-530].
5[Huy13, pp. 180-186 and 264 Note 175], [Huy34, pp. 348-359], [Huy86, pp. xiii-xiv, xviii-xix and 167-172] and [Bar89, pp.

454 and 528-530].
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T − Fg cos θ = mac = mℓθ̇2 . (8.15)

Considering only small oscillations of the pendulum (θ ≪ 1 rad), then sin θ ≈ θ and equation (8.14) can
be simplified to:

miθ̈ +
Fg

ℓ
θ = miθ̈ +mg

g

ℓ
θ = 0 . (8.16)

This equation has the same form of equation (8.2). Its solution is given by:

θ(t) = A cos(ωt+ α) , (8.17)

with

ω =

√

Fg

miℓ
=

√

mg

mi

g

ℓ
=

2π

T
. (8.18)

The constant magnitude A represents the angular amplitude of oscillation, α is the initial phase, ω is the
angular frequency of oscillation and T is the period of oscillation for a complete cycle. Although we are
utilizing the same symbol T to represent not only the tension in the string but also the period of oscillation,
these two concepts are different from one another, having different dimensions or units of measure. While
the tension is measured in the International System of Units in Newtons, N , the period of oscillation is
measured in seconds, s.

Inverting equation (8.18), the period of oscillation can be written as:

T =
2π

ω
= 2π

√

miℓ

Fg
= 2π

√

mi

mg

ℓ

g
. (8.19)

That is, newtonian mechanics predicts correctly that the period of oscillation of the pendulum is propor-
tional to the square root of its length. This prediction agrees with Galileo’s experimental result presented
in equation (8.9).

Equations (8.18) and (8.19) can be utilized to express the inertial mass of the test body as a function of
the weight Fg of the body, the period T of oscillation, and the length ℓ of the pendulum, namely:

mi =
FgT

2

4π2ℓ
. (8.20)

Consider a test body of inertial mass mi1 and weight Fg1 having a period T1 when oscillating in a
pendulum of length ℓ, while another body of inertial mass mi2 and weight Fg2 has a period T2 when
oscillating in the same pendulum. The ratio of their inertial masses is then given by:

mi1

mi2
=

Fg1

Fg2

(

T1

T2

)2

. (8.21)

8.3.2 The Proportionality between Weight and Inertial Mass Obtained from

Pendulum Experiments

Consider a lead ball, l, oscillating in a pendulum of length ℓ. The weight, inertial mass and gravitational
mass of this body will be represented by, respectively, Fgl, mil and mgl. According to equation (8.18), its
angular frequency and period of oscillation, represented by ωl and Tl, respectively, are given by:

ωl =

√

Fgl

milℓ
=

√

mgl

mil

g

ℓ
=

2π

Tl
. (8.22)

Consider a cork ball, c, oscillating in the same pendulum of length ℓ. The weight, inertial mass and
gravitational mass of this body will be represented by, respectively, Fgc, mic and mgc. According to equation
(8.18), its angular frequency and period of oscillation, represented by ωc and Tc, respectively, are given by:

ωc =

√

Fgc

micℓ
=

√

mgc

mic

g

ℓ
=

2π

Tc
. (8.23)
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Therefore the ratio of the angular frequency of oscillation of the lead ball to the angular frequency of
oscillation of the cork ball, or the inverse of the ratio of their periods of oscillation, when vibrating in vacuum
supported by pendulums of the same length, is given by:

ωl

ωc
=

√

Fgl/mil

Fgc/mic
=

√

mgl/mil

mgc/mic
=

Tc

Tl
. (8.24)

Utilizing only the theoretical structure of newtonian mechanics it is not possible to know the value of
these ratios.

We now utilize Galileo’s experimental result that all pendulums of the same length have the same period
of oscillation in vacuum, no matter the weight, density, nor chemical composition of the test bodies supported
by the pendulums. Equation (8.10) combined with equation (8.24) yields:

ωl

ωc
=

√

Fgl/mil

Fgc/mic
=

√

mgl/mil

mgc/mic
=

Tc

Tl
= 1 . (8.25)

This equation is valid not only for lead and cork balls, but also for any other arbitrary body of weight
Fg, gravitational mass mg and inertial mass mi oscillating in the same pendulum. It can be expressed in
two alternative ways, namely:

Fgl

mil
=

Fgc

mic
=

Fg

mi
, (8.26)

and

mgl

mil
=

mgc

mic
=

mg

mi
. (8.27)

These equations can also be written as equation (7.19).
We now compare the angular frequencies ω for a spring oscillating horizontally and for a simple pendulum

oscillating in a vertical plane, equations (8.4) and (8.18). The most important distinction is that the angular
frequency of a spring depends only on the inertial mass mi of the test body, being independent of the
weight and of the gravitational mass of the test body. In the pendulum, on the other hand, the frequency of
oscillation depends on the ratio of weight to inertial mass, Fg/mi, or, equivalently, on the ratio of gravitational
mass to inertial mass, mg/mi. When a test body of inertial mass mi and gravitational mass mg is vibrating
horizontally connected to a spring, its angular frequency of oscillation is given by ω1 =

√

k/mi. By connecting
two of these bodies to the same spring, the new angular frequency of oscillation is given by ω2 =

√

k/2mi =

ω1/
√
2, figure 8.2.

Suppose now the first body is connected to an inextensible string of length ℓ and performs small os-
cillations in a vertical plane. Its angular frequency of oscillation is given by ω1 =

√

mgg/miℓ. By
connecting two of these bodies to the same string, the new angular frequency of oscillation is given by
ω2 =

√

2mgg/2miℓ = ω1, figure 8.5.

ω2 ω1
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m i
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(a) (b)

Figure 8.5: Two different masses m and 2m oscillating in the same string.
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The same happens no matter the density nor chemical composition of the test body. That is, in pen-
dulums of the same length ℓ and at the same location of the Earth (same g), all bodies oscillate with the
same frequency in vacuum, no matter their weights, densities, chemical compositions, etc. This fact is an
experimental result which cannot be deduced from Newton’s laws of motion. It is not possible to deduce
the proportionality between weight and inertial mass only from Newton’s laws of motion. Likewise it is not
possible to deduce the proportionality between gravitational mass and inertial mass only from Newton’s laws
of motion. Only experience teaches us that the angular frequency of oscillation of a pendulum in vacuum is
independent of the weight, density and chemical composition of the test body, while the angular frequency of
a horizontal spring is inversely proportional to the square root of the inertial mass of the test body attached
to it.

As seen in Subsection 7.2.2, in the International System of Units the ratio between the inertial mass of
a body and its gravitational mass is defined as having the dimensionless value 1, as indicated by equations
(7.20) and (7.21). This means that we can cancel the masses which appear in equations (8.18) and (8.19).
Therefore the angular frequency ω and the period T of a pendulum vibrating in a vertical plane can be
written as, respectively:

ω =

√

g

ℓ
=

2π

T
, (8.28)

and

T =
2π

ω
= 2π

√

ℓ

g
. (8.29)

This result is equivalent to equation (8.11) obtained by Huygens and published in 1673. Huygens was
the first scientist to relate mathematically the period of oscillation of a simple pendulum with its length and
with the free fall acceleration near the surface of the Earth. Although he did not write an expression like
that of equation (8.29), his result is equivalent to this expression.

8.3.3 Newton’s Pendulum Experiments Showing the Proportionality between

Weight and Inertial Mass

We quote here Newton’s precise experiments with pendulums from which he arrived at the proportionality
between the inertial mass mi of a body and its weight Fg. What we denominate inertial mass has been
called by Newton in the first definition of the Principia “quantity of matter,” “mass” or “body.” According
to equation (1.9), the proportionality between the inertial mass of a body and its weight is equivalent to a
proportionality between the inertial mass of the body and its gravitational mass.

In the first definition of the Principia, that of quantity of matter, Newton said:6

It is this quantity that I mean hereafter everywhere under the name of body or mass. And the
same is known by the weight of each body, for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shown hereafter.

Before presenting these experiments, we quote Proposition 24, Theorem 19, of Book II of the Principia,
together with its Corollaries 1, 6 and 7. The mathematical expression of this Proposition is given by equation
(8.21). Here are Newton’s words:7

Section 6
The motion and resistance of pendulous bodies

.
Proposition 24. Theorem 19

The quantities of matter in pendulous bodies, whose centres of oscillation are equally distant from
the centre of suspension, are in a ratio compounded of the ratio of the weights and the squared
ratio of the times of oscillation in a vacuum.

[...]

6[New34, p. 1] and [New90, p. 1].
7[New34, pp. 303-304] and [New08b, pp. 85-86].
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Corollary 1. Therefore if the times are equal, the quantities of matter in each of the bodies are
as the weights.

[...]

Corollary 6. But in a nonresisting medium, the quantity of matter in the pendulous body is
directly as the comparative weight and the square of the time, and inversely as the length of the
pendulum. For the comparative weight is the motive force of the body in any heavy medium,
as was shown above; and therefore does the same thing in such a nonresiting medium as the
absolute weight does in a vacuum.

Corollary 7. And hence appears a method both of comparing bodies one with another, as to the
quantity of matter in each; and of comparing the weights of the same body in different places, to
know the variation of its gravity. And by experiments made with the greatest accuracy, I have
always found the quantity of matter in bodies to be proportional to their weight.

These pendulum experiments, first performed in the beginning of 1685,8 were presented in Proposition
6, Theorem 6, of Book III of the Principia:9

Proposition 6. Theorem 6

That all bodies gravitate towards every planet; and that the weights of bodies towards any one
planet, at equal distances from the centre of the planet, are proportional to the quantities of matter
which they severally contain.

It has been, now for a long time, observed by others, that all sorts of heavy bodies (allowance
being made for the inequality of retardation which they suffer from a small power of resistance
in the air) descend to the Earth from equal heights in equal times; and that equality of times
we may distinguish to great accuracy, by the help of pendulums. I tried experiments with gold,
silver, lead, glass, sand, common salt, wood, water, and wheat. I provided two wooden boxes,
round and equal: I filled one with wood, and suspended an equal weight of gold (as exactly as
I could) in the centre of oscillation of the other. The boxes, hanging by equal threads of 11
feet, made a couple of pendulums perfectly equal in weight and figure, and equally receiving the
resistance of air. And, placing one by the other, I observed them to play together forwards and
backwards, for a long time, with equal vibrations. And therefore the quantity of matter in the
gold (by Corollaries 1 and 6, Proposition 24, Book II) was to the quantity of matter in the wood
as the action of the motive force (or vis motrix) upon all the gold to the action of the same upon
all the wood; that is, as the weight of the one to the weight of the other: and the like happened
in the other bodies. By these experiments, in bodies of the same weight, I could manifestly have
discovered a difference of matter less than the thousandth part of the whole, had any such been.
[...]

The motive force or vis motrix mentioned here is the weight of the body, that is, the gravitational force
Fg exerted by the Earth on the body. Therefore his statement that the quantity of matter in the gold was
to the quantity of matter in the wood as the motive force upon all the gold to the motive force upon all the
wood can be expressed mathematically as equation (7.19), namely:

mi gold

mi wood

=
Fg gold

Fg wood

. (8.30)

According to equation (7.19), the ratio between the inertial masses of two bodies is equal to the ratio of
their weights. In the case of these pendulum experiments performed by Newton, all bodies had the same
weight. His conclusion obtained from these experiments quoted in Proposition 6, Theorem 6, of Book III of
the Principia, can then be expressed algebraically as follows:

mi gold = mi silver = mi lead = mi glass = mi sand

= mi common salt = mi wood = mi water = mi wheat . (8.31)

8[Coh80, Section 5.7, pp. 271-273] and [New10a, p. 200].
9[New34, p. 411] and [New08b, pp. 200-201].
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According to his own evaluation, this equality had a precision of at least one part in a thousand. As he
worked with bodies of the same weight, the precision of his measurements can be expressed as follows:

∣

∣

∣

∣

mi wood −mi gold

mi wood

∣

∣

∣

∣

≤ 10−3 . (8.32)

Newton found the same precision for the other bodies.
Sometimes this precision is expressed as follows:

mg

mi
= 1± 10−3 . (8.33)

This relation is valid for all materials (gold, wood, ...).
With the experiments performed by Eötvos (1848-1919) at the beginning of the XXth century, the

precision of this relation has been improved to one part in 108. Nowadays10 this precision is that of one part
in 1012. Let a and b be two different substances (like gold and wood). The modern experimental precision
of the proportionality between inertial mass and weight can be expressed mathematically as follows:

mia

mib
=

Fga

Fgb
=

mga

mgb
= 1± 10−12 . (8.34)

Suppose two bodies a and b having exactly the same weight, but being of different nature (like gold and
wood). Nowadays it is possible to say that they have the same inertial mass with a precision of one part in
1012, namely:

∣

∣

∣

∣

mia −mib

mia

∣

∣

∣

∣

≤ 10−12 if Fga = Fgb . (8.35)

Didactic discussions of the proportionality between inertial and gravitational masses can be found in
several works.11

8.4 Electrified Pendulum Oscillating over a Magnet

We now consider the motion of a simple pendulum consisting of a test body suspended by an inextensible
string of length ℓ. The upper extremity of this string remains fixed relative to the Earth. The test body
has inertial mass mi and gravitational mass mg. We suppose small oscillations due to the gravitational
attraction of the Earth. The pendulum is supposed to be located at the Equator and the laboratory can
be considered a good inertial frame of reference to study this problem. The difference as regards the case
considered in Section 8.3 is that the oscillating test body is supposed to be electrified with an electric charge
q and it is oscillating close to a large permanent magnet,12 as indicated in figure 8.6.

N

S

x

z

q
mi

ℓ

Figure 8.6: Electrified pendulum oscillating above a magnet.

This magnet is at rest relative to the ground. We also consider this magnet as an ideal insulator, in such
a way that we can neglect the electric charges and currents induced in the magnet by the mobile test charge.

10[WE82].
11[Gol68, pp. 162-172], [Luc79, pp. 103-108 and 516-525] and [Nus81, pp. 497-504].
12[Ass98, Section 2.5: Pêndulo carregado eletricamente], [Ass99a, Subsection 2.3.3: Electrically charged pendulum], [FA03]

and [Gar10].
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In this problem we will neglect as well the magnetic force exerted by the Earth on the electrified test body in
comparison with the magnetic force exerted by the magnet on the test body. If we are utilizing the language
of field theory, this supposition is analogous to neglect the magnetic field of the Earth in comparison with
the magnetic field of the magnet.

There are now three forces acting on the test body, namely, the downward gravitational force Fg exerted
by the Earth, the tension T of the string pointing along its length, and the magnetic force due to the magnet.
We will see that this magnetic force will cause a precession in the plane of oscillation of the pendulum, rotating
this oscillating plane relative to the ground. This problem will be first considered in newtonian mechanics
utilizing Maxwell’s equations and the electromagnetic force given by equation (3.15). We then consider the
same problem in newtonian mechanics utilizing Weber’s force law.

8.4.1 Precession of the Plane of Oscillation According to Classical Electromag-

netism

As seen in Chapter 3, Section 3.4, in classical electromagnetism the magnetic force ~Fm acting on a body
electrified with a charge q moving in a region where there is a magnetic field ~B is given by:

~Fm = q~v × ~B . (8.36)

The velocity ~v which appears in this expression is the velocity of the test charge q relative to a frame of
reference. The frame to be considered here is the laboratory located at the Equator, which is a good inertial
system to study this problem. The magnetic field ~B is that due to the magnet at rest in the ground. We here
suppose the magnet to be large enough in such a way that the magnetic field it generates can be considered
as having the same magnitude and direction, no matter the position of the test charge during its oscillations.
We consider a coordinate system (x, y, z) with its origin O at the lowest point of the pendulum, with the
z axis pointing vertically upwards and in such a way that the initial motion of the pendulum is along the
xz plane. The uniform magnetic field will be considered as pointing along the positive z direction, ~B = Bẑ,
figure 8.6. The magnetic force acting on the charge q moving with velocity ~v = vxx̂+ vy ŷ + vz ẑ relative to
an inertial frame is then given by:

~F = q~v × ~B = q(vxx̂+ vy ŷ + vz ẑ)× (Bẑ) = qB(vy x̂− vxŷ) . (8.37)

The equation of motion (1.4) can then be written as:

~Fg + ~T + q~v × ~B = mi~a . (8.38)

The situation to be considered here is represented in figure 8.7.
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Figure 8.7: Charged pendulum oscillating in a region of uniform magnetic field ~B.

We consider small oscillations (θ ≪ 1 rad) and suppose that the pendulum is released from rest at an
initial angle θo to the vertical, that is, with θ̇o = 0. With these initial conditions the solution of equation
(8.17), in the absence of a magnetic force, is given by:

θ(t) = θo cos(ωt) , (8.39)

where
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ω =

√

Fg

miℓ
=

√

mg

mi

g

ℓ
=

2π

T
. (8.40)

Here ω is the angular frequency and T is the period of oscillation for a complete cycle.
With the assumption of small oscillations we get sin θ ≈ θ. Therefore the position x(t) of the test body

along the x axis indicated in figure 8.7, in the absence of the magnetic force, is given approximately by:

x(t) = −ℓ sin θ ≈ −ℓθ = −ℓθo cos(ωt) . (8.41)

Accordingly the horizontal velocity along the x direction, vx, is given approximately by:

vx(t) ≈ ℓθoω sin(ωt) . (8.42)

When there is no magnetic force, the pendulum oscillates only along this vertical plane xz of our inertial
frame of reference fixed relative to the ground.

We now consider the presence of the magnet, as in figure 8.6. In this situation the pendulum will no
longer oscillate in a plane fixed relative to the ground. In the first half of its motion it has a component of
the velocity along the positive x direction, vx. According to equation (8.37), there will be a component of
the magnetic force acting on the electrified pendulum along the negative y direction, namely:

q~v × ~B = qvxx̂×Bẑ = −qvxBŷ . (8.43)

This force will modify the motion of the pendulum as indicated in figure 8.8. In this figure we are
supposing q > 0 and we are looking the pendulum from above.
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Figure 8.8: Motion of the electrified pendulum in the presence of a magnet.

That is, supposing a positive charge, q > 0, and an initial motion along the positive x direction, vx > 0,
the magnetic force will deflect the pendulum clockwise to the right, towards y < 0. On the other hand,
when q > 0 and the pendulum is returning in the second half of its motion, with vx < 0, it will be deflected
clockwise to the left, towards y > 0. Therefore the plane of oscillation of the pendulum precesses in the
clockwise direction with an angular velocity Ωp (looking it from above and supposing q > 0).

We will calculate Ωp supposing a small magnetic force, such that:

qB

miω
≪ 1 . (8.44)

This supposition is analogous to having the greatest velocity in the x direction much larger than the greatest
velocity in the y direction, or to saying that the velocity in the x direction is essentially unaffected by the
magnet.

The gravitational force acts along the z direction, ~Fg = −mggẑ, while the tension ~T directed along the
string acts in the xz plane. From equations (8.38), (8.42) and (8.43) the equation of motion in the y direction
is given by:

−qvxB = −qθoℓωB sin(ωt) = miay . (8.45)



Ch. 8: Oscillatory Motions 127

This equation can be integrated twice utilizing that vy(t = 0) = 0 and that y(t = 0) = 0 yielding:

y =
qBθoℓ

mi

[

sin(ωt)

ω
− t

]

. (8.46)

The value of Ωp can be obtained from figure 8.9.
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Figure 8.9: Geometry for calculating the precession of the plane of oscillation of a charged pendulum.

In half a period, ∆t = T/2 = π/ω, the pendulum has moved from xo = −θoℓ to x = θoℓ, such that
∆x = 2θoℓ. Simultaneously it has moved from yo = 0 to y = y(T/2) = −qBθoℓπ/miω, such that ∆y =
−qBθoℓπ/miω. The value of Ωp is then given by:

Ωp =
∆y/∆x

∆t
= − qB

2mi
. (8.47)

The negative sign of Ωp indicates a rotation in the clockwise direction when the pendulum is seen from
above. To arrive at this result we neglected friction, assumed uniform gravitational and magnetic fields, and
supposed that qB/miω ≪ 1.

We conclude that the magnet causes a precession of the plane of oscillation of the electrified pendulum
oscillating in an inertial frame due to the action of a uniform gravitational force. If the magnet were not
present, the plane of oscillation of the pendulum would remain stationary in this inertial frame, fixed relative
to the Earth.

8.4.2 Charge and Current Configurations Generating an Uniform Magnetic

Field

An uniform magnetic field ~B can be generated by three main configurations of charges and currents in
classical electromagnetism, as represented in figure 8.10.
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Figure 8.10: Configurations yielding an uniform magnetic field ~B. (a) Region close to the center of the
extremity of a large cylindrical magnet. (b) Region inside a cylindrical shell carrying a constant azimuthal
electric current. (c) Region inside an uniformly charged spherical shell spinning around one of its axis with
a constant angular velocity relative to an inertial frame of reference.

The first configuration is represented in figure 8.10 (a). The magnetic field is approximately uniform in
the region close to the center of one of the faces of a large cylindrical magnet. An analogous configuration
is the region between the poles of a large horseshoe magnet, in the shape of the letter U.
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The second configuration is represented in figure 8.10 (b). The magnetic field is uniform inside a cylin-
drical shell of infinite length carrying a constant azimuthal electric current. This constant magnetic field
is obtained inside an infinite tightly wound solenoid consisting of N circular coils per unit length wrapped
around a cylindrical shell, each coil carrying a constant current I. This configuration is equivalent to that
of a cylindrical shell carrying an uniform azimuthal surface current K = NI, where N represents the num-
ber of circular turns per unit length. It is also possible to obtain this constant azimuthal current by the
superposition of two uniformly charged cylindrical shells. The first shell is stationary relative to an inertial
frame of reference, being uniformly electrified with a positive charge (the Earth may be considered a good
inertial frame to study this problem). The second shell is uniformly electrified with a negative charge, having
magnitude equal to the magnitude of the first shell, spinning around the axis of the cylinder with a constant
angular velocity relative to the laboratory, figure 8.10 (b).

The third configuration is represented in figure 8.10 (c). The magnetic field is uniform inside a uniformly
charged spherical shell spinning around an axis passing through its center, provided the charged shell is
spinning with a constant angular velocity relative to an inertial frame of reference.

The magnetic field close to the center of a Helmholtz’s coil is also approximately uniform.13 It has
two circular loops of equal radius a parallel to one another and aligned with their common axis, separated
by a distance 2b = a, figure 8.11. The same constant current I flows in each coil. When 2b = a this
system produces a highly uniform magnetic field in the vicinity of the axial midpoint, as the first and second
derivatives of B with respect to z vanish at the point midway between the coils (z = 0).

2b

a

I

0

z

I

a

Figure 8.11: This arrangement is known as a Helmholtz’s coil when 2b = a.

We now calculate the magnetic field inside the cylindrical shell of figure 8.10 (b). There is an infinite
cylindrical shell of radius R with its axis along the z axis. The calculation will be performed in an inertial
frame of reference in which this cylindrical shell is at rest. The Earth can be considered as a good inertial
frame for this problem. We consider this cylindrical shell composed of two uniform surface charge densities.
There is a positive surface charge density σ+ ≡ σ at rest relative to the cylindrical shell and a negative
surface charge of the same magnitude, σ− ≡ −σ, spinning around the axis of the cylinder, relative to this
inertial frame, with a constant angular velocity ~ΩS ≡ −ΩS ẑ, with ΩS ≡ |~ΩS |. These two surface charge
densities are considered uniform over the cylindrical shell, having the same value in all points of the shell.
Let ϕ̂ be the unit vector along the azimuthal direction ϕ of a cylindrical coordinate system. The tangential
velocity of the negative surface charges, relative to the laboratory, is given by ~v = −RΩSϕ̂, figure 8.12.

Equation (3.9) can be utilized in order to obtain the magnetic field in this configuration. It vanishes
outside the cylinder, ~B = ~0. Anywhere inside the cylinder it has a constant and uniform value given by:14

~B = µoRΩSσẑ = µoKẑ ≡ Bẑ , (8.48)

where K = σv = σΩSR is the uniform surface current density.
We now consider the configuration of figure 8.10 (c). A spherical shell of radius R is uniformly charged

with a total charge Q and has an uniform surface charge density σ = Q/4πR2. It spins around the z

axis passing through its center with a constant angular velocity ~ΩS = ΩS ẑ relative to an inertial frame of
reference, with ΩS ≡ |~ΩS |, figure 8.13. The Earth can be considered a good inertial frame to study this
problem.

A test body electrified with a charge q is located at the position vector ~r relative to the center of the
shell. It moves with velocity ~v and acceleration ~a relative to this inertial frame of reference.

13[RMC82, p. 170], [Gri89, p. 243, exercise 5.59] and [HM95, p. 39, exercise 1-18].
14[FLS64, Section 13-5, pp. 13-5 to 13-6], [Pur80, pp. 188-192], [RMC82, pp. 172 and 183], [Gri89, pp. 219-221] and [HM95,

exercise 1-20, p. 39].
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Figure 8.12: Cylindrical shell of radius R at rest in the laboratory. It has a positive uniform surface charge
density σ at rest in the terrestrial frame, together with a negative surface charge density −σ spinning around
the axis of the cylinder with a constant angular velocity ~ΩS relative to the laboratory.
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Figure 8.13: Uniformly charged spherical shell spinning around the z axis passing through its center with a
constant angular velocity ΩS relative to an inertial frame of reference.

The magnetic field in this configuration can be obtained utilizing equation (3.9). Outside the spherical
shell it behaves as the field of a magnetic dipole. Anywhere inside the shell the magnetic field has a constant
and uniform value given by:15

~B =
µoQ~ΩS

6πR
=

µoQΩS

6πR
ẑ =

2

3
µoσR~ΩS ≡ Bẑ . (8.49)

The same magnetic field would be produced by a spherical shell of radius R with a total charge −Q
uniformly distributed over its surface and spinning around the z axis with a constant angular velocity −~ΩS

relative to this inertial frame of reference.

8.4.3 Precession of the Plane of Oscillation in a Region of Uniform Magnetic

Field

We now consider a test body electrified with a charge q moving with velocity ~v relative to an inertial frame
of reference in the presence of an uniform magnetic field ~B. The magnetic field considered here will be that
of figures 8.12 and 8.13, as given by equations (8.48) and (8.49), respectively.

The magnetic force acting on a test charge moving relative to this inertial frame can be obtained utilizing
equations (8.36) and (8.48), namely:

~F = q~v × ~B = qµoRΩSσ(vy x̂− vxŷ) . (8.50)

Figure 8.14 represents the charged pendulum oscillating inside the cylindrical shell of figure 8.10 (b).

15[Fey64, exercise 14-6, pp. 14-3 and 14-4], [BT64, pp. 61 and 250] and [Gri89, pp. 229-230].
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q

B B

Figure 8.14: Electrified pendulum oscillating inside the cylindrical shell of figure 8.10 (b).

In this configuration the angular velocity of precession of the plane of oscillation given by equation (8.47)
can be expressed as follows:

Ωp = − qB

2mi
= − q

2mi
µoRΩSσ = −qµoRσ

2mi
ΩS . (8.51)

This equation shows that the angular velocity of precession of the plane of oscillation of the charged
pendulum, relative to the ground or relative to an inertial frame of reference, is directly proportional to the
angular velocity of the negative charges composing this cylindrical shell. Both angular velocities of equation
(8.51), Ωp and ΩS , should be understood here relative to the laboratory, which is being considered as a good
inertial frame to analyze this problem.

Two very important consequences can be drawn from equation (8.51), namely: (I) By stopping the drifting
or dragging velocity of the negative charges of the cylindrical shell by making ΩS → 0, the precession of the
plane of oscillation of the pendulum goes to zero, Ωp → 0. (II) By annihilating the positive and negative
surface charge densities over the cylindrical shell by making σ+ = σ → 0 and σ− = −σ → 0, the precession
of the plane of oscillation of the pendulum also goes to zero, Ωp → 0.

We now consider the test charge moving with velocity ~v relative to an inertial frame of reference in the
situation of figure 8.13. The magnetic field in this configuration is given by equation (8.49). The magnetic
force acting on this test body is given by:

~F = q~v × ~B =
µoqQ

6πR
~v × ~ΩS =

µoqQΩS

6πR
(vy x̂− vxŷ) . (8.52)

Figure 8.15 represents the configuration of the pendulum oscillating inside the spherical shell of figure
8.10 (c).

q

B B

Figure 8.15: Charged pendulum oscillating inside the spherical shell of figure 8.10 (c).

For this configuration the angular velocity of precession of the charged pendulum relative to this inertial
frame of reference given by equation (8.47) can be expressed as follows:

Ωp = − qB

2mi
= − µoqQ

12πmiR
ΩS . (8.53)

Therefore the angular velocity of precession of the plane of oscillation of the charged pendulum, Ωp, is
directly proportional to the angular velocity of the charges on the spherical shell, ΩS . Both angular velocities
of equation (8.53), Ωp and ΩS , should be understood here relative to the laboratory, which is being considered
a good inertial frame of reference to study this problem.
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Once more two extremely important consequences can be drawn from equation (8.53), namely: (I) The
precession of the plane of oscillation of the pendulum goes to zero when the rotation of the charges of the
shell go to zero, that is, Ωp → 0 when ΩS → 0. (II) The angular velocity of precession of the plane of
oscillation of the charged pendulum, Ωp, is also proportional to the amount of charges Q spread over the
spherical shell. By triplicating Q, the angular velocity of precession also triplicates, provided ΩS remains
the same. Likewise, Ωp → 0 when Q → 0.

8.4.4 Precession of the Plane of Oscillation according to Weber’s Electrody-

namics

The same problem can be analyzed utilizing newtonian mechanics together with Weber’s force given by
equation (2.22). All velocities and accelerations discussed in this Subsection should be understood relative
to the laboratory at the Equator, which is being considered a good inertial frame of reference to study this
problem.

We first consider the situation of figure 8.10 (b). The stationary cylindrical shell of figure 8.12 has two
equal and opposite surface charge densities, σ+ = σ and σ− = −σ. The positive charges are at rest relative to
the cylindrical shell, while the negative charges spin around the axis of the cylinder with a constant angular
velocity ~ΩS ≡ −ΩS ẑ, relative to the inertial frame considered here, with ΩS ≡ |~ΩS |.

Consider a test body electrified with a charge q moving relative to this inertial frame with a velocity
~v when passing through the axis of the cylindrical shell. The integration of Weber’s force exerted by the
positive and negative charges of the cylinder and acting on the test body is given by:16

~F = qµoRΩSσ(vy x̂− vxŷ) . (8.54)

This result coincides with equation (8.50) with an important difference. The velocity ~v which appears in
the magnetic force given by equation (8.36) is usually interpreted as the velocity of the test charge q relative
to an inertial frame of reference. As regards Weber’s electrodynamics, on the other hand, the velocity ~v
which appears in equation (8.54) is the velocity of the test charge relative to the axis of the cylinder, that is,
relative to the positive surface charge density σ+ = σ which is being supposed at rest relative to the cylinder.
However, in this problem we are considering the magnet at rest relative to the ground. And the laboratory
at the Equator is being considered a good inertial frame of reference to study this problem. Therefore there
will be no fundamental distinction between the meanings of the velocities which appear in equations (8.50)
and (8.54) for this situation.

Moreover, we will suppose that the test charge is always close to the axis of the cylinder. Let ρ represent
its distance to the axis of the cylinder of radius R. We will assume that ρ ≪ R. This means that equation
(8.54) represents the electromagnetic force exerted by the cylinder and acting on the test charge according
to Weber’s electrodynamics while the charged pendulum is oscillating inside the cylinder.

Equation (8.54) obtained from Weber’s electrodynamics coincides then with equation (8.50) obtained
from classical electromagnetism. Therefore both expressions yield the same angular velocity of precession of
the plane of oscillation of the charged pendulum vibrating inside the cylinder, namely, the expression given
by equation (8.51):

Ωp = −qµoRσ

2mi
ΩS . (8.55)

The two main consequences obtained from this equation (8.55) are the same as those obtained from
classical electromagnetism: (I) The angular velocity Ωp of precession of the plane of oscillation of the charged
pendulum relative to the ground is proportional to the angular velocity ΩS of the negative charges rotating
around the axis of the cylinder. This means that Ωp → 0 when ΩS → 0, that is, the precession of the
pendulum goes to zero when we stop the drifting velocity of the negative charges in the cylinder. (II) The
angular velocity of precession Ωp is also proportional to the positive and negative surface charge densities of
the cylindrical shell, σ+ = σ and σ− = −σ. Therefore, Ωp → 0 when σ → 0.

We now consider the situation of figure 8.10 (c) from the point of view of Weber’s electrodynamics. A
spherical shell of radius R is electrified with a total charge Q uniformly distributed over its surface with
a surface charge density σ = Q/(4πR2). This charged shell spins around the z axis passing through its
center with a constant angular velocity ~ΩS = ΩS ẑ relative to the inertial frame of reference, with ΩS = |~ΩS |.
The center of the shell coincides with the origin O of our inertial frame of reference. A point test body

16[Ass89b], [Ass92a], [Ass93a], [AT94] and [Ass94, Sections 6.7, 7.3 and 7.4].
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electrified with a charge q is located at ~r relative to the center of the shell, moving with velocity ~v = d~r/dt
and acceleration ~a = d~v/dt = d2~r/dt2 relative to this inertial frame of reference, figure 8.13. Appendix B,
Section B.1, shows how to integrate Weber’s force exerted by this electrified spinning shell and acting on the
test charge moving inside it. This force is given by:17

~F =
µoqQ

12πR

[

~a+ ~ΩS × (~ΩS × ~r) + 2~v × ~ΩS + ~r × d~ΩS

dt

]

. (8.56)

Here we suppose the spherical shell to be spinning with a constant angular velocity, such that d~ΩS/dt = ~0.
Therefore we can disregard the last component of equation (8.56).

Consider now the charged pendulum oscillating near the Earth inside this spinning charged shell, as
in figure 8.15. There are three forces acting on the test body, namely, the electromagnetic force given by
equation (8.56), the downward weight of the body, ~Fg = −mggẑ exerted gravitationally by the Earth, and the
tension ~T acting along the string. Applying newtonian mechanics together with Weber’s electrodynamics,
the equation of motion (1.5) can then be written as follows:

~Fg + ~T +
µoqQ

12πR

[

~a+ ~ΩS × (~ΩS × ~r) + 2~v × ~ΩS

]

= mi~a . (8.57)

Supposing |(µoqQ)/(12πR)| ≪ mi, the first term inside the square brackets can be neglected in com-
parison with the right hand side of this equation. The centrifugal component of the force proportional to
~ΩS × (~ΩS × ~r) can also be neglected in this problem, as it does not lead to any precession of the plane of
oscillation of the pendulum, which is the magnitude we wish to obtain. With these assumptions this equation
can be simplified to:

~Fg + ~T +
µoqQ

6πR
~v × ~ΩS = mi~a . (8.58)

The magnetic component of this force proportional to ~v × ~ΩC is identical to the magnetic force given by
equations (8.38) and (8.52). This means that the final value of the angular velocity of precession Ωp of the
plane of oscillation of the charged pendulum relative to the inertial frame of reference will be given by the
same equation (8.53) in both theories, namely, classical electromagnetism and Weber’s electrodynamics:

Ωp = − µoqQ

12πmiR
ΩS . (8.59)

The consequences which can be drawn from equation (8.59) are the same as those obtained from classical
electromangetism: (I) Ωp is proportional to ΩS , such that Ωp → 0 when ΩS → 0. (II) The angular velocity
Ωp is also proportional to the total charge Q spread over the spherical shell. Therefore, Ωp → 0 when Q → 0.

Figure 8.16 shows the electrified pendulum seen from above oscillating inside the spinning charged shell
when the pendulum and the shell are electrified with charges of the same sign, qQ > 0. The plane of
oscillation precesses in the opposite direction of the rotation of the shell. That is, if the charged shell rotates
anti-clockwise, the plane of oscillation of the pendulum rotates clockwise.

ΩS

Q

q
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Figure 8.16: When qQ > 0, the plane of oscillation precesses in the opposite direction of the rotation of the
shell.

Figure 8.17 shows the electrified pendulum seen from above oscillating inside the spinning charged shell
when the pendulum and the shell are oppositely charged, that is, when qQ < 0. The plane of oscillation of

17[Ass89a], [Ass92a] and [Ass94, Section 7.3].
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the pendulum precesses in the same direction as the rotation of the shell. That is, if the charged shell spins
anti-clockwise, the plane of oscillation of the pendulum will also precess anti-clockwise.

ΩS

Q

- q

Ωp

Figure 8.17: When qQ < 0, the plane of oscillation of the pendulum precesses in the same direction as the
rotation of the shell.
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Chapter 9

Bodies in Uniform Circular Motion

In this Chapter we discuss three situations of uniform circular motion which were considered by Newton.
We first deal with a planet orbiting around the Sun relative to the frame of fixed stars. We then consider
two globes connected by a cord and revolving about their common center of gravity relative to absolute
space. And finally we analyze a bucket partially filled with water and spinning around its axis relative to
the ground.

9.1 Centripetal Acceleration, Centrifugal Force and Centripetal Force

In this Chapter we will consider the motion of a test particle with inertial mass mi moving in a plane
relative to an inertial frame of reference. Let xy be the plane where the motion takes place, with the z axis
orthogonal to this plane. Let (x, y) be the rectangular coordinates of the test particle relative to the origin
O of this reference frame, while its polar coordinates are represented by (ρ, ϕ), figure 9.1 (a). The position
vector ~r relative to the origin of this inertial frame of reference, the velocity ~v = d~r/dt and acceleration
~a = d~v/dt = d2~r/dt relative to this frame are represented in figure 9.1 (b). The unit vectors in rectangular
coordinates, x̂ and ŷ, and in polar coordinates, ρ̂ and ϕ̂, are presented in figure 9.1 (c).
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Figure 9.1: (a) Rectangular and polar coordinates. (b) Position, velocity and acceleration vectors. (c) Unit
rectangular and polar vectors.

The relations between these coordinates and unit vectors are well known, namely:1

ρ =
√

x2 + y2 , (9.1)

tanϕ =
y

x
, (9.2)

ρ̂ = cosϕx̂ + sinϕŷ , (9.3)

and

ϕ̂ = − sinϕx̂+ cosϕŷ . (9.4)

1[Sym71, Section 3.4].
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The position vector ~r of the test particle relative to the origin of this coordinate system, the velocity ~v
and acceleration ~a relative to this frame are given by, respectively:

~r = xx̂+ yŷ = ρρ̂ , (9.5)

~v ≡ d~r

dt
= vxx̂+ vy ŷ = ẋx̂+ ẏŷ ≡ vρρ̂+ vϕϕ̂ = ρ̇ρ̂+ ρϕ̇ϕ̂ , (9.6)

and

~a ≡ d~v

dt
=

d2~r

dt2
= axx̂+ ay ŷ = ẍx̂+ ÿŷ ≡ aρρ̂+ aϕϕ̂ = (ρ̈− ρϕ̇2)ρ̂+ (ρϕ̈+ 2ρ̇ϕ̇)ϕ̂ . (9.7)

The angular velocity dϕ/dt is also usually represented by ω. The tangential velocity can then be written
as: vϕ = ρϕ̇ = ρω.

We first consider a single body of inertial mass mi under the influence of a centripetal force ~F describing
a circular motion, ρ̇ = 0 and ρ̈ = 0, relative to an inertial frame of reference S, figure 9.2.
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Figure 9.2: Uniform circular motion of a body in an inertial frame of reference S due to a centripetal force.

The centripetal force considered here will always be directed to the center O of this inertial frame of
reference S, ~F = −F ρ̂, where F = |~F | is the magnitude of the force and ρ̂ is the unit vector pointing from
O to the test particle.

The so called centripetal acceleration, ac, is defined as the magnitude of the radial acceleration aρ along
the radial ρ̂ direction. It arises from motion along the tangential ϕ direction. According to equations (9.6)
and (9.7) one gets:

ac ≡ |aρ| = ρϕ̇2 = ρω2 =
v2ϕ
ρ

. (9.8)

Utilizing equation (1.4) and a constant radius ρ for the uniform circular motion, the magnitude of the
centripetal force is given by:

F = miac = miρϕ̇
2 = miρω

2 = mi

v2ϕ
ρ

. (9.9)

Supposing a constant force and a constant radius of motion, this equation leads to the following result:

ϕ̇ = constant . (9.10)

It should be observed that this centripetal force changes only the direction of motion relative to absolute
space, without affecting the magnitude of the tangential velocity. That is, |~vϕ| = constant, although the
velocity ~v changes constantly its direction relative to the inertial frame of reference S.

Huygens and Newton were the first to arrive at expressions analogous to equation (9.9) describing the
force acting on a body moving in a circular orbit with a constant tangential velocity around a fixed center.
Huygens calculated the vis centrifuga or centrifugal force. He coined this name meaning the tendency of the
body to move alway from the center of the circle. He considered a body connected to a string and revolving
horizontally around a fixed center, being interested in the force exerted by this body on the string holding
it along this circular orbit. He obtained the mathematical expression for the centrifugal force in 1659 and
wrote a manuscript in Latin on this topic, De Vi Centrifuga [On centrifugal force], which was published
posthumously in 1703.2 However, in his book On the Pendulum Clock, published in 1673, he presented the
main properties of the centrifugal force, without giving the proofs of how he obtained these theorems.3 The

2[Huy03], [Huy29] and [Huy].
3[Huy13, pp. 190-192], [Huy34, pp. 366-368] and [Huy86, pp. xx-xxi and 173-178].
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proofs of these theorems only became known in 1703 with the publication of his earlier work on centrifugal
force. Huygens was then the first scientist to publish the correct value of the centrifugal force, in 1673.

Newton discovered the main results of the centripetal force between 1664 and 1666, working independently
of Huygens, but published nothing on this topic until the appearance of the Principia in 1687. He coined
the name vis centripeta or centripetal force in order to oppose Huygens expression centrifugal force, as he
was interested in the force acting on the body in order to make it orbit around a circle relative to absolute
space.4 Newton transformed Huygens’s centrifugal force into a centripetal force, saying expressly that he
had done so in honor of Huygens:5

Mr Huygens gave the name vis centrifuga to the force by which revolving bodies recede from
the centre of their motion. Mr Newton in honour of that author retained the name & called the
contrary force vis centripeta.

Newton’s definition of centripetal force appears in the beginning of the Principia:6

Definition 5

A centripetal force is that by which bodies are drawn or impelled, or any way tend, towards a
point as to a centre.

For a discussion on the different meanings of the centrifugal force according to Huygens, Newton, Leibniz
and many other scientists, see the works of Meli.7

9.2 Circular Orbit of a Planet

9.2.1 Planet Orbiting around the Sun Relative to the Fixed Stars

The first situation to be considered here is that of a planet orbiting around the Sun due to their mutual
attraction. The problem will be considered in the frame of the fixed stars, that is, relative to the background
of stars belonging to our galaxy. This set of stars can be considered a good inertial frame to study this
problem. The gravitational and inertial masses of the planet, mgp and mip, will be considered much smaller
than the gravitational and inertial masses of the Sun, mgS and miS . We can then neglect the motion of
the Sun and it will be considered at the origin of our coordinate system. Although the orbits of the planets
around the Sun are usually elliptical, in this Section we will consider only the particular case of circular
orbits in which the distance between each planet and the Sun does not change as a function of time, figure
9.3.

S
F

p

v

Figure 9.3: Circular orbit of a planet around the Sun in the frame of fixed stars.

Equations (1.7) and (9.9) yield:

F = G
mgSmgp

r2
= mipacp = mip

v2ϕp

r
. (9.11)

4[Bar89, Sections 8.2, 9.7-9.9 and 10.5-10.6].
5As quoted in [Coh80, p. 237].
6[New34, p. 2] and [New90, p. 3].
7[Mel90], [Mel02], [Mel05] and [Mel06].
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Here F = |~Fg| is the magnitude of the gravitational force and r is the distance between the planet and the
Sun.

The centripetal acceleration is then given by:

acp =
v2ϕp

r
=

mgp

mip

GmgS

r2
. (9.12)

According to equation (9.12), the period Tp for a complete circular orbit of the planet around the Sun,
relative to the fixed stars, is given by:

Tp =
2πr

vϕp
= 2πr

√

mip

mgp

r

GmgS
. (9.13)

Therefore the square of this period is proportional to the cube of the distance between the Sun and the
planet, namely:

T 2
p = 4π2 mip

mgp

r3

GmgS
. (9.14)

Suppose two planets, 1 and 2, describe circular orbits of radii r1 and r2 around the Sun, moving relative
to the fixed stars with tangential velocities vϕ1 ≡ v1 and vϕ2 ≡ v2, and completing their orbits in periods T1

and T2, respectively, as represented in figure 9.4.

S

r1

r2

v2

v1

Figure 9.4: Two planets orbiting around the Sun.

According to equation (9.13), the ratio of the periods of their circular orbits is given by:

T1

T2

=

√

mi1/mg1

mi2/mg2

(

r1
r2

)3/2

. (9.15)

This is the final result obtained from the structure of newtonian mechanics.

9.2.2 The Proportionality between the Inertial Mass and the Gravitational

Mass of Each Planet Obtained from Kepler’s Third Law

Kepler’s third law of planetary motion, discovered in 1618 and published in 1619, was given as follows:8

[...] the ratio which exists between the periodic times of any two planets is precisely the ratio of
the 3

2
th power of the mean distances, i.e., of the spheres themselves; [...]

Kepler discovered it in 1618:9

On March 8 of this present year 1618, if precise dates are wanted, [the solution] turned up in my
head. But I had an unlucky hand and when I tested it by computations I rejected it as false.
In the end it came back again to me on May 15, and in a new attack conquered the darkness
of my mind; it agreed so perfectly with the data which my seventeen years of labour on Tycho’s
observations had yielded, that I thought at first I was dreaming, or that I had committed a petitio
principi...

8[Kep02, Harmonies of the World, Book V, Chapter 3, Proposition 8, p. 14], [Koe59] and [Koe89, pp. 273-274].
9[Koe59].
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This law can be expressed mathematically as follows:

T1

T2

=

(

r1
r2

)3/2

. (9.16)

Combining equations (9.15) and (9.16) yields the fact that the ratio of the inertial mass of a specific
planet to its gravitational mass has the same value as this ratio for any other planet of the solar system,
namely:

mi1

mg1
=

mi2

mg2
. (9.17)

This equation is analogous to equation (7.17), but it is now being obtained for planets orbiting around
the Sun. That is, although the planets have different sizes, densities, temperatures, chemical compositions,
gravitational masses, etc., the ratio between mi and mg of a specific planet 1 has the same value as this ratio
for any other planet 2.

This result can also be expressed by saying that the ratio between the inertial masses of two planets is
equal to the ratio of their gravitational masses, namely:

mi1

mi2
=

mg1

mg2
. (9.18)

The same reasoning can be applied for any two satellites (also called Moons) orbiting around Jupiter, as
these orbits also follow Kepler’s third law.

It should be emphasized here that equation (9.18) shows that the ratio between the inertial masses of any
two planets orbiting around the Sun is equal to the ratio of their gravitational masses. On the other hand,
it would be wrong to say that this ratio mi1/mi2 is also equal to the ratio between the weights of these two
planets towards the Sun, although this had been the case for two bodies located at the surface of the Earth,
see equation (7.19). The weight of a planet towards the Sun is nothing else then the gravitational force
F = Fg exerted by the Sun on the planet given by equation (9.11). This equation, together with equation
(9.13), yields:

mip =
Fgp

acp
=

Fgpr

v2ϕp

=
FgpT

2
p

4π2r
. (9.19)

The ratio between the inertial masses of planets 1 and 2 orbiting around the Sun can be obtained from
equation (9.19), namely:

mi1

mi2
=

Fg1

Fg2

(

T1

T2

)2
r2
r1

. (9.20)

The ratio between the inertial masses of two planets orbiting around the Sun can be obtained combining
equation (9.20) with Kepler’s third law, equation (9.16). Utilizing also equation (9.18) one finally gets:

mi1

mi2
=

mg1

mg2
=

Fg1

Fg2

(

r1
r2

)2

. (9.21)

Therefore, for two planets orbiting around the Sun at different distances from the Sun, although the ratio
of their inertial masses is equal to the ratio of their gravitational masses, this ratio is different from the ratio
of their weights towards the Sun. The same can be said of two satellites orbiting around a planet at different
distances from this planet. The reason for this fact is that the weight of each planet towards the Sun is not
only proportional to the gravitational mass of the planet, but is also inversely proportional to its distance
to the Sun.

We can only say that the ratio between the inertial masses of two test bodies is equal to the ratio of their
weights, if the two bodies are at the same distance from the center of the attracting spherical body. This
happened in Galileo’s free fall experiment. Therefore it was possible to arrive at equation (7.19). In the case
of the solar system, on the other hand, different planets orbit at different distances from the Sun. Therefore
we arrive at equation (9.21).

In the International System of Units the ratio between the inertial mass of a test body to its gravitational
mass is defined as having the dimensionless numerical value 1, equation (7.20). Utilizing this result in
equations (9.12) and (9.13) yields:
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acp =
v2ϕp

r
=

GmgS

r2
, (9.22)

and

Tp =
2πr

vϕp
= 2πr

√

r

GmgS
=

2π
√

GmgS

r3/2 . (9.23)

That is, the centripetal acceleration acp, the orbital velocity vϕp and the period Tp of the orbit of the
planet are independent of the mass of the planet, although they depend on the gravitational mass of the
Sun.

In this Section we are considering the circular orbit of a planet around the Sun relative to the frame of
fixed stars. An interesting question which can be asked runs as follows: How can the planet keep a constant
distance to the Sun, despite their gravitational attraction? According to Newton, the planet can only keep
a constant distance to the Sun due to its centripetal acceleration relative to absolute space or relative to
an inertial frame of reference. Therefore, if the planet and the Sun were initially at rest relative to an
inertial frame of reference, they would attract and move towards one another, until their collision would take
place. What keeps the planet at a constant distance from the Sun, despite their mutual attraction, is the
centripetal acceleration of the planet relative to an inertial frame of reference. The planet must have a non
zero tangential velocity in this inertial frame of reference, that is, a velocity which is not directed towards
the Sun. This tangential velocity can only be understood or defined utilizing an external frame of reference.
Later on we will return to this discussion.

9.2.3 The Inertial Mass of Any Body Seems to Be Related to a Gravitational

Property of this Body

Subsection 7.2.2 showed that the ratio between the inertial masses of two bodies is equal to the ratio of their
gravitational masses, as they fall freely with the same acceleration near the surface of the Earth. The same
is valid for the planets orbiting around the Sun, as we conclude from Newton’s law of gravitation combined
with Kepler’s third law, as seen in Subsection 9.2.2. Section 7.3, on the other hand, showed that the ratio
of the inertial masses of two electrified bodies can be different from the ratio of their charges. A proton, for
instance, moves inside a capacitor with an acceleration which is different from that of an alpha particle being
accelerated inside the same capacitor. We can also say that the ratio of the inertial masses of two electrified
bodies can be different from the ratio of the electrical forces acting on them due to their interaction with
other charged bodies.

Subsections 8.3.2 and 8.3.3 showed that the ratio between the inertial masses of two bodies is equal to the
ratio of their gravitational masses, as two simple pendulums of the same length oscillate at the same frequency
near the Earth, no matter the weights nor chemical compositions of the oscillating bodies. Subsection 8.1.2,
on the other hand, showed that the ratio between the inertial masses of two bodies is not always equal to the
ratio of the elastic forces applied to them by the same spring under the same deformation from the relaxed
position. The frequency ω1 of a body of inertial mass m1 oscillating horizontally when connected to a spring,
for instance, is different from the frequency ω2 of another body of inertial mass m2 6= m1 oscillating in the
same spring.

Analogously it can be shown that the inertial mass of a test body is not connected with a possible
magnetic force acting on this body, nor with a possible nuclear force acting on this body, nor with any
other kind of interaction it can suffer from its interactions with other bodies. That is, the inertial mass of
a body is not connected with a magnetic, nuclear, nor any other kind of property of this body or of the
medium around it. That is, two bodies with the same inertial masses can have different magnetic or nuclear
properties, although they always have the same gravitational mass. Newton expressed this fact in Corollary
5, Proposition 6, Book III of the Principia:10

Corollary 5. The power of gravity is of a different nature from the power of magnetism; for
the magnetic attraction is not as the matter attracted. Some bodies are attracted more by the
magnet; others less; most bodies not at all. The power of magnetism in one and the same body
may be increased and diminished; and is sometimes far stronger, for the quantity of matter, than
the power of gravity; and in receding from the magnet decreases not as the square but almost as
the cube of the distance, as nearly as I could judge from some rude observations.

10[New08b, p. 203].
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Newton’s statement that “the magnetic attraction is not as the matter attracted,” can also be phrased
as follows: the magnetic force acting on a test body is not proportional to the inertial mass of this body.
His statement that “the power of magnetism in one and the same body may be increase and diminished,”
means that we can increase the magnetic force acting on a body, or generated by it and acting upon other
magnetized bodies, by increasing or decreasing its magnetization, without affecting its inertial mass. His
statement that this power of magnetism “is sometimes far stronger, for the quantity of matter, than the
power of gravity,” can be phrased as follows: The ratio of the magnetic force acting on a magnetized body
to its inertial mass can be much larger than the ratio of its weight to its inertial mass.

Since Coulomb it has been known that the force exerted between two magnetic poles p1 and p2 is
proportional to the product of these pole intensities, equation (2.13). On the other hand, there is no relation
between the intensity of this magnetic pole p and the inertial mass mi of this body. In the case of gravity
Newton showed that the gravitational force between two bodies was proportional to the product of their
inertial masses. From this Corollary 5, Proposition 6 of Book III of the Principia, it can be seen that Newton
was aware that the magnetic force acting on a body was not proportional to its inertial mass.

The inertial mass of a test body is only proportional to its gravitational mass. It is not proportional
to other properties of this body, like its electric charge, intensity of magnetic pole, electric current, nor to
any elastic, thermal or nuclear property. Why does nature behave like that? There is no answer to this
question in newtonian mechanics. Nature might behave in such a way that a piece of gold did fall freely to
the ground with an acceleration different from that of a lighter piece of gold, or from that of another piece
of gold of the same weight but different shape, or from that of a piece of silver of the same weight, etc. If
any of these facts did in fact happen, the whole structure of newtonian mechanics might be maintained,
with the only difference that we would no longer cancel mi with mg. We would then need to consider these
two magnitudes as independent from one another, as it happens with the electric charge of a body which is
independent from its inertial mass.

Although this striking proportionality between inertial mass and gravitational mass does not prove any-
thing, it is highly suggestive. This proportionality suggests that the inertial mass of a body may have a
gravitational origin. In other words, the inertial force −mia acting on a test body may have a gravitational
origin, arising from its gravitational interaction with other bodies in the cosmos. We show in this book that
according to relational mechanics this is indeed the case.

9.2.4 Orbital Motion of Two Particles in the Frame of Fixed Stars

We now generalize the situation studied in Subsection 9.2.1 by considering two bodies, 1 and 2, interacting
gravitationally with one another and taking into account the motion of both of them relative to an inertial
frame of reference. These two bodies can be the Sun and a planet, the Earth and the Moon, Jupiter and one
of its satellites, or any other two bodies. The inertial and gravitational masses of body 1 will be represented
by mi1 and mg1, while for body 2 they will be represented by mi2 and mg2, respectively. These bodies will
be considered as particles located at their centers of mass. In this Subsection we are only interested in the
situation in which each one of these two bodies describes a circular orbit around the common center of mass,
considering these motions as happening relative to an inertial frame of reference. Therefore, the distance r12
between these bodies will not depend on time, being a constant.

The frame F of the fixed stars will be considered here as a good inertial system. The position vectors of
particles 1 and 2 relative to the origin O of the frame F will be represented by ~r1 and ~r2. Likewise, their
velocities and accelerations relative to frame F will be represented by ~v1, ~v2, ~a1 and ~a2, respectively.

The gravitational force ~F21 exerted by 2 on 1 is given by equation (1.7):

~F21 = −G
mg1mg2

r212
r̂12 = − ~F12 , (9.24)

where r̂12 = (~r1 − ~r2)/r12 is the unit vector pointing from 2 to 1, while ~F12 is the force exerted by 1 on 2.
Combining equation (9.24) with Newton’s second law of motion, equation (1.4), and utilizing that r̂21 =

−r̂12, the equations of motion for particles 1 and 2 are given by, respectively:

~F21 = G
mg1mg2

r212
r̂21 = mi1~a1 , (9.25)

and

~F12 = −G
mg1mg2

r212
r̂21 = mi2~a2 . (9.26)
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Newton’s law of gravitation, equation (9.24), satisfies the principle of action and reaction in the strong
form. According to equations (4.4) and (4.10), this means that the total linear momentum ~pt and the total
angular momentum ~Lt of this system are constant in time.

The situation which interests us here is the particular case in which the total linear momentum goes
to zero, ~pt = ~0, but in which the total angular momentum is a constant different from zero, namely,
~Lt = constant 6= ~0. Moreover, we will suppose that the center of mass of the system is located at the origin
of the coordinate system, ~rcm = ~0, with ~rcm defined by equation (4.11). Therefore:

~rcm = mi1~r1 +mi2~r2 = ~0 , (9.27)

and

~r2 = −mi1

mi2
~r1 , ~v2 = −mi1

mi2
~v1 , ~a2 = −mi1

mi2
~a1 . (9.28)

We are interested, in particular, in the solution of this problem in which the two bodies describe circular
orbits around the common center of mass relative to the frame of fixed stars, as illustrated in figure 9.5.

0v1

v2

r1 r2

Figure 9.5: Two particles describing circular orbits around their center of mass in the frame of the fixed
stars.

Utilizing equations (1.4), (7.26) and (9.8), together with r1 ≡ |~r1| and r2 ≡ |~r2|, yields:

G
mg1mg2

(r1 + r2)2
=

mi1v
2
1

r1
=

mi2v
2
2

r2
= mi1ω

2r1 = mi2ω
2r2 , (9.29)

where ω is the common angular velocity of both particles, relative to the frame F of fixed stars.
When mi1 ≫ mi2 we get r1 ≪ r2, |~v1| ≪ |~v2| and |~a1| ≪ |~a2|. In this case we can neglect the motion

of particle 1 in the frame of the fixed stars, compared with the motion of particle 2 in this frame. We then
return to the results of Subsection 9.2.1.

Utilizing that mi = mg, equation (7.21), the angular velocity given by equation (9.29) can then be written
as:

ω =

√

Gmg1

(r1 + r2)2r2
=

√

Gmg2

(r1 + r2)2r1
. (9.30)

Utilizing equations (9.28) and (9.30), the distance between the two bodies is given by:

r1 + r2 =

[

G(mg1 +mg2)

ω2

]1/3

. (9.31)
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9.3 Rotation of Two Globes, Relative to an Inertial Frame of Ref-

erence, about Their Common Center of Gravity

9.3.1 Rotation of Two Globes Connected by a Cord

We consider now two equal globes of the same inertial mass mi on an horizontal frictionless table. The
Earth will be considered as a good inertial frame of reference for this problem. We will suppose that they
are connected by an inextensible cord of length ℓ. We will suppose that they are rotating, relative to the
laboratory, with a constant angular velocity ω = ϕ̇ = vϕ/ρ around the central point O between them. The
distance ρ from each globe to the center is then given by ρ = ℓ/2, figure 9.6.

ω

ω

mi
ρ ρ0

mi

Figure 9.6: Two globes rotating on an frictionless table. The rectangle represents the table fixed in the
ground.

The only force acting on each globe is exerted by the stretched or tensioned cord. This tension will be
represented by T . Equation (9.9) applied to any of these globes yields:

T = miac = mi
v2t
ρ

= miw
2ρ . (9.32)

Therefore, by increasing the angular velocity ω of rotation of the globes, the tension T is increased
simultaneously. By knowing mi, ω and ρ, the value of the tension can then be calculated utilizing equation
(9.32). A dynamomenter connected to the cord might be utilized in order to measure this tension.

9.3.2 Rotation of Two Globes Connected by a Spring

The problem of Subsection 9.3.1 can also be easily solved replacing the cord by a spring of elastic constant
k and relaxed length ℓo, figure 9.7 (a). We consider here the inertial mass of the spring, mis, much smaller
than the inertial mass mi of each body connected to it, mis ≪ mi. The distance ρo of each globe to the
center O is given by ρo = ℓo/2 when they are at rest on the table. A force is applied to the two bodies
until they rotate around one another, relative to the ground, with an angular velocity ω. From this moment
onwards the external force no longer acts on the two bodies. After the situation stabilizes and the two masses
keep rotating at a constant angular velocity ω, the spring is observed to be stretched, having a total length
ℓ greater than ℓo, ℓ > ℓo. In this situation the distance ρ of each globe to the center of the system is given
by ρ = ℓ/2, figure 9.7 (b).

The tension T or elastic force Fe = T exerted by the stretched spring on each body is given by equation
(9.9):

Fe = T = k(ℓ− ℓo) = mi

v2ϕ
ρ

= miw
2ρ . (9.33)

The difference of this case in comparison with the situation of Subsection 9.3.1 is that now the tension
T acting on the spring can be visualized or measured by its elongation, that is, through ℓ − ℓo = T/k. A
greater elongation indicates a greater tension.

Figure 9.8 (a) illustrates the elastic force T acting on each globe when the system is rotating relative to
the ground with a constant angular velocity ω. The stretched spring exerts a centripetal force on each globe.
By action and reaction, each globe exerts a centrifugal force on the spring, as represented in figure 9.8 (b).
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Figure 9.7: (a) Two globes at rest on the table separated by a distance ℓo. (b) Two bodies rotating with a
common constant angular velocity ω relative the ground and separated by a distance ℓ > ℓo.

The right body, for instance, exerts a force towards the right on the right extremity of the stretched spring.
Likewise, the left body exerts a force towards the left on the left extremity of the stretched spring.

ω

ω

(a) (b)

ω

ω

mi mi
T T

T T

Figure 9.8: (a) Centripetal forces exerted by the stretched spring on each rotating globe. (b) By action and
reaction each globe exerts a centrifugal force on the extremity of the spring to which it is attached.

9.3.3 Newton and the Distinction between Relative Rotation and Absolute Ro-

tation

Newton discussed this problem of the rotation of two globes connected by a cord as a possible way of
distinguishing relative rotation from absolute rotation. By this experiment we could know if the globes were
really rotating or not rotating relative to absolute space. His discussion appears at the Scholium in the
beginning of Book I of the Principia, after the eight initial definitions and before his three laws of motion.
Here we present the entire discussion, with our emphasis:11

It is indeed a matter of great difficulty to discover, and effectually to distinguish, the true motions
of particular bodies from the apparent; because the parts of that immovable space, in which those
motions are performed, do by no means come under the observation of our senses. Yet the thing
is not altogether desperate; for we have some arguments to guide us, partly from the apparent
motions, which are the differences of the true motions; partly from the forces, which are the
causes and effects of the true motions. For instance, if two globes, kept at a given distance one
from the other by means of a cord that connects them, were revolved about their common centre
of gravity, we might, from the tension of the cord, discover the endeavor of the globes to recede
from the axis of their motion, and from thence we might compute the quantity of their circular
motions. And then if any equal forces should be impressed at once on the alternate faces of the
globes to augment or diminish their circular motions, from the increase or decrease of the tension
of the cord, we might infer the increment or decrement of their motions; and thence would be
found on what faces those forces ought to be impressed, that the motions of the globes might be

11[New34, p. 12] and [New90, pp. 13-14].
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most augmented; that is, we might discover their hindmost faces, or those which, in the circular
motion, do follow. But the faces which follow being known, and consequently the opposite ones
that precede, we should likewise know the determination of their motions. And thus we might
find both the quantity and determination of this circular motion, even in an immense vacuum,
where there was nothing external or sensible with which the globes could be compared. But
now, if in that space some remote bodies were placed that kept always a given position to one
another, as the fixed stars do in our regions, we could not indeed determine from the relative
translation of the globes among those bodies, whether the motion did belong to the globes or to the
bodies. But if we observed the cord, and found that its tension was that very tension which the
motions of the globes required, we might conclude the motion to be in the globes, and the bodies
to be at rest; and then, lastly, from the translation of the globes among the bodies, we should
find the determination of their motions. But how we are to obtain the true motions from their
causes, effects, and apparent differences, and the converse, shall be explained more at large in
the following treatise. For to this end was that I composed it.

This is an extremely important discussion. We illustrate Newton’s points of view with figures and utilizing
a spring instead of a cord. The value of the tension T in the cord mentioned by Newton can then be indicated
or visualized by the variation in the length of the spring when the system is rotating, according to equation
(9.33). That is, if ℓ and ℓo are the lengths of the spring when the system is rotating or stationary relative
to absolute space, respectively, the tension T acting on the spring is related with the variation of its length
through T = k(ℓ − ℓo). The two bodies connected by the spring are rotating on a horizontal frictionless
table. The relaxed spring has a length ℓo. When the globes are rotating relative to absolute space with a
constant angular velocity ω, the stretched spring has a length ℓ, with ℓ > ℓo. As seen in Subsection 1.6.3,
Newton considered the fixed stars at rest relative to absolute space. We will suppose that the Earth is also
stationary relative to absolute space. This supposition is not necessary, as we might consider the Earth as
a good inertial frame of reference even when it has a constant velocity relative to absolute space. But this
supposition simplifies the analysis of this problem and we can highlight the main aspects pointed out by
Newton with a greater clarity.

We then consider the Earth as our standard reference frame to study this problem. The paper in which
the figures are drawn will be supposed to be at rest relative to the ground. The rectangle in the figures
indicate a table at rest in the ground. The motion will be considered in a horizontal plane, with the z axis
vertical. The unit vector ẑ points vertically upwards.

In the first situation all bodies (stars, table, spring and two globes) are at rest relative to the ground.
The spring has a relaxed length ℓo, figure 9.9 (a). In the second situation the two globes and the spring
rotate together, around a vertical axis passing through the center of the spring, with a constant angular
velocity ~ω = ωẑ relative to the ground and relative to the frame of fixed stars. The spring is stretched with
a length ℓ, with ℓ > ℓo, figure 9.9 (b).

ω

ω

mi
ρ ρ

ℓo

(a) (b)

ρo ρo0

ℓ
mimi mi

0

Figure 9.9: (a) Two globes at rest on a table connected by a relaxed spring of length ℓo. (b) Globes and
spring rotating together relative to the ground with a constant angular velocity ~ω. The stretched spring has
a length ℓ > ℓo.

The initial configuration of figure 9.9 (a) is reproduced in the initial configuration of figure 9.10 (a). That
is, when all bodies are at rest relative to the ground, the relaxed spring has a length ℓo. We now suppose
a thought experiment represented in figure 9.10 (b). The two globes and the spring remain at rest on the
table. But now the whole set of fixed stars rotate together relative to the terrestrial frame T with a constant
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angular velocity ~ωFT = −~ω = −ωẑ. That is, if the globes in figure 9.9 (b) were rotating anti-clockwise
relative to the ground with an angular velocity ω = 2π rad/s, the fixed stars of figure 9.10 (b) are rotating
clockwise relative to the ground with an angular velocity of the same magnitude, namely, |ωFT | = 2π rad/s.
What will be the tension acting on the spring is this hypothetical situation? What will be the length of the
stationary spring in this thought experiment?

ℓo

(a)

ℓomi

(b)

ρo0

- ω

- ω

mi
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mi mi
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Figure 9.10: (a) Two globes at rest on a table connected by a relaxed spring of length ℓo. (b) Globes and
spring stationary, while the set of fixed stars rotate together relative to the ground with a constant angular
velocity ~ωFT = −~ω. What is the length of the spring in this thought experiment?

According to Newton’s discussion of this problem, the spring should not be tensioned in this hypothetical
situation. This means that it should maintain its original length ℓo, remaining relaxed, as represented in
figure 9.10 (b).

Figure 9.11 compares the situation of figures 9.9 (b) and 9.10 (b), in the context of newtonian mechanics.
Figure 9.11 (a) shows two globes rotating with a constant anti-clockwise angular velocity ~ω relative to
absolute space, while the Earth, the table and the fixed stars are stationary. The spring is stretched with
a length ℓ. Figure 9.11 (b) shows the prediction of what should happen if the globes and spring remained
stationary relative to absolute space and also at rest relative to the ground, while the set of fixed stars
rotated together relative to the Earth with a constant clockwise angular velocity −~ω. According to classical
mechanics, the spring should remain relaxed, maintaining its original length ℓo, with ℓo < ℓ.
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Figure 9.11: Comparison of figures 9.9 (b) and 9.10 (b).

There is the same relative rotation with a magnitude ω between the globes and the set of fixed stars
in both situations of figure 9.11. Despite this fact, it would be possible to distinguish these two situations
observing the tension of the cord or spring connecting them. In the case of a spring, this tension can be
visualized, indicated or measured by the variation of its length, ℓ− ℓo. The spring is stretched with a length
ℓ in situation (a). However, it should not be stretched in situation (b). In this last situation it should
maintain its relaxed length ℓo. Therefore, when there is tension in the spring, this means a real rotation of
the globes relative to absolute space. When there is no tension in the spring, on the other hand, the globes
must be at rest or moving along a straight line with a constant velocity relative to absolute space. Although
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there is the same relative rotation between the globes and the set of fixed stars in both situations of figure
9.11, it should be possible to determine if the rotation relative to absolute space belongs to the globes, as in
situation (a), or to the stars, as in situation (b).

9.4 Newton’s Bucket Experiment

9.4.1 Bucket at Rest or Rotating Together with the Water Relative to the

Ground

We now analyze Newton’s bucket experiment. This is one of the simplest and most important of all experi-
ments performed by Newton.12 It is illustrated in figure 9.12.

(a) (b)

w

Figure 9.12: (a) Bucket and water at rest relative to the ground, with a horizontal surface of the water. (b)
Bucket and water rotating together relative to the ground with a constant angular velocity ω around the
axis of the bucket, with a concave surface of the water.

As the diurnal rotation of the Earth relative to the fixed stars is much smaller than the rotation of the
bucket relative to the Earth in this experiment, we will consider the Earth at rest relative to the fixed stars,
in order to simplify the analysis of this problem. The Earth and the set of fixed stars can be considered a
good inertial frame of reference to study this problem. A bucket partially filled with water is suspended by
a cord near the surface of the Earth. In figure 9.12 (a) the bucket and the water are at rest relative to the
ground. The free surface of water is observed to remain flat and horizontal. The bucked is turned about in
such a way that the cord is strongly twisted. By the sudden action of another force, the bucket is whirled
about the contrary way. The bucket continues the rotation around its axis while the cord is untwisting itself.
In the beginning of the rotation of the bucket, the water remains at rest relative to the ground. Due to the
existing friction between the walls of the bucket and the water, the water begins gradually to spin relative to
the ground. The water begins to recede little by little from the middle, ascending to the sides of the bucket
and descending along the axis of rotation. It forms itself into a concave figure. Supposing that the bucket
maintains for a long time a constant angular velocity of rotation relative to the ground, the system stabilizes
in the configuration shown in figure 9.12 (b). In this situation the bucket and the water rotate together with
a constant angular velocity ω relative to the ground. The free surface of water assumes a concave shape.
This concave shape remains constant in time, provided the bucket and water keep rotating around the axis
of the buket at a constant angular velocity relative to the ground.

Newton finished his experiment at this point. But it might be continued as follows. The bucket is
suddenly stopped by holding it strongly with our hands. From then onwards it remains at rest relative
to the ground. Just after the bucket has been stopped, the water remains rotating relative to the ground,
keeping its concave figure. However, due to the friction between the water and the walls of the bucket,
the water decreases gradually its rotation relative to the ground. Simultaneously it decreases gradually its
concavity. That is, the portions of the water in contact with the sides of the bucket descend little by little,
while the portion along the axis of rotation raises little by little. When the water is no longer rotating
relative to the bucket, remaining once again at rest relative to the ground, its free surface return to be flat
and horizontal.

We first consider the situation when the bucket and the water are at rest relative to the ground, figure
9.13 (a). The water is considered as an ideal incompressible fluid with a volume density of inertial mass ρi
and a volume density of gravitational mass ρg. The coordinate system for this problem is represented in
figure 9.13 (b). There is the vertical z axis and the horizontal x and y axes, with origin O at the upper
surface of the water.

12[New34, pp. 10-11], [New90, pp. 11-12] and [Ass97b].
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Figure 9.13: (a) Bucket and water at rest relative to the ground, with a horizontal surface of the water. (b)
Coordinate system with its origin at the upper surface of the water, horizontal coordinate x and vertical
coordinate z. It is also represented a small volume dV inside the liquid. (c) Forces acting on an infinitesimal
element of gravitational mass dmg: Downward gravitational force dFg exerted by the Earth and upward
buoyant force dFb exerted by the surrounding liquid. In equilibrium these two forces balance one another.

Consider a infinitesimal element of fluid of volume dV and gravitational mass dmg. There are two forces
acting on it, namely, the downward gravitational force d~Fg exerted by the Earth and the upward buoyant
force d~Fb exerted by the surrounding fluid and being due to the gradient of pressure p which exists inside
the fluid. These forces are represented in figure 9.13 (c). The fluid is at rest relative to the ground, such
that its velocity and acceleration go to zero, namely, ~v = ~0 and ~a = ~0. Newton’s second law of motion can
then be written as:

d~Fg + d~Fb = dmi~a = ~0 . (9.34)

Utilizing that d~Fg = dmg~g = −dmggẑ and d~Fb = − (∇p) dV due to the gradient of pressure p which
exists inside the fluid, this equation can be written as equation (5.9). The solution for the pressure p inside
the fluid is then given by equation (5.11), namely:

p(z) = po − ρggz . (9.35)

This equation indicates that the pressure changes linearly with the depth of the liquid. Equation (9.35)
indicates that the surfaces with p(z) = p1 = constant, are horizontal planes parallel to the fluid’s free surface
located at a height z1 given by:

z1 =
po − p1
ρgg

. (9.36)

The free surface of the water is horizontal and the pressure increases linearly with the depth according
to equation (9.35).

We now calculate the figure of the spinning water and the pressure inside it. We consider the situation
of figure 9.12 (b). In this configuration the water and the bucket rotate together around the axis of the
bucket, relative to the ground, with a constant angular velocity ω. We calculate the shape of the free surface
of water and the pressure anywhere inside the spinning liquid.13 Experimentally the surface of the water
remains concave, as represented in figure 9.12 (b).

The simplest way to obtain the form of the surface is to consider an inertial frame of reference T which
is at rest relative to the ground, centered on the lowest part of the spinning liquid, with the z axis pointing
upwards, as in figure 9.14. The z axis is chosen along the rotation axis of the bucket. The distance of any
infinitesimal portion of the liquid to the axis of rotation will be represented by u ≡

√

x2 + y2. This distance
is being represented by u instead of the usual symbol ρ in order to avoid confusion with the volume densities
of inertial and gravitational mass of the fluid.

We first consider an infinitesimal volume dV of liquid just below the surface. Its inertial mass is dmi =
ρidV and its gravitational mass is dmg = ρgdV . There are two forces acting on it, namely, the downward

13[Luc80, pp. 421-424].
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Figure 9.14: Water spinning relative to the ground. The inertial frame of reference T with orthogonal axes
(x, z) is at rest in the ground, with its origin on the lowest part of the water.

gravitational force d~Fg = dmg~g = −dmggẑ and the buoyant force d~Fb exerted by the remainder of fluid
(liquid and air) around the test volume element dV . This buoyant force is orthogonal to the free surface
of the liquid at that location. As any portion of liquid describes a horizontal circular motion around the z
axis, there is no net vertical force acting on it. The sum of these two forces, d~Fg + d~Fb, must point towards
the z axis of rotation. That is, suppose the test element of volume dV is located at ~r = uû + zẑ, where
û = ρ̂ = cosϕx̂+ sinϕŷ is the unit vector of cylindrical coordinates given by equation (9.3) and represented
in figure 9.1. The net force d~F acting on this element must point along −û, that is, d~F = −|d~F |û. This
inward force changes the direction of circular motion relative to an inertial frame of reference, but does not
change the magnitude of the tangential velocity. This tangential velocity can be represented by vt = vu = vϕ.
Newton’s second law of motion for this test element can be written as:

d~Fg + d~Fb = dmi~a = −dmiacû , (9.37)

where ac = v2t /u = uω2 is the centripetal acceleration of the test element.
Utilizing the angle α presented in figure 9.14, using dFg = |d~Fg|, g = |~g| and dFb = |d~Fb|, this equation

can be separated into its components along the û and ẑ directions, namely:

dFb sinα = dmiac = dmi

v2ϕ
u

= dmiω
2u , (9.38)

and

dFb cosα = dFg = dmgg . (9.39)

Dividing equation (9.38) by equation (9.39) yields:

tanα =
dmi

dmg

ω2u

g
. (9.40)

Figure 9.14 shows that tanα = dz/du, where dz/du is the inclination of the curve to the horizontal in
each of its points. That is, tanα = dz/du represents the inclination to the horizontal of the free surface of
the fluid:

tanα =
dz

du
=

dmi

dmg

ω2u

g
. (9.41)

Integrating equation (9.41), using ρi = dmi/dV , ρg = dmg/dV , and utilizing the fact that the curve
must pass through the origin x = y = z = 0 of our coordinate system, yields:

z =
ρi
ρg

ω2

2g
u2 . (9.42)

Therefore the surface of the liquid is a paraboloid of revolution. The greater the value of the angular
velocity ω, the larger the concavity of the surface.

We can also calculate the pressure anywhere within the fluid by a similar reasoning, with figure 9.15.
Newton’s second law of motion for an infinitesimal amount of inertial mass dmi of the liquid is given by:
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Figure 9.15: Forces acting on an infinitesimal portion of liquid.

d~Fg + d~Fb = dmi~a . (9.43)

Utilizing cylindrical coordinates (u, ϕ, z) = (
√

x2 + y2, arctan(y/x), z), together with equation (2.3),
the buoyant force acting on mi due to the surrounding liquid is given by:

d~Fb = −(∇p)dV = −
(

∂p

∂u
û+

1

u

∂p

∂ϕ
ϕ̂+

∂p

∂z
ẑ

)

dV . (9.44)

In the situation considered here any portion dmi of the fluid at a distance u from the z axis describes a
horizontal circular orbit with a constant angular velocity ω. Therefore it has only a centripetal acceleration
given by:

~a = −
v2ϕ
u
û = −uω2û . (9.45)

Utilizing equations (9.44) and (9.45) into equation (9.43), together with d~Fg = −dmggẑ, yields:

d~Fg + d~Fb = −dmggẑ −
(

∂p

∂u
û+

1

u

∂p

∂ϕ
ϕ̂+

∂p

∂z
ẑ

)

dV = dmi~a = −dmiω
2uû . (9.46)

The u, ϕ and z components of this equation are given by, respectively:

∂p

∂u
= ρiω

2u , (9.47)

∂p

∂ϕ
= 0 , (9.48)

and

∂p

∂z
= −ρgg . (9.49)

The integration of these three equations leads to:

p(u, ϕ, z) =
ρiω

2u2

2
+ f1(ϕ, z) , (9.50)

p(u, ϕ, z) = f2(u, z) , (9.51)

and

p(u, ϕ, z) = −ρggz + f3(u, ϕ) , (9.52)

where f1(ϕ, z), f2(u, z) and f3(u, ϕ) are arbitrary functions of ϕ and z; u and z; and u and ϕ, respectively.
Equating these three solutions yield:

p(u, ϕ, z) =
ρiω

2

2
u2 − ρggz + k , (9.53)
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where k is a constant.
According to figure 9.15, the lowest point of the free surface of liquid has been chosen as the point for

which (u, z) = (0, 0). Imposing that the pressure in this point is the atmospheric pressure po, equation
(9.53) yields k = po. Therefore the final solution for the pressure anywhere inside the liquid is given by:

p(u, ϕ, z) =
ρiω

2

2
u2 − ρggz + po . (9.54)

All over the free surface of the liquid we have the atmospheric pressure, that is, p(u, ϕ, z) = po.
Substituting this fact in equation (9.54) yields once more the equation of the concave surface, namely,
equation (9.42). This procedure completes the solution of the problem in newtonian mechanics.

9.4.2 Obtaining the Proportionality between Inertial Mass and Gravitational

Mass from the Concave Shape of Fluids Rotating with the Bucket

Suppose we have two equal buckets partially filled with different fluids 1 and 2, such as water and liquid
mercury, filling the same volume of each bucket. We analyze here only the situation illustrated in figure
9.12 (b) in which the buckets are rotating together with their liquids, relative to the ground, with constant
angular velocities ω1 and ω2. In the first bucket there is an ideal incompressible fluid with volume density of
inertial mass ρi1 and volume density of gravitational mass ρg1, while in the second bucket there is another
ideal incompressible fluid with volume density of inertial mass ρi2 and volume density of gravitational mass
ρg2. According to equation (9.42), the free surfaces of these two fluids have the shapes of paraboloids of
revolution. The ratio of the heights z1 and z2 above the lowest points of these two liquids, at the same
distance u1 = u2 ≡ u from their axes of rotation, is given by:

z1
z2

=
ρi1/ρg1
ρi2ρg2

(

ω1

ω2

)2

. (9.55)

Experiments show that with two homogeneous incompressible fluids, z1 = z2 whenever ω1 = ω2, no
matter the specific gravities or the chemical compositions of these liquids. That is, all parabolic surfaces
have the same concavity when these fluids rotate relative to the ground with the same angular velocity, as
indicated in figure 9.16.

w w

Figure 9.16: The free surfaces of all ideal incompressible liquids have the same concavity when they ro-
tate relative to the ground with the same angular velocity, no matter their specific gravities nor chemical
compositions.

Combining this experimental result with equation (9.55) yields once again the fact that the ratio of the
volume density of inertial mass of a liquid to its the volume density of gravitational mass has the same value
for all liquids, equation (7.87).

Moreover, utilizing that in the International System of Units this ratio has a dimensionless value 1,
equation (7.20), the expressions describing the free surface of liquid, equation (9.42), and the pressure within
the liquid, equation (9.54), can then be simplified to:

z =
ω2

2g
u2 , (9.56)

and
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p(u, ϕ, z) =
ρω2

2
u2 − ρgz + po , (9.57)

where ρi = ρg ≡ ρ represents the volume density of mass of the fluid and po is the atmospheric pressure.

9.4.3 Newton and the Distinction between Relative Rotation and Absolute Ro-

tation in the Bucket Experiment

Newton presented his bucket experiment in the Scholium after the eight definitions in the beginning of Book
I of the Principia. This experiment appears before his three laws of motion. It is one of the most important
experiments in the history of mechanics. It was presented just before the two globes experiment described in
Subsection 9.3.3. While the situation of the two globes connected by a cord and rotating relative to absolute
space was only imagined by Newton, being a thought experiment, the bucket experiment to be described
here was a real experiment performed by him. He observed the rotation of the water relative to the ground
and also the ascent of the water towards the sides of the vessel. This crucial experiment supplied him the
empirical support to the concept of absolute motion which was employed in his laws of motion. He did not
change the type of fluid which was put in rotation, working only with water. Therefore, he did not discuss the
proportionality between inertial mass and gravitational mass (or the distinction between ρi and ρg) which
could be deduced from this experiment. The fundamental relevance of this experiment was that he believed
he had found with it an empirical support to his concept of absolute rotation with respect to empty space.
With this experiment it would be possible to distinguish the absolute rotation of the water with respect to
empty space, from its relative rotation with respect to other material bodies (like the bucket, the Earth, the
fixed stars and the other astronomical bodies). It is important to quote it in full (our emphasis):14

The effects which distinguish absolute from relative motion are, the forces of receding from the
axis of circular motion. For there are no such forces in a circular motion purely relative, but in
a true and absolute circular motion, they are greater or less, according to the quantity of motion.
If a vessel, hung by a long cord, is so often turned about that the cord is strongly twisted, then
filled with water, and held at rest together with the water; thereupon, by the sudden action
of another force, it is whirled about the contrary way, and while the cord is untwisting itself,
the vessel continues for some time in this motion; the surface of the water will at first be plain,
as before the vessel began to move; but after that, the vessel, by gradually communicating its
motion to the water, will make it begin sensibly to revolve, and recede by little and little from
the middle, and ascend to the sides of the vessel, forming itself into a concave figure (as I have
experienced), and the swifter the motion becomes, the higher will the water rise, till at last,
performing its revolutions in the same times with the vessel, it becomes relatively at rest in it.
This ascent of the water shows its endeavor to recede from the axis of its motion; and the true
and absolute circular motion of the water, which is here directly contrary to the relative, becomes
known, and may be measured by this endeavor. At first, when the relative motion of the water
in the vessel was greatest, it produced no endeavor to recede from the axis; the water showed no
tendency to the circumference, nor any ascent towards the sides of the vessel, but remained of
a plain surface, and therefore its true circular motion had not yet begun. But afterwards, when
the relative motion of the water had decreased, the ascent thereof towards the sides of the vessel
proved its endeavor to recede from the axis; and this endeavor showed the real circular motion
of the water continually increasing, till it had acquired its greatest quantity, when the water
rested relatively to the vessel. And therefore this endeavor does not depend upon any translation
of the water in respect of the ambient bodies, nor can true circular motion be defined by such
translation. There is only one real circular motion of any one revolving body, corresponding
to only one power of endeavoring to recede from its axis of motion, as its proper and adequate
effect; but relative motions, in one and the same body, are innumerable, according to the various
relations it bears to external bodies, and, like other relations, are altogether destitute of any real
effect, any otherwise than they may perhaps partake of that one only true motion. [...]

According to Newton, the free surface of the water would be concave only when the water were rotating
relative to absolute space. He did not present the calculations describing the shape of the free surface of the
water. To him it was enough to observe its concave figure. He knew and observed that the faster the water

14[New34, pp. 10-11] and [New90, pp. 11-12].
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did rotate relative to the ground, the greater was its concavity. According to Newton, the angular velocity
ω appearing in equation (9.42) describing the concave shape of the water would be the angular velocity of
the water relative to empty absolute space, the ω would not mean the angular velocity of the water relative
to “ambient bodies.” That is, this angular velocity ω does not represent the rotation of the water relative
to the bucket, nor relative to the Earth, nor relative to the set of fixed stars, nor even its rotation relative
to any other astronomical body around the Earth. Remember that, to Newton,15 absolute space is “without
relation to anything external.” Therefore, it is not related with the bucket, nor with the Earth, nor even
with the fixed stars and other astronomical bodies.

We will now show that Newton had no other alternative at that time than to arrive at this conclusion.
The angular velocity of the bucket relative to the ground in Newton’s experiment was much higher than the
angular velocity of the Earth relative to the fixed stars due to the diurnal rotation of the Earth. It was also
much higher than the angular velocity of the Earth relative to the fixed stars due to its annual translation
around the Sun. Therefore we can consider the Earth as not being accelerated relative to the frame of fixed
stars in this experiment, that is, we can consider it as a good inertial frame. We concentrate our analysis in
two very specific situations represented by figure 9.12 (a) and (b), namely:

(a) In the first situation, the bucket and the water are at rest relative to the ground. Therefore, the
bucket and the water are also at rest, or moving along a straight line with a constant velocity, relative to the
frame of fixed stars. Let ~ωbT represent the angular velocity of the bucket relative to the terrestrial frame T ,
while ~ωwT represents the angular velocity of the water relative to the Earth. In this first situation we have
~ωbT = ~ωwT = ~0. Experimentally it is found that the surface of the water is flat and horizontal. This fact
can be deduced from newtonian mechanics, as was shown in Section 5.3.

(b) In the second situation the bucket and the water rotate together, relative to the Earth, around the
axis of the bucket with a constant angular velocity ~ωbT = ~ωwT ≡ ~ω = ωẑ = constant 6= ~0. Therefore the
bucket and the water also rotate together, relative to the frame of fixed stars, around the axis of the bucket
with this constant and common angular velocity. Experimentally it is found that the surface of the water
is concave. The equation describing this parabolic surface was deduced utilizing newtonian mechanics in
Subsections 9.4.1 and 9.4.2.

The key questions which need to be answered and well understood are: Why is the surface of water
flat in the first situation and concave in the second? What is responsible for this different behavior? The
water concavity in the second situation is due to the rotation of the water relative to what? We now answer
these questions utilizing the newtonian point of view and considering all plausible possibilities. There are
three main natural suspects for this concavity of the water: The rotation of the water relative to the bucket,
relative to the Earth, or relative to the other astronomical bodies (composed essentially by the fixed stars
and distant galaxies).

Let us see if the rotation of the water relative to the bucket can explain the difference observed in situations
(a) and (b) of figure 9.12. That the bucket is not responsible for the different behavior of the water can
be immediately grasped by observing that there is no relative motion between the water and the bucket in
these two situations. After all, ~ωbT − ~ωwT = ~0 not only in the first situation in which ~ωbT = ~ωwT = ~0, but
also in the second situation in which ~ωbT = ~ωwT 6= ~0. This means that whatever the force exerted by the
bucket on each molecule of the water in the first situation, it will remain the same in the second situation,
as the bucket remains at rest relative to the water in this second situation.

The second suspect is the rotation of the water relative to the Earth. After all, in the first situation of
figure 9.12 the water was at rest relative to the ground, ~ωwT = ~0, and its surface was flat. In the second
situation, on the other hand, the water was spinning relative to the ground, ~ωwT 6= ~0, and its surface was
concave. Thus, this relative rotation between the water and the Earth might be responsible for the concavity
of water. Newton maintained that this was not the case:16 “And therefore this endeavor [to recede from the
axis of circular motion] does not depend upon any translation of the water with respect of the ambient bodies,
nor can true circular motion be defined by such translation.” We show here that Newton was consistent and
correct in this conclusion when using his own law of gravitation. In the first situation, the only relevant
force exerted by the Earth on each molecule of water is of gravitational origin. As we saw in Chapter 1,
utilizing equation (1.7) and theorem 31 of the Principia presented in Subsection 1.4.1, the Earth attracts
any molecule of water as if the whole Earth were concentrated at its center, equations (1.15) and (1.17):

~Fg = mg~g = −mggẑ . (9.58)

15[New34, p. 6] and [New90, p. 7].
16[New34, p. 11] and [New90, p. 12].
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In the second situation, the water is rotating relative to the ground, but the force exerted by the Earth
on each water molecule is still given simply by the result of equation (9.58), namely, ~Fg = −mggẑ, pointing
vertically downwards. This conclusion is due to the fact that Newton’s law of gravitation, equation (1.7),
does not depend on the velocity or acceleration between interacting bodies. This means that in newtonian
mechanics the Earth cannot be responsible for the concavity of the surface of the water. Whether the water
is at rest or spinning relative to the ground, it will experience the same gravitational force due to the Earth,
that is, the downward weight ~Fg given by equation (9.58). This force has no tangential component along
the direction of motion of the molecule relative to the ground. This force has not as well any centrifugal
component pointing from the axis z of rotation towards any water molecule. There is no component of the
gravitational force exerted by the Earth on the water which depends on the velocity of the water relative
to the ground, nor any component which depends on the acceleration of the water relative to the ground.
Therefore it is not the Earth which causes the water to ascend towards the sides of the bucket when the
water is spinning relative to the ground.

The third material suspect which might cause the concavity of the water is the set of fixed stars. This
concavity might be due, in particular, to the relative rotation between the water and the set of fixed stars.
Let ~ωwF represent the angular rotation of the water relative to the set of fixed stars. In the first situation
of figure 9.12, the water is essentially at rest or moving with a constant linear velocity relative to the frame
of fixed stars, ~ωwF = ~0. The water has a flat and horizontal surface. In the second situation, on the other
hand, the water is spinning around its axis, relative to the fixed stars, with a constant angular velocity,
~ωwF = constant 6= ~0. The water has a concave surface. This relative rotation between the water and the
fixed stars might be responsible for the concavity of water. But in newtonian mechanics this is not the
case either. The only relevant interaction of the water with the fixed stars is of gravitational origin. Let us
analyse the influence of the stars in the first situation. As we saw in Chapter 1, utilizing equation (1.7) and
theorem 30 of the Principia presented in Subsection 1.4.1, we find that the net force exerted by all the fixed
stars on any molecule of water is essentially zero, assuming that the fixed stars are distributed more or less
at random in the sky and neglecting the small anisotropies in their distribution. This result is represented in
equation (1.11). This is the reason why the fixed stars are seldom mentioned in the solution of any problem
of classical mechanics (collision of bodies, oscillation of pendulums or springs, trajectory of projectiles, etc.).
This will remain valid not only when the water is at rest relative to the fixed stars, but also when the water
is rotating relative to them. Once more, this null result is due to the fact that Newton’s law of gravitation,
equation (1.7), does not depend on the velocity or acceleration between the interacting bodies. Thus, the
force exerted by a spherical shell on a material point as given by equation (1.15), remains valid no matter
what the velocity or acceleration of the test body relative to the shell.

As we have seen in Subsection 1.4.4, Newton was aware that we can neglect the gravitational influence
of the set of fixed stars in most situations of the solar system. Recall that he wrote in the Principia:17

“Not to mention that the fixed stars, everywhere promiscuously dispersed in the heavens, by their contrary
attractions destroy their mutual actions, by Proposition 70, Book I.” The conclusion is then that the relative
rotation between the water and the fixed stars is not responsible for the concavity of the water either.

Newton knew only the fixed stars belonging to our galaxy, the Milky Way. He was not aware of the
existence of the galaxies. Nowadays we might consider that the concavity of the water in the second situation
of figure 9.12 might be due to the relative rotation between the water and the set of distant galaxies. But
in newtonian mechanics this explanation does not work as well. It is known that the distant galaxies are
distributed more or less uniformly in the sky, apart some small anisotropies. Therefore, the same conclusion
Newton reached for the fixed stars (that they exert no net force on bodies of the solar system) applies to
the distant galaxies. That is, the set of distant galaxies exert essentially zero net gravitational force on the
molecules of water in Newton’s bucket experiment, no matter if the water is at rest or spinning relative to
the galaxies.

The concavity of the water is a real phenomenon, as we can measure how much the water ascended
along the sides of the bucket. Moreover, the water can even pour out of the bucket if its angular velocity ω
relative to the ground is great enough. Newton concluded that this effect was not due to the rotation of the
water relative to the bucket, nor relative to the Earth, nor even relative to the astronomical bodies around
the Earth, like the fixed stars. Therefore, Newton had no other choice than to point out another cause
for this effect, namely, the rotation of the water relative to absolute space. This was his only alternative,
assuming the validity of the universal law of gravitation, which he proposed in the same book where he
presented the bucket experiment. Moreover, this newtonian absolute space cannot have any relation with
the gravitational mass of the water, of the bucket, of the Earth, of the fixed stars, of the distant galaxies,

17[New34, p. 422] and [New08b, p. 211].
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nor of any other material body. After all, as we have just seen, all these other possible material influences
have been eliminated. Therefore Newton’s absolute space must be identified with the vacuum or with empty
space, as it is not connected to any material body.

The quantitative explanation of this key experiment, without introducing the concept of absolute space,
is one of the main accomplishments of relational mechanics as developed in this book.

9.4.4 What Would Be the Shape of the Spinning Water If All Other Astronom-

ical Bodies around the Earth Were Annihilated?

In Newton’s experiment not only the Earth, the bucket and the water were present, but also the stars and
galaxies around the Earth. Newton was aware of the existence of the stars, but not of the galaxies. Figure
9.17 presents Newton’s experiment including in the drawing the stars and galaxies around the Earth. To
simplify the analysis we are supposing that the set of stars and the set of galaxies are at rest relative to the
Earth. The rotation of the water relative to the ground in Newton’s experiment was much larger than the
diurnal rotation of the Earth around its axis relative to the fixed stars. It was also much larger than the
annual rotation of the Earth around the Sun relative to the fixed stars. Therefore, in our simplified analysis,
we will also neglect the diurnal rotation of the Earth around its axis and its annual translation around the
Sun relative to the fixed stars.

(a) (b)

ω

Figure 9.17: Newton’s bucket experiment including the galaxies in the picture. (a) Bucket and water at rest
relative to the ground. (b) Bucket and water rotating together relative to the ground.

An important consequence of the analysis presented in Subsection 9.4.3 is that even if the fixed stars
and distant galaxies disappeared (were literally annihilated from the universe), the concavity of the water
would not change in this bucket experiment. The fixed stars and the distant galaxies have no relation with
the concavity of the water, at least according to newtonian mechanics. This absence of influence is due to
Proposition 70, Theorem 30 of Book I of the Principia presented in Subsection 1.4.1. Suppose, for instance,
that the water ascended up to the border of the bucket when it made a turn per second relative to the
ground, rotating with an angular velocity ω = 2π rad/s. Therefore it would still raise to this same level in
the hypothetical situation without stars and galaxies, provided it were still rotating relative to the ground
once a second. This thought experiment is presented in figure 9.18.

If we could double the number of all stars and galaxies, as compared with the real situation presented in
figure 9.17, the concavity of the water would still remain the same. We are supposing here that the bucket,
the water and the Earth were not changed in this hypothetical situation in comparison with the real world
(that is, the Earth would continue with its present size and with a density 5.5 times larger than the density
of water). Only the number of stars and galaxies would be doubled in comparison with the real world. This
thought experiment is represented in figure 9.19.
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(a) (b)

ω

Figure 9.18: The concavity of the water should not change according to newtonian mechanics if all other
astronomical bodies around the Earth were annihilated. (a) Bucket and water at rest relative to the ground.
(b) Bucket and water rotating together relative to the ground.

(a) (b)

ω

Figure 9.19: The concavity of water would not be changed according to newtonian mechanics if the number
of stars and galaxies around the Earth were doubled. (a) Bucket and water at rest relative to the ground.
(b) Bucket and water rotating together relative to the ground.

9.4.5 What Would Be the Shape of the Water If It Remained at Rest in the

Ground While All Other Astronomical Bodies Rotated Rapidly Around

the Axis of the Bucket?

Another important consequence can be drawn from the analysis presented in Subsection 9.4.3.
In Newton’s experiment the water was initially at rest relative to the bucket and to the ground, having a

horizontal free surface, figure 9.17 (a). We are supposing the stars and galaxies to be at rest relative to the
ground to simplify the analysis of this problem. When the water is spinning together with the bucket around
the axis of the bucket relative to the ground, the water assumes a concave shape. Let us suppose that in the
situation of figure 9.17 (b) the bucket were spinning once a second relative to the ground, ω = 2π rad/s, with
the higher portion of the water reaching the upper border of the bucket. We also assume that the plane of
the paper in which this drawing has been made coincides with Newton’s absolute space and that the water
is spinning anti-clockwise when seen from above.

We now imagine a situation which is visually or kinematically equivalent to that of figure 9.17 (b).
Initially the water and the bucket are at rest relative to absolute space and the surface of the water is
horizontal. What would be the shape of the free surface of water if, while the bucket and water remained
at rest relative to absolute space, the Earth, the set of fixed stars, and the set of galaxies rotated together,
relative to absolute space, completing a clockwise turn per second around the axis of the bucket? As seen
in Subsection 1.4.3, the spinning Earth would still attract the stationary water vertically downwards, while
the stars and galaxies, rotating around the bucket, would still exert no net force on any molecule of water,
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according to equation (1.21). This means that the surface of the water in this thought experiment would
remain flat and horizontal, parallel to the bottom side of the bucket, as indicated in figure 9.20.

(a) (b)

W

W

W

Figure 9.20: (a) Earth, bucket, water, stars and galaxies at rest relative to absolute space. (b) Supposing
the bucket and water at rest relative to absolute space, the surface of the water should remain flat and
horizontal, even when the Earth, stars and galaxies rotate together quickly around the axis of the bucket.

The situation of figure 9.20 (b) is visually or kinematically equivalent to the situation of figure 9.17 (b).
In both cases there is the same relative rotation between the water and the Earth, between the water and
the fixed stars, and between the water and the distant galaxies. Despite this fact, these two situations are
not dinamically equivalent. While the water is concave in the situation of figure 9.17 (b), it is flat in the
situation of figure 9.20 (b).

Another hypothetical situation in which the surface of the water would remain flat is indicated in figure
9.21.

(a) (b)

W

W

Figure 9.21: The Earth is supposed to remain at rest relative to absolute space. Supposing the water to
remain at rest relative to the ground, the surface of the water would remain flat and horizontal not only in
situation (a) when the stars and galaxies are at rest relative to the ground, but also in situation (b) in which
only the stars and galaxies were rotating together, relative to the ground, around the axis of the bucket.

In this case the Earth remains at rest relative to absolute space in situations (a) and (b). In this thought
experiment all motions can be referred to the Earth. In situation (a) the water, stars and galaxies are at
rest relative to the ground and the water has a flat surface. In case (b) there is an hypothetical situation
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in which only the set of stars and the set of galaxies are spinning quickly together, relative to the ground,
around the axis of the bucket. The bucket and the water remain at rest relative to the ground. According
to newtonian mechanics, the surface of the water will remain flat horizontal in this second situation, even if
it were possible to rotate all the stars and galaxies once a second around the axis of the bucket. Subsection
23.3.5 will show that relational mechanics makes different predictions for these thought experiments.



Chapter 10

Diurnal Rotations of the Earth

This Chapter discusses the diurnal rotations of the Earth around its axis according to newtonian mechanics.
The Earth does not rotate relative to itself. Likewise, there is no rotation of the Earth relative to any

person at rest relative to the ground, nor relative to any frame of reference which is at rest relative to the
ground. Therefore, when it is stated that the Earth rotates once a day around its North-South axis, this
rotation must be understood as happening relative to other material bodies outside the Earth, or relative to
other inertial frames of reference which are different from the terrestrial frame of reference.

There are two main ways of determining that the Earth is rotating around its axis relative to something.
The first procedure is to observe the relative rotation between the Earth and other astronomical bodies (like
the Sun, the set of fixed stars, the set of distant galaxies, the cosmic background radiation, etc.). This
rotation is called the relative rotation of the Earth or the kinematic rotation of the Earth. This rotation can
be measured or indicated by a visual effect. We see, for instance, the Sun rotating once a day around the
North-South axis of the Earth (the Sun rising, setting, etc.). Likewise, by observing the stars at night, we see
that they rotate once a day around the North-South axis of the Earth (the set of fixed stars moves as a whole
during the night relative to a wall fixed in the ground, for instance). This relative or kinematic rotation of
the Earth can be equally explained by two alternative motions, namely: (I) The Earth rotates once a day
clockwise around its North-South axis, relative to a frame of reference S, while the other astronomical bodies
(like the set of fixed stars, for instance) remain at rest in this frame. (II) The Earth remains stationary
relative to another frame of reference S′, while the other astronomical bodies (like the set of fixed stars, for
instance) rotate once a day anti-clockwise around the North-South axis of the Earth. The diurnal relative
rotation between the Earth and the Sun has been known and measured for more than two thousand years.
Likewise, the diurnal relative rotation between the Earth and the set of fixed stars has also been known and
measured for more than two thousand years.

The second way to determine the Earth’s rotation utilizes dynamic effects happening on the Earth itself or
happening on bodies connected to the Earth. In this second procedure, the value of the rotation of the Earth
can be obtained without any observation of external astronomical bodies. This rotation can be determined,
for instance, in a closed room utilizing a Foucault’s pendulum. This rotation is called the absolute rotation
of the Earth or the dynamic rotation of the Earth. It can be measured or indicated by the figure of the Earth
(the Earth is flattened at the poles). This absolute or dynamic rotation of the Earth can be measured as well
by its influence on bodies moving relative to the ground (Foucault’s pendulum, gyroscopes, major circulation
of air and winds in the Northern and Southern hemispheres, etc.). In newtonian mechanics these dynamic
effects happen only due to a real rotation of the Earth around its North-South axis relative to absolute space,
no matter if the other astronomical bodies are at rest or moving relative to absolute space. These effects
would not happen if the Earth did not rotate relative to absolute space, even if the other astronomical bodies
(like the Sun, stars and galaxies) did rotate once a day, around the North-South axis of the Earth, relative
to absolute space. It is also possible to say that according to classical mechanics these effects happen when
the Earth has a real rotation around its North-South axis relative to an inertial frame of reference S, no
matter if the other astronomical bodies are at rest or moving relative to S. These effects would not happen
if the Earth did not rotate relative to an inertial frame of reference S, even if the other astronomical bodies
(like the Sun, stars and galaxies) did rotate once a day, around the North-South axis of the Earth, relative
to this frame of reference S.

This definition of an absolute rotation of the Earth has been given by Newton. He also showed how to
calculate the dynamic effects which arise due to the absolute rotation of the Earth with his expression of a
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centripetal force given by equation (9.9). He was the first to calculate the flattening of the Earth at the poles
due to its diurnal rotation, relative to absolute space, around its North-South axis. Foucault’s pendulum
experiment and the gyroscopes came only 160 years after Newton.

These topics are discussed in this Chapter. Although this distinction between a relative rotation and an
absolute rotation can be applied to any planet or to any other body in the universe, we restrict the discussion
of this Chapter to the relative and absolute rotations of the Earth.

10.1 Relative or Kinematic Rotations of the Earth Relative to the

Surrounding Celestial Bodies

The simplest way to know that the Earth rotates relative to something is to observe the astronomical bodies
around the Earth. A person standing on the ground will not observe any rotation between himself and the
Earth. But if this person looks at the sky, he will observe relative rotations between the Earth and other
astronomical bodies. In this Section we analyze some of these relative rotations.

10.1.1 Rotation Relative to the Fixed Stars — Sidereal Day

One of the kinematic rotations of the Earth is given by its rotation relative to the fixed stars, that is, relative
to the set of stars belonging to our galaxy, the Milky Way. Although the Moon, the Sun, the planets and
comets move relative to the background of fixed stars, there is essentially no motion of any specific star
relative to the other stars. The sky seen today with its constellations of stars is essentially the same sky
seen by old Egyptians, Mesopotamians and Greeks. Although the set of stars rotate as a whole once a
day relative to the ground, one star almost does not move relative to the other stars. For this reason they
are called “fixed stars.” Aristarchus of Samos proposed around 200 B.C. a heliocentric model for the solar
system. According to this model there should exist a stellar parallax (motion or change of position of one
star close to the Earth relative to other distant stars) due to the annual orbit of the Earth around the Sun.
However, the first observation of this parallax was made only in 1838 by F. W. Bessel.

This diurnal rotation of the set of fixed stars around the Earth defines its North-South geographic axis.
By taking a picture of the night sky with a long exposure in the Northern hemisphere, for instance, we
observe that all stars rotate once a day approximately around the North pole star, which is a very bright
star, figure 10.1.

Figure 10.1: Set of stars rotating approximately around the North pole star.

There are two points in the sky, oppositely located relative to the center of the Earth, around which the
set of stars rotates once a day, relative to the ground. The intersection of this axis with the surface of the
Earth defines its North and Sough geographic poles.

Figure 10.2 presents a qualitative representation of the stars of the sky as seen by someone at rest in the
North pole. The rectangle represents a wall fixed in the ground. In situation (a) the wall is aligned with a
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set of stars in the initial moment. Situation (b) presents the same stars as seen 3 hours later. The whole set
of stars rotated relative to the ground.

(a) (b)

N N

Figure 10.2: Stars seen around the Earth in the North pole. The rectangle represents a wall fixed in the
ground. (a) Initial moment. (b) Three hours later.

The sidereal day is defined as the required time interval for a complete rotation between the Earth and
the set of fixed stars. It is also the time interval required for two successive passes of any specific star across
the local meridian. It has a value of 23 hours, 56 minutes and 4 seconds, that is, 86,164 seconds.

Let ωk represent the kinematic rotation of the Earth, that is, the value of the angular velocity of the
Earth relative to other astronomical bodies. The value of this angular velocity due to the relative rotation
between the Earth and the set of fixed stars is then given by:

ωk =
2π

T
=

2π

86, 164
= 7.29× 10−5 rad

s
. (10.1)

10.1.2 Rotation Relative to the Sun — Solar Day

The solar day is defined by the variation between day and night. The required time interval for two successive
risings of the Sun, or the length of time for two successive passes of the Sun by the local meridian, gives the
value of the solar day.

Since at least the time of Ptolemy (100-170 A.C.) astronomers have considered the sidereal day as having
the same constant and uniform value along the year. For thousands of years, until the advent of modern
atomic clocks, this was the most precise clock known to mankind. The solar day, on the other hand, when
compared with the sidereal day, changes along the year. This fact was known to Ptolemy. In his book the
Almagest there is a table describing the variation of the solar day compared with the sidereal day, which
became known as the equation of time. Ptolemy discussed the irregular daily movement of the Sun and the
correction needed to convert the meridian crossings of the Sun along the year to mean solar time. He took
into consideration the nonuniform motion of the Sun along the ecliptic and the meridian correction for the
Sun’s ecliptic longitude. The mean solar day is the average rate of solar days over one year. By definition it
has a value of 24 hours, that is, 86,400 seconds.

In one year the Sun turns essentially 365.25 times around the Earth, while the set of fixed stars turns
366.25 times around the Earth. The heliacal rising of a star like Sirius occurs when it first becomes visible
above the eastern horizon of the Earth for a brief moment just before sunrise, after a period of time when it
had not been visible. The year can be defined as two successive heliacal risings of a star.

Another difference between the solar day and the sidereal day is that any specific star always rises at the
same location relative to the terrestrial horizon all year long. The Sun, on the other hand, rises at different
locations at different epochs of the year. Its rising locations oscillates between two extreme positions of the
ground placed around the local East. The time interval between two successive risings of the Sun at anyone
of these extreme location, also defines the solar year.

For a detailed discussion of the sidereal and solar days see the works of Kuhn, Barbour and Dalen.1

Newton mentioned the equation of time in the Scholium at the end of his definitions in the beginning of
Book I of the Principia:2

Absolute time, in astronomy, is distinguished from relative, by the equation or correction of the
apparent time. For the natural days are truly unequal, though they are commonly considered

1[Kuh57, pp. 9-10 and 266-268], [Bar89, Sections 3.15 and 11.6] and [Dal94].
2[New34, pp. 7-8] and [New90, pp. 8-9].
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as equal, and used for a measure of time; astronomers correct this inequality that they may
measure the celestial motions by a more accurate time. It may be, that there is no such thing as
an equable motion, whereby time may be accurately measured. All motions may be accelerated
and retarded, but the flowing of absolute time is not liable to any change. The duration or
perseverance of the existence of things remains the same, whether the motions are swift or slow,
or none at all: and therefore this duration ought to be distinguished from what are only sensible
measures thereof; and from which we deduce it, by means of the astronomical equation. The
necessity of this equation, for determining the times of a phenomenon, is evinced as well from
the experiments of the pendulum clock, as by eclipses of the satellites of Jupiter.

The experiments of the pendulum clock mentioned here by Newton, refer to Huygens’s book The Pen-
dulum Clock of 1673.3 In his experiments Huygens observed that along the year a pendulum performs the
same number of oscillations in any sidereal day. The number of oscillations performed by a pendulum in
each solar day, on the other hand, changes along the year. This dependence of the number of oscillations
of a pendulum during a solar day as a function of the date of the year coincided with the equation of time
known since Ptolemy. Let us suppose that we count the number of oscillations of a pendulum performed
during a day in three different dates, 7th of January, 23rd of April and 18th of September. Huygens found
that the pendulum oscillated the same number of times in these three dates, provided they were considered
along three sidereal days. By measuring the number of oscillations of this pendulum along three solar days,
on the other hand, yielded three different numbers.

Galileo found the satellites of Jupiter when he pointed out his telescope to Jupiter. The periods of the
orbits of Jupiter’s satellites around Jupiter, relative to the background of fixed stars, were measured with
great precision after Galileo. The periods of these orbits are uniform along the year, provided we compare
them with sidereal days. They are not uniform in comparison with solar days. Once more the correction
between the eclipses of the satellites of Jupiter and the solar days coincides with the equation of time. The
relation between these eclipses and the equation of time was studied by the astronomer John Flamsteed
(1646-1719), who performed the first modern researches on the equation of time around 1672.4

10.1.3 Rotation Relative to the Frame of Distant Galaxies

Nowadays it is also possible to describe the diurnal rotation of the Earth relative to the set of distant galaxies.
The reality of external galaxies was established by Hubble in 1924 after finding Cepheid variables in some
nebulae. This allowed him to estimate our distance to these nebulae, which was found much larger than
the known distances between the Earth and the stars of the night sky. He concluded that these nebulae are
stellar systems separated from the Milky Way.

We do not detect the motion of one galaxy relative to another galaxy as this motion is very small to be
detected directly. The frame of reference relative to which the galaxies are at rest is called the universal
frame of reference U , as discussed in Section 1.8. In principle it is possible to determine kinematically the
translational velocity of the Earth relative to U and also the angular velocity of the Earth relative to the
universal frame of reference. The angular velocity of the diurnal rotation of the Earth around its North-South
axis, relative to U , has essentially the same value as the angular velocity of the diurnal rotation of the Earth
around its axis relative to the frame F of the fixed stars.

10.1.4 Rotation Relative to the Cosmic Background Radiation

Another kinematic rotation of the Earth is given by its diurnal rotation relative to the cosmic background
radiation (CBR). This radiation was discovered by Penzias and Wilson in 1965.5 It has a blackbody spectrum
with a characteristic temperature of 2.7 K. It is highly isotropic. However, since 1969 a dipole anisotropy
has been found in this radiation. This anisotropy is usually interpreted as being due to the translational
motion of the Earth relative to the CBR.6 This motion generates Doppler shifts which are detected and
measured.

The reference frame which does not present this dipole anisotropy is called the reference frame of the
cosmic background radiation, or frame of the CBR.

3[Huy13, pp. 16-20], [Huy34, pp. 106-113] and [Huy86, pp. 23-27].
4[Bar89, p. 633].
5[PW65].
6[Con69], [Bor88, Section 2.5, pp. 80-87] and [Wes91, pp. 77-78].
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In principle, by utilizing the dipole anisotropy it might be possible to measure the average velocity of
the solar system relative to the CBR. By measuring this velocity at several days along the year, it might
be possible to know the angular velocity of rotation of the solar system relative to the CBR. Afterwards,
by measuring this velocity at several points along the terrestrial Equator, or by measuring this velocity at a
fixed point relative to the ground but at different moments of the day, it might be possible to determine the
angular velocity of rotation of the Earth relative to the CBR.

Therefore, when there is enough precision to perform all these measurements, it will be possible to
determine the angular velocity of the diurnal rotation of the Earth relative to the frame of the CBR.

10.1.5 Equivalence between Ptolemaic and Copernican Systems Obtained from

the Kinematic Rotations of the Earth

The kinematic rotation between the Earth and the surrounding astronomical bodies can be interpreted in
at least two distinct and equivalent ways. These two ways will be exemplified here considering the diurnal
rotation observed between the Earth and the set of fixed stars. We also consider a specific day of the year in
which the solar day has the same duration as the sidereal day, in such a way that the Sun may be considered
at rest relative to the fixed stars.

The first interpretation considers the point of view of someone standing on the ground, at rest relative
to the Earth. In this terrestrial frame of reference, the Earth remains at rest, while the Sun and the stars
rotate together around the North-South axis of the Earth with a period of one sidereal day, figure 10.2. The
rotation is clockwise when seen from the North pole towards the center of the Earth. The rectangle indicates
a wall fixed in the North pole.

The second interpretation considers the point of view of someone at rest relative to the frame of fixed
stars. In this frame of fixed stars the stars are seen at rest, while the Earth rotates around its North-South
axis with a period of one sidereal day, figure 10.3. The rotation is anti-clockwise when seen from the North
pole towards the center of the Earth.

(a) (b)

N N

Figure 10.3: The Earth seen by someone at rest in the frame of the fixed stars. (a) Initial configuration. (b)
Configuration 3 hours later.

Figure 10.2 (b) can be obtained from figure 10.3 (b) by rotating this last configuration by an angle of 45o

anti-clockwise around the North-South axis of the Earth. Therefore these two configurations are visually or
kinematically indistinguishable.

Figure 10.4 presents the equivalence between these two interpretations in another way. The rectangle
represents once more a wall fixed at the North pole. Figure 10.4 (a) presents the situation as seen in the
terrestrial frame of reference. The stars and the Sun rotate together clockwise with an angular velocity ωk

around the North-South axis of the Earth and a period of one sidereal day. Figure 10.4 (b) presents the
situation as seen in the frame of the fixed stars. The Sun and the stars are seen at rest, while the Earth
rotates anti-clockwise around the North-South axis of the Earth with a period of one sidereal day. In this
figure the frame of the paper is at rest relative to the person observing the phenomena.

There is a complete equivalence between these two interpretations from the kinematic or visual points of
view.

In general there is a complete kinematic or visual equivalence between the ptolemaic and copernican world
views. In the ptolemaic system the Earth is considered at rest, the stars rotate around the North-South axis
of the Earth with a period of one sidereal day, and the Sun describes an orbit relative to the background of
fixed stars with a period of one year while moving around the Earth. In the copernican system the Sun and
the fixed stars are considered at rest, the Earth orbits around the Sun relative to the frame of fixed stars
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Figure 10.4: (a) Earth at rest while the Sun and the stars rotate around the North-South axis of the Earth
with an angular velocity ωk. (b) Sun and stars at rest while the Earth rotates around its North-South axis
with an angular velocity −ωk.

with a period of one year, while the Earth also rotates around its North-South axis, relative to the frame of
fixed stars, with a period of one sidereal day. By observing only the relative motions between the Earth, the
Sun and the stars it is not possible to decide which one of these two world views is the correct or true one.
The ptolemaic and copernican systems explain equally well the observed phenomena, being kinematically
equivalent.

It is possible to add the same common motion to the Earth and to the Sun without affecting the relative
motion between them. For instance, by adding a constant linear velocity relative to absolute space to both
of them does not affect their relative motion. It is important to realize that by considering only the relative
rotation observed between the Sun and the Earth, it is not possible to determine which one of them is
really moving relative to absolute space. The only thing which is observed and measured in this case is the
relative motion between them. Therefore, it is a matter of choice, taste or convenience to choose between the
ptolemaic and copernican systems, provided we are considering only the relative motion observed between
the astronomical bodies.

In this Section we considered four different kinematic rotations of the Earth. They are defined by a relative
motion between the Earth and the surrounding astronomical bodies, or by a relative motion between the
Earth and the cosmic background radiation. We cannot determine only by these observations which body
is really rotating. That is, we cannot determine if it is the Earth which is spinning around its axis while the
other bodies around it are at rest, or if the Earth is at rest while the other bodies rotate in the opposite
direction around the axis of the Earth.

Section 10.2 will show how to distinguish these two points of view dynamically.

10.2 Absolute or Dynamic Rotations of the Earth Relative to an

Inertial Frame of Reference

This Section considers phenomena happening with the Earth itself or with bodies moving close to its surface
which allow us to distinguish dynamically the ptolemaic and copernican systems presented in Subsection
10.1.5. According to newtonian mechanics there are observable and measurable phenomena which appear
only when the Earth rotates daily around its axis relative to absolute space, while the stars and other
astronomical bodies are at rest relative to absolute space. These phenomena would not appear if the Earth
remained at rest relative to absolute space, while the stars and other astronomical bodies rotated daily
around the axis of the Earth. Although these two configurations are kinematically equivalent, they are not
dynamically equivalent in newtonian mechanics.

10.2.1 Newton’s Prediction of the Flattening of the Earth

Section 9.4 showed that when a bucket and the water rotate together relative to absolute space, the water
acquires a concave or parabolic shape around the axis of rotation. According to Newton, it is this tendency
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of bodies to move away from the axis of rotation which indicates the absolute rotation of these bodies. As
he said in the Principia:7

The effects which distinguish absolute from relative motion are, the forces of receding from the
axis of circular motion. For there are no such forces in a circular motion purely relative, but in a
true and absolute circular motion, they are greater or less, according to the quantity of motion.

The planet Earth is composed of water and it should have been made of a fluid matter during its formation.
Therefore, if the Earth rotates daily around its North-South axis relative to absolute space with an angular
velocity ωd, the water and the fluid portions of the Earth should have a tendency to move away from this
axis. The subscript d comes from the word “dynamic.” This dynamic angular velocity ωd is conceptually
distinct from the kinematic angular velocity ωk indicated in Section 10.1 by the susbcript k. Due to the
forces of receding from the axis of circular absolute motion acting on the fluid portions of the Earth, it should
be flattened at the poles and larger at the Equator, as indicated in figure 10.5. The paper is considered at
rest relative to absolute space.

N

S

ωd

Figure 10.5: Flattening of the Earth due to its diurnal rotation relative to absolute space.

Newton discussed the flattening of planets in Propositions 18 and 19 of Book III of the Principia:8

Proposition 18. Theorem 16

That the axes of the planets are less than the diameters drawn perpendicular to the axes.

The equal gravitation of the parts on all sides would give a spherical figure to the planets, if it
was not for their diurnal revolution in a circle. By that circular motion it comes to pass that the
parts receding from the axis endeavor to ascend about the equator; and therefore if the matter is
in a fluid state, by its ascent towards the equator it will enlarge the diameters there, and by its
descent towards the poles it will shorten the axis. So the diameter of Jupiter (by the concurring
observations of astronomers) is found shorter between pole and pole than from East to West.
And, by the same argument, if our Earth was not higher about the equator than at the poles, the
seas would subside about the poles, and, rising towards the equator, would lay all things there
under water.

Proposition 19. Problem 3

To find the proportion of the axis of a planet to the diameters perpendicular thereto.

[...]; and therefore the diameter of the Earth at the equator is to its diameter from pole to pole
as 230 to 229. [...]

Until Newton’s time there was no measurement of this effect. This theoretical prediction for the flattening
of the Earth has since then been experimentally confirmed by observations.9

According to newtonian mechanics, the reason for this flattening of the Earth at the poles is due to
the rotation of the Earth relative to absolute space, or due to its rotation relative to an inertial frame of
reference.

7[New34, p. 10].
8[New34, pp. 424-427] and [New08b, pp. 213-216].
9[New34, pp. 427 and 664, note 41] and [Mar89].
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10.2.2 Calculation of the Flattening of the Earth

This Subsection presents the calculation leading to a theoretical prediction for the flattening of the Earth.
When we mention that the Earth is at rest or rotating around its North-South axis, this rotation should be
understood relative to Newton’s absolute space or relative to the inertial frame of reference utilized for the
calculations presented here. The calculations will be presented considering steps of higher complexity: (a)
Earth at rest with the gravitational force per unit mass due to a sphere; (b) Earth spinning and supposing
a gravitational force per unit mass due to a symmetrically spheric distribution of matter; (c) Earth at rest
with the gravitational force per unit mass due to an ellipsoid; and (d) the final solution with a spinning
Earth but supposing now the gravitational force per unit mass due to an ellipsoid.

We consider a spherical coordinate system (r, θ, ϕ) at rest relative to an inertial frame of reference and
with origin at the center of the Earth. The polar and azimuth angles of spherical coordinates, θ and ϕ, vary
from θ = 0 to π rad, and from ϕ = 0 to 2π rad, respectively. The Earth will be supposed as composed
of water with the same constant volume density of mass in all its interior points. According to equation
(7.89), its volume density of inertial mass and its volume density of gravitational mass will be represented
by the same symbol, namely, ρ. An infinitesimal element with volume dV has an inertial mass dmi and a
gravitational mass dmg. According to equations (7.20) and (7.21), these two infinitesimal quantities of mass
will be represented by the same symbol, dm, such that dm = ρdV .

The forces acting on an element of mass dm are the weight of this element due to the gravitational
attraction exerted by the remainder of the Earth, d~Fg, and the buoyant force exerted by the remainder of
the fluid in contact with it, d~Fb. The gravitational force can be written as d~Fg = dm~g, where ~g is the force
per unit mass at the place where dm is located, being exerted by the remainder of the gravitational mass of
the Earth. The buoyant force acting on dm is due to the pressure gradient acting at the place where dm is
located. Representing the pressure by p, the buoyant force can be written as d~Fb = −(∇p)dV . The equation
of motion for this element of mass is given by:

dm~g − (∇p)dV = dm~a . (10.2)

The acceleration ~a which appears in this equation is the acceleration of dm relative to an inertial frame
of reference.

Calculation of the Gravitational Force per Unit Mass Due to a Spherical Distribution of Mass
at Rest

We first consider the Earth (or any planet) at rest relative to the inertial frame of reference utilized for these
calculations, ~a = ~0.

In order to solve equation (10.2) when ~a = ~0 we need the force per unit mass, ~g. As Newton said,10

the equal gravitation of the parts on all sides would give a spherical figure to the stationary planet. Let us
suppose then the whole mass M of the planet distributed uniformly over a sphere of radius R. Its uniform
density of mass is given by ρ = 3M/(4πR3). Utilizing equation (1.15) it can be easily shown that the
gravitational force per unit mass acting at an infinitesimal mass located at ~r inside this distribution of mass
is given by:

~g(r < R) = −GMr
r̂

R3
. (10.3)

That is, the gravitational force per unit mass inside the Earth changes linearly with the distance r from
the center of the Earth, pointing towards this center.

The gradient of pressure in spherical coordinates is written as:

∇p =
∂p

∂r
r̂ +

1

r

∂p

∂θ
θ̂ +

1

r sin θ

∂p

∂ϕ
ϕ̂ , (10.4)

where r̂, θ̂ and ϕ̂ are the unit vectors along the r, θ and ϕ directions of spherical coordinates.
Applying equations (10.3) and (10.4) into equation (10.2) with ~a = ~0 yields:

dp

dr
= −GMρ

R3
r . (10.5)

10[New34, p. 424] and [New08b, p. 213].
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Integrating this equation and imposing that p(R) = po, where po is the atmospheric pressure, yields the
pressure anywhere inside the planet as given by:

p(r) = po +
GMρ

2R
− GMρ

2R3
r2 . (10.6)

Therefore the internal pressure of a stationary planet increases from the surface of the planet towards
its center, going from po to po +GMρ/(2R). While g varies linearly with the distance r to the center, the
pressure varies quadratically with r.

Calculation of the Shape of the Spinning Earth by Supposing a Gravitational Force per Unit
Mass Due to a Spherical Distribution of Matter

We now assume that the Earth spins around its North-South axis with a constant angular velocity ~ω = ωdẑ
relative to an inertial frame of reference. The z axis has been chosen along the North-South axis of the
Earth to simplify the calculations. The subindex d indicates the dynamic rotation of the Earth relative to
Newton’s absolute space, or relative to this inertial frame of reference.

The position vector of an element of mass dm in rectangular (x, y, z), spherical (r, θ, ϕ) and cylindrical
(u, ϕ, z) coordinates is given by:

~r = xx̂+ yŷ + zẑ = rr̂ = uû+ zẑ . (10.7)

Here r =
√

x2 + y2 + z2 is the distance of dm to the origin of the coordinate system, while u ≡
√

x2 + y2 = r sin θ means the distance of dm to the z axis of rotation. Moreover, û = r̂ sin θ + θ̂ cos θ
is the unit vector of cylindrical coordinates expressed in spherical coordinates.

The element dm describes a circular orbit around the z axis with a constant angular velocity ωdẑ.
Therefore it has only a centripetal acceleration pointing towards the axis of rotation given by:

~a = ~ωd × (~ωd × ~r) = −ω2
duû = −ω2

dr sin θ(r̂ sin θ + θ̂ cos θ) . (10.8)

In order to solve this problem we utilize as a first approximation a gravitational force per unit mass due
to a spherical distribution of matter.11 That is, we will utilize the force per unit mass given by equation
(10.3). We imagine a pipe extending from the North pole to the South pole and another pipe extending
along the equatorial plane from West to East. When the Earth is at rest relative to an inertial frame of
reference, the water goes in both pipes until the radius R of the Earth, figure 10.6 (a). When the water spins
around its North-South axis with a constant angular velocity relative to an inertial frame of reference, the
level of the water along the Equator will rise to a higher distance R>, while the level of the water along the
North-South axis will reduce to a lower distance R<, figure 10.6 (b).

(a) (b)

R<

R>

wd

Figure 10.6: (a) Earth at rest relative to an inertial frame of reference. (b) Earth spinning with a constant
angular velocity ~ωd relative to an inertial frame of reference.

When there are no pipes, the figure of the Earth will be elliptical. As a first approximation we utilize
a gravitational force per unit mass due to a spherical distribution of matter, equation (10.3). Applying
equations (10.3), (10.4) and (10.8) into equation (10.2) yields the following r̂ and θ̂ components of the
equation of motion, respectively:

11See [Sym71, Exercise 7.10, p. 292] and [Sym82, Exercise 7.10, p. 325].
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−GMρ

R3
r − ∂p

∂r
= −ω2

dρr sin
2 θ , (10.9)

and

−1

r

∂p

∂θ
= −ω2

dρr sin θ cos θ . (10.10)

The solutions of these two equations lead to the following expression for the pressure p inside the fluid:

p = −GMρr2

2R3
+

ρω2
dr

2 sin2 θ

2
+ C , (10.11)

where C is a constant.
The isobaric surface which is at atmospheric pressure po is characterized by an equation relating r with

θ, namely:

r2 =
2R3

ρGM

C − po

1− ω2

d
R3

GM sin2 θ
. (10.12)

Let R< represent the polar radius when θ = 0. Equation (10.12) leads to:

R2
< =

2R3

ρGM
(C − po) . (10.13)

Let R> represent the equatorial radius when θ = π/2 rad. Equation (10.12) leads to:

R2
> =

2R3

ρGM

C − po

1− ω2

d
R3

GM

=
R2

<

1− ω2

d
R3

GM

. (10.14)

This equation shows that R> is bigger than R<. Therefore, the simple rotation of the Earth around
its North-South axis, relative to an inertial frame of reference, makes it assume an ellipsoidal figure if it is
composed of a fluid matter. That is, instead of assuming a spherical shape of radius R, the Earth becomes
flattened at the poles with a polar radius R< smaller than its equatorial radius R>. The shape of the Earth
is represented in figure 10.7.

R<

R>

R

Figure 10.7: Flattening of the Earth.

For the Earth the following approximation is known to be valid:

ω2
dR

3

GM
≪ 1 . (10.15)

Equation (10.15) applied into equation (10.14) leads to the following result, valid up to first order in
ω2
dR

3/(GM):

R> ≈ R<

(

1 +
ω2
dR

3

2GM

)

. (10.16)

As we are supposing an incompressible fluid, the density ρ and the total volume of water must remain
constant. The volume of a sphere of radius R is given by 4πR3/3, while the volume of an ellipsoid of smaller
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radius R< along the z axis and larger radius R> along the equatorial xy plane is given by 4πR<R
2
>/3. By

equating the volumes of this sphere and ellipsoid we get:

R3 = R<R
2
> . (10.17)

Equations (10.16) and (10.17) yield the following results, up to first order in ω2
dR

3/(2GM):

R> ≈ R

(

1 +
ω2
dR

3

6GM

)

, (10.18)

and

R< ≈ R

(

1− ω2
dR

3

3GM

)

. (10.19)

From equation (10.16) the ratio of the diameter of the Earth at the Equator to its diameter from pole to
pole is given by:

R>

R<
≈ 1 +

ω2
dR

3

2GM
. (10.20)

In order to obtain a numerical value for this expression we need the values of ωd, R, G and M . Utilizing
ωd = 7.29× 10−5 rad/s, R = 6.37× 106 m, G = 6.67× 10−11 Nm2/kg2 and M = 5.98× 1024 kg we get:

R>

R<
≈ 1 +

ω2
dR

3

2GM
≈ 1.0017 . (10.21)

The value ωd = 7.29× 10−5 rad/s which we are assuming for the dynamic angular velocity of the Earth
coincides with the value of the kinematic angular velocity of the Earth relative to the fixed stars. That is,
this value corresponds to a sidereal day with a period of T = 86, 164 seconds.

The value of the flattening of the Earth given by equation (10.21) is approximately half the value en-
countered by making measurements of the figure of the Earth. There is a problem with this calculation.
Due to the dynamic rotation of the Earth, it changes its shape, assuming an ellipsoidal figure. This modified
shape will change the gravitational force per unit mass acting inside it. Therefore this value will no longer
be given by equation (10.3). In order to arrive at a more precise value for the flattening of the Earth than
the flattening given by equations (10.20) and (10.21), it is necessary to utilize the gravitational force per
unit mass due to an ellipsoid.

Calculation of the Gravitational Force per Unit Mass Due to an Ellipsoidal Distribution of
Matter at Rest

We now suppose an ellipsoidal body at rest relative to an inertial frame of reference. It is composed of an
incompressible fluid.

The gravitational force per unit mass acting on any infinitesimal element and being due to an ellipsoidal
distribution of mass at rest can be obtained following, for instance, the procedure indicated by Symon.12

We do not present here all calculations but only the main results we obtained following this approach.
There is an ellipsoid at rest relative to an inertial frame of reference, centered at the origin, with semi-axes

a, b and c along the x, y and z axes, respectively, such that a = b = R> and c = R< = R>(1 − η) with
η ≪ 1. The equation describing this ellipsoid is given by:

x2

R2
>

+
y2

R2
>

+
z2

R2
<

= 1 . (10.22)

It is represented in figure 10.8 at the y = 0 plane.
Utilizing r =

√

x2 + y2 + z2, equation (10.22) and figure 10.8, the equation describing the surface of this
ellipsoid in the y = 0 plane, up to first order in η, is given by:

r ≈ R>(1− η cos2 θ) ≈ R<(1 + η − η cos2 θ) ≈ R
(

1 +
η

3
− η cos2 θ

)

. (10.23)

12[Sym71, Exercises 6.17 and 6.21, pp. 269-270] and [Sym82, Exercises 6.17 and 6.21, pp. 301-302].



170 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

R<

R>O
x

z

q
r

Figure 10.8: Earth like an ellipsoid.

We suppose once again an incompressible fluid of uniform volume mass density ρ in all internal points.
Let M be the mass of this ellipsoid and R its average radius. By equating the mass and volume of this
ellipsoid with the mass and volume of a sphere with the average radius one gets:

M =
4πρR3

3
=

4πρR<R
2
>

3
. (10.24)

Combining equation (10.24) with a = b = R> and c = R< = R>(1− η) yields, up to first order in η:

R> = a = b ≈ R<(1 + η) ≈ R
(

1 +
η

3

)

, (10.25)

R< = c = R>(1− η) ≈ R

(

1− 2η

3

)

, (10.26)

and

R ≈ R>

(

1− η

3

)

≈ R<

(

1 +
2η

3

)

. (10.27)

Consider a point mass m1 located at ~r1 and another point mass m2 located at ~r2 relative to the origin
of an inertial frame of reference. The gravitational potential energy U between these two point masses
separated by a distance r is given by:

U = −Gm1m2

r
≡ m1Φ(~r1) . (10.28)

Here Φ(~r1) is the gravitational potential at the location of m1, ~r1, due to the mass m2 located at ~r2. It is
defined by the following relation:

Φ(~r1) ≡ −Gm2

r
= − Gm2

|~r1 − ~r2|
. (10.29)

We can calculate the gravitational potential at an arbitrary point of space due to the mass of this ellipsoid
by integrating equation (10.29). To this end we replace m2 by an infinitesimal element of mass dm2 = ρdV2 =
ρr22 sin θ2dr2dθ2dϕ2. After integrating this expression over the whole ellipsoid the value we found for this
potential Φ for a point (r, θ) inside the ellipsoid is given by, up to first order in η:

Φ(r, θ) ≈ −GM

2R3
(3R2 − r2)− GM

R3

ηr2

5
(1− 3 cos2 θ) . (10.30)

Analogously the potential Φ for a point (r, θ) outside the ellipsoid is given by, once more up to first order
in η:

Φ(r, θ) ≈ −GM

r

[

1 +
ηR2

5r2
(1− 3 cos2 θ)

]

. (10.31)

The gravitational potential energy dU of an element of mass dm interacting with this ellipsoid is given
by dU = dmΦ. The gravitational force d~Fg exerted by this ellipsoid on dm is given by:

d~Fg = −∇(dU) = −dm∇Φ = dm~g . (10.32)
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Applying this equation into equation (10.30) yields the gravitational force per unit mass, d~Fg/dm = ~g,
acting on an element of mass inside the ellipsoid as given by (once more up to first order in η):

~g ≈ −GMr

R3

{[

1− 2

5
η(1 − 3 cos2 θ)

]

r̂ − 6

5
η sin θ cos θθ̂

}

. (10.33)

The fact that the gravitational force inside an ellipsoid, along each axis, grows linearly with the distance
to the origin, was well known to Newton:13

Proposition 91. Problem 45

To find the attraction of a corpuscle situated in the axis of a round solid, to whose several points
there tend equal centripetal forces decreasing in any ratio of the distances whatsoever.

[...]

Corollary 3. If the corpuscle be placed within the spheroid and in its axis, the attraction will be
as its distance from the centre. [...]

Equations (10.32) and (10.30) yield analogously the force per unit mass acting on an infinitesimal element
located outside the ellipsoid, namely:

~g ≈ −GM

r2

{[

1 +
3

5

R2

r2
η(1 − 3 cos2 θ)

]

r̂ − 6

5

R2

r2
η sin θ cos θθ̂

}

. (10.34)

The force per unit mass acting on a test body located at the surface of the ellipsoid is given by:

~g ≈ −GM

R2
>

(

1 +
3η

5
+

η cos2 θ

5

)

r̂+
6

5

GM

R2
>

η sin θ cos θθ̂ ≈ −GM

R2
<

(

1− 7η

5
+

η cos2 θ

5

)

r̂+
6

5

GM

R2
<

η sin θ cos θθ̂

≈ −GM

R2

(

1− η

15
+

η cos2 θ

5

)

r̂ +
6

5

GM

R2
η sin θ cos θθ̂ . (10.35)

Equation (10.35) yields that the ratio of the force acting on an element of mass located at the surface of
the ellipsoid in the pole (r = R<, θ = 0) to the force acting on an element of mass located at the surface of
the ellipsoid in the Equator (r = R>, θ = π/2 rad) is given by:

Fpole

FEquator
≈ 1 + 4η/5

1 + 3η/5
≈ 1 +

η

5
. (10.36)

Calculation of the Shape of the Spinning Earth by Supposing a Gravitational Force per Unit
Mass Due to an Ellipsoidal Distribution of Matter

Up to now we supposed an ellipsoidal body at rest relative to an inertial frame of reference.
We now suppose this ellipsoidal body rotating around its z axis, relative to an inertial frame of reference,

with a constant angular velocity ~ω = ωdẑ. In this case the centripetal acceleration of an element of mass
dm describing a circular orbit around the North-South axis is given by equation (10.8). We then apply
equations (10.4), (10.8) and (10.33) into equation (10.2). In this case we do not yet know the value of η,
which still needs to be calculated. But by the analysis of a spinning Earth with a force per unit mass due to
a spherical distribution of mass, we expect η to have the same order of magnitude as ω2

dR
3/GM . Equation

(10.33) applied into equation (10.2) yields the following expression for the pressure p anywhere inside the
fluid Earth:

p = −GρMr2

2R3

(

1 +
4

5
η

)

+

(

ω2
d

2
+

3

5
η
GM

R3

)

ρr2 sin2 θ + C , (10.37)

where C is a constant.
By equating the pressure at the pole (r = R<, θ = 0) with the pressure at the Equator (r = R>,

θ = π/2 rad), using also η ≪ 1, ω2
dR

3/GM ≪ 1 and that η has the same order of magnitude as ω2
dR

3/GM ,
yields:

η =
5ω2

dR
3

4GM
. (10.38)

13[New34, Book I, Proposition 91, Problem 45, Corollary 3] and [New90]. See also [Mar89].
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Therefore:

p = −GρMr2

2R3

(

1 +
ω2
dR

3

GM

)

+
5

4
ω2
dρr

2 sin2 θ + C . (10.39)

In the y = 0 plane we have r2 = x2 + z2 and r sin θ = x. In this plane the equation describing the free
surface of fluid can be written as:

x2

R2
>

+
z2

R2
<

= 1 , (10.40)

with

R> =

√

(

1 +
3

2

ω2
dR

3

GM

)

2(C − po)R3

ρGM
, (10.41)

and

R< =

√

(

1− ω2
dR

3

GM

)

2(C − po)R3

ρGM
. (10.42)

Expression (10.40) gives the equation of an ellipsis. This is the shape of the Earth in the xz plane
according to these calculations. Utilizing once more ω2

dR
3/GM ≪ 1 yields:

R>

R<
≈

√

√

√

√

1 +
3ω2

d
R3

2GM

1− ω2

d
R3

GM

≈ 1 + η ≈ 1 +
5ω2

dR
3

4GM
. (10.43)

In order to obtain the value of the ratio R>/R<, it is necessary the value of the constant G = 6.67 ×
10−11 m3/(kgs2), equation (1.8), the mass of the Earth, M = 5.98× 1024 kg, and the average radius of the
Earth, R = 6.37× 106 m. Moreover, let us suppose that the dynamic angular velocity of the Earth, ωd, has
the same value as the kinematic angular velocity of the Earth relative to the frame of fixed stars, equation
(10.1), namely:

ωd = ωk = 7.29× 10−5 rad

s
. (10.44)

Utilizing these values of G, M , R and ωd into equation (10.43) yields:

R>

R<
≈ 1 +

5ω2
dR

3

4GM
≈ 1.0043 . (10.45)

And this result agrees with Newton’s prediction, namely:

R>

R<
≈ 230

229
≈ 1.0044 . (10.46)

Two aspects are important to emphasize here. (I) The first one is that to arrive at equation (10.43) we
utilized the rotation of the Earth relative to absolute space, together with the gravitational force per unit
mass due to an ellipsoid. The earlier result given by equation (10.20) did not yield a precise value because
it utilized the gravitational force per unit mass due to a sphere. (II) The second aspect to take notice is
that the angular velocity ωd which appears in equation (10.43) is the dynamic angular velocity of the Earth
relative to absolute space or relative to an inertial frame of reference. In principle this ωd has no conceptual
relation with the kinematic angular velocity ωk of the Earth relative to the fixed stars which was discussed
in Section 10.1. However, in order to arrive at the correct value for the flattening of the Earth given by
equation (10.45), which agrees with the measurements, it was necessary to impose the equality between ωd

and ωk, as indicated by equation (10.44).
Figure 10.9 presents the flattened Earth spinning relative to the fixed stars with a kinematic angular

velocity ωk.
We now present an alternative way of arriving at equation (10.44). Equation (10.43) yields the dynamic

angular velocity of the Earth relative to an inertial frame as given by:
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Figure 10.9: Flattened Earth spinning around its axis with an angular velocity ωk relative to the fixed stars.

ωd ≈
√

4GM

5R3

(

R>

R<
− 1

)

. (10.47)

Utilizing equation (10.47) and the measured value of the flattening of the Earth given by R>/R< ≈ 1.0043,
together with the known values of G, M and R, yields:

ωd ≈ 7.29× 10−5 rad

s
. (10.48)

That is, in order to obtain the value of ωd we need only the measured values of the mass of the Earth
and the value of the ratio of its polar radius to its equatorial radius. Therefore it is not necessary to look
at the stars to obtain the value of ωd. We only need to measure R> and R<, which in principle could be
done utilizing rulers over the ground even in a clouded weather, without knowing the existence of stars and
galaxies. It is not necessary to make any measurement related with astronomical bodies around the Earth
in order to know its dynamic angular velocity relative to absolute space.

However, curiously, this value of ωd given by equation (10.48) coincides with the value of the kinematic
angular velocity of the Earth relative to the fixed stars given by equation (10.1).

The z axis passing through the center of the Earth and along which the terrestrial ellipsoid has its smaller
radius R< can be called the dynamic axis of the rotation of the Earth. The plane xy passing through the
center of the Earth and orthogonal to the z axis is the plane along which the terrestrial ellipsoid has its
greater radius R>. It can be called the dynamic equatorial plane of rotation of the Earth. This z axis and
this xy plane normal to the z axis can be obtained by making measurements of the figure of the Earth on
its surface, without looking at the stars. However, curiously, in practice it is found that this dynamic axis
of rotation of the Earth obtained by its flattened shape coincides with the kinematic axis of rotation of the
Earth around the North-South geographic axis of the Earth relative to the fixed stars, which has been known
by astronomers since more than two thousand years. Therefore the dynamic angular velocity of the Earth
relative to an inertial frame of reference has not only the same numerical value of the kinematic angular
velocity of the Earth relative to the fixed stars, as given by equation (10.44), but they also agree with one
another spatially. That is, they point along the same direction relative to the ground. Therefore these two
angular velocities are completely equivalent to one another, namely:

~ωd = ~ωk . (10.49)

The equality between ~ωd and ~ωk given by equations (10.44) and (10.49) should not be a coincidence. The
question is how to find a connection between these two rotations of the Earth, which have no conceptual
relation with one another. That is, it is necessary to find an explanation for this equality of two rotations of
the Earth which are obtained by methods and procedures which are completely distinct from one another.
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10.2.3 What Would Be the Shape of the Earth If It Remained at Rest in Space

while All Other Astronomical Bodies Rotated around Its North-South

Axis with the Period of One Day?

Subsection 10.2.1 showed that the Earth is flattened at the poles due to its rotation around its North-South
axis, relative to absolute space or relative to an inertial frame of reference, with a period of one day. Newton
supposed the fixed stars to be at rest relative to absolute space, as seen in Subsection 1.6.3.

A fundamental question which can be asked is the following: Suppose an hypothetical situation in which
the Earth were spherical and at rest relative to Newton’s absolute space, while all other astronomical bodies
around it were also at rest relative to absolute space. What would be the shape acquired by the Earth if it
were possible to rotate all astronomical bodies around the North-South axis of the Earth, relative to absolute
space, with a period of one day, while the Earth remained at rest in absolute space? Let us suppose, in
particular, that the visual situation is completely symmetric. In the first configuration the Earth rotates from
the East to West, relative to absolute space, around its North-South axis, while the stars are at rest relative
to absolute space. In the second configuration, on the other hand, the stars and all other astronomical bodies
rotate from West to East, relative to absolute space, around the North-South axis of the Earth, while the
Earth remains stationary relative to absolute space. Motion and rest in these two configurations are referred
to Newton’s absolute space. These two configurations are then visually or kinematically equivalent, as there
is the same relative rotation between the Earth and the surrounding astronomical bodies in both cases. This
relative rotation has the period of one day.

According to newtonian mechanics the Earth will be flattened in the first configuration, but not in
the second configuration. Although these two configurations are kinematically equivalent, they are not
dynamically equivalent. In the second configuration the Earth should remain spherical. This is illustrated
in figure 10.10. The paper coincides with Newton’s absolute space.

N

S

N

S

ω

-ω

-ω

(a) (b)

Figure 10.10: The paper coincides with Newton’s absolute space. (a) Flattened Earth spinning once a day
around its axis, while the stars remain at rest relative to absolute space. (b) Spherical stationary Earth,
while the stars rotate once a day, relative to absolute space, around the axis of the Earth.

In Figure 10.10 (a) the Earth rotates once a day around its axis, relative to absolute space, while the
stars remain at rest. The Earth is flattened at the poles, as first calculated by Newton, see Subsection 10.2.1.
This ellipsoidal figure of the Earth has since then been confirmed by measurements. Figure 10.10 (b) shows
a thought experiment which presents a situation which is kinematically equivalent to situation (a). Now
the Earth is stationary in absolute space, while the set of stars rotate together around its axis, relative to
absolute space, with the same period of one day.

The Earth should be spherical in the configuration of figure 10.10 (b) according to newtonian mechanics,
as can be easily seen. The only forces acting on any element of water belonging to the Earth are the
gravitational force exerted by the remainder of the gravitational mass of the Earth and the buoyant force
due to the gradient of pressure at the location of this element. These two forces balance one another,
giving a spherical shape for the stationary Earth, as seen in the first calculation of Subsection 10.2.2.
The stars and galaxies are distributed more or less uniformly around the Earth. Therefore, according to
Newton’s Proposition 70, Theorem 30, Book I of the Principia, presented in Subsection 1.4.1, they exert
no resultant force on any molecule of water. As his gravitational force does not depend on the velocity nor
on the acceleration of the interacting bodies, the result given by equation (1.15) will remain valid when the
spherical shell is spinning in absolute space, as seen in equation (1.21). Therefore, even when the stars are
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rotating together around the Earth, as in figure 10.10 (b), we can neglect the net force exerted by them on
any molecule of water. There will be no centrifugal force acting on the stationary Earth of figure 10.10 (b).
Therefore it will remain spherical in this hypothetical situation.

That is, although the two situations of figure 10.10 are kinematically equivalent, they are not dynamically
equivalent. In situation (a) there is a flattening of the Earth which can be measured and detected. In situation
(b), on the other hand, the Earth should remain spherical.

This whole argument would also be valid considering the rotation of the Earth and of the set of fixed stars
relative to an inertial frame of reference S, instead of referring motion to Newton’s absolute space. That is,
in the situation of figure 10.10 (a) the Earth would be flattened if it were spinning once a day around its
North-South axis relative to S while the set of fixed stars remained at rest in S. In the situation of figure
10.10 (b), on the other hand, the Earth should remain spherical if it remained at rest in S, while the fixed
stars were spinning as a whole once a day, relative to S, around the North-South axis of the Earth.

Newton himself expressed clearly his belief that the Earth would not be flattened in the situation of
figure 10.10 (b) in a very interesting text called On the gravity and equilibrium of fluids. In this work
Newton introduced arguments against the conception of motion presented by Descartes (1596-1650) in his
book Principles of Philosophy which had been published in 1644. Newton studied Descartes’s book while he
was a student at Cambridge University (1661-1665). This text by Newton was first published in 1962. The
editors who published it, A. R. Hall and M. B. Hall, suggested that this text by Newton might have been
written between 1664 and 1668.14 According to Whiteside, it was written soon after 1668.15 Betty Dobbs,
on the other hand, believed this text was written between 1679 and 1687.16 In this work Newton said the
following, our emphasis:17

Fourthly. It also follows from the same doctrine that God himself could not generate motion in
some bodies even though he impelled them with the greatest force. For example, if God urged
the starry heaven together with all the most remote part of creation with any very great force
so as to cause it to revolve about the Earth (suppose with a diurnal motion): yet from this,
according to Descartes, the Earth alone and not the sky would be truly said to move (part III,
Ar. 38).18 As if it would be the same whether, with a tremendous force, He should cause the
skies to turn from East to West, or with a small force turn the Earth in the opposite direction.
But who will imagine that the parts of the Earth endeavour to recede from its centre on account of
a force impressed only upon the heavens? Or is it not more agreeable to reason that when a force
imparted to the heavens makes them endeavour to recede from the centre of the revolution thus
caused, they are for that reason the sole bodies properly and absolutely moved; and that when a
force impressed upon the Earth makes its parts endeavour to recede from the centre of revolution
thus caused, for that reason it is the sole body properly and absolutely moved, although there
is the same relative motion of the bodies in both cases. And thus physical and absolute motion
is to be defined from other considerations than translation, such translation being designated as
merely external.

We believe that Newton wrote this text before having the final formulation of his theory of universal
gravitation. In particular, it should have been written before Newton proved that a spherical shell exerts no
resultant force upon any internal test particle, equation (1.15). Since the beginning of his studies Newton
had a deep belief in absolute space. This space had no relation with anything material. He also always
believed it was possible to conceive the motion of any body relative to this empty space, even if there were
no other bodies in the universe.

After he obtained the result given by equation (1.15), he could utilize a much stronger argument in order
to reject any gravitational influence exerted by the set of fixed stars upon any body belonging to the solar
system. This mathematical argument has been mentioned explicitly in the Principia:19

[...] the fixed stars, everywhere promiscuously dispersed in the heavens, by their contrary attrac-
tions destroy their mutual actions, by Proposition 70, Book I.

14[HH62, p. 90].
15[Whi70, p. 12], [TPF10] and [Mar12].
16[Coh99, pp. 47, 58 and 100].
17[HH62, pp. 127-128], [New83, pp. 66-67] and [Ear89, p. 63].
18[Note by Hall and Hall:] That according to Tycho’s hypothesis, the Earth is said to move around its own centre.
19[New34, Corollary 2, Proposition 14, Theorem 14, Livro III, p. 422] and [Corollary 2, Proposition 14, Theorem 14, Livro

III, p. 211] [New08b].
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In any event, it is remarkable that Newton himself considered the relational point of view and thought in
the possibility that by rotating the set of stars around a test body, centrifugal forces might arise in this body.
He rejected this idea, believing that these forces to recede from the axis of rotation would not be present in
this hypothetical situation. But it is fascinating to notice that he considered seriously this possibility. As
his text On the gravity and equilibrium of fluids was only published in 1962, it did not influence the authors
working on the foundations of mechanics in the 300 years after the publication of the Principia in 1687.
Only 200 years after the Principia did Ernst Mach think again on this possibility, namely, that by rotating
the heaven of stars around a test body, centrifugal forces might act on this body. Mach’s points of view will
be discussed in Sections 14.6 and 14.7.

10.2.4 Foucault’s Pendulum

The most striking demonstration of the dynamic rotation of the Earth was obtained in 1851 by Léon Foucault
(1819-1868).20 The importance of this experiment is that it can be performed in a closed room. With this
experiment we can obtain the value and direction of the absolute rotation of the Earth without looking at
the stars.

The experiment consists of a simple pendulum as that one discussed in Section 8.3, but now it oscillates
outside the terrestrial Equator. Let us suppose it is oscillating at the North pole, as in figure 10.11. The
period of oscillation of a simple pendulum of length ℓ is given by T = 2π

√

ℓ/g, where g ≈ 9.8 m/s2 is the
gravitational force per unit mass close to the Earth. The angular frequency of oscillation of this pendulum
is given by ωp = 2π/T =

√

g/ℓ.
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Figure 10.11: Pendulum oscillating at the North pole with an angular frequency ωp.

Neglecting air friction, the forces acting on the mass m suspended by the string of the pendulum are
the gravitational attraction of the Earth, the weight ~Fg = −mgr̂, and the tension ~T exerted by the string.
The weight points towards the center of the Earth, while the tension points along the direction of the string.
These two forces form a plane passing through the center of the Earth. Therefore, if the pendulum is released
from rest, it should always oscillate along the plane formed by ~Fg and ~T . A person standing in the ground
should expect the plane of oscillation to remain fixed relative to the ground.

However, by performing the experiment, the plane of oscillation of the pendulum is found to precess
relative to the terrestrial frame T with an angular velocity ΩpT , changing its direction by 15o in each hour,
as indicated in figure 10.12. The plane of oscillation rotates clockwise when seen from above, looking from
the North pole towards the center of the Earth. In this figure the rectangle represents a wall fixed in the
ground.
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Figure 10.12: Foucault’s pendulum oscillating at the North pole. (a) Initial orientation of the plane of
oscillation. (b) Orientation of the plane of oscillation after 3 hours. (c) The plane of oscillation rotates
clockwise relative to the ground with an angular velocity ΩpT .

20[Fou51a] and [Fou51b].
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At the South pole the same phenomenon happens, but now the plane of oscillation rotates anti-clockwise
relative to the ground when seen from above, that is, from the South pole towards the center of the Earth,
as in figure 10.13.
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Figure 10.13: (a) Pendulum oscillating at the South pole with an angular frequency ωp. (b) Its plane of
oscillation rotates anti-clockwise relative to the ground with an angular velocity ΩpT .

The only bodies acting on the test mass m are the Earth and the stretched string. There are no other
bodies which seem to cause the plane of oscillation of the pendulum to rotate in this way relative to the
ground. That is, there is no material agent generating this rotation of the plane of oscillation through a
physical interaction with the pendulum. There is no evident reason why the plane of oscillation of the
pendulum should rotate clockwise at the North pole and anti-clockwise at the South pole. It is not clear
the explanation for the numerical value of the angular velocity of precession of the plane of oscillation of the
pendulum relative to ground. That is, it is not easy to find a physical mechanism explaining a rotation of
15o in each hour.

The interpretation of this experiment given by Foucault and by the majority of physicists since then is
that the plane of oscillation of the pendulum is really fixed in space, although this plane of oscillation is
not fixed relative to the ground. These physicists suppose, in particular, that the plane of oscillation of the
pendulum remains fixed relative to absolute space or relative to an inertial frame of reference. The Earth,
on the other hand, would be rotating relative to this inertial frame with a dynamic angular velocity ~ωd, as
represented in figure 10.14. This rotation of the Earth would happen around its North-South axis, in the
anti-clockwise direction when seen by someone at rest in this inertial frame, looking from the North pole
towards the South pole.

N

S

ωp

ωp

ωd

Figure 10.14: Earth spinning around its axis relative to absolute space or relative to an inertial frame of
reference.

This absolute rotation of the Earth relative to an inertial frame of reference would then explain the
precession of the plane of oscillation of the pendulum relative to the ground. The plane of oscillation of the
pendulum would remain stationary relative to this inertial frame. This explanation is illustrated in figure
10.15. The rectangle represents a wall fixed in the ground. The paper is supposed at rest relative to this
inertial frame of reference. In (a) and (b) the pendulum is oscillating at the North pole, in the beginning of
the experiment and 3 hours later, respectively. In (c) and (d), on the other hand, the pendulum is oscillating
at the South pole, in the beginning of the experiment and 3 hours later, respectively. In both cases the
planes of oscillation of the pendulum remain fixed relative to this inertial frame of reference.

This is the explanation of the experiment in newtonian mechanics. The supposition that the Earth rotates
relative to absolute space, while the plane of oscillation of the pendulum remains at rest relative to absolute
space, explains the precession of the planes of oscillation of the pendulum relative to the ground, clockwise
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Figure 10.15: Earth rotating relative to an inertial frame of reference with a dynamic angular velocity ωd,
while the planes of oscillation of the pendulum remain fixed in space. (a) Situation at the North pole in the
beginning of the experiment. (b) Situation 3 hours later. (c) Situation at the South pole in the beginning
of the experiment. (d) Situation 3 hours later.

in the North pole and anti-clockwise in the South pole. The value of 15o per hour for the angular velocity
of the planes of oscillation relative to the ground is justified by the supposition that the Earth rotates once
a day around its North-South axis, relative to Newton’s absolute space or relative to an inertial frame of
reference.

In order to observe this effect, the pendulum must remain oscillating for some minutes or hours. Friction
with air and at the upper extremity of the string must be negligible. A pendulum can also oscillate for a
long time provided there is an external mechanism keeping its oscillations, despite the inevitable resistances
with the environment. Foucault initially utilized a pendulum with a length of 2 meters and a sphere of 5 kg
oscillating harmonically. Later on he utilized another pendulum with a suspension cord of 11 meters. His
most famous demonstration was performed at the Pantheon in Paris, with a lead sphere of 28 kg oscillating
connected to a cord of 67 meters. The periods of simple pendulums having lengths of 5, 11 and 67 meters
are given by T = 4.5 s; 6.7 s and 16.4 s, respectively.

At the poles the plane of oscillation of the pendulum is found to precess relative to the ground with a
period of 86,164 seconds, that is, with ΩpT = 7.29× 10−5 rad/s. This period coincides with the value of one
sidereal day. Therefore, the rotation of the plane of oscillation relative to the ground has the same value as
the rotation of the fixed stars around the Earth. At the Equator the plane of oscillation of the pendulum
does not precess relative to the ground. At latitude α the plane of oscillation of the pendulum precesses
relative to the ground with an angular velocity given by:

ΩpT = 7.29× 10−5(sinα)
rad

s
, (10.50)

where the angle α is indicated in figure 10.16. It was Foucault himself who determined in his original paper
of 1851 that the angular displacement of the plane of oscillation relative to the ground was proportional to
the sine of latitude.

Foucault performed his experiments in Paris, at latitude α = 48o51′, such that sinα = 0.75, ΩpT =
5.47 × 10−5 rad/s and the period for a complete turn of the plane of oscillation of the pendulum relative
to the ground was T = 2π/ΩpT = 114.866 s = 31h 54m 26s. In one hour the plane of oscillation of this
pendulum precessed relative to the ground by an angle of 0.20 rad = 11.3o.

The detailed calculations yielding the result of equation (10.50) will be presented in Subsection 11.4.2.
Foucault’s pendulum can be utilized to determine the value and direction of the dynamic rotation of

the Earth relative to absolute space, without looking at the stars or at other astronomical bodies. The
experiment can be made in closed rooms. To obtain ~ΩpT the experiment should be performed at different
locations over the globe. There are only two points over the surface of the Earth in which the plane of
oscillation of the pendulum performs its precession relative to the ground with the greatest value of the
angular velocity given by ΩpT = 7.29× 10−5 rad/s. These two points are located at opposite points relative
to the center of the Earth. The straight line connecting these two points and passing through the center of
the Earth defines the dynamic axis of rotation of the Earth. This axis is found to coincide with the dynamic
axis of rotation of the Earth obtained through its flattening. Moreover, there are several points over the
Earth’s surface in which Foucault’s pendulum does not precess relative to the ground. These points define
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ẑ

m

a

Figure 10.16: Foucault’s pendulum oscillating at latitude α.

a plane passing through the center of the Earth which is orthogonal to the dynamic axis of rotation. This
plane coincides as well with the equatorial plane of the dynamic rotation of the Earth obtained through its
flattened figure.

We can then compare the dynamic rotation of the Earth obtained with Foucault’s pendulum, that is, its
angular velocity ~ωd relative to an inertial frame of reference, with the kinematic rotation of the Earth relative
to the fixed stars, that is, with its angular velocity ~ωk. These two angular velocities are found to agree with
one another numerically and vectorially, as given by equations (10.44) and (10.49). That is, the two points
over the surface of the Earth in which the precession of the plane of oscillation of Foucault’s pendulum
relative to the ground has its maximum value coincide with the geographic North and South poles of the
Earth, around which rotate the set of fixed stars. Moreover, the planes of oscillation of these pendulums
located at these two points follow precisely the motion of the fixed stars around the Earth.

It is curious to observe Foucault’s own description of his experiment. Sometimes he speaks about the
rotation of the Earth relative to space, while in other portions of his work he speaks about the rotation of the
Earth relative to the fixed stars (heavenly sphere). That is, he did not distinguish clearly these two rotations
or these two concepts (dynamic rotation of the Earth relative to absolute space and kinematic rotation of
the Earth relative to the celestial bodies). For example, he begins by stating that his experiment showing
the precession of the plane of oscillation “gives a sensible proof of the diurnal motion of the terrestrial globe.”
In order to justify this interpretation of the observed experimental result, he imagined a pendulum located
exactly at the North pole oscillating to and fro in a fixed plane, while the Earth rotated below the pendulum.
He then said (our emphasis):21

Thus a movement of oscillation is excited in an arc of a circle whose plane is clearly determined,
to which the inertia of the mass gives an invariable position in space. If then these oscillations
continue for a certain time, the motion of the Earth, which does not cease turning from West
to East, will become sensible by contrast with the immobility of the plane of oscillation, whose
trace upon the ground will appear to have a motion conformable to the apparent motion of the
heavenly spheres; and if the oscillations could be continued for twenty-four hours, the trace of
their plane would have executed in that time a complete revolution about the vertical projection
of the point of suspension.

When describing his real experiment performed at Paris, he stated:

In less than a minute, the exact coincidence of the two points ceases to be reproduced, the
oscillating point being displaced constantly towards the left of the observer; which indicates
that the direction of the plane of oscillation takes place in the same direction as the horizontal
component of the apparent motion of the celestial sphere.

It is not necessary to mention the kinematic rotation of the Earth relative to the fixed stars in order to
describe Foucault’s pendulum. After all, this experiment can be described and explained utilizing only the

21[Fou51a] and [Fou51b].
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Earth, the pendulum and Newton’s absolute space (or any inertial frame of reference). However, there are
some very suggestive coincidences when the stars are included in the description of this experiment.

We do not see absolute space, as it has no relation with anything material. On the other hand, the fixed
stars are observed to rotate around the North-South axis of the Earth with a period of one sidereal day.
Let F be the frame of fixed stars, that is, the frame of reference relative to which the set of stars are seen
at rest. We will consider a pendulum oscillating at the North pole. Figure 10.17 shows the pendulum of
length ℓ performing small oscillations with an angular frequency ωp =

√

g/ℓ. The Earth rotates around its
North-South axis relative to the frame F of the fixed stars with a period of one sidereal day, T = 86, 164 s,
and an angular velocity ωEF = 7.29× 10−5 rad/s.
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Figure 10.17: Pendulum oscillating at the North pole with an angular frequency ωp =
√

g/ℓ while the Earth
rotates around its North-South axis, relative to the frame F of fixed stars, with an angular velocity ωEF .

The plane of oscillation of pendulum is observed to remain at rest relative to the fixed stars, figure 10.18.
The paper where these figures were drawn coincides the frame F of the fixed stars. The rectangle represents
a wall fixed in the ground. The pendulum oscillates at the North pole with an angular frequency ωp. The
plane of oscillation of the pendulum remains at rest relative to the stars, while the Earth rotates relative to
the stars with an angular velocity ωEF .
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Figure 10.18: Pendulum oscillating at the North pole in the frame F of the fixed stars while the Earth
rotates relative to F . (a) Initial orientation of the plane of oscillation. (b) Orientation after 3 hours. The
plane of oscillation remains at rest relative to the stars.

The situation of figure 10.18 as seen by someone standing at the North pole, at rest relative to the
ground, is illustrated in figure 10.19. The rectangle represents a wall fixed in the ground. The Earth is at
rest and the pendulum oscillates with an angular frequency ωp over the North pole. In this terrestrial frame
of reference the plane of oscillation of the pendulum is observed to precess relative to the ground with an
angular velocity ΩpT = 7.29× 10−5 rad/s. Let ωFT represent the angular velocity of rotation of the set of
fixed stars, relative to the terrestrial frame T , around the North-South axis of the Earth. These two angular
velocities are seen to agree with one another, that is, ωFT = ΩpT = 7.29× 10−5 rad/s. Therefore the plane
of oscillation of the pendulum and the set of fixed stars make a complete turn around the Earth with a
period of one sidereal day.

Figure 10.20 presents the same situation for a pendulum oscillating at the South pole. The rectangle
represents a wall fixed in the ground. Situations (a) and (b) present the experiment in the frame F of the
fixed stars, in the beginning of the experiment and after 3 hours, respectively. Situations (c) and (d) present
the experiment in the terrestrial frame of reference, in the beginning of the experiment and after 3 hours,
respectively.

The situations presented in figure 10.19 are very suggestive. The same can be said of figure 10.20 (c)
and (d). They indicate that the precession of the plane of oscillation of the pendulum relative to the ground
may be related with the motion of the fixed stars around the Earth. In particular, the set of stars rotating



Ch. 10: Diurnal Rotations of the Earth 181

N
N

(a) (b)

Figure 10.19: Situation of figure 10.18 seen from the ground.

S

(a) (b)

ωEF S ωEF

S

(c)

S

(d)

F F

Figure 10.20: Pendulum at the South pole. (a) Initial situation in the frame F of the fixed stars. (b)
Situation after 3 hours. (c) Initial situation in the terrestrial frame of reference. (d) Situation after 3 hours.

around the Earth may cause the precession of the plane of oscillation of Foucault’s pendulum relative to the
ground. The rotation of the set of celestial bodies around the Earth might force the plane of oscillation of
the pendulum to follow these bodies. This would be analogous to figure 8.17 in which the plane of oscillation
of an electrified pendulum precesses in the same sense as the rotation of a charged spherical shell around the
pendulum. This last precession of the plane of oscillation is due to an interaction between the charge Q of
the electrified spherical shell and the charge q of the electrified pendulum.

The suggestion here is that there may exist a component of the gravitational force between masses which
has the same behavior as the usual magnetic force acting between electrified bodies. Foucault’s pendulum
would then be explained through a physical interaction between the gravitational mass of the oscillating
pendulum and the gravitational masses of the astronomical bodies around the Earth. If this were true,
than we would have a natural explanation for two aspects of Foucault’s experiment which are very curious,
namely: (I) The angular velocity of precession of the plane of oscillation of the pendulum at the North and
South poles has the same value as the angular velocity of the set of fixed stars around the Earth. (II) At the
North pole and at the South pole the plane of oscillation of the pendulum follows the direction of motion of
the stars around the Earth. In order to know if the plane of oscillation of the pendulum precesses clockwise
or anti-clockwise relative to the ground, we only need to look at the stars and observe their direction of
motion. The plane of oscillation of the pendulum will follow the stars, no matter if the pendulum is located
in the Northern or Southern hemispheres. These two aspects should not be a coincidence. There must be a
physical connection between Foucault’s pendulum and the celestial bodies around the Earth.
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10.2.5 Gyroscopes

Mechanical Gyroscopes

The word “gyroscope” was created by Foucault in 1852 in his paper “On the phenomena of the orientation
of rotating bodies carried along by an axis fixed to the surface of the Earth — New perceptible signs of the
daily movement.” It is composed of two Greek terms, gyros, meaning “rotation,” and skopeein, meaning “to
see.” He gave this name to an instrument which indicated the diurnal rotation of the Earth:22

As all these phenomena depend on the motion of the Earth and present several manifestations of
this motion, I propose to denominate gyroscope the specific instrument which helped me to find
these phenomena.

This instrument is composed of a disc, rotor or flywheel which rotates relative to the ground around the
disc’s axis of symmetry with an angular velocity ω, figure 10.21.

ω

Figure 10.21: Gyroscope.

The axis of symmetry of the disc is mounted in an inner gimbal or ring, which is mounted in an outer
gimbal or ring. This outer gimbal is mounted so as to pivot about an axis in its own plane determined by
the support. The disc has three degrees of rotational freedom. There is very little friction at the joints.
After spinning the rotor with a high angular velocity, we can move around in a room, rotating the support
of the gyroscope relative to the ground. The axis of the gyroscope does not follow these motions. It seems
to remain with its orientation approximately fixed relative to the ground.

However, if the rotation of the disc continues for some minutes or hours, its axis is seen to move relative
to the ground. At the North pole its axis precesses relative to the ground with an angular velocity ωd. Figure
10.22 presents a spinning gyroscope at the North pole, as seen in the terrestrial frame of reference. The disc
rotates quickly around its horizontal axis with a large angular velocity ω. The left rectangle represents a wall
fixed in the ground. Situation (a) presents the initial configuration with the disc’s axis of rotation parallel
to the wall. Situation (b) presents the situation 3 hours later. The axis of rotation turned by an angle of
45o relative to the wall, around a vertical axis passing through the center of the gyroscope.

(a) (b)

N
N

ωd

Figure 10.22: The left rectangle represents a wall fixed in the ground. The disc of the gyroscope rotates
around its horizontal axis. (a) Initial configuration. (b) Configuration after 3 hours. The gyroscope’s axis is
precessing relative to the ground.

According to Foucault and the majority of physicists since then, the interpretation of this fact is that
the axis of rotation of the gyroscope maintains its orientation fixed relative to absolute space. Instead of
Newton’s absolute space, it is also possible to say that the gyroscope’s axis of rotation remains fixed relative
to any inertial frame of reference. That is, the axis of the gyroscope does not follow the diurnal rotation of

22[Fou52].
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the Earth relative to absolute space. The axis of rotation of the gyroscope would then precess relative to
the ground. It would be this change of orientation of the gyroscope’s axis of rotation relative to the ground
that would allow us to “see the rotation” of the Earth relative to empty space, as suggested by Foucault. As
a matter of fact, the only observed phenomenon is the change in the orientation of the axis of rotation of
the gyroscope relative to the ground. However, there is apparently no physical agent causing or creating this
change of orientation due to any kind of interaction between bodies. Therefore this phenomenon is usually
interpreted as being due to the rotation of the Earth relative to an inertial frame of reference, while the
gyroscope’s axis would remain at rest relative to this inertial frame of reference, not following the rotation
of the Earth.

The most interesting aspect of this experiment, which does not have a clear causal explanation in new-
tonian mechanics, is that the axis of rotation of this gyroscope keeps its orientation at rest relative to the
fixed stars, while the Earth rotates relative to the stars. This aspect is illustrated in figure 10.23 showing a
gyroscope at the North pole with its rotation axis horizontal. The left rectangle represents a wall fixed in
the ground. Situations (a) and (b) present the experiment in the terrestrial frame of reference. Situation (a)
presents the beginning of the experiment, with the axis of the gyroscope parallel to the wall. Situation (b)
presents the situation 3 hours later. Situations (c) and (d) present the experiment in the frame F of the fixed
stars. Situation (c) presents the beginning of the experiment, while situation (d) presents the experiment 3
hours later.

(a) (b)

(c) (d)

N
N

N N

F F

Figure 10.23: Gyroscope at the North pole. The left rectangle represents a wall fixed in the ground. (a)
Initial configuration in the terrestrial frame. (b) Configuration after 3 hours. (c) Initial configuration in the
frame of the fixed stars. (d) Configuration after 3 hours.

We can be even more precise by saying that the rotational axis of the gyroscope always maintains a
fixed orientation relative to the frame of distant galaxies, provided friction and other external torques acting
on it can be neglected. For instance, suppose the rotor of the gyroscope is put into fast rotation with its
rotational axis pointing towards the center of the Andromeda galaxy. Then, no matter how we move around
in a room, turning at random the support of the gyroscope, its rotational axis remains pointing towards
Andromeda. Suppose this gyroscope remains spinning for several minutes, hours or even days. Even when
the stars and galaxies rotate once a day around the North-South axis of the Earth relative to the ground,
the rotational axis of the gyroscope remains pointing towards Andromeda, while this axis of the gyroscope
precesses relative to the ground. Suppose there are no frictions and that the gyroscope remains spinning
indefinitely for several months. Its rotational axis will remain precessing relative to the ground, like the stars
and galaxies. However, during all these months its axis of rotation will remain pointing towards Andromeda.
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That is, this rotational axis of the gyroscope follows exactly the motion of Andromeda relative to the ground.
For this reason gyroscopes are utilized nowadays in ships, airplanes, rockets, satellites etc. They guide

the navigation of spaceships, even in situations of zero visibility. Suppose a rocket is fired towards the Moon.
Sensors measure constantly the orientation of the axis of the gyroscope relative to its articulated circles or
rings. They also measure constantly the orientation of the axis of the gyroscope relative to the walls of the
spaceship. When there is any change in the angle between this axis and a wall we can know, without looking
outside, that the rocket changed its direction of motion relative to the frame of distant stars. Small motors
are then fired, expelling gases, until this angle returns to its previous value. The spaceship has then returned
to its initial desired orientation.

Optical Gyroscopes

Nowadays there are also optical gyroscopes. They are based on an effect discovered in 1913 by Georges
Sagnac (1869-1928).23 Figure 10.24 presents a simplified version of his experiment.

M

T

M

M

SM

D

L

ωpT

p

Figure 10.24: Sagnac’s effect.

A circular horizontal plate p can turn relative to the terrestrial frame T around a vertical axis passing
through its center with an angular velocity ωpT . The cylinder represents an object fixed in the ground.
On the plate there is a light source L, a semi-transparent mirror SM , three other mirrors M , and a light
detector D. All these objects are fixed on the plate. When the plate rotates relative to the ground, all these
objects rotate together with the plate. The light emitted by the source is split in two beams at the semi-
transparent mirror. One beam travels clockwise and the other travels anti-clockwise. These two beams meet
again at the detector. In Sagnac’s experiment the light source was a small electric lamp and the detector
was a photographic plate which registered the interference fringes of the two beams. He rotated the plate
clockwise relative to the ground and registered the interference patterns at the photographic plate. Later on
he rotated the plate anti-clockwise relative to the ground, with an angular velocity of the same magnitude
as in the previous experiment, obtaining new interference patterns with a second photographic plate. By
superimposing these two photographic plates, he could measure the displacement of the centers of these two
sets of interference patterns.

The fractional displacement z between the centers of these two interference fringes obtained for clockwise
and anti-clockwise rotations, measured in distance between interference fringes, is given by:

z =
8Aω

cλ
. (10.51)

Here A is the area surrounded or encompassed by the two beams which are interfering with one another,
c = 2.998× 108 m/s is the value of light velocity in vacuum relative to the frame of fixed stars, and λ is the
wavelength of the light utilized in this experiment. The meaning of the angular velocity ω which appears
in equation (10.51) is a matter of discussion. Sagnac himself interpreted the effect which he was measuring
as due to a rotation of the whole system (light source, mirrors and detector) relative to the luminiferous
ether. Nowadays this effect is usually interpreted as being due to a rotation of the whole system relative
to Newton’s absolute space, or relative to an inertial frame of reference. This ω would then indicate the
dynamic angular velocity of the whole system relative to an inertial frame of reference.

23[Sag13a] and [Sag13b].
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Sagnac obtained a measured value of z = 0.07 by utilizing indigo light characteristic of a mercury arc
generated by an electric lamp (λ = 4.36 × 10−7 m and f = c/λ = 6.88 × 1014 Hz), with the beams
encompassing an area of 860 cm2 = 0.086 m2, while the distance between interference fringes was 0.5 to
1 mm. In order to perform these measurements the plate was set into uniform rotation by two turns a
second (ωpT = 12.566 rad/s). Utilizing the measured values of z, A, c and λ into equation (10.51) yields
ω = 13.3 rad/s. This figure has essentially the same value as the angular velocity of the plate relative to the
ground. Therefore:

ω = ωpT . (10.52)

The kinematic rotation of the Earth relative to the fixed stars has an angular velocity given by ωk =
ωEF = 7.29 × 10−5 rad/s. This value is much smaller than the angular velocity of the plate relative to
the ground in Sagnac’s experiment. Therefore it is possible to consider the stars as being essentially at rest
relative to the ground during his experiment. This means that the angular velocity ω obtained in equation
(10.51) agrees with the kinematic rotation of the plate relative to the frame F of the fixed stars, ωpF . That
is:

ω = ωpT = ωk = ωpF . (10.53)

Sagnac predicted that a similar effect should also arise in an interferometer at rest relative to the ground,
due to the rotation of the Earth relative to the luminiferous ether. Supposing this ether to be at rest relative
to the frame of fixed stars, its period of rotation around the Earth is that of one sidereal day, that is, 86,164
seconds. Sagnac’s prediction (our words between square brackets):24

In a horizontal optical circuit, with latitude α, the diurnal rotation of the Earth must, if the aether
is motionless, produce a relative ether vortex whose density is, by calling T the duration of the
sidereal day, 4π sinα/T or 4π sinα/86, 164 radian per second, notably lower than the upper limit
1/1000 [radians/second] that I established for a vertical circuit. I hope to be able to determine,
if the small corresponding optical vortex exists or not.

He never succeeded in determining experimentally this small effect due to the diurnal rotation of the
Earth. The angular velocity of rotation of the Earth relative to the fixed stars has a value of 7.29×10−5 rad/s.
This is much smaller than the angular velocity of rotation of the plate relative to the ground in his experiment,
12.566 rad/s. According to equation (10.51), the effect is proportional to the area surrounded by the beans.
Therefore, by increasing this area, it might be possible to detect the rotation of the Earth relative to the
fixed stars utilizing an interferometer at rest relative to the ground.

The first scientists to determine the diurnal rotation of the Earth utilizing Sagnac’s effect with an inter-
ferometer at rest relative to the ground were A. A. Michelson (1852-1931) and Henry G. Gale (1874-1942)
in 1925.25 In this case the fractional displacement in fringes, expressed as a fraction of a fringe, at latitude
α, is given by:

z =
4Aω sinα

cλ
. (10.54)

Michelson and Gale utilized an interferometer at rest relative to the ground at latitude α = 41o46′, that
is, with sinα = 0.666. Air was exhausted from a twelve-inch pipe line laid on the surface of the ground
in the form of a rectangle 2010 × 1113 feet (A = 2.078 × 105 m2). They utilized light from a carbon arc
(λ = 5.700 × 10−7 m and f = c/λ = 5.26 × 1014 Hz). They compared the interference fringes obtained
with this large rectangle with the interference fringes obtained with a much smaller rectangle which did
not produce a measurable fringe displacement. What they measured was the displacement between the
central fringes of two sets of measurements. One set of measurement utilized a great area which produced
a displacement, while the other set of measurement utilized a very small area which did not produce any
displacement. This explains the factor 4 which appears in equation (10.54), while Sagnac found a factor 8
in his equation (10.51). Sagnac was comparing the fringes due to a clockwise rotation relative to the ground
with the fringes due to an anti-clockwise rotation of his plate relative to the ground. If Sagnac had compared
the fringes due to the situation without rotation with the fringes due to a rotation in only one direction, his
equation (10.51) would also have a factor 4 instead of 8.

24[Sag13a].
25[MG25].
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The displacement measured by Michelson and Gale, expressed as a fraction of a fringe, was z = 0.230±
0.005. Supposing, on the other hand, that the angular velocity ω which appears in equation (10.54) is the
diurnal rotation of the Earth relative to the fixed stars, ωk = 7.29 × 10−5 rad/s, they would have found a
value of z given by: z = 0.236± 0.002. As these two values are very close to one another, their conclusion
was as follows:26

In view of the difficulty of the observations, this must be taken to mean that the observed and
calculated shifts agree within the limits of observational error.

We can then conclude that Michelson and Gale arrived at the following result:

ω = ωk = ωEF = 7.29× 10−5 rad/s . (10.55)

That is, in Michelson and Gale experiment the displacement of interference fringes is directly proportional
to the angular velocity between the Earth and the fixed stars.

10.2.6 There Is No Equivalence between Ptolemaic and Copernican Systems as

regards the Dynamic Rotations of the Earth

Subsection 10.1.5 showed that the kinematic rotations of the Earth, like its rotation relative to the set of
fixed stars, can be interpreted in at least two equivalent ways, namely: (A) The Earth is at rest while the
fixed stars rotate around the North-South axis of the Earth with a period of one sidereal day; and (B) the
Earth rotates around its North-South axis with a period of one day while the stars remain at rest. These
two interpretations are equally valid and true, as both of them explain equally well the observed celestial
phenomena.

The rotation of the Earth can also be obtained dynamically through its flattened figure, Foucault’s
pendulum, gyroscopes etc. Contrary to what happened with the kinematic rotations of the Earth, there
is only one interpretation for these effects according to newtonian mechanics. These effects are due to the
daily rotation of the Earth around its North-South axis relative to an inertial frame of reference, while the
set of stars and galaxies remained stationary in this inertial frame or moved along a straight line with a
constant velocity. These effects should not appear if the Earth were stationary relative to an inertial frame
of reference, while the set of stars and galaxies around it rotated daily around its North-South axis.

The figure of the Earth shows that the ptolemaic and copernican systems are not equivalent, as seen in
Subsection 10.2.3, figure 10.10.

Foucault’s pendulum can also be utilized to show that the ptolemaic system is not dynamically equivalent
to the copernican system, as illustrated in figure 10.25.

In the four cases of this figure the plane of the paper coincides with Newton’s absolute space. The
pendulum oscillates over the North pole. The rectangle represents a wall fixed in the ground. Newtonian
mechanics is utilized to predict the outcome of these thought experiments. In (a) and (b) the Earth rotates
relative to absolute space, while the set of fixed stars is stationary relative to absolute space. Situation (a)
shows the beginning of the experiment, while (b) shows the situation after 3 hours. The period of rotation
between the Earth and the fixed stars is of one sidereal day. The plane of oscillation of the pendulum remains
at rest relative to absolute space and, therefore, precesses relative to the ground, completing a turn once a
day. Situations (c) and (d) present a thought experiment in which the Earth remained at rest in absolute
space, while the set of fixed stars rotate around its North-South axis with a period of one sidereal day.
Situation (c) shows the beginning of the experiment, while (d) shows the situation after 3 hours. Cases (c)
and (d) are kinematically equivalent to cases (a) and (b), as there is the same relative rotation between the
Earth and fixed stars in both situations. The plane of oscillation of the pendulum remains at rest relative to
absolute space in these four situations. The set of fixed stars does not exert any net gravitational force on the
pendulum, no matter if the stars are stationary or spinning as a whole around the pendulum. This is due to
Newton’s Proposition 70, Theorem 30 of Book I of the Principia presented in Section 1.4. See, in particular,
Subsection 1.4.3 and equation (1.21). Therefore this plane of oscillation precesses relative to the ground in
cases (a) and (b), but does not precess relative to the ground in cases (c) and (d). The situation represented
by (c) and (d) is then dynamically different from the situation represented by (a) and (b). Although the
rotation between the Earth and the stars is the same in (a-b) and in (c-d), the same does not happen for the
relative rotation between the plane of oscillation of the pendulum and the ground. The plane of oscillation
precesses relative to the ground in (a-b) but does not precess in (c-d).

26[MG25].
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(a) (b)

(c) (d)
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Figure 10.25: Paper at rest relative to absolute space. (a) and (b): Stars at rest, Earth spinning with
angular velocity ωEF , and stationary plane of oscillation of the pendulum. (a) Beginning of the experiment.
(b) Situation after 3 hours. (c) and (d): Earth at rest, stars spinning around the terrestrial frame T with
angular velocity ωFT , and stationary plane of oscillation of the pendulum. (c) Beginning of the experiment.
(d) Situation after 3 hours.

10.2.7 What Would Happen with the Plane of Oscillation of Foucault’s Pendu-

lum If All Other Bodies around the Earth Were Annihilated?

In newtonian mechanics there is no causal connection between the fixed stars and Foucault’s pendulum, as
seen in Subsection 10.2.6. This lack of connection can also be seen considering another thought experiment.
We first consider the situation of figure 10.19. The Earth is spinning once a day, relative to absolute space,
around its North-South axis with an angular velocity ~ωd. A pendulum is oscillating at the North pole. The
plane of oscillation of this pendulum precesses once a day relative to the ground. What would happen with
the plane of oscillation of the pendulum if all stars and galaxies were annihilated from the universe? In
this hypothetical situation the plane of oscillation of this pendulum should remain precessing relative to the
ground once a day, as illustrated in figure 10.26. In this figure the plane of the paper coincides with absolute
space. The rectangle represents a wall fixed in the ground. Even after annihilating all stars and galaxies,
the daily rotation of the Earth relative to absolute space might continue to exist according to newtonian
mechanics.

N N ωd

(a) (b)

ωd

Figure 10.26: Earth rotating relative to absolute space in an otherwise empty universe. (a) Beginning of the
experiment. (b) Situation after 3 hours. The plane of oscillation of the pendulum remains fixed in absolute
space and precesses relative to the ground.

Figure 10.27 presents the situation of figure 10.26 from the point of view of someone at rest relative to
the ground.

Consider another hypothetical situation. The Earth is spinning daily around its North-South axis, relative
to absolute space. But now the set of stars and galaxies is rotating as a whole around the North-South axis
of the Earth, relative to absolute space, with a period of 3 days. What would be the motion of the plane of
oscillation of Foucault’s pendulum located at the North pole? It would still precess relative to the ground
once a day.
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N
N

(a) (b)

Figure 10.27: Situation of figure 10.26 seen from the Earth. Even annihilating the stars and galaxies, the
plane of oscillation of Foucault’s pendulum would continue to precess relative to the ground.

This lack of dynamic equivalence between the ptolemaic and copernican systems can also be illustrated
with gyroscopes, figure 10.28.

(a) (b)

(c) (d)

N N

N N

ωEF ωEF

ωFT ωFT

Figure 10.28: (a) and (b): Earth spinning, stars and galaxies at rest, rotational axis of the gyroscope at rest.
(a) Initial configuration. (b) Configuration after 3 hours. (c) and (d): Earth stationary, stars and galaxies
rotating together around the Earth, rotational axis of the gyroscope at rest. (c) Initial configuration. (d)
Configuration after 3 hours.

The paper coincides with absolute space. The left rectangle represents a wall fixed in the ground. The
gyroscope is located at the North pole. Its disc rotates quickly around the horizontal axis of symmetry.
Situations (a) and (b): Earth spinning around its North-South axis, relative to absolute space, with an
angular velocity ωEF . Stars and galaxies at rest. The axis of the gyroscope remains at rest relative to
absolute space. Therefore, it rotates relative to the ground. Situations (c) and (d) present a thought
experiment. The Earth is at rest, while the stars and galaxies rotate together, relative to absolute space,
around the North-South axis of the Earth with an angular velocity ωFT . The axis of the gyroscope remains
at rest relative to absolute space. Therefore, it also remains at rest relative to the ground.

Situations (a) and (b) are kinematically equivalent to situations (c) and (d) as regards the relative motion
between the Earth and the set of fixed stars and galaxies. But they are not dynamically equivalent. The axis
of rotation of the gyroscope remains at rest relative to absolute space in all four cases. After all, according
to Newton’s Proposition 70, Theorem 30, Book I of the Principia presented in Section 1.4, the sets of stars
and galaxies around the Earth exert no net gravitational force on the gyroscope, no matter if the stars and
galaxies are stationary or rotating together around the Earth. While the axis of the gyroscope precesses
relative to the ground in cases (a) and (b), it remains at rest relative to the ground in cases (c) and (d).
Cases (a-b) and (c-d) might then be distinguished by this effect.

Consider another hypothetical situation in which the Earth spins once a day around its North-South axis
relative to absolute space. But now the set of stars and galaxies rotate together around the North-South
axis of the Earth, relative to absolute space, making 3 turns a day. Consider a gyroscope at the North pole
with its disc spinning quickly around its horizontal axis of symmetry. What would be the motion of this axis
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relative to the ground? It would remain at rest relative to absolute space. Therefore, it would continue to
precess once a day relative to the ground, no matter the angular velocity of the stars and galaxies relative
to absolute space.

The predictions of the outcome of these thought experiments with relational mechanics are different from
these predictions based on newtonian mechanics, as will be seen in this book.
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Chapter 11

Non-inertial Frames of Reference and

the Fictitious Forces

As we have seen in Sections 1.2 and 1.7, Newton’s second law of motion in the form of equations (1.3) and
(1.4) is valid only in absolute space or in a reference frame which moves along a straight line with constant
velocity relative to absolute space. This was clear to Newton, as can be seen from his fifth Corollary,
presented in Section 1.2, related with his three laws of motion. These reference frames in which Newton’s
second law of motion is valid in the form of equations (1.3) and (1.4) are called inertial frames of reference,
inertial frames or inertial systems. In this Chapter they will be represented by the letter S.

For the situations discussed in this book in which the inertial mass mi of a test body is constant in time,
the fundamental law describing its motion can be written in the form of equation (1.4), namely:

~F = mi~a . (11.1)

Here ~a = d~v/dt is the acceleration of the test body relative to any inertial frame of reference. The force
~F which appears in this equation is the net or resultant force acting on mi due to its interactions with all
other bodies around it. It represents the vector sum of all real forces acting on mi. These forces depend on
some properties of these bodies like their gravitational masses, electric charges etc. They also depend on the
position of the test body relative to the positions of the source bodies with which it is interacting. It may also
depend on their relative velocities and accelerations. These forces can have several origins: gravitational,
electric, magnetic, elastic, nuclear, contact forces, frictional forces etc.

When the motion of the test body is analyzed in a reference frame S′ which is accelerated relative to
an inertial frame S, difficulties with the application of Newton’s second law of motion arise. This Chapter
analyzes some of these problems. This frame S′ is called a non-inertial frame of reference, non-inertial frame
or non-inertial system.

11.1 Bodies at Rest Relative to the Ground

The terrestrial frame of reference can be considered a good inertial frame in order to describe the motion of
a test body when it moves relative to the ground performing small displacements compared with the Earth’s
radius and when these displacements happen during short time intervals compared with 1 minute. This
is the case, for instance, when studying for a few seconds the parabolic orbits of projectiles, vibrations of
springs, the oscillation of a pendulum, the collision of two billiard balls etc.

Figure 11.1 presents the situation in which a block of inertial mass mi and gravitational mass mg is at
rest in the ground. This situation is being considered in the inertial frame of reference S at rest relative to
the ground. The downward gravitational force Fg = mgg exerted by the Earth on the test body is balanced
by the upward normal force Fn ≡ N exerted by the floor on this body.

Suppose that a person is linearly accelerated to the right relative to the ground, moving with a constant
acceleration ~a = ax̂, with a ≡ |~a| being the magnitude of this acceleration, as represented in figure 11.1.
Suppose this person wished to analyze this problem utilizing Newton’s second law of motion in the form of
equation (11.1), that is, utilizing the following expression:

~F = mi~a
′ , (11.2)
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Figure 11.1: Body of inertial mass mi standing on the ground, as seen by an inertial frame of reference S at
rest relative to the ground. The downward weight mgg is balanced by the upward normal force N exerted
by the ground.

where ~a ′ is the acceleration of the test body mi relative to the non-inertial frame S′ which is at rest relative
to this person.

As this frame S′ is at rest relative to this person, it is accelerated relative to the ground. The downward
weight is balanced by the upward normal force. This means that there is no net force acting on the test
body, ~F = ~0. From equation (11.2) this person would then conclude that ~a ′ = ~0. But this is the wrong
answer. After all, this person observes the test body being accelerated to the left with a constant acceleration
given by ~a ′ = −ax̂′, figure 11.2 (a). This person also observes the Earth being accelerated to the left with
a constant acceleration ~aE

′ = −ax̂′.
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Figure 11.2: (a) Acceleration ~a ′ of the test body relative to the non-inertial frame S′. (b) Forces acting on
the test body in this non-inertial frame S′. Beyond the real forces ~Fg and ~N , it is necessary to introduce
the fictitious force ~Ff in order to explain the acceleration ~a ′ of the test body.

In order to explain this acceleration of the test body, this person must utilize Newton’s second law of
motion in the following form:

~F −mi~ao = mi~a
′ , (11.3)

where ~ao is the acceleration of the non-inertial frame S′ relative to the inertial frame S. In this case we
are considering S as being the terrestrial frame. The person is accelerated relative to the ground with an
acceleration given by ~a = ax̂ = ~ax̂ ′. This means that ~ao = ax̂ ′.

The person can now apply equation (11.3) in order to make a correct prediction. There is no net vertical
force acting on the body, ~F = ~Fg + ~N = ~0. By equation (11.3) this person would then conclude correctly
that the acceleration of the test body relative to S′ is given by:

~a ′ = −~ao = −ax̂ ′ . (11.4)

The force −mi~ao which needs to be introduced into equation (11.3) is usually1 called fictitious force or
pseudo-force, being represented by ~Ff . The forces acting on the test body in the non-inertial frame S′ are
represented in figure 11.2 (b).

The reason for the name “fictitious” is that we do not find a material agent responsible for this force.
The weight Fg = mgg is a force of gravitational origin exerted by the whole Earth upon the test body. The
normal force Fn = N is a contact force exerted by the compressed soil upon the test body. The fictitious
force ~Ff ≡ −mi~ao has no physical origin, that is, there is no other body causing it. It is not due to an

1[FLS63, Section 12-5: Pseudo forces, pp. 12-14 to 12-16], [Fre71, p. 499], [Sym71, pp. 125, 272, 279 and 365], [Sym82, pp.
149, 304-305, 311 and 401] and [Cur09, p. 101].
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interaction of the test body with any other body. It has no magnetic, electric, gravitational, elastic, contact,
nor nuclear origin.

In any event, equation (11.3) leads to a correct solution for the acceleration of the test body relative to
a non-inertial frame of reference S′.

The same procedure is necessary to consider the situation of a body at rest in the ground while suspended
by a vertical spring above it, as in figure 11.3 (a). In the terrestrial inertial frame S there are two forces
acting on the test body. The downward gravitational force ~Fg = −mggẑ is balanced by the upward elastic
force ~Fe = k(ℓ − ℓ0)ẑ exerted by the stretched spring, figure 11.3 (b). Applying equation (11.1) yields the
correct result that there is no acceleration of the test body, ~a = ~0.

mi

(a) (b)

S

Fe

Fg

mi

Figure 11.3: (a) Body at rest in the ground while suspended by a spring, as seen in the inertial frame S. (b)
The gravitational force ~Fg is balanced by the elastic force ~Fe.

We now consider this problem from the point of view of a person which is horizontally accelerated relative
to the ground along the x axis, as in figure 11.1. In this non-inertial frame S′ the test body is seen accelerated
to the left with a constant acceleration given by ~a ′ = −ax̂′, as in figure 11.4 (a). The Earth is also accelerated
to the left with an acceleration ~aE

′ = −ax̂′, while the spring is also seen accelerated to the left with the
same acceleration, ~as ′ = −ax̂′. All these bodies are seen accelerated to the left with the same constant
acceleration ~a ′, namely, ~aE ′ = ~as

′ = ~a ′ = −ax̂′. In order to explain this acceleration of the test body, the
person needs to introduce the fictitious force ~Ff pointing to the left, as represented in figure 11.4 (b).
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Figure 11.4: (a) Acceleration of the test body suspended by the spring of figure 5.4, as seen from the non-
inertial frame S′ which is accelerated to the right relative to the ground. (b) In this non-inertial frame S′ it
is necessary to introduce the fictitious force ~Ff , beyond the weight ~Fg and elastic force ~Fe.

Application of equation (11.3) with ~ao = ax̂ ′ yields the correct answer in this non-inertial frame S′,
namely, ~a ′ = −ax̂ ′.

The same analysis can be applied in the situation of the vessel partially filled with water at rest relative
to the ground discussed in Section 5.3. When this problem is considered in a non-inertial frame S′ which has
a constant acceleration relative to the ground, the water will be seen as having a constant acceleration. In
order to explain this acceleration of the water in this frame S′ it will be necessary to introduce the fictitious
force ~Ff = −mi~ao, as given by equation (11.3).
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11.2 Bodies in Rectilinear Uniformly Accelerated Motion Relative

to the Ground

We consider once again the Earth as a good inertial frame S in this Section. We consider here situations
in which the test body has a constant acceleration relative to the ground. This acceleration is due to the
application of a constant net force. In Chapter 7 these situations were considered in the inertial frame S.
Now they will be analyzed from the point of view of a non-inertial frame S′ which is accelerated together
with the test body relative to the ground. Therefore, the test body will be seen at rest relative to S′.

11.2.1 Free Fall

The first situation is that of free fall. In the inertial terrestrial frame S an apple falls freely towards the
ground with a constant acceleration ~a = −gẑ, with g ≡ |~a| = 9.81 m/s2. Suppose an observer is also falling
towards the ground with this same acceleration, as indicated in figure 11.5.

S

a
a

Figure 11.5: An apple and a person fall with the same acceleration a towards the ground.

Let S′ be the non-inertial frame of reference at rest relative to this person. The apple is seen at rest
relative to S′, that is, ~a ′ = ~0, figure 11.6 (a). In this frame S′ the Earth is seen accelerated upwards towards
the apple, that is, ~aE ′ = (9.81 m/s2)ẑ′.

S’

a’ = 0

Fg

Ff

(a) (b)

a’E

Figure 11.6: (a) Apple at rest in the non-inertial frame S′. (b) Real gravitational force ~Fg and fictitious
force ~Ff = −mi~ao acting on the apple in this frame.

If we tried to apply Newton’s second law of motion in the form of equation (11.2) in this non-inertial
frame S′ with ~F = ~Fg = mggẑ

′, we would arrive at the wrong answer given by ~a ′ = gẑ′ = (9.81 m/s2)ẑ′.
The correct answer is that ~a ′ = ~0 in the non-inertial frame S′ which falls together with the apple towards
the ground. In order to arrive in this correct result it is necessary to introduce, in the non-inertial frame S′,
the fictitious force ~Ff ≡ −mi~ao. This fictitious force points upwards, as can be seen in figure 11.6 (b). The
correct equation of motion in the non-inertial frame S′ is given by equation (11.3).

In the case of figure 11.6 (a) the non-inertial frame S′ has an acceleration ~ao = ~g = −gẑ′ relative to S,
as it is falling towards the ground together with the apple. Utilizing equation (11.3), using that mi = mg

and the fact that ~F = mg~g = −mggẑ
′ yields the acceleration ~a ′ of the apple in this non-inertial frame S′ as

given by:

~a ′ =
~F

mi
− ~ao = −gẑ′ − (−gẑ′) = ~0 . (11.5)
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And this is the correct answer in the non-inertial frame of reference S′.
Once more the force −mi~ao is called a fictitious force, that is, a pseudo-force. The reason for this name is

that all forces included in the symbol ~F of equation (11.3) have a physical origin. They arise from interactions
of the test body with other bodies around it. They include, for instance, the gravitational force between the
test body and the Earth, an elastic interaction with a spring, an electric interaction with other electrified
bodies, a magnetic force with a magnet, a force of friction due to the interaction of the test body with a
resistive medium around it, etc. The fictitious force −mi~ao, on the other hand, has no physical origin in
classical mechanics. It is not due to any kind of interaction of the test body with other bodies around it. It
only appears in non-inertial frames of reference which are accelerated relative to absolute space.

Despite its fictitious nature, it is essential to introduce this fictitious force −mi~ao in non-inertial frames
in order to arrive at correct predictions utilizing Newton’s law of motion, which now must be written in the
form of equation (11.3).

Figure 11.6 (b) presents the forces acting on the apple according to a non-inertial frame S′ which is at
rest relative to the apple. There is the downward weight Fg due to its gravitational interaction with the
Earth, and the upward fictitious force −miao balancing the weight.

11.2.2 Body Accelerated Relative to the Ground while Suspended by a String

The second example considered here is that of a body accelerated relative to ground while suspended by a
string. Once more the Earth represented by S will be considered a good inertial frame for this situation.
Section 7.5 considered the motion of the test body and the inclination of the string in the terrestrial frame
of reference. An ideal inextensible string of length ℓ has its upper extremity fixed at the ceiling of a closed
wagon. A test body of gravitational mass mg and inertial mass mi is connected at the lower extremity of
the string. A force is applied to the wagon giving it a constant horizontal acceleration ~a = ax̂ relative to the
ground, with a = |~a|. The string is found to remain inclined to the vertical at an angle θ, as in figure 7.16.

We now consider the same problem from the point of view of a person who is inside the wagon. The
frame at rest relative to this person will be the non-inertial frame of reference S′, figure 11.7. The string is
inclined by an angle θ′ = θ to the vertical.
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Figure 11.7: (a) Situation seen in the non-inertial frame S′ which is at rest relative to the wagon. The string
of length ℓ is inclined to the vertical at an angle θ′ = θ. The test body of inertial mass mi has no acceleration
in this frame S′, that is, ~a ′ = ~0, while the Earth is accelerated to the left, ~a ′

E = −ax̂′. (b) Forces acting on
the test body: Real forces Fg and T , together with the fictitious force −mao.

From the point of view of the passenger or non-inertial frame S′, the test body of inertial mass mi is at
rest, ~a ′ = ~0. The Earth is seen moving to the left with an acceleration ~a ′

E = −ax̂′.
If the passenger applied Newton’s second law in the form of equation (1.4), he would arrive at the same

conclusion as equations (7.63), (7.64) and (7.65), namely:

a′ = g
mg

mi
tan θ′ 6= 0 . (11.6)

But obviously this is the wrong answer in the frame S′ of the wagon. After all, the pendulum is at
rest relative to the passenger in the equilibrium configuration which is being analyzed here. Therefore the
passenger should arrive at the following conclusion: a′ = 0. In order to arrive at this correct conclusion, he
needs to utilize equation (11.3). That is, he needs to introduce the fictitious force −mi~ao. In the present
situation we have ~ao = ax̂′. This fictitious force balances the gravitational force ~Fg exerted by the Earth and
the force ~T exerted by the stretched string. This equilibrium of forces in the non-inertial frame S′ produces
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no motion of the test body relative to the wagon and keeps the string inclined to the vertical, as represented
in figure 11.7 (b).

The equation of motion in the passenger’s frame S′ must then be written as:

~Fg + ~T −mi~ao = mi~a
′ , (11.7)

where ~ao is the acceleration of the passenger relative to the Earth’s inertial frame. In this case we have
~ao = ax̂′.

Applying the forces represented in figure 11.7 (b) yields:

~a ′ = ~0 . (11.8)

That is, the test body remains at rest relative to the non-inertial frame S′. This is the correct result in
this frame and is compatible with figure 11.7 (a). In this non-inertial frame S′ the vertical component of the
tension ~T of the string is balanced by the weight ~Fg of the body. The fictitious force −mi~ao balances the
horizontal component of the tension of the string. Therefore the test body remains at rest relative to S′.

Once more there is no physical origin for this fictitious force −mi~ao in newtonian mechanics. However,
it is essential to introduce this force in the non-inertial frame of reference S′ of the wagon in order to arrive
at correct results.

We can also invert the procedure. That is, we give equation (11.7) with ~ao = ax̂′, and we look for the
value of the tension ~T and inclination angle θ′ of the string to the vertical, as given by figure 11.7. In order
to obtain this angle θ′, we impose the condition that there is no acceleration of the test body relative to the
wagon. That is, it is imposed that ~a ′ = ~0. Utilizing ~Fg = −mggẑ

′ and ~T = Txx̂ + Tz ẑ in equation (11.7)
yields:

Tx = mia = T sin θ′ , (11.9)

and

Tz = mgg = T cos θ′ . (11.10)

We then return to the newtonian results given by equations (7.55) and (7.56).

11.2.3 Vessel Partially Filled with Liquid Accelerated Relative to the Ground

Section 7.7 considered the problem of a vessel partially filled with liquid. The vessel had a constant horizontal
acceleration ~a = ax̂ relative to the ground, with a = |~a|. This problem was studied from the point of view
of the terrestrial inertial frame of reference S. The liquid had an inclination α to the horizon, figure 7.27.

The same problem is now analyzed from the point of view of someone who is accelerated together with
the vessel relative to the ground. In this non-inertial frame of reference S′ an element of mass dm with
volume dV is at rest relative to S′, that is, a′ = 0. This situation is represented in figure 11.8.

In the non-inertial frame S′ the person observes the liquid inclined at an angle α′ = α to the horizontal,
although the water is at rest relative to this person. The only forces of interaction which seem to act on
an infinitesimal element of mass of the water are its weight d~Fg = dm~g = −dmgẑ′ due to the gravitational
attraction of the Earth, and the buoyant force d~Fb due to the gradient of pressure p within the fluid, namely,
d~Fb = −(∇′p)dV . This gradient of pressure is orthogonal to the free surface of the fluid. If the person applied
Newton’s second law of motion in the form of equation (10.2), he would arrive at the following result:

dm~g − (∇′p)dV = dm~a ′ . (11.11)

The pressure inside the fluid was obtained in equation (7.81), namely:

p(x′, y′, z′) = −ρafTx
′ − ρgz′ + po , (11.12)

where afT is the acceleration of the fluid relative to the terrestrial frame T , while po is the atmospheric
pressure. In order to arrive at this result we also utilized that ρi = ρg ≡ ρ by equation (7.89). The buoyant
force acting on an infinitesimal element of mass dm is then given by:

d~Fb = −(∇′p)dV = dmafT x̂
′ + dmgẑ′ . (11.13)
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Figure 11.8: (a) Non-inertial frame S′ at rest relative to the vessel. The vessel and its liquid have a constant
acceleration ~a = ax̂ relative to the ground. The water is at rest relative to S′, a ′ = 0, while the Earth
moves to the left with a constant acceleration ~a ′

E = −ax̂′. (b) Forces acting on an infinitesimal element of
the fluid in the non-inertial frame of reference: Real forces dFg and dFb, together with the fictitious force
−dmao pointing to the left.

By utilizing equation (11.13) into equation (11.11), the person which is accelerated together with the
vessel relative to the ground would conclude that:

~a ′ = afT x̂
′ . (11.14)

But this is once again the wrong answer. In the non-inertial frame S′ the water is at rest, which means
that ~a ′ = ~0. In order to arrive at this correct result, Newton’s second law of motion in this non-inertial
frame S′ must be written in the form of equation (11.3), namely:

dm~g − (∇′p)dV − dm~ao = dm~a ′ , (11.15)

where ~ao = ~afT = afT x̂
′ is the acceleration of the non-inertial frame S′ relative to the ground. Remember

that the Earth is being considered a good inertial frame S to study this problem.
Utilizing then d~Fg = −dmgẑ′ and equation (11.13), together with −dm~ao = −dmafT x̂

′, into equation
(11.15), the person would then arrive at the correct result given by:

~a ′ = ~0 . (11.16)

That is, there is no acceleration of the water relative to the non-inertial frame S′ at rest relative to the
vessel.

Although there is no acceleration of the water in this non-inertial frame S′, its surface remains inclined
to the horizontal by an angle α′ = α, as indicated in figure 11.8 (a). Figure 11.8 (b) presents the forces
acting on an element of mass dm of the fluid in this non-inertial frame S′. There are two real forces, the
gravitational force dFg and the buoyant force dFb. There is also a horizontal fictitious force −dmao. It
is necessary to introduce this fictitious force in the non-inertial frame S′ in order to explain the inclined
shape of the water. This inclination of the water to the horizontal is a real effect which is observed in the
terrestrial inertial frame S and also in the non-inertial frame S′ which is at rest relative to the vessel. It
is then possible to say that this fictitious force −dmao has a real effect, namely, it causes the inclination of
the water to the horizontal in the non-inertial frame S′. Despite this fact, it can still be called a “fictitious”
force, as we cannot locate the material agent which is responsible for this force. The weight force dFg is
due to the gravitational interaction of the element of mass dm with the Earth, while the buoyant force dFb

is due to the gradient of pressure at the location of dm and is caused by the surrounding fluid. We cannot
find, on the other hand, the material agent responsible for the fictitious force −dmi~ao.

It is also possible to invert the procedure. That is, we begin with equation (11.15) and we provide the
gravitational force d~Fg = dm~g = −dmgẑ′ and the fictitious force −dm~ao = −dmafT x̂

′. We then ask what
must be the pressure in all points inside the fluid in such a way that it remains at rest in this non-inertial
frame S′, that is, such that ~a ′ = ~0. By solving equation (11.15) we obtain equations for the pressure
p(x′, y′, z′) analogous to equations (7.74) up to (7.76). The solution of these equations is given by equation
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(7.81) in terms of the variables (x′, y′, z′). The equation satisfied by the isobaric surfaces is given by
equation (7.83). That is, these isobaric surfaces are planes parallel to the free surface of the fluid given by:

z′ = −(tanα′)x′ , (11.17)

where

tanα′ =
afT
g

. (11.18)

That is, by inverting the procedure we obtain once again the inclination α′ = α of the fluid to the
horizontal. The tangent of this angle of inclination is given by the ratio between the acceleration of the fluid
relative to the ground and the acceleration g of free fall. In this non-inertial frame S′, the fictitious force
−dm~ao pointing to the left is responsible for the inclination of the liquid to the horizontal, as indicated in
figure 11.8 (b). As it causes the inclination of the fluid, this fictitious force can be considered a real force in
this non-inertial frame S′. Despite this fact, it can still be called a “fictitious” force, as we cannot locate the
material agent responsible for this force. We cannot find as well its type of interaction (that is, it is not an
electric, magnetic, gravitational, elastic nor nuclear force).

11.3 Bodies in Uniform Circular Motion and the Centrifugal Force

In this Section we consider once again some problems discussed in Chapter 9. In that Chapter we considered
the motion of a test body relative to an inertial frame of reference S. But now these problems will be
considered in the frame of reference S′ which rotates together the test body relative to S. The test body is
now at rest relative to this non-inertial frame of reference S′.

11.3.1 Circular Orbit of a Planet

We begin with the situation of a planet orbiting around the Sun. Once again we restrict our discussion to
the particular case of a circular orbit. In the inertial frame of reference S considered in Section 9.2, with the
mass of the Sun mS being much larger than the mass m of the planet, the Sun was considered essentially
at rest while the planet was orbiting around it, as in figure 11.9. The frame of the fixed stars could be
considered a good inertial frame S to study this problem. Equations (1.4) and (1.7) yielded a centripetal
acceleration for the planet given by:

acp =
GmS

ρ2
=

v2

ρ
= ρω2 . (11.19)

Here ρ represents the distance between the Sun and the planet, v its tangential or azimuthal velocity relative
to S, while ω represents its angular velocity around the Sun relative to the inertial frame S of the fixed stars.
There was only a centripetal force Fg = GmSm/ρ2 acting on the planet due to its gravitational interaction
with the Sun.
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Figure 11.9: Inertial frame S with the planet describing a circular orbit around the Sun. The planet moves
relative to S with a tangential velocity v and a centripetal acceleration ac. (b) Gravitational force Fg acting
on the planet.
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We now consider this problem in a non-inertial frame S′ relative to which the Sun and the planet are at
rest, figure 11.10. This frame S′ centered on the Sun rotates together with the planet relative to the inertial
frame of the fixed stars.
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Figure 11.10: (a) Non-inertial frame S′ in which the planet is at rest relative to the Sun, v′ = 0 and a′ = 0,
while the set of stars rotate around the Sun and around the planet with a constant angular velocity ω. (b)
Forces acting on the planet in this non-inertial frame S′: The real gravitational force Fg due to the Sun and
the fictitious centrifugal force mω2ρ′ balancing the gravitational attraction of the Sun.

By performing the calculations in this non-inertial frame S′ we should conclude that the planet is at
rest, without any acceleration. That is, we should conclude that a′ = 0. However, this is not the result of
Newton’s second law of motion in the form of equation (1.4) if applied in S′. The application of this equation
would lead to the wrong result given by a′ = GmS/ρ

2 6= 0.
How is it possible to explain in this non-inertial frame S′ the fact that the planet remains at rest, despite

the gravitational attraction of the Sun? How can the planet maintain a constant distance to the Sun? In
order to arrive at the correct result that a′ = 0 and in order to explain the constant distance between the
Sun and the planet in this non-inertial frame S′ we need to introduce another fictitious force. This fictitious
force receives a special name, centrifugal force. It is given by:

~Fc = −mi~ω × (~ω × ~r ′) . (11.20)

Here ~r ′ is the position vector of the test body relative to the origin O′ of the non-inertial frame of reference
S′ and ~ω is the angular velocity of S′ relative to S. Newton’s second law of motion in this non-inertial frame
S′ must then be written as:

~F −mi~ω × (~ω × ~r ′) = mi~a
′ . (11.21)

In Chapter 9 we considered the inertial frame S centered on the Sun. The frame of fixed stars could
be considered as being this inertial frame S. In this frame S the planet moved around the Sun in the xy
plane with an angular velocity ~ω = ωẑ, where ω = |~ω|. The non-inertial frame of reference S′ which is being
considered here is also centered on the Sun. It rotates relative to S with the same angular velocity as the
planet around the Sun, figure 11.11, such that the planet remains at rest in S′.
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Figure 11.11: The non-inertial frame S′ rotates relative to S together with the planet around the Sun.

Let ~ω be the angular velocity of the non-inertial frame S′ relative to the frame S. Figure 11.11 yields
~ω = ωẑ′. According to equation (11.20) the centrifugal force can be written as:
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~Fc = −mi~ω × (~ω × ~r ′) = miω
2ρ′ρ̂′ , (11.22)

where ρ′ is the distance from the Sun to the planet, while ρ̂′ is the unit vector pointing from the Sun to the
planet. This force points from the Sun towards the planet, as indicated in figure 11.10 (b). If this planet
were the Earth, the period of rotation of S′ relative to S would be given by T = 2π/ω = 1 year.

This fictitious force points away from the center, as indicated in figure 11.12. For this reason it received
the name “centrifugal force.” In newtonian mechanics the only real force acting on the planet in this example
is the gravitational force exerted by the Sun. This centripetal force points towards the Sun and is indicated in
figure 11.9 (b). The centrifugal force, on the other hand, has no physical origin. That is, it is not due to any
kind of interaction between the planet and other bodies in the universe. It appears only in the non-inertial
frame S′ of figure 11.12. It does not appear in the inertial frame S of figure 11.9.
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Figure 11.12: Centrifugal force Fc in the non-inertial frame S′.

In order to make correct predictions in this non-inertial frame S′, Newton’s second law must be written
as follows:

~F + ~Fc = mi~a
′ . (11.23)

Here ~F represents the net force acting on mi due to its interactions with all other bodies in the universe,
~Fc represents the fictitious centrifugal force given by equation (11.20), while ~a ′ represents the acceleration
of mi relative to S′. The real force ~F is due to gravitational, electric, magnetic, nuclear, friction, elastic
and other kinds of interaction. The fictitious force, on the other hand, does not arise due to any kind of
interaction.

In the non-inertial frame S′ the planet remains at rest at a constant distance from the Sun, figure 11.13.
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Figure 11.13: Planet “orbiting” around the Sun, as seen in the non-inertial frame S′.

Utilizing in equation (11.23) that ~a ′ = ~0 in this frame S′, together with Newton’s law of gravitation
given by equation (1.7), the centrifugal force is given by:

~Fc = −mip~ω × (~ω × ~r ′) = G
mgSmgp

ρ′2
ρ̂′ . (11.24)

From this equation we obtain ω =
√

GmgS/ρ′3.
Alternatively, we might begin with equation (11.23) imposing that ω =

√

GmgS/ρ′3. We would then
arrive at ~a ′ = ~0 in the non-inertial frame S′.

Once more there is no physical origin for this centrifugal force, as we cannot find the material agent
responsible for it. We do not know as well the type of interaction giving rise to this fictitious force. The
gravitational force, on the other hand, is due to the attraction between the Sun and the planet.
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However, as seen in figure 11.10 (b), it is necessary to introduce this centrifugal force in the non-inertial
frame S′ in order to make correct predictions. This centrifugal force balances the centripetal gravitational
force exerted by the Sun. The planet can then remain at rest in S′, while maintaining a constant distance
to the Sun, as indicated in figure 11.10 (a).

11.3.2 Rotation of Two Globes Connected by a Cord

We now discuss briefly the experiment of two globes presented by Newton. The Earth will be considered
our inertial frame S, figure 11.14. The rectangle represents a frictionless table at rest in the ground. Two
equal globes of inertial mass mi are connected by an inextensible cord of length ℓ. They rotate on the table
relative to S with a constant angular velocity ω around the center O, where ρ = ℓ/2 is the distance of each
globe to the center O. The stretched cord exerts a centripetal force T on each globe, due to its tension, as
represented in figure 11.14 (b).
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Figure 11.14: Inertial frame S. (a) Two globes connected by an inextensible cord rotate around their center
O on a frictionless table with a constant angular velocity ω relative to S. Centripetal forces of tension T
exerted by the stretched cord on each globe.

Let S′ be a non-inertial frame which rotates together with the globes around their center O, figure 11.15.
The globes are at rest relative to S′. The centripetal force T exerted by the stretched cord on each globe is
balanced by the centrifugal force mω2ρ′ in this frame S′.
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Figure 11.15: (a) Two globes at rest in the non-inertial frame S′ which rotates together with them relative to
the ground. (b) Forces acting on each globe: The real centripetal force T due to the tension of the stretched
cord and the fictitious centrifugal force mω2ρ′.

There is no motion of the globes in this non-inertial frame S′, despite the tension T of the stretched cord.
The centripetal force acting on each globe due to this stretched cord is balanced by a fictitious centrifugal
force miω

2ρ′ acting on each body in this non-inertial frame S′, figure 11.15 (b). As ~a′ = ~0, equations (11.22)
and (11.23) yield:

Fc1 = m1ω
2ρ′1 = T , (11.25)

and

Fc2 = m2ω
2ρ′2 = T . (11.26)
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There are two possible interpretations for this equilibrium: (a) The tension T in the cord is balanced by
the centrifugal force acting on the bodies, preventing the bodies from approaching one another; or (b) the
centrifugal force acting on the bodies is transmitted to the cord, stretching it.

11.3.3 Newton’s Bucket Experiment

We consider now Newton’s bucket experiment. The Earth can be considered a good inertial frame S to
study this problem. We concentrate our attention in the situation in which the bucket and the water rotate
together, relative to the ground, around the axis of the bucket with a constant angular velocity ω. Figure
11.16 (a) presents this situation in the inertial frame S, while figure 11.16 (b) presents the forces acting on
an infinitesimal element of mass dm of the fluid, namely, the gravitational force dFg due to the Earth and
the buoyant force dFb due to the gradient of pressure at the location of this element.
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dFb

dFg
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Figure 11.16: Inertial frame S. (a) Bucket and water spinning together with a constant angular velocity ω
relative to the ground. (b) Gravitational force dFg and buoyant force dFb acting on an infinitesimal element
of the fluid with mass dm.

Let S′ be a non-inertial frame which rotates together with the water, relative to S, around the axis of
the bucket. There is no motion of the water relative to S′, a ′ = 0, as illustrated in figure 11.17.

(a)

-w

x’

z’

0

dFb

dFg

(b)

S’ S’

dmw r
2

’

r’

a’= 0

Figure 11.17: Non-inertial frame S′ which rotates together with the water, relative to S, around the axis of
the bucket. (a) The concave water is at rest relative to S′, a ′ = 0. The Earth, stars and galaxies rotate
together, relative to S′, around the axis of the bucket with a constant angular velocity −ω. (b) Forces acting
on an element of fluid with mass dm in the non-inertial frame S′: The real forces dFg and dFb, together
with the fictitious centrifugal force dmω2ρ′.

In this non-inertial frame S′ the Earth, the stars, the galaxies and other astronomical bodies rotate
together around the axis of the bucket with a constant angular velocity −ω. Any element of fluid with
volume dV is at rest relative to S′, ~a ′ = ~0. Therefore the net force acting on it must be zero, provided we
include in S′ the centrifugal fictitious force. The real force d~F acting on an element of fluid is composed by
the gravitational force d~Fg and by the buoyant force d~Fb. It is then given by d~F = −dmggẑ

′ − (∇′p)dV .
Utilizing that ~ω = ωẑ′ then equations (11.20) and (11.21) can be written as:

−(∇′p)dV − dmggẑ
′ + dmiω

2ρ′ρ̂′ = dmi~a
′ = ~0 . (11.27)

This equation, together with dmi = dmg, generate the same previous results obtained in Section 9.4,
remembering that we are utilizing here ρ′ρ̂′ instead of u′û or of x′x̂′ to represent the distance of an element
of fluid to the axis of rotation.

It is important to emphasize that in all these problems (Newton’s bucket, circular orbit of a planet,
two globes connected by a cord) the centrifugal force has no physical origin in newtonian mechanics. It
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appears only in non-inertial frames of reference. Only in these frames can they be considered real forces,
as they create measurable effects (press the water against the walls of the bucket, balance the gravitational
attraction of the Sun so that the planet can keep a constant distance to the Sun, generate the tension in the
cord holding the globes, etc.). On the other hand, we cannot locate the material body responsible for this
centrifugal force. The real forces acting on the water of the bucket were the gravitational force exerted by
the Earth and the buoyant force exerted by the gradient of pressure in the liquid, the real force acting on the
planet orbiting around the Sun was the gravitational attraction due to the Sun, while the real force acting
on each globe was the centripetal force T due to the tension of the stretched cord. In general we cannot
locate the source of the fictitious forces.

Let us show this in more detail with the bucket experiment. A similar analysis may be carried out for the
other examples. The Earth will be considered a good inertial frame S. We consider the situation in which
the bucket and water rotate together, relative to the ground and also relative to the surrounding stars and
galaxies, with a constant angular velocity ω around the vertical z axis of the bucket. The water acquires a
parabolic shape, described by equation (9.56), namely, z = ω2u2/(2g), where u =

√

x2 + y2 represents the
distance of a point in the liquid from the z axis.

Let S′ be a non-inertial frame at rest relative to the bucket. The water is at rest relative to the bucket,
although it has a concave figure, as represented in figure 11.17. What is the material body responsible for
the concavity of water? Is this concave shape due to any kind of interaction between the water and the
surrounding bodies? We consider here three material suspects around the water, namely, the bucket, the
Earth, and the set of other astronomical bodies (stars and galaxies).

Is the bucket responsible for the concavity of water? No. After all, the bucket is at rest relative to the
water in the non-inertial frame S′. Therefore the force exerted by the bucket on any molecule of water is the
same force it exerted on this molecule in frame S when the water and the bucket were at rest relative to the
ground. In this initial configuration the water was flat and horizontal, figure 9.12 (a). The bucket did not
cause any concavity of the water in this case of figure 9.12 (a). Therefore it will not cause any curvature in
the situation of figure 11.17, as the bucket is also at rest relative to the water in this last configuration.

Is the Earth responsible for this concavity in the non-inertial frame S′? More specifically, is the rotation
of the Earth relative to the water responsible for this centrifugal force? In this frame S′ the water and the
bucket are at rest, while the Earth is rotating relative to the water around the axis of the bucket. The Earth
is rotating relative to the bucket and is also rotating relative to S′. The answer to this question is “no.” As
was seen in Chapter 1, the gravitational force exerted by a spherical shell upon particles located outside it
point towards the center of the shell. As Newton’s law of gravitation does not depend on the velocity nor on
the acceleration of the interacting bodies, this result will remain valid when the spherical shell is spinning.
This means that when the Earth is spinning relative to S′, it will still attract any molecule of water with a
force pointing downwards towards the center of the Earth, without any horizontal component, see equation
(1.21). In conclusion, although the Earth is spinning around the axis of the bucket in this frame S′, it does
not exert any horizontal centrifugal force pressing the molecules of water against the walls of the bucket.

Are the stars and galaxies responsible for the concavity of the water in the frame S′? More specifically, is
the rotation of the fixed stars (or the rotation of the distant galaxies) around the axis of the bucket, relative
to S′ (and also relative to the bucket and relative to the water), responsible for the concavity of the water?
Once more, the answer is “no.” This negative answer is due to Newton’s Proposition 70, Theorem 30 of Book
I of the Principia presented in Section 1.4. This theorem, when applied to Newton’s law of gravitation, led
to equation (1.21). Distributions of matter spherically symmetric do not exert net gravitational forces on
any internal particles. This result of zero net force remains valid no matter the rotation or motion of these
spherical distributions relative to any frames of reference. Therefore the fixed stars and the set of galaxies
may disappear without having any influence upon the water according to newtonian mechanics.

Relational mechanics, on the other hand, will give different answers to these questions. This will be
analyzed later on.

In classical mechanics it is not possible to identify a material agent responsible for the centrifugal force.
Therefore it received the name “fictitious” force. Despite this name, in the non-inertial frames of reference
this fictitious force causes real measurable effects. It is responsible, for instance, for the concavity of the
water in the non-inertial frame S′ of figure 11.17.

Max Born discussed several examples of rotating bodies and the dynamic effects which appear in these
cases. He concluded his analysis of these examples utilizing newtonian mechanics with the following simple
and clear statement:2

2[Bor65, pp. 78-85, see especially p. 84].
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Thus it seems as if the occurrence of centrifugal forces is universal and cannot be due to inter-
actions. Hence nothing remains for us but to assume absolute space as their cause.

11.4 Rotation of the Earth

11.4.1 Flattening of the Earth Analyzed in the Terrestrial Frame

We now consider the figure of the Earth from the point of view of a terrestrial non-inertial frame S′ fixed in
the ground. If we had applied Newton’s second law of motion in the form of equation (10.2) we would get:

dm~g − (∇′p)dV = dm~a ′ , (11.28)

where ~a ′ is the acceleration of the element of mass dm relative to S′. In this equation dV is the volume
of the infinitesimal element of fluid, ~g is the gravitational force acting on it per unit mass, while p is the
pressure within the fluid.

Application of ~a ′ = ~0 in equation (11.28) leads to a spherical Earth with its pressure given by equation
(10.6). This is not the correct solution of this problem, as the Earth has an approximately ellipsoidal figure.

We can also invert the argument. Applying in equation (11.28) the value of ~g due to an ellipsoid given
by equation (10.33), together with the known pressure obtained by the solution of this problem given by
equation (10.37), yields the acceleration of an element of fluid in S′ as given by ~a ′ = −ω2

dρ
′ρ̂′. Once more

this is the wrong solution for this problem, as the Earth is at rest relative to its own frame S′. The correct
acceleration in the Earth’s frame is given by ~a ′ = ~0.

To arrive at the correct solution, namely, ~a ′ = ~0, it is necessary to introduce into equation (11.28) the
centrifugal force given by equation (11.20). Newton’s second law of motion in the non-inertial frame S′

assumes then the form of equation (11.21), namely:

dm~g − (∇′p)dV −m~ω × (~ω × ~r ′) = dm~a ′ . (11.29)

Here ~ω is the angular velocity of the non-inertial frame S′ relative to the inertial frame S. That is, ~ω = ~ωd,
where ~ωd is the angular velocity of the Earth relative to Newton’s absolute space, or relative to any inertial
frame of reference.

Equation (11.29) can be solved utilizing equations (10.33), (10.37) and ~ω = ~ωd. We then obtain the
correct answer in the terrestrial non-inertial frame S′, namely:

~a ′ = ~0 . (11.30)

It is also possible to invert the procedure. We now give equation (10.33) and ~ω = ~ωd. By solving equation
(11.29) we obtain the pressure inside the fluid Earth as given by equation (10.37).

11.4.2 Calculation of the Precession of the Plane of Oscillation of Foucault’s

Pendulum in the Terrestrial Frame Utilizing the Force of Coriolis

In this Subsection we calculate the angular velocity of precession of the plane of oscillation of Foucault’s
pendulum relative to the ground. There is a body of inertial mass mi and gravitational mass mg suspended
by an inextensible string of length ℓ. These calculations will be performed in the non-inertial frame S′ which
is at rest relative to the ground.

If Newton’s second law of motion were applied in this frame S′ in the form of equation (1.4), we would
obtain that the plane of oscillation of the pendulum should remain at rest relative to the ground, as the
only forces acting on the test body are the downward gravitational attraction due to the Earth and the
tension of the string pointing along its length. As these two forces form a plane, the pendulum should
remain oscillating in this plane after being released from rest. But this is not what happens. The plane of
oscillation precesses slowly relative to the terrestrial frame T with an angular velocity given by ΩpT . This
angular velocity depends upon the latitude where the pendulum is located.

We now show how to obtain the correct value of this precession of the plane of oscillation of the pendulum
relative to the ground. In the non-inertial terrestrial frame S′ it is necessary to introduce another fictitious
force into Newton’s second law of motion, namely:

~FCoriolis ≡ −2mi~ω × ~v ′ . (11.31)
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Here ~ω represents the angular velocity of the non-inertial frame of reference S′ relative to the inertial frame
of reference S. Moreover, ~v ′ is the velocity of the test body of inertial mass mi relative to this non-inertial
frame S′. G.-G. Coriolis (1792-1843) discovered this force in 1831 while studying for his doctoral work under
the supervision of Poisson (1781-1840).3 It was presented in an article of 1835 in which Coriolis refers to the
motion of coordinate plans “relative to space.”4 We can consider Coriolis coordinate plans as being reference
frames. He denominated this expression as “composed centrifugal force.” Nowadays it is called Coriolis’s
force.

We solve this problem in the terrestrial non-inertial frame S′. In this case ~ω = ~ωd, where ~ωd is the dynamic
angular velocity of the Earth relative to absolute space. We will neglect air resistance. The centrifugal force
does not cause a precession of the plane of oscillation. Therefore it will not be considered here in order to
simplify the analysis of the problem. The simple pendulum will be considered at latitude α′ = α, figure
11.18.
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Figure 11.18: (a) Foucault’s pendulum in the inertial frame S of absolute space, with the Earth spinning
around its axis with an angular velocity ~ωd. (b) Non-inertial terrestrial frame S′.

Newton’s second law of motion in the non-inertial terrestrial frame S′ is then given by:

~T +mg~g − 2mi~ωd × ~v ′ = mi~a
′ . (11.32)

Here ~T is the tension in the string. The novelty compared with the equation of motion of a simple pendulum
in an inertial frame S is the introduction of the Coriolis’s fictitious force −2mi~ωd × ~v ′.

We choose a coordinate system (x′, y′, z′) at rest relative to the ground. Its origin O′ is chosen at the
lowest point of the pendulum, that is, at the position of the test mass mi when it is at rest in the ground,
when the pendulum is not oscillating. The axis z′ points vertically at the location of the pendulum, that
is, with ẑ′ = r̂, where r̂ points from the center of the Earth towards the fixed support of the pendulum, as
indicated in figure 11.18. Axis x′ is chosen such that the pendulum would always oscillate along the x′z′

plane, if the Coriolis’s force were not present. We also utilize the equality between inertial and gravitational
masses, equation (7.21).

The real and fictitious forces acting on the pendulum in the non-inertial frame S′ are represented in figure
11.19. The interaction forces are the weight ~Fg = mg~g and the tension ~T along the string. Moreover, there
is also the fictitious Coriolis’s force −2mi~ωd × ~v ′. In this figure it is orthogonal to the paper, penetrating it.

The Earth spins around its North-South axis relative to the inertial frame S with an angular velocity
~ωd = ωdẑ, where ωd = |~ωd|. The z axis has been chosen along the North-South axis of the Earth, figure
11.18 (a). This angular velocity ~ωd of the Earth relative to the inertial frame S represents also the angular
velocity ~ω of the non-inertial frame S′ relative to S:

~ω = ~ωd = ωdẑ = ωd sin θ
′x̂′ + ωd cos θ

′ẑ′ . (11.33)

Let β′ be the angle of the string to the vertical passing through the point of support, figure 11.19. For
β′ ≪ 1 rad we can consider the approximation of small amplitudes of oscillation. In this case the equation
of motion, not yet taking into account the Coriolis’s force, generates the approximate solution given by:

3[Cra90].
4[Cor35].
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Figure 11.19: Forces acting on the pendulum in the non-inertial frame S′. The forces due to interactions of
the pendulum with other bodies are mg~g and ~T . There is also the fictitious Coriolis’s force −2mi~ωd × ~v ′

penetrating the paper.

β′ = β′

o cosωot , (11.34)

where ωo ≡
√

g/ℓ is the natural frequency of oscillation of the pendulum and β′

o is the initial angle of release
of the pendulum at rest. For the small oscillations being considered here, the motion of the pendulum is
essentially horizontal with x′ ≈ ℓβ′, such that ~v ′ ≈ −ẋ′x̂′ = ℓβ′

oωo sinωotx̂
′. The only force component along

the y′ direction is given by Coriolis’s force −2mi~ωd × ~v ′. With the previous values of ~ωd and ~v the equation
of motion along the y′ direction is then given by:

ÿ′ = −2(ωd cos θ
′)ℓβ′

oωo sinωot . (11.35)

Integrating twice this equation and utilizing that ẏ′(t = 0) = 0 and y′(t = 0) = 0 yields:

y′ = 2ωd cos θ
′ℓβ′

o

(

sinωot

ωo
− t

)

. (11.36)

Between t = 0 and t = T/2 = π/ωo the test body mi moved along the y′ direction an amount given by
∆y′ = −2ωd cos θ

′ℓβ′

oπ/ωo. During this short time interval the displacement along the x′ direction was given
by ∆x′ = 2ℓβ′

o, figure 11.20.
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Figure 11.20: Precession of the plane of oscillation of Foucault’s pendulum.

Therefore the plane of oscillation of the pendulum precessed by an angle ∆y′/∆x′ = −πωd cos θ
′/ωo. The

angular velocity ΩpT of the plane of oscillation relative to the ground is given by ∆y′/∆x′ divided by the
time interval ∆t = T/2− 0 = π/ωo, namely:

ΩpT =
∆y′/∆x′

∆t
= −ωd cos θ

′ = −ωd cos(π/2 − α′) = −ωd sinα
′ = −ωd sinα . (11.37)
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This is the final solution of the problem in the non-inertial terrestrial frame of reference S′.
The calculation leading to equation (11.37) was analogous to the calculation of Subsection 8.4.1 leading

to a precession of the plane of oscillation of an electrified pendulum oscillating above a magnet. This magnet
generated a uniform magnetic field ~B. This earlier calculation of Subsection 8.4.1 yielded an angular velocity
of the precession of the electrified pendulum given by Ωp = −qB/2mi, equation (8.47). In this last example
the pendulum was oscillating in an inertial frame of reference and the precession of its plane of oscillation was
due to a magnetic interaction between the electrified pendulum and the magnet. In Foucault’s pendulum, on
the other hand, the pendulum is electrically neutral and we cannot identify the material agent responsible
for Coriolis’s force. That is, we cannot identify a body generating this force which would be analogous to
the magnet in the case of the electrified pendulum. Coriolis’s force −2mi~ωd × ~v ′ is called a “fictitious” force
because we cannot find the source of this interaction. It only appears in non-inertial frames of reference
which rotate relative to absolute space. The magnetic force q~v × ~B, on the other hand, is due to a real
interaction between the test body electrified with a charge q and the source of the magnetic field (this source
can be a magnet, a solenoid, an electrified spherical shell spinning around the test body, etc.).

In the terrestrial frame the sets of stars and galaxies are seen rotating as a whole around the North-South
axis of the Earth with a period of one day. The North-South axis of the Earth coincides approximately with
the axis connecting the center of the Earth with the North pole star. We might think that this set of spherical
shells composed of stars and galaxies rotating around the Earth could generate a gravitomagnetic field ~Bg.
This new field might then explain Coriolis’s force as being the gravitational analogue of the magnetic force,
that is, it would generate a force given by mg~v× ~Bg. However, this explanation does not work in newtonian
mechanics, as this set of spherical shells rotating around the Earth does not generate any net gravitational
force on the pendulum, no matter if the pendulum is stationary or moving relative to the ground, as was
seen in equation (1.21). We will see that there is a term analogous to mg~v× ~Bg in Einstein’s general theory
of relativity, although it does not have the precise value of Coriolis’s force. In relational mechanics, on the
other hand, there is a component of the gravitational force which is analogous to mg~v × ~Bg. Moreover, this
term of relational mechanics has the precise value of Coriolis’s force. According to relational mechanics the
Coriolis’s force will be then finally interpreted as a real force of interaction between Foucault’s pendulum
and the set of galaxies rotating together around the Earth.

11.4.3 Comparison of the Kinematic Rotation of the Earth with Its Dynamic

Rotation

We considered in this Chapter two conceptually different rotations of the Earth. Its kinematic rotation
represents the relative rotation between the Earth and the surrounding celestial bodies like the Sun, the
fixed stars, the distant galaxies and the cosmic background radiation. The period of the daily rotation of
the Earth relative to the fixed stars is 86,164 s. This period corresponds to a kinematic angular velocity of
the Earth relative to the fixed stars with a value of ωk = 2π/T ≈ 7.29× 10−5 rad/s. This relative rotation
happens around the North-South axis of the Earth, that is, approximately around the axis connecting the
center of the Earth with the North pole star. This kinematic rotation can be equally well interpreted in
classical mechanics as being due to two different reasons, namely: (I) The Earth remains at rest while the
stars rotate once a day around the North-South axis of the Earth; and (II) the stars remain at rest while
the Earth rotates once a day around its North-South axis. Visually these two interpretations are equivalent
to one another and cannot be distinguished only through this relative motion.

A completely different rotation of the Earth is obtained through its flattened figure and by Foucault’s
pendulum. The dynamic rotation of the Earth obtained by these measurements is related to its absolute
rotation with respect to an inertial frame of reference. It is not necessary to look at the stars nor at the
galaxies in order to obtain this dynamic rotation. Its value and direction can be obtained by measurements
made with Foucault’s pendulums oscillating inside closed rooms spread over the surface of the Earth. Ac-
cording to newtonian mechanics these dynamic effects can only be explained by a real daily rotation of the
Earth relative to an inertial frame of reference. These effects would not appear if the Earth were at rest
relative to an inertial frame, while the stars and galaxies were rotating together once a day around its North-
South axis. These two configurations are kinematically or visually equivalent, as there is the same relative
rotation between the Earth and the surrounding bodies. However, they are not dynamically equivalent, as
the flattening of the Earth, for instance, happens only in one configuration.

Later on we will see that Ernst Mach had a different point of view. According to Mach, if two situations
are kinematically equivalent, they must be dynamically equivalent. Whenever two situations are visually
equivalent, the same dynamic effects must appear in both of them. Relational mechanics implements quan-
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titatively this machian idea.
It is an amazing coincidence of classical mechanics that the kinematic and dynamic rotations of the Earth

coincide with one another. The kinematic rotation obtained by the relative rotation between the Earth and
the fixed stars happens to have the same value and direction as the dynamic rotation obtained in a closed
room with a pendulum of Foucault. There is no causal connection between these two rotations in newtonian
mechanics. There is no causal explanation for this remarkable coincidence. Newton’s justification for this
fact was to postulate that the fixed stars are at rest relative to absolute space, as seen in Subsection 1.6.3.
But even with this hypothesis, there is no causal connection between these two rotations. The stars and
galaxies exert no net gravitational influence upon any body belonging to the solar system. In principle the
stars and galaxies might be annihilated from the universe without affecting anything. The Earth would still
be flattened at the poles, Foucault’s pendulum would remain precessing relative to the ground, etc.

Likewise, classical mechanics does not offer any explanation for the fact that mi = mg. That is, there is
no reason obliging the inertial mass of a body to be proportional to its gravitational mass. Classically we can
only say that nature happens to behave this way, but a closer understanding is not supplied. In principle the
inertial mass of a test need not be related to its gravitational mass. It might be a completely independent
property of the test body, having no relation whatsoever with its gravitational mass. Likewise, it might as
well be related to a chemical or nuclear property of the body, instead of being related to its gravitational
mass. However, experimentally one finds the inertial mass of a body proportional to its weight, or mi = mg.

A similar situation happens with the equality between the kinematic and dynamic rotations of the
Earth. This observed fact indicates that the universe as a whole does not rotate relative to absolute space
nor relative to any inertial frame of reference. The Earth rotates daily around its axis, relative to the
frame of fixed stars, with a period of one sidereal day (T = 8.6164 × 104 s), or with an angular velocity
ω = 2π/T = 7.29×10−5 rad/s. The Earth orbits around the Sun, relative to the background of stars, with a
period of one year (T = 365d 6h 9m = 3.156×107 s), or with an angular velocity ω = 2π/T = 2.0×10−7 rad/s.
The planetary system orbits around the center of our galaxy, relative to the frame of distant galaxies, with
a period of 2.5 × 108 years, (T = 7.9 × 1015 s), or with an angular velocity ω ≈ 7.9 × 10−16 rad/s. Most
astronomical bodies in the universe rotate relative to an inertial frame of reference, except the universe as a
whole. Why the universe as a whole does not rotate relative to absolute space? There is no explanation for
this fact in classical mechanics. This is a fact of observation, but nothing in newtonian mechanics obliges
the universe to behave this way. The laws of mechanics would remain valid if the universe as a whole were
rotating relative to absolute space. We would only need to take into account this effect when performing the
calculations. This eventual rotation of the set of galaxies relative to absolute space would cause a flattening
in the distribution of galaxies, similar to the flattening of the Earth at the poles due to its diurnal rotation,
or similar to the essentially plane form of the solar system due to the rotation of the planets around the Sun,
or similar to the essentially plane figure of our galaxy due to the rotation of the stars around the center of
the Milky Way.

These two coincidences of classical mechanics (mi = mg and ~ωk = ~ωd) form the main empirical founda-
tions leading to Mach’s principle.

11.5 General Fictitious Force

Newton’s second law of motion in an inertial frame of reference S is written as follows:

~F = mi
d2~r

dt2
, (11.38)

where ~r = (x, y, z) is the position vector of the particle of inertial mass mi relative to the origin O of
frame S. The force ~F which appears in equation (11.38) represents the resultant force acting on mi due to
its interaction with all other bodies in the universe. These are real forces which can have several origins:
gravitational, electric, magnetic, nuclear, elastic, friction, gradient of pressure, etc.

Let S′ be a non-inertial frame with origin O′. The position vector of this particle of inertial mass mi

relative to the origin of frame S′ will be represented by ~r ′ = (x′, y′, z′). Suppose Newton’s second law of
motion in S′ were written like equation (11.38), namely:

~F = mi
d2~r ′

dt2
. (11.39)

This law leads to wrong results in the non-inertial frame S′, as we have seen in this Chapter. These results
disagree with the phenomena observed in S′.



Ch. 11: Non-inertial Frames of Reference and the Fictitious Forces 209

However, Newton’s second law of motion leads to correct results in S′ when it includes the so-called
“fictitious forces.” Let ~F represent once more the net force acting on mi due to its interaction with all bodies
in the universe, while ~Ff represents the resultant fictitious force acting on mi in this non-inertial frame S′.
The correct way of writing Newton’s second law of motion in an arbitrary non-inertial frame S′ is given by:

~F + ~Ff = mi
d2~r ′

dt2
. (11.40)

Suppose the origin O′ of frame S′ is located by a vector ~h relative to the origin O of an inertial frame S.
According to figure 11.21 we have:
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Figure 11.21: Inertial frame S and non-inertial frame S′.

Suppose, moreover, that the origin O′ of frame S′ is moving relative to the origin O of frame S with
a translational velocity d~h/dt and with a translational acceleration d2~h/dt2. Suppose as well that the axes
(x′, y′, z′) of S′ are rotating with an angular velocity ~ω relative to the axes (x, y, z) of S.

In this generic case being considered here the general expression for the fictitious force which leads to
correct results compatible with the phenomena observed in the non-inertial frame S′ is given by:5

~Ff = −mi~ω × (~ω × ~r ′)− 2mi~ω × d~r ′

dt
−mi

d~ω

dt
× ~r ′ −mi

d2~h

dt2
. (11.41)

The combination of equations (11.40) and (11.41) yields the equation of motion of a test particle mi in
the non-inertial frame S′ as given by:

~F −mi~ω × (~ω × ~r ′)− 2mi~ω × d~r ′

dt
−mi

d~ω

dt
× ~r ′ −mi

d2~h

dt2
= mi

d2~r ′

dt2
. (11.42)

The second term on the left hand side of equation (11.42), −mi~ω × (~ω × ~r ′), is called centrifugal force.
The third term on the left, − 2mi~ω × (d~r ′/dt), is called Coriolis’s force. The fourth term on the left,
−mi(d~ω/dt)× ~r ′, is sometimes called Euler’s force.6 The fifth term on the left has no special name. All the
terms on the right-hand side of equation (11.41) are “fictitious forces” in newtonian mechanics, appearing only
in non-inertial frames of reference. The effects generated by these forces in these non-inertial frames are real
(flattening of the Earth, concave figure of the water in Newton’s bucket experiment, precession of the plane of
oscillation of Foucault’s pendulum, etc.). Despite this fact, we cannot identify any specific body generating
these forces, nor the kind of interaction causing them (these forces do not seem to have a gravitational,
electric, magnetic, nuclear nor elastic origin, for instance). For this reason they are denominated fictitious
or pseudo-forces.

Certainly in classical mechanics these fictitious forces are not caused by the fixed stars nor by the distant
galaxies. Even if the stars and galaxies were annihilated from the universe, the fictitious forces would
still exist in non-inertial frames of reference. In newtonian mechanics the fixed stars and distant galaxies
cannot cause the fictitious forces due to Proposition 70, Theorem 30 of Book I of the Principia discussed in
Subsection 1.4.1. We only need to introduce the fictitious forces in non-inertial frames of reference.

In an inertial frame of reference S we can write Newton’s second law of motion without any fictitious’s
force, as in equation (11.38). With this law we can predict correctly all observed phenomena, like the
flattening of the Earth, the concave figure of the water in Newton’s bucket experiment, the precession of the
plane of oscillation of Foucault’s pendulum, etc.

5[Sym71, Chapter 7] and [Sym82, Chapter 7].
6[Lan86, p. 103] and [MR99, p. 251].
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Chapter 12

Gravitational Paradox

In this Chapter we discuss the so-called gravitational paradox.1

12.1 Newton and the Infinite Universe

Isaac Newton’s cosmological conceptions were clearly analyzed by E. Harrison in a very interesting article.2

He showed that during his early years (1660’s) Newton believed that space extended indefinitely in all
directions and was eternal in duration. The material world, on the other hand, was of a finite extent. That
is, it occupied a finite volume of space and was surrounded by an infinite space devoid of matter.

After his complete formulation of universal gravitation in the 1680’s, Newton became aware that the
fixed stars might attract one another due to their gravitational interaction. In the General Scholium at the
end of the Principia Newton wrote:3

[...] This most beautiful system of the Sun, planets, and comets, could only proceed from the
counsel and dominion of an intelligent and powerful Being. And if the fixed stars are the centres
of other like systems, these, being formed by the like wise counsel, must be all subject to the
dominion of One; especially since the light of the fixed stars is of the same nature with the light
of the Sun, and from every system light passes into all the other systems: and lest the systems of
fixed stars should, by their gravity, fall on each other, he hath placed those systems at immense
distances from one another.

However, putting the fixed stars very far away from one another does not avoid another problem: If the
universe existed for an infinite amount of time, then a finite amount of matter occupying a finite volume
would eventually collapse to its center due to the gravitational attraction of the inner matter.

In correspondence exchanged with the theologian Richard Bentley in 1692-1693, Newton perceived this
fact and changed his cosmological views. He abandoned the idea of a finite material universe surrounded by
an infinite void, and defended the idea of an infinite material world spread out in infinite space. This change
can be seen in his first letter to Bentley:4

As to your first Query, it seems to me, that if the matter of our Sun and planets and all the
matter in the Universe was eavenly scattered throughout all the heavens, and every particle
had an innate gravity towards all the rest and the whole space throughout which this matter
was scattered was but finite: the matter on the outside of this space would by its gravity tend
towards all the matter on the inside and by consequence fall down to the middle of the whole
space and there compose one great spherical mass. But if the matter was eavenly diffused through
an infinite space, it would never convene into one mass but some of it convene into one mass and
some into another so as to make an infinite number of great masses scattered at great distances
from one to another throughout all that infinite space. And thus might the Sun and fixt stars be
formed supposing the matter were of a lucid nature.

1[Nor65, Chapter 2 (Cosmological difficulties with the newtonian theory of gravitation), pp. 16-23], [Jam93, pp. 194-195]
and [Jam10, p. 237], [Ron85, Chapter 8], [Jak90, Chapter 8 (The gravitational paradox of an infinite universe), pp. 189-212],
[Ass92f], [Ass93c], [Ass94, Chapter 7, pp. 203-222], [Cin96] and [Nor99].

2[Har86].
3[New34, p. 544] and [New08b, p. 328].
4[Ben42, pp. 47-48] and [Coh78, p. 281].
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That is, with an infinite amount of matter distributed more or less homogeneously over the whole of an
infinite space, there would be approximately the same amount of matter in all directions. In this way there
would be no center of the world to where the matter would collapse.

Two hundred years later, however, a paradoxical situation was identified with this cosmological system.
This is the subject of the next Sections.

12.2 The Paradox Based on Force

There is a simple but profound paradox which appears with Newton’s law of gravitation in an infinite universe
which contains an infinite amount of matter. The simplest way to present the paradox is the following:
Suppose a boundless universe with an homogeneous distribution of matter. We represent its constant and
finite volume density of gravitational mass by ρ. To simplify the analysis we deal here with a continuous
mass distribution extending uniformly to infinity in all directions. We now calculate the gravitational force
exerted by this infinite universe on a test particle with gravitational mass m (or with gravitational mass
dm = ρdV , where dV represents its infinitesimal volume) located at a point P , as in Figure 12.1.

R

Q

m

P

ρ

ρ

Figure 12.1: Infinite and homogeneous universe with a constant volume density of gravitational mass ρ.

If we calculate the force on m with the coordinate centered on P , all the universe will be equivalent to a
series of spherical shells centered on P . From equation (1.15) we learn that there will be no net force acting
on m. This might be expected by symmetry.

Now let us calculate the force on m utilizing a coordinate system centered on another point Q, as in
figure 12.2.

Q RQP

R

P
m F

ρ

ρ

Figure 12.2: Force on m calculated from Q.

In order calculate the net force, we divide the universe into two parts centered on Q. The first one is
the sphere of radius RQP centered on Q and passing through P . The gravitational mass of this sphere is
M = ρ4πR3

QP /3. It attracts the mass m with a force given by GMm/R2
QP = 4πGρmRQP /3 pointing from

P to Q. The second part is the remainder of the universe. This remainder is composed of a series of external
shells centered on Q containing the internal test particle m. By equation (1.15) this second part exerts no
force on m. This means that the net force exerted on m by the whole universe calculated in this way is
proportional to the distance RQP and points from P to Q, as in figure 12.2.

Following a similar procedure but utilizing a coordinate system centered on another point R, as in
figure 12.3, we would find that the net force exerted by the whole universe on m would be proportional to
the distance between P and R pointing from P to R, with a magnitude given by F = 4πGρmRRP /3, as
represented in figure 12.3.
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P

F

Q

R RRP

m
r

r

Figure 12.3: Force on m calculated from R.

This means that depending on how we perform the calculation we obtain a different result. This is
certainly unsatisfactory.

Another way of presenting the paradox is to consider the force on m located at P calculated from an
origin at Q, shown in figure 12.2. As we have seen, the net force on m point from P to Q and is proportional
to the distance PQ. This means that the net force on a material particle located on P becomes infinite if it
is located at an infinite distance from Q.5

This whole discussion appears to indicate the existence of a real physical problem and does not seem
to be related only with mathematics. For instance, if we were calculating the net force exerted by a finite
distribution of mass (that is, with a finite amount of gravitational mass spread over a finite volume) and
acting on a test particle m utilizing Newton’s law of gravitation, the result would be the same no matter how
we calculated the result or where we centered the coordinate system. We assume, for instance, the finite body
with constant volume mass density ρ of figure 12.4. It is surrounded by an infinite void space. If we calculate
the net gravitational force exerted by this body on one of its particles of gravitational mass m (or acting
on an infinitesimal element of gravitational mass dm = ρdV , where dV represents its infinitesimal volume)
located at T , we always obtain the same result pointing from T to S. We can perform the calculations
placing the coordinate system centered on S, on T , on U , on V or on any other point, and the final result
will always be the same: a force of the same magnitude pointing from T to S, as in figure 12.4.

ρ

S U

T

V

m
F

ρ = 0

Figure 12.4: Finite body exerting a net force on one of its particles.

This whole situation is called the gravitational paradox. It was discovered by Hugo Johann Seeliger
(1849-1924) and Carl Neumann (1832-1925) at the end of last century, between 1895 and 1896.6

We presented it here utilizing a continuous distribution of mass spread on a homogeneous and perfectly
uniform universe. We do not believe the paradox would be avoided by considering masses concentrated in
material points distributed uniformly in space, instead of being uniformly spread continuously. We also do
not believe the paradox would be avoided by taking into account the local anisotropies of matter observed
in the real world.

12.3 The paradox Based on Potential

Instead of calculating the force, we could just as well calculate the gravitational potential or the gravitational
potential energy.

5[Kel01], [Ein20b], [Ein20a] and [Jak90].
6[See95] and [Neu96].
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The gravitational potential Φ(~ro) at a point ~ro due to N gravitational masses mgj located at ~rj is defined
by:

Φ(~ro) ≡ −
N
∑

j=1

G
mgj

roj
, (12.1)

where roj ≡ |~ro − ~rj |.
Utilizing equation (12.1), we now calculate the gravitational potential at a point ~ro = roẑ due to a

spherically symmetric distribution of mass of radius R > ro, thickness dR and gravitational mass dMg =
4πR2dRρg (where ρg represents the uniform volume density of gravitational mass of the shell), as in figure
12.5.

z

y

x

0

ro
R

dR

Figure 12.5: Spherical shell of radius R and thickness dR.

Substituting the sum by a surface integral over the shell and mgj by d3Mg = ρgR
2dRdϕ sin θdθ yields

the well-known result:

dΦ(ro < R) = −GρgR
2dR

∫ 2π

ϕ=0

∫ π

θ=0

sin θdθdϕ
√

R2 + r2o − 2Rro cos θ
= −GdMg

R
= −4πGρgRdR . (12.2)

That is, the contribution of the shell is proportional to its radius. This means that if we integrate equation
(12.2) from R = 0 to infinity we obtain an infinite result. This infinite result is also obtained integrating
from R = ro to infinity. This infinite result was obtained by Seeliger and Neumann.

The gravitational potential energy of a particle with gravitational mass mgo located at ~ro and interacting
with the N particles which generated the gravitational potential of equation (12.1) is given by U = mgoΦ.
This expression means that the gravitational potential energy of a particle interacting with this homogeneous
and infinite universe also becomes infinite. The force ~Fo acting on the test particle can be obtained as the
negative gradient of this potential energy, ~Fo = −∇Uo. As the potential energy has an infinite value, the
value of this force ~Fo becomes undetermined or indefinite.

There is another way to present the paradox. The equation satisfied by the gravitational potential Φ in
the presence of matter is known as Poisson’s equation, obtained in 1813:

∇2Φ = 4πGρg . (12.3)

The Laplacian of 1/r is given by ∇2(1/r) = −4πδ(~r), where δ(~r) is Dirac’s delta function. Utilizing
Φ = −Gmg/r and the fact that mgδ(~r) = ρg(~r), together with the Laplacian of 1/r, we obtain equation
(12.3).

If we have a homogeneous universe with a constant and finite volume density of mass, we should expect a
constant potential Φ. However, supposing a constant Φ and utilizing Poisson’s equation (12.3), one obtains
ρg = 0. But this is against the initial supposition of a constant and finite volume density different from zero.
There is no solution of Poisson’s equation in which both magnitudes, Φ and ρg, have constant and finite
values different from zero.
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12.4 Solutions of the Paradox

There are three main ways of solving the paradox. In each of these alternative ways it is necessary to make a
different supposition, namely: (I) The universe has a finite amount of mass. (II) Newton’s law of gravitation
should be modified. (III) There are two kinds of gravitational mass in the universe, positive and negative.
In the following Subsections we analyze each one of these solutions.

12.4.1 Supposition I: The Universe Has a Finite Amount of Mass

In the first solution of the gravitational paradox we maintain Newton’s law of gravitation and also the
constituents of the universe as usually known. We only require a universe with a finite amount of matter
in order to avoid the paradox. For instance, suppose the universe has a total finite gravitational mass Mg

uniformly distributed around a center O of a sphere of radius R, as in figure 12.6.

z

y

x

M

R

0

r

mg

P

g

Q

S

r

r = 0

r

Figure 12.6: Universe with a finite amount of gravitational mass Mg distributed uniformly over a sphere of
radius R.

The volume density of gravitational mass ρg of this hypothetic universe has a constant value given by
ρg = 3Mg/(4πR

3). Let mg be the gravitational mass of a test particle located at the position vector ~r

relative to the origin O of this universe, such that r < R, with r ≡ |~r|. The net force ~F exerted by the
universe on this test particle is given by:

~F = −Gm(4ρπr3/3)

r2
r̂ = −4πGρmr

3
r̂ . (12.4)

This force points always from the test particle to the origin O of the universe, no matter how we perform
the calculations. The origin of the coordinate system utilized to perform the calculations can be placed on
the origin O of the universe, on the point P where the test particle is located, on another internal point like
Q, or on any external point like S of figure 12.6. No matter the origin of this coordinate system, the net
force on the test particle will be always given by equation (12.4).

However, this solution of the paradox generates other problems. As we have seen, Newton abandoned
this cosmological model of the universe because it leads to a collapsing situation. That is, the outer matter
tends to concentrate on this center due to the gravitational attraction of the inner matter.

To avoid this new problem we would need to suppose the universe to be rotating relative to absolute
space. In order to understand this solution, we can think on the planetary system. Despite the gravitational
attraction of the Sun, the planets do not collapse at the center of the Sun due to the rotation of the planets,
relative to absolute space, around the Sun. That is, the planets have a tangential motion, as they orbit
around the Sun relative to absolute space (or relative to an inertial frame of reference). In the case of
uniform circular motion, the centripetal force exerted by the Sun is balanced by −mi~a, where ~a is the
acceleration of the planet of inertial mass mi relative to an inertial frame of reference. If we are considering
a non-inertial frame of reference which rotates together with a test planet around the Sun, then we can also
say that the centripetal force exerted by Sun on the planet is equilibrated by a centrifugal force acting on the
planet, as was seen in figures 11.10 and 11.13. But we saw previously in Subsection 11.4.3 that the universe as
a whole does not rotate relative to absolute space. This conclusion was obtained from the fact that the best
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inertial frame of reference available is the universal frame of reference, that is, the frame in which the distant
galaxies are seen at rest, without an overall rotation. This aspect will also be discussed with quantitative
data in Section 14.3. This discussion implies that this solution for the gravitational paradox (according to
which the universe as a whole would be rotating relative to absolute space) is refuted by observations.

In order to avoid this collapse of an universe with a finite amount of matter distributed over a finite
volume we would then need to postulate some kind of repulsive force as yet unknown. This last suggestion
is somewhat similar to the second solution of the gravitational paradox discussed in the next Subsection.

12.4.2 Supposition II: Newton’s Law of Gravitation Should Be Modified

The second solution of the paradox was proposed by Seeliger and C. Neumann in 1895-1896. Seeliger, in
particular, proposed to modify Newton’s law of gravitation by the following expression:7

F = −Gmm′

r2
e−αr . (12.5)

Here α would be a constant different from zero with dimension of length−1.
Instead of modifying directly the gravitational force, C. Neumann proposed another alternative in 1896,

namely, to change the gravitational potential Φ of classical mechanics. In newtonian mechanics the potential
at a distance r from a gravitational point mass mg is given by equation (12.1). Instead of this potential,
Neumann proposed the following expression:8

Φ = −Gmge
−αr

r
. (12.6)

In this equation the constant α has dimension of length−1. The inverse of α, namely, 1/α, yields the typical
interval where the interaction is relevant, that is, the order of magnitude up to where gravitation is really
effective. It should be stressed that Neumann proposed this potential many years before Yukawa (1907-1981)
suggested a similar law describing nuclear interactions.

In the case of two point particles of gravitational masses mg1 and mg2 separated by a distance r = r12,
their gravitational potential energy would be given by:

U = −G
mg1mg2

r12
e−αr12 . (12.7)

From this point onwards, we present our own calculations. Utilizing the fact that ~F = −∇U , we can
obtain the force exerted by mg2 on mg1. Supposing α to be a constant this expression yields:

~F = −∇1U = −G
mg1mg2

r212
r̂12(1 + αr12)e

−αr12 . (12.8)

We now integrate this equation, assuming a universe with constant volume mass density ρ2. The test
particle of gravitational mass mg1 is located on the z axis at a distance d1 from the origin of the coordinate
system at O, that is, ~r1 = d1ẑ. We consider an infinitesimal element of mass dmg2 located at ~r2 = r2r̂2.
Once more we divide the universe in two parts centered at O: The first part is located at r2 > d1, while the
second part is located at r2 < d1, as shown in figure 12.7.

We now integrate the gravitational force exerted by a spherical shell of radius r2 acting on mg1 utilizing
spherical coordinates (r2, θ2, ϕ2), with the azimuth angle ϕ2 going from zero to 2π rad and the polar angle
θ2 going from zero to π rad. With r2 > d1 we get:

d~F =
2πGmg1ρ2r2e

−αr2dr2ẑ

d21α

[

(1 + αd1)e
−αd1 − (1− αd1)e

αd1

]

. (12.9)

This result is different from zero if d1 6= 0. This means that a spherical shell will exert a net force on an
internal test particle according to Neumann’s potential given by equation (12.6) if this test particle is not at
the center. There is a striking difference between this result and the newtonian case, which yielded a zero
force no matter the position of the internal test particle, as seen in Subsection 1.4.1.

In the limit in which αd1 ≪ 1 we recover the newtonian result of zero force.
Integrating equation (12.9) from r2 = d1 to infinity yields:

7[See95].
8[Neu96] and [Nor65, Chapter 2].
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z

x0 d1

dmg2

r2

d1 mg1

Figure 12.7: Test particle mg1 and infinitesimal source element dmg2.

~F = − 2πGmg1ρ2(1 + αd1)ẑ

d21α
3

[

(1− αd1)− (1 + αd1)e
−2αd1

]

. (12.10)

This result is valid for α 6= 0 and cannot be applied to α = 0.
We now calculate the force on mg1 due to the second part located at r2 < d1. We first calculate the force

of a spherical shell attracting an external test particle. Integrating equation (12.8) with ϕ2 going from zero
to 2π rad and with θ2 going from zero to π rad yields:

d~F =
2πGmg1ρ2(1 + αd1)e

−αd1r2dr2ẑ

d21α

(

e−αr2 − eαr2
)

. (12.11)

In the limit in which αr2 ≪ 1 and αd1 ≪ 1, we recover the newtonian result that a spherical shell attracts
an external particle as if the shell were concentrated at its center, namely:

d~F = −4πr22dr2ρ2Gmg1ẑ

d21
. (12.12)

Integrating equation (12.11) with r2 going from zero to d1 yields:

~F =
2πGmg1ρ2(1 + αd1)ẑ

d21α
3

[

(1− αd1)− (1 + αd1)e
−2αd1

]

. (12.13)

This result is valid for α 6= 0 and cannot be applied for α = 0.
Adding equations (12.10) and (12.13) yields zero as the resultant force acting on mg1 due to the whole

universe. The same result is obtained choosing any other point as the origin of the coordinate system. This
calculation shows that the paradox is solved with Neumann’s potential energy, even keeping an infinite and
homogeneous universe in which there is a constant and finite volume density of gravitational mass ρg in all
points of an infinite space. In this model the total amount of gravitational mass in the universe would be
infinite, although the volume density of mass would be constant and finite at all points.

We now analyze this solution of the paradox as regards the potential. The equation satisfied by the
potential Φ of equation (12.6) due to a point mass mg is given by:

∇2Φ− α2Φ = 4πGρg . (12.14)

There is now a solution for this equation with a constant and finite volume density of mass ρg yielding
a constant and finite potential given by:

Φ = −4πGρg
α2

. (12.15)

Another way of obtaining this result is to integrate directly the potential due to a spherical shell of radius
r. To this end we replace in equation (12.6) the value of mg by d3mg = ρg sin θdθr

2drdϕ. We can then
integrate this expression in order to obtain the potential at the origin, with this potential being due to the
whole universe. Integrating equation (12.6) we obtain the following result:

Φ = −Gρg

∫

∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0

(r2 sin θdrdθdϕ)
e−αr

r
= −4πGρg

α2
. (12.16)
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The same result is obtained calculating the potential at any other point ~ro different from the origin.
The calculations presented in this Subsection show the solution of the gravitational paradox based on

the potential.

12.4.3 Supposition III: There Are Two Kinds of Gravitational Mass in the Uni-

verse, Positive and Negative

The third way of solving the gravitational paradox is to suppose the existence of negative gravitational
masses. The first to propose this idea of a negative gravitational mass seems to have been August Föppl
(1854-1924) in 1897.9 He proposed this idea based on electromagnetic analogies, and was not concerned with
the gravitational paradox. Calling the ordinary gravitational mass positive, we would have the following rule:
positive mass attracts positive mass but repels negative mass, while negative mass attracts negative mass and
repels positive mass. This behavior would be the opposite behavior of what happens with electric charges.

This being the case, we could have a universe with an equal amount of positive and negative masses,
in which Newton’s law of gravitation would be obeyed and in which the gravitational paradox would not
appear, even with an infinite amount of positive mass distributed uniformly with a constant density ρg+
spread in an infinite universe extending itself indefinitely in all directions, provided there were the same
infinite amount of negative mass also distributed uniformly. Now there is a solution of the equations in
which both masses are equally distributed everywhere, such that the volume density of negative mass would
be given by ρg− = −ρg+ = constant everywhere. The total density of gravitational mass, ρg, would be zero
on average everywhere, that is: ρg = ρg+ + ρg− = 0. Now there is a solution of the equations in which both
masses are equally distributed everywhere, so that the net gravitational force on any test body is zero on the
average. The gravitational potential energy would also be zero everywhere on the average. There exists a
solution of Poisson’s equation (12.3) with a constant Φ and with a resultant volume density of gravitational
mass which is zero on the average, namely, ρg = ρg+ + ρg− = 0.

We can understand this third solution more easily observing that there is no electrical paradox analogous
to the gravitational paradox. The reason is that usually we consider the universe as a whole to be electrically
neutral. In other words, apart from local anisotropies, the negative charge in one region is compensated by
a corresponding positive charge somewhere else. This means that on average there is no electrostatic force
on any charge due to all the charges in the universe. The same would be true for gravitation, provided there
is negative gravitational mass with the same amount as the ordinary positive gravitational mass.

The gravitational paradox is very simple to state and understand. It is amazing that with a situation so
simple we can arrive at such far-reaching conclusion, namely: We cannot have a universe with an infinite
amount of ordinary matter in which Newton’s law of gravitation is obeyed. At least one of these components
must be modified: The infinite amount of matter in the universe, Newton’s law of gravitation, or the nature
of the constituents in the cosmos (that is, if we have or not negative gravitational masses).

Our own preferred cosmological model is a universe that is boundless and infinite in space, which has
always existed without any creation, and with an infinite amount of matter distributed in all directions.
In this model the universe extends in all directions without end, with an infinite amount of matter on the
whole, but with a finite matter density on the average. The simplest model of the universe along these lines
is a homogeneous distribution of mass in the large scale with a finite matter density. This means that it has
no preferred center, so that any point can be arbitrarily chosen as its center. We could also perform the
calculations beginning from any point. For this reason we do not adopt the first solution of the gravitational
paradox. We prefer the second and third solutions. In this book we explore quantitatively only the second
solution.

12.5 Relation between Gravitation, Optics and Cosmology

In this Section we speculate on a possible connection between gravitation, optics and cosmology. The
gravitational potential Φ has the same dimension of a velocity squared, namely, m2/s2 in the International
System of Units. A fundamental constant of nature is light velocity in vacuum, c. It is possible to suppose
that this gravitational potential coming from the interaction of the test body with the whole universe around
it is proportional to −c2. If this is the case, then from equation (12.16) we can relate the constant α which
characterizes the gravitational interaction with other universal constants of nature, namely:

9[Mac60, p. 234].
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Φ = −4πGρg
α2

= −k0c
2. (12.17)

Here k0 would be a dimensionless constant which would have value 1 or another value with this order of
magnitude, like 0.3; 0.8; 1.3; 1.7; etc.

That is:

α =

√

4πGρg
k0c2

. (12.18)

We can define a certain distance dg characterizing the gravitational interactions as the inverse of α,
namely:

dg ≡ 1

α
. (12.19)

With the values of ρg given by equation (4.37), together with equations (12.18) and (12.19), we obtain
the following limit values for α and dg by supposing k0 = 1:

2.07× 10−27 m−1 < α < 7.16× 10−27 m−1 , (12.20)

and

1.40× 1026 m < dg < 4.83× 1026 m . (12.21)

These limit values for dg are close to the limit values for Hubble’s distance Ro ≡ c/Ho given by equation
(4.34), where Ho is Hubble’s constant. This should not be a coincidence. Values so close to one another
suggest that dg might be proportional to Hubble’s distance, namely:

dg =
1

α
= k1Ro = k1

c

Ho
. (12.22)

Here k1 would be a dimensionless constant equal to 1 or with a value of this order of magnitude, like 0.2;
0.73; 1.4; 1.83; etc.

Combining equations (12.18) and (12.22) yields:

Gρg
H2

o

=
ko

4πk21
. (12.23)

Utilizing equation (4.32) relating Hubble’s radius Ro with light velocity in vacuum c and Hubble’s constant
Ho, then equation (12.23) can be written as:

Gρg
H2

o

=
GρgR

2
o

c2
=

ko
4πk21

. (12.24)

Equations (12.23) and (12.24) relate the constant G of Newton’s law of gravitation, the mean volume
density of gravitational mass ρg, Hubble’s constant Ho, light velocity in vacuum c, and Hubble’s radius Ro.
At the right hand side of this equation there are only dimensionless magnitudes. The dimensionless constants
ko and k1 have values given by 1 or other values of this order of magnitude.

Relations analogous to equations (12.23) and (12.24) were obtained in the XXth century by several
authors, beginning from different cosmological conceptions.10 In the case of Schrödinger the radius Ro was
not Hubble’s radius, as Hubble’s work on the cosmological redshift appeared only in 1929. Schrödinger’s
conclusion was that the masses responsible for the local inertia of bodies belonging to the solar system were
located far beyond the known dimensions of the Milky Way.

By supposing k1 = 1, then equation (12.22) yields dg = Ro = c/Ho. The constant dg would then have
the limits given by equation (4.34). In this case the value of the constant α would be given by:

α =
Ho

c
. (12.25)

10[Sch25] with commented Portuguese translation in [XA94] and with English translation in [Sch95], [Dir38], [Sci53], [Bro55]
and [Bro82, p. 57], [Dic59], [Fre71, Chapter 12: Inertial Forces and Noninertial Frames], [Edw74], [Eby77], [Ass89a], [Ass98,
Sections 8.3 and 11.4], [Ass99a, Sections 8.5 and 11.4], [Unz10], [UJ13] and [Gin11].
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Utilizing equation (12.25) into equation (12.15) yields a gravitational potential Φ given by (utilizing also
the constant ρc defined by equation (4.35)):

Φ = −4πGρgc
2

H2
o

= −3

2

ρgo
ρc

c2 . (12.26)

Utilizing in this equation the observational limits that the value of ρgo/ρc is between 0.1 and 0.3, as given
by equation (4.36), yields:

−0.45c2 < Φ < −0.15c2 . (12.27)

That is, with equation (12.17) we would obtain 0.15 < k0 < 0.45. Once more we obtain that the average
gravitational potential Φ anywhere in the universe would have the same order of magnitude as the negative
value of the square of light velocity in vacuum.

12.6 Exponential Decay in Gravitation

There have been other reasons for people to propose an exponential decay in the gravitational potential of
a point mass, in the gravitational potential energy between two point masses, or in the gravitational force.
These ideas are not directly related to the gravitational paradox, but sometimes the proposed modification is
along the same lines. We have reviewed this situation elsewhere.11 All the references and further discussion
can be found in these studies. In the paragraphs below we discuss different kinds of idea leading to an
exponential decay for gravitation.

12.6.1 Absorption of Gravity in Analogy with Light Absorption by a Medium

Light flowing from a source is absorbed by an intervening medium, so that its power changes with distance as
e−αr/r2. Those who suppose that gravitation propagates from a source like light (in the form of gravitational
waves, in the form of particles like gravitons, or by other means) are led to suppose an exponential decay
for gravitation.

Some terrestrial experiments have been made to detect modifications in Newton’s law of gravitation.
Some of these have met with positive results, as those of Q. Majorana (1871-1957) related to absorption of
gravity and performed in the beginning of XXth century. For this reason they should be repeated.12

12.6.2 Modification of the Intervening Medium by a Many-Body Action at a

Distance

In the case of two point particles electrified with charges q1 and q2 at rest relative to one another, separated
by a distance r, the force exerted by q1 on q2 is given by q1q2/4πεor

2. When we interpose a dielectric
medium or a conductor between these two charges, this medium is affected by them and becomes polarized.
One of the effects of the polarization of the dielectric or conducting medium, is the modification of the net
force acting on q2. That is, the resultant force acting on q2 is no longer given by q1q2/4πεor

2. In this case
it is not necessary to think about a temporal propagation of the electric force. The new net force can be
explained by an instantaneous action at a distance between the interacting bodies. Now, beyond the force
exerted by q1 on q2, there is also the forces exerted by the charges of the polarized medium acting on q2.
That is, we do not need to interpret this new net force as being due to an absorption of the electric force
by the medium. However, by assuming an analogy between electromagnetism and gravitation, we might
expect some influence of the intervening medium for the net gravitational force acting on any material body.
That is, two gravitational masses m1 and m2 separated by a distance r exert a mutual force Gm1m2/r

2

when they are located in vacuum. Suppose that now we put a material medium between m1 and m2. Let
Fmedium m2

be the force exerted by the medium on m2 when m1 is not present. It may happen that when
m1 is once again present and when there is a material medium between 1 and 2, the net force acting on
m2 may be different from Gm1m2/r

2 + Fmedium m2
. The new net force acting on m1 might be given by

Gm1m2/r
2 + Fmedium m2

+ F1−medium on m2
, where F1−medium on m2

would be a component of the force
acting on m2 and depending on the interaction between m1 and the medium. That is, the presence of m1

11[Ass92f], [Ass93c] and [Ass94, Sections 7.5 to 7.7]. See also [Mar86].
12[Maj19b], [Maj19a], [Maj20], [Maj30], [Mar86], [Maj88a], [Maj88b], [Dra88], [Dra90], [Mar98], [Mar02b] and [Mar02a].
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may affect the medium between m1 and m2. We may once more need to introduce an exponential decay for
gravitation in order to express the net force acting on m2 after introducing the medium between m1 and m2,
although in this case there is nothing propagating at a finite speed. The only thing which may be happening
here is that an action at a distance between many bodies may present this exponential behavior.

12.6.3 Flat Rotation Curves of Galaxies

Astronomical observations, such as the flat rotation curves of spiral galaxies, also led people to propose
modifications in Newton’s law of gravitation or to postulate the existence of dark matter. Discussion of this
topic can be found elsewhere.13 The problem of flat rotation curves of galaxies can be understood in a simple
way. Let us suppose a gravitational interaction between a body of large gravitational mass M and a body
of small gravitational mass m, with m ≪ M , in which the small body describes a circular orbit around the
large one in an inertial frame of reference. With Newton’s law of universal gravitation, his second law of
motion and the expression for the centripetal acceleration, together with mi = mg ≡ m, one gets:

GMm

r2
= ma = m

v2

r
= mω2r . (12.28)

Here r is the distance between the bodies, v is the magnitude of the tangential velocity of m around M
relative to the inertial frame, a = v2/r is the centripetal acceleration and ω = v/r represents its angular
velocity around M . From this expression the tangential velocity v is given by:

v =

√

GM

r
=

K√
r
, (12.29)

where K ≡
√
GM is a constant. The angular velocity of m is given by: ω =

√

GM/r3. That is, with a
larger r we have a smaller v. This prediction is perfectly corroborated in the case of the planetary system,
with M the Sun and m any one of the planets. These relations of v and ω as a function of r are another
form of Kepler’s third law in the case of circular orbit.

On the other hand, this relation is not valid for galaxies. Let m be a star belonging to a galaxy and far
from its center, M the mass of the nucleus of the galaxy (determined from its visible or bright part). Also
in this case newtonian mechanics predicts that the relation between the tangential velocity v of the star
orbiting around the nucleus, relative to the frame of distant galaxies, is given by equation (12.29). However,
observations indicate that in most galaxies the tangential velocity v becomes approximately constant as r
increases, instead of decreasing as 1/

√
r (as would be expected according to newtonian mechanics). The

observed relation between v and r is called the “flat rotation curve of galaxies.”
To solve this problem there are two main approaches.
(I) One way is to suppose the existence of a “dark matter” (not yet observed) that could interact gravita-

tionally with the stars yielding the observed flat pattern. It is called “dark” matter because it has not been
observed in the visible spectrum, in ultraviolet, in infrared, in X-rays, in radio frequency, in the frequency of
gamma rays, etc. Although this matter has not yet been detected by any means, people working with this
approach assume that this kind of matter might exist, exerting the usual gravitational forces of newtonian
mechanics. Beginning with the observed flat rotation curves of spiral galaxies and supposing the validity of
Newton’s law of gravitation, it is possible to estimate the distribution of this dark matter inside galaxies.

(II) The second approach is to suppose that most existing matter inside galaxies has already been detected
by the ordinary means. Then, in order to explain the observed flat rotation curves, it becomes necessary
to assume a modification in newtonian mechanics. This modification must be relevant for distances of the
order of magnitude of 1020 m, as this is the typical size of a galaxy. One possibility is to try to modify
the component mia of Newton’s second law of motion F = mia, as in the so-called MOND theory of
Milgron.14 Another possibility is to try to modify the gravitational newtonian force F = GMm/r2. This
second possibility has led some people to suppose an exponential decay in gravitation.15 The main problem
with these two possibilities is how to deduce simultaneously the flat rotation curves of galaxies and Tully-
Fischer’s law (luminosity proportional to the square of the tangential velocity of a galaxy relative to the
frame of distant galaxies). An alternative model has been developed by Soares.16 Although it does not deal
with absorption of gravity nor with its exponential decay, it leads to effects involving an exponential decay

13[RFT82] and [Rub83].
14[Mil83a] and [Mil83b].
15[San84], [San86] and [San90].
16[Soa92] and [Soa94].
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which has some mathematical analogies with what is being discussed here. Further research is necessary
before we can draw a final explanation of the flat rotation curves of galaxies.

We have already discussed this problem in the references cited above, and will not analyze the subject
further here. What should be stressed is that Newton’s law of gravitation, F = GMgmg/r

2, or the mia
component of Newton’s second law of motion F = mia, or any other law, may be approximately valid in some
conditions, although it may be necessary to modify any of these laws due to observations of astronomical
bodies, due to microscopic experiments, or even due to any terrestrial experiments. Every law of nature
should have its limits of validity. It is important to be open-minded in this regard.

Further discussions and references on all these topics can be found elsewhere.17

17[WE82] and [Gil90].



Chapter 13

Leibniz and Berkeley

Before we present Mach’s criticisms of newtonian mechanics we discuss the points of view of G. W. Leibniz
and of the Bishop G. Berkeley as regards absolute and relative motion. These philosophers anticipated many
points of view later advocated by Mach.

13.1 Leibniz and Relative Motion

Leibniz (1646-1716) was introduced to the modern sciences of his time by C. Huygens (1629-1695). They
were in close contact during Leibniz’s stay in Paris during 1672-1676. Huygens may have influenced him
as regards the concepts of space and time, and the significance of centrifugal force. For a detailed study of
Huygens reactions to newtonian mechanics and about his points of view as regards absolute motion, see the
works of Jammer and Martins.1

Leibniz never accepted Newton’s concepts of absolute space and time. He maintained that space and
time depend on things, with space being the order of coexistent phenomena and time the order of successive
phenomena. There is a very interesting correspondence (in the years 1715-1716) between Leibniz and S.
Clarke (1675-1729), a disciple of Newton. Leibniz wrote in French and Clarke in English. This correspondence
illuminates this whole issue.2

In the fourth paragraph of his third letter to Clarke, Leibniz wrote:3

4. As for my opinion, I have said more than once, that I hold space to be something merely
relative, as time is; that I hold it to be an order of coexistences, as time is an order of successions.
For space denotes, in terms of possibility, an order of things which exist at the same time,
considered as existing together; without enquiring into their manner of existing. And when many
things are seen together, one perceives that order of things among themselves.

Leibniz was a clear advocate of the principle of sufficient reason according to which nothing happens
without a causation. In other words, everything must have a reason or cause. In the fifth paragraph of his
third letter to Clarke, he utilized this principle to demonstrate that Newton’s absolute space could not exit:

5. I have many demonstrations, to confute the fancy of those who take space to be a substance,
or at least an absolute being. But I shall only use, at the present, one demonstration, which the
author here gives me occasion to insist upon. I say then, that if space was an absolute being,
there would something happen, for which it would be impossible there should be a sufficient
reason. Which is against my axiom. And I prove it thus. Space is something absolutely uniform;
and, without the things placed in it, one point of space does not absolutely differ in any respect
whatsoever from another point of space. Now from hence it follows, (supposing space to be
something in itself, besides the order of bodies among themselves,) that ’tis impossible there
should be a reason, why God, preserving the same situations of bodies among themselves, should
have placed them in space after one certain particular manner, and not otherwise; why every
thing was not placed quite contrary way, for instance, by changing East into West. But if space

1[Jam93, pp. 119-126] and [Jam10, pp. 156-163], [Mar89] and [Mar93].
2[Cla38], [Lei83], [Ale98] and [Koy86, Chapter 11].
3[Cla38, p. 602], [Lei83, p. 177] and [Ale98, pp. 25-26].

225



226 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

is nothing else, but that order or relation; and is nothing at all without bodies, but the possibility
of placing them; then those two states, the one such as it now is, the other supposed to be the
quite contrary way, would not at all differ from one another. Their difference therefore is only to
be found in our chimerical supposition of the reality of space in itself. But in truth the one would
exactly be the same thing as the other, they being absolutely indiscernible; and consequently
there is no room to enquire after a reason of the preference of the one to the other.

Likewise, in the sixth paragraph he utilized this principle to demonstrate that Newton’s absolute time
could not exist:

6. The case is the same with respect to time. Supposing any one should ask, why God did
not create everything a year sooner; and the same person should infer from thence, that God
has done something, concerning which ’tis not possible there should be a reason, why he did it
so, and not otherwise: The answer is, that his inference would be right, if time was any thing
distinct from things existing in time. For it would be impossible there should be any reason,
why things should be applied to such particular instants, rather than to others, their succession
continuing the same. But then the same argument proves, that instants, considered without the
things, are nothing at all; and that they consist only in the successive order of things: Which
order remaining the same, one of the two states, viz. that of a supposed anticipation, would not
at all differ, nor could be discerned from, the other which now is.

Leibniz defended the idea that all motion is relative. He nevertheless admitted that it may be more
practical or convenient to say that some large body like the Earth remains at rest, while one small body
moves relative to it, than to say the opposite. Likewise, it might be more practical or convenient to say
that some large collection of bodies (like the fixed stars) remain at rest relative to one another, while the
planets move relative to this system of bodies, than to say the opposite. But this would be more a matter of
convention than of physical reality. For example, in a text written in 1689 entitled On Copernicanism and
the Relativity of Motion, Leibniz said:4

Since we have already proved through geometrical considerations the equivalence of all hypotheses
with respect to the motions of any bodies whatsoever, however numerous, moved only by collision
with other bodies, it follows that not even an angel could determine with mathematical rigor
which of the many bodies of that sort is at rest, and which is the center of motion of the others.
And whether the bodies are moving freely or colliding with one another, it is a wondrous law of
nature that no eye, wherever in matter it might be placed, has a sure criterion for telling from
the phenomena where there is motion, how much motion there is, and of what sort it is, or even
whether God moves everything around it, or whether he moves that very eye itself. [cf. Seneca,
Naturales Quaestiones VII. 2.] To summarize my point, since space without matter is something
imaginary, motion, in all mathematical rigor, is nothing but a change in the positions [situs] of
bodies with respect to one another, and so, motion is not something absolute, but consists in a
relation. [...]

But since, nevertheless, people do assign motion and rest to bodies, even to bodies they believe to
be moved neither by a mind [intelligentia], nor by an internal impulse [instinctus], we must look
into the sense in which they do this, so that we don’t judge that they have spoken falsely. And
on this matter we must reply that one should choose the more intelligible hypothesis, and that
the truth of a hypothesis is nothing but its intelligibility. Now, from a different point of view, not
with respect to people and their opinions, but with respect to the very things we need to deal
with, one hypothesis might be more intelligible than another and more appropriate for a given
purpose. And so, from different points of view, the one might be true and the other false. Thus,
for a hypothesis to be true is just for it to be properly used. So, although a painter can present
the same palace through drawings that use different perspectives, we would judge that he made
the wrong choice if he brought forward the one which covers or hides parts that are important
to know for a matter at hand. In just the same way, an astronomer makes no greater mistake by
explaining the theory of the planets in accordance with the Tychonic hypothesis than he would
make by using the Copernican hypothesis in teaching spherical astronomy and explaining day
and night, thereby burdening the student with unnecessary difficulties. And the observational

4[Lei89, pp. 90-92].
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astronomer [Historicus] who insists that the Earth moves, rather than the Sun, or that the Earth
rather than the Sun is in the sign of Aries, would speak improperly, even though he follows the
Copernican system; nor would Joshua have spoken less falsely (that is, less absurdly) had he said
“be still, Earth.”

In this text he considers that the hybrid geocentric astronomical system of Tycho Brahe may be “more
appropriate for a given purpose” than the heliocentric system of Copernicus, while the copernican system
may be more appropriate for another purpose than the tychonic system. He goes on to say that the ptolemaic
geocentric system is the truest in spherical astronomy (that is, more intelligible), while the copernican account
is most appropriate (i.e., the most intelligible) for explaining the theory of the planets.

The same point of view is expressed in his work A Specimen of Dynamics [Specimen Dynamicum] of 1695.
In the following section, which was deleted before publication, he said:5

I also perceived the nature of motion. Furthermore, I also grasped that space is not something
absolute or real, and that it neither undergoes change, nor can we conceive absolute motion, but
that the entire nature of motion is relative, so that from the phenomena one cannot determine
with mathematical rigor what is at rest, or the amount of motion with which some body is
moved. This holds even for circular motion, though it appeared otherwise to Isaac Newton,
that distinguished gentleman, who is, perhaps, the greatest jewel that learned England ever had.
Although he said many superb things about motion, he thought that, with the help of circular
motion, he could discern which subject contains motion from centrifugal force, something with
which I could not agree. But even if there may be no mathematical way of determining the true
hypothesis, nevertheless, we can, with good reason, attribute true motion to that subject, which
would result in the simplest hypothesis most suitable for explaining the phenomena. For the
rest, it is enough for practical purposes for us to investigate not the subject of motion as much
as the relative changes of things with respect to one another, since there is no fixed point in the
universe.

In the second part of this work Leibniz said:6

We must realize, above all, that force is something absolutely real in substances, even in created
substances, while space, time, and motion are, to a certain extent, beings of reason, and are
true or real, not per se but only to the extent that they involve either the divine attributes (im-
mensity, eternity, the ability to carry out works), or the force in created substances. From this
it immediately follows that there is no empty place and no empty moment in time. Moreover,
it follows that motion taken apart from force, that is, motion insofar as it is taken to contain
only geometrical notions (size, shape, and their change), is really nothing but the change of
situation, and furthermore, that as far as the phenomena are concerned, motion is a pure rela-
tion, something Descartes also recognized when he defined motion as the translation from the
neighborhood of one body into the neighborhood of another. But in drawing consequences from
this, he forgot his definition and set up the laws of motion as if motion were something real and
absolute. Therefore, we must hold that however many bodies might be in motion, one cannot
infer from the phenomena which of them really has absolute and determinate motion or rest.
Rather, one can attribute rest to any one of them one may choose, and yet the same phenomena
will result. [...] And indeed, this is just what we experience, for we would feel the same pain
whether we hit our hand against a stone at rest, suspended, if you like, from a string, or whether
the stone hit our resting hand with the same speed. However, we speak as the situation requires,
in accordance with the more appropriate and simpler explanation of the phenomena. It is just
this sense that we use the motion of the primum mobile in spherical astronomy, while in the
theoretical study of the planets we ought to use the Copernican hypothesis. As an immediate
consequence of this view, those disputes conducted with such enthusiasm, disputes in which even
the theologians were involved, completely disappear. For even though force is something real and
absolute, motion belongs among the phenomena and relations, and we must seek truth not so
much in the phenomena as in their causes.

Later on we will see that Mach also defended the idea that the copernican and ptolemaic systems are
equally valid and correct. The only difference is that the copernican system would be more economical or
practical in order to explain the planetary system.

5[Lei89, p. 125].
6[Lei89, pp. 130-131].
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13.1.1 Leibniz and the Bucket Experiment

But how does Leibniz cope with Newton’s key experiments, namely, the experiment of the spinning bucket
and the experiment of the two globes connected by a cord?

In a letter written to Huygens in 1694 he proposed that force may be something real:7

As for the difference between absolute and relative motion, I believe that if motion, or rather the
motive force of bodies, is something real, as it seems we must acknowledge, it would need to have
a subject [subjectum]. For, if a and b approach each other, I assert that all phenomena would be
the same, no matter which of them is assumed to be in motion or at rest; and if there were 1,000
bodies, I agree that the phenomena could not furnish us (nor even the angels) with infallible
grounds [raison] for determining the subject of motion or its degree, and that each separately
could be conceived as being at rest. I believe that this is all you asked of me. But you would not
deny (I think) that it is true that each of them has a certain degree of motion, or, if you wish,
a certain degree of force, notwithstanding the equivalence of hypotheses. It is true that I derive
from this the consequence that there is something more in nature than what is determined by
geometry. And this is not among the least important of the several reasons I use to prove that,
other than extension and its variations, which are purely geometric things, we must acknowledge
something higher, namely, force. Newton recognized the equivalence of hypotheses in the case of
rectilinear motions; but he believes, with respect to circular motions, that the effort circulating
bodies exert to move away from the center or from the axis of circulation allows us to recognize
their absolute motion. But I have reasons that lead me to believe that there are no exceptions to
the general law of equivalence. It seems to me, however, that you once were of Newton’s opinion
concerning circular motion.

At the same time that he advocated a relational theory of space and time, Leibniz seemed to attach some
reality or absolute value to the force or kinetic energy. This is somewhat contradictory. Nor did he state
explicitly his reasons for believing that nothing breaks the general law of equivalence (the relational theory).
That is, he did not explain the reasons why he believed the general law of equivalence would always be valid,
without any exceptions.

Here is what he said in the 52nd and 53rd paragraphs of his fifth letter to Clarke:8

52. In order to prove that space, without bodies, is an absolute reality; the Author objected, that
a finite material universe might move forward in space. I answered it does not appear reasonable
that the material universe should be finite; and, though we should suppose it to be finite; yet ’tis
unreasonable it should have motion any otherwise, than as its parts change their situation among
themselves; because such a motion would produce no change that could be observed, and would
be without design. ’Tis another thing, when its parts change their situation among themselves;
for then there is a motion in space; but it consists in the order of relations which are changed.
The Author replies now, that the reality of motion does not depend upon being observed; and
that a ship may go forward, and yet a man, who is in the ship, may not perceive it. I answer,
motion does not indeed depend upon being observed; but it does depend upon being possible to
be observed. There is no motion, when there is no change that can be observed. And when there is
no change that can be observed, there is no change at all. The contrary opinion is grounded upon
the supposition of a real absolute space, which I have demonstrated confuted by the principle of
the want of a sufficient reason of things.

53. I find nothing in the Eighth Definition of the Mathematical Principles of Nature [that is, in
Newton’s Principia], nor in the Scholium belonging to it, that proves, or can prove, the reality of
space in itself. However, I grant there is a difference between an absolute true motion of a body,
and a mere relative change of its situation with respect to another body. For when the immediate
cause of the change is in the body, that body is truly in motion; and then the situation of other
bodies, with respect to it, will be changed consequently, though the cause of that change be not
in them. ’Tis true that, exactly speaking, there is not any one body, that is perfectly and entirely
at rest; but we frame an abstract notion of rest, by considering the thing mathematically. Thus
have I left nothing unanswered, of what has been alleged for the absolute reality of space. And
I have demonstrated the falsehood of that reality, by a fundamental principle, one of the most

7[Lei89, p. 308].
8[Cla38, pp. 649-650] and [Ale98].
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certain both in reason and experience; against which, no exception or instance can be alleged.
Upon the whole, one may judge from what has been said that I ought not to admit a moveable
universe; nor any place out of the material universe.

The difficulty here has already been correctly pointed out by H. G. Alexander:9

There is, however, no doubt that this admission of the distinction between absolute and relative
motion is inconsistent with his general theory of space.

That is, Leibniz was led astray by Newton’s arguments concerning the bucket and two globes experiments.
Leibniz was here tacitly admitting that absolute motion does in fact exist, contrary to his beliefs. One way
out of the contradiction would be to maintain that these effects (the concave form of the spinning water or
the tension in the cord connecting the two globes rotating about their common center of gravity) were due
to the relative rotation between material bodies. In the case of Newton’s bucket experiment, for instance,
Leibniz could have argued that the concave shape of the water’s surface would arise only when there was a
relative rotation between the water and the Earth (or when there was a relative rotation between the water
and the set of fixed stars), no matter which one of them were really rotating relative to absolute space. In
the case of the two globes connected by a cord, Leibniz could have argued that the tension in the cord would
arise only when there was a relative rotation between the globes and the fixed stars. He could say that these
effects would appear not only when the water and globes were rotating relative to the stars, but that they
would also appear when the water and globes were at rest (relative to an observer or relative to the Earth)
while the stars were rotating in the opposite direction relative to them with the same angular velocity. If
Leibniz had seen this possibility clearly, he could have maintained that even these experiments did not prove
the existence of absolute space nor the existence of absolute motion. He could then also maintain that the
water does not need to be truly or absolutely in motion when its surface is concave, as we might say that
this would happen with the water at rest and the stars rotating around it.

But Leibniz did not explicitly mention this possibility. For this reason he could not give a clear answer to
the newtonian arguments utilizing his relational theory of motion. We also agree with Erlichson as regards
his analysis of Leibniz’s arguments:10

In my opinion Leibniz never really answered Clarke and Newton on the bucket experiment or the
other examples they give to show the dynamical effects of absolute motion.

13.1.2 What would be the Shape of the Earth If All Other Astronomical Bodies

Were Annihilated?

In at least one point in the correspondence, Clarke saw better than Leibniz the consequences of a completely
relational theory of motion as regards the origin of the centrifugal force. In his fifth reply to Leibniz, Clarke
wrote:11

It is affirmed [by Leibniz], that motion necessarily implies a (§31) relative change of situation in
one body, with regard to other bodies: and yet no way is shown to avoid this absurd consequence,
that then the mobility of one body depends on the existence of other bodies; and that any single
body existing alone, would be incapable of motion; or that the parts of a circulating body, (suppose
the Sun,) would lose the vis centrifuga arising from their circular motion, if all the extrinsic matter
around them were annihilated.

Unfortunately Leibniz could not respond to this last argument as it was transmitted to him on October
29th, 1716 and he died on November 14th, 1716.

In any case, the consequences which Clarke called “absurd” are the main parts of any real relational
theory of motion. If we follow fully a relational theory of motion, there is no meaning to the notion of a
single body moving relative to empty space. As motion is relative to other bodies, the mobility of any specific
body will really depend on the existence of other bodies. Much more important is the consequence, pointed
out by Clarke, that the centrifugal force would disappear if the external bodies were annihilated. In other
words, if the stars (and galaxies) were annihilated, the Earth would not be flattened at the poles. It would

9[Ale98, p. xxvii].
10[Erl67].
11[Cla38, pp. 675-676] and [Ale98, paragraphs 26-32, p. 101].
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not be possible for a planet to orbit around the Sun, as there would be no force to balance the gravitational
attraction of the Sun and, therefore, the solar system would collapse. Likewise, the water would not rise
towards the sides of the bucket when the water and the bucket rotated together relative to the ground. There
would not appear any tension in the cord connecting the two globes in Newton’s thought experiment. Etc.

We will see in Chapter 14 that Mach defended the idea that the centrifugal forces depend on the relative
rotation between the test body and the celestial bodies around it. Therefore, if there is a single body in
the universe, we cannot say that it spins relative to anything material. Consequently, all centrifugal effects
usually observed in rotating bodies should disappear in this hypothetical situation of a body existing alone
in the universe.

Carl Neumann also pointed out clearly this consequence (presented earlier by Clarke) in 1870:12

This seems to be the right place for an observation which forces itself upon us and from which
it clearly follows how unbearable are the contradictions that arise when motion is conceived as
something relative rather than something absolute.

Let us assume that among the stars there is one which is composed of fluid matter and is somewhat
similar to our terrestrial globe and that it is rotating around an axis that passes through its center.
As a result of such motion, and due to the resulting centrifugal forces, this star would take on
the shape of a flattened ellipsoid. We now ask: What shape will this star assume if all remaining
heavenly bodies are suddenly annihilated (turned into nothing)?

These centrifugal forces are dependent only on the state of the star itself; they are totally inde-
pendent of the remaining heavenly bodies. Consequently, this is our answer: These centrifugal
forces and the spherical ellipsoidal form dependent on them will persist regardless of whether the
remaining heavenly bodies continue to exist or suddenly disappear.

We could however consider the question from another angle, thereby arriving at a contrary answer
if motion is defined as being something merely relative, merely as the relative change of place
of two points in relation to each other. Let us imagine that the remaining heavenly bodies had
been annihilated, so that the only points of matter now existing in the universe are those that
constitute the star itself. These however do not change their place relative to one another and
are, according to the definition accepted for this moment, at rest. Consequently — this is now
our answer — the star will be in a state of rest from the moment that the remaining heavenly
bodies are annihilated, and will hence assume the shape of a sphere appropriate to this state.

Such an intolerable contradiction can be avoided only by dropping the definition of motion as
something relative, hence only if the motion of a material point is conceived of as being something
absolute — whereby one is led to the principle of Body Alpha.

Figure 13.1 presents the newtonian point of view according to which motion is conceived as something
absolute relative to empty space. Figure 13.1 (a) shows the flattened figure of the Earth due to its diurnal
rotation, relative to the background of stars and galaxies, around an axis passing through its center. Although
Clarke and Neumann were not aware of the existence of galaxies, we are including them in this figure in order
to let the situation compatible with present day knowledge. Figure 13.1 (b) presents the prediction of what
would happen with the shape of the Earth in this hypothetical thought experiment, according to newtonian
mechanics and according to Clarke and Neumann’s points of view, if all the remaining astronomical bodies
were annihilated from the universe. Even with the Earth alone in the universe, it would still be possible to
conceive its rotation relative to empty space. Moreover, it would maintain its flattened shape.

Figure 13.2, on the other hand, presents the relative conception of motion according to which the motion
of one body can only be conceived as happening relative to other material bodies. Situation (a) presents
the flattened shape of the Earth which is observed when it rotates once a day around its axis relative to
the background of stars and galaxies. Situation (b) presents the prediction of what would happen with the
shape of the Earth in this hypothetical thought experiment, according to this relative conception of motion
as being the change of position or orientation of one body relative to other bodies, if all the remaining
astronomical bodies were annihilated from the universe. As the Earth would then be alone in the universe,
it would not be possible to conceive its rotation relative to anything material. Therefore, its flattened figure
would no longer be maintained and it would return to a spherical shape.

Clarke and Neumann predicted that the Earth should assume a spherical shape if it were possible to
annihilate all other astronomical bodies, if we assume a relative conception of motion. They considered this

12[Neu70, p. 27, note 8] and [Neu93, p. 366, note 8].
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Figure 13.1: Motion conceived as something absolute relative to empty space. The reference of the paper
coincides with absolute space. (a) Earth flattened at the poles when it spins once a day around its axis
relative to the stars and galaxies. (b) According to this absolute conception of motion, the flattening of the
Earth would remain even if all stars and galaxies were annihilated from the universe.
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Figure 13.2: Motion conceived as something relative, being the change of position or orientation of one
body relative to other bodies. (a) Earth flattened at the poles due to its diurnal rotation relative to the
background of stars and galaxies. (b) According to the relative conception of motion, the Earth’s flattening
should disappear when the remaining astronomical bodies are annihilated from the universe.

consequence “absurd” and “intolerable.” However, this consequence must really happen in any completely
relational theory of motion. Instead of being absurd and intolerable, this consequence seems to us intuitive
and reasonable. In principle, a similar effect analogous to this consequence pointed out by Clarke and
Neumann can be tested in the laboratory, as will be seen in Subsections 24.5.7 and 24.5.8.

Clarke was the first person to point out clearly the fact that in a purely relational theory of motion,
the centrifugal force appears only when there is a relative rotation between the test bodies and the other
bodies around it. Therefore, if it were possible to annihilate all other bodies around a test body, all dynamic
consequences due to this centrifugal force should disappear simultaneously (the test body should no longer
be flattened, etc.). Unfortunately other people did not perceive this aspect pointed out by Clarke or were
not influenced by this relative conception of motion.

13.1.3 Conclusion

Leibniz believed that kinematically equivalent motions should be dynamically equivalent. This is evident
from his statement quoted above, namely:13

Therefore, we must hold that however many bodies might be in motion, one cannot infer from
the phenomena which of them really has absolute and determinate motion or rest. Rather, one
can attribute rest to any one of them one may choose, and yet the same phenomena will result.

Despite this belief, he did not implement this idea quantitatively. For instance, he did not show how a
set of stars rotating around a test body could generate centrifugal forces acting on this test body. Nor did
he mention the proportionality between inertial and gravitational masses (or the proportionality between

13[Lei89, pp. 130-131].
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inertial mass and weight). Finally he did not even hint at the possibility that the centrifugal forces might
have a gravitational origin.

Although he advocated certain ideas which clashed with newtonian mechanics, he did not develop them
mathematically. The level of knowledge of physical science at that time, and especially of electromagnetism,
was not yet sufficient to supply the key to implementing these ideas quantitatively.

13.2 Berkeley and Relative Motion

Bishop G. Berkeley (1685-1753) criticized Newton’s concepts of absolute space, absolute time and absolute
motion mainly in Sections 97-99 and 110-117 of his work The Principles of Human Knowledge (1710) and
in Sections 52-65 of his work Of Motion - Or the principle and nature of motion and the cause of the
communication of motions (1721). This work is usually known by its Latin title, De Motu. Here we quote
from its English translation.14 A good discussion of Berkeley’s philosophy of motion can be found elsewhere.15

In Section 112 of the Principles he outlined a relational theory, as follows:16

112. But, notwithstanding what has been said, I must confess it does not appear to me that
there can be any motion other than relative; so that to conceive motion there must be at least
conceived two bodies, whereof the distance or position in regard to each other is varied. Hence,
if there was one only body in being it could not possibly be moved. This seems evident, in that
the idea I have of motion doth necessarily include relation.

Analogously, in Section 63 of De Motu we read:17

63. No motion can be recognized or measured, unless through sensible things. Since then absolute
space in no way affects the senses, it must necessarily be quite useless for the distinguishing of
motions. Besides, determination or direction is essential to motion; but that consists in relation.
Therefore it is impossible that absolute motion should be conceived.

Berkeley suggested replacing Newton’s absolute space by the set of fixed stars in Section 64 of De Motu.
This suggestion by Berkeley was more clear than what we find in Leibniz’s texts. Berkeley’s words:18

64. Further, since the motion of the same body may vary with the diversity of relative place, nay
actually since a thing can be said in one respect to be in motion and in another respect to be at
rest, to determine true motion and true rest, for the removal of ambiguity and for the furtherance
of the mechanics of these philosophers who take the wider view of the system of things, it would
be enough to bring in, instead of absolute space, relative space as confined to the heavens of the
fixed stars, considered as at rest. But motion and rest marked out by such relative space can
conveniently be substituted in place of the absolutes, which cannot be distinguished from them
by any mark. For however forces may be impressed, whatever conations there are, let us grant
that motion is distinguished by actions exerted on bodies; never, however, will it follow that that
space, absolute space, exists, and that change in it is true place.

Two hundred years later, Mach would also propose replacing Newton’s absolute space with the set of
fixed stars.

13.2.1 Berkeley and the Bucket Experiment

But Berkeley also seems to have contradicted himself, as did Leibniz, when he took the forces into account.
He also gave forces an absolute reality, and in this way was led astray by the newtonian arguments. For
instance, in paragraph 113 of the Principles, he wrote:19

14[Ber92a, pp. 209-227].
15[Whi53], [Pop53], [Win86] and [Chi10].
16[Ber92b, §112, p. 111].
17[Ber92a, p. 225].
18[Ber92a, p. 225].
19[Ber92b, §113, pp. 111-112] and [Ber80].
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113. But, though in every motion it be necessary to conceive more bodies than one, yet it may
be that one only is moved, namely, that on which the force causing the change in distance or
situation of the bodies, is impressed. For, however some may define relative motion, so as to term
that body moved which changes its distance from some other body, whether the force or action
causing that change were impressed on it or no, yet as relative motion is that which is perceived
by sense, and regarded in the ordinary affairs of life, it should seem that every man of common
sense knows what it is as well as the best philosopher. Now, I ask any one whether, in his sense
of motion as he walks along the streets, the stones he passes over may be said to move, because
they change distance with his feet? To me it appears that though motion includes a relation of
one thing to another, yet it is not necessary that each term of the relation be denominated from
it. As a man may think of somewhat which does not think, so a body may be moved to or from
another body which is not therefore itself in motion.

But even if there is only relative motion, how could he explain Newton’s bucket and two globes experi-
ments without introducing absolute space? He was not completely clear on this, but he seems to have meant
that the concave form of the water in the spinning bucket only appeared due to its relative rotation with
respect to the set of fixed stars. And the same relative rotation between the globes and the set of fixed stars
would explain the tension of the cord in the two globes experiment. These dynamic effects would be related
to the kinematic motion between the test body and the stars. They would not be related to a motion of
the test body relative to absolute space. In order to show this possible interpretation of Berkeley’s ideas, we
present here Section 114 of the Principles where he discussed Newton’s bucket experiment:20

114. As the place happens to be variously defined, the motion which is related to it varies. A
man in a ship may be said to be quiescent with relation to the sides of the vessel, and yet move
with relation to the land. Or he may move eastward in respect of the one, and westward in
respect to the other. In the common affairs of life men never go beyond the Earth to define the
place of any body; and what is quiescent in respect of that is accounted absolutely to be so. But
philosophers, who have a greater extent of thought, and juster notions of the system of things,
discover even the Earth itself to be moved. In order therefore to fix their notions they seem to
conceive the corporeal world as finite, and the utmost unmoved walls or shell thereof to be the
place whereby they estimate true motions. If we sound our conceptions, I believe we may find all
the absolute motion we can frame an idea of to be at bottom no other than relative motion thus
defined. For, as hath been already observed, absolute motion, exclusive of all external relations, is
incomprehensible; and to this kind of relative motion all the above-mentioned properties, causes,
and effects ascribed to absolute motion will, if I mistake not, be found to agree. As to what is
said of the centrifugal force, that it does not at all belong to circular relative motion, I do not see
how this follows from the experiment which is brought to prove it. See Philosophiae Naturalis
Principia Mathematica, in Schol. Def. VIII. For the water in the vessel at that time wherein it
is said to have the greatest relative circular motion, hath, I think, no motion at all; as is plain
from the foregoing section.

When he said that philosophers “conceive the corporeal world as finite, and the utmost unmoved walls or
shell thereof to be the place whereby they estimate true motions,” he meant the set of fixed stars. According
to Berkeley the philosophers put the set of stars at rest by convention and established motion of other celestial
bodies relative to this frame of reference of the fixed stars. When Berkeley wrote that in the beginning of
Newton’s bucket experiment the “water in the vessel has no motion at all,” he presumably meant no motion
of the water relative to the Earth or relative to the set of stars. After all, in the situation described by
Newton, there was the greatest relative circular motion between the bucket and the water after the bucket
was released and spun fastest relative to the Earth, while the water did not yet have time to rotate together
with the bucket. If this was the case, it would follow that to Berkeley the concave shape of the water only
appeared when there was a relative rotation between the water and the Earth (or when there was a relative
rotation between the water and the set of stars), although we could not ascribe a real or absolute rotation
to the water or to the Earth (not even to the set of stars).

But obviously here we are ascribing more to Berkeley than what he really wrote. As we saw before
when discussing his §113 (see especially the first sentence of this paragraph §113), Berkeley was sometimes
confused by Newton’s arguments. In these cases he spoke of the forces as something absolute, asserting that

20[Ber92b, §114, p. 112] and [Ber80].
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we could determine which body was really and absolutely in motion by observing on which body the force
was acting. However, this point of view is meaningless in a truly relational theory.

In Sections 58 to 60 of De Motu Berkeley discussed Newton’s two globes and bucket experiments as
follows:21

58. From the foregoing it is clear that we ought not to define the true place of the body as the
part of absolute space which the body occupies, and true or absolute motion as the change of true
or absolute place; for all place is relative just as all motion is relative. But to make this appear
more clearly we must point out that no motion can be understood without some determination or
direction, which in turn cannot be understood unless besides the body in motion our own body
also, or some other body, be understood to exist at the same time. For up, down, left, and right
and all places and regions are founded in some relation, and necessarily connote and suppose a
body different from the body moved. So that if we suppose the other bodies were annihilated
and, for example, a globe were to exist alone, no motion could be conceived in it; so necessarily
is it that another body should be given by whose situation the motion should be understood
to be determined. The truth of this opinion will be very clearly seen if we shall have carried
out thoroughly the supposed annihilation of all bodies, our own and that of others, except that
solitary globe.

59. Then let two globes be conceived to exist and nothing corporeal besides them. Let forces
then be conceived to be applied in some way; whatever we may understand by the application
of forces, a circular motion of the two globes round a common centre cannot be conceived by
the imagination. Then let us suppose that the sky of the fixed stars is created; suddenly from
the conception of the approach of the globes to different parts of that sky the motion will be
conceived. That is to say that since motion is relative in its own nature, it could not be conceived
before the correlated bodies were given. Similarly no other relation can be conceived without
correlates.

60. As regards circular motion many think that, as motion truly circular increases, the body
necessarily tends ever more and more away from its axis. This belief arises from the fact that
circular motion can be seen taking its origin, as it were, at every moment from two directions,
one along the radius and the other along the tangent, and if in this latter direction only the
impetus be increased, then the body in motion will retire from the centre, and its orbit will cease
to be circular. But if the forces be increased equally in both directions the motion will remain
circular though accelerated - which will not argue an increase in the forces of retirement from
the axis, any more than in the forces of approach to it. Therefore we must say that the water
forced round in the bucket rises to the sides of the vessel, because when new forces are applied
in the direction of the tangent to any particle of water, in the same instant new equal centripetal
forces are not applied. From which experiment it in no way follows that absolute circular motion
is necessarily recognized by the forces of retirement from the axis of motion. Again, how those
terms corporeal forces and conation are to be understood is more than sufficiently shown in the
foregoing discussion.

In other words, for Berkeley it was only meaningful to state that the two globes rotate when we have
other bodies to refer motion to. Moreover, this rotation would be only relative, as we could not say if the
globes were rotating while the sky of fixed stars was at rest, or vice versa. But he did not say explicitly
that the tension in the cord connecting the two globes would appear only when there was relative rotation
between the globes and the stars. Nor did he say explicitly that the tension in the cord would only appear
when the stars were created, as was pointed out by Clarke.

As regards his discussion of the bucket experiment, once again Berkeley did not emphasize the role of
the fixed stars in generating the centrifugal forces. He did not say that the water would rise towards the
sides of the bucket if the water and bucket remained at rest relative to the ground and relative to absolute
space, while the set of fixed stars rotated quickly around the axis of the bucket relative to the ground and
relative to absolute space. Nor did he say that the water would be flat if the other bodies in the universe
were annihilated, remaining only the bucket, the water and the Earth.

For these reasons we agree with Jammer as regards Berkeley’s points of view:22

21[Ber92a, pp. 223-224].
22[Jam69, p. 109].
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Berkeley’s statement obviously cannot be considered as being equivalent to what is called in
modern cosmology ‘Mach’s principle’ (that is, that the inertia of any body is determined by the
masses of the universe and their distribution), as Berkeley confines himself to the problem of the
perception and comprehensibility of motion and ignores in this context the dynamical aspect of
motion.

But even if this was the correct interpretation of his ideas, Berkeley did not implement them quantita-
tively. He did not present a specific force law to show that when we keep the globes at rest (relative to the
ground, for instance) and rotate the set of stars (once more relative to the ground), there would appear a
real centrifugal force creating a tension in the cord connecting the two globes due to this relative rotation.
He also did not present a specific force law showing that if the bucket and water remained at rest relative to
the ground, while the set of all other astronomical bodies around the Earth rotated quickly together, relative
to the ground, around the axis of the bucket, there would arise a real centrifugal force pressing the water
against the walls of the bucket, making it assume a parabolic shape.

Finally, he did not mention the proportionality between inertial and gravitational masses, or between
inertial mass and weight. He did not suggest the possibility that the centrifugal force might be due to a
gravitational interaction with distant matter.

13.3 Conclusion

Leibniz and Berkeley criticized correctly several problematic aspects of newtonian mechanics. In particular,
they mentioned the concepts of absolute space, time and motion. They defended the concept of relative
motion against that of absolute motion. They also argued that the ptolemaic and copernican systems were
equivalent. Despite these facts, they did not succeed in presenting a viable and quantitative alternative theory
implementing the consequences of purely relational motion. For instance, they did not offer an alternative
explanation for Newton’s bucket experiment and for his two globes’s experiment. They did not explain as
well the flattening of the Earth as arising only due to the relative daily rotation between the Earth and the
set of distant astronomical bodies. Leibniz and Berkeley were led astray by Newton’s arguments.

As seen in Subsection 10.2.3, Newton himself perceived a viable alternative explanation as regards the
origin of centrifugal forces. These forces make or cause the parts of rotating bodies to recede from the axis
of circular motion. For instance, due to the Earth’s diurnal rotation around an axis passing through its
center, relative to the frame of fixed stars, it assumes a flattened shape. Newton made a hypothesis that
maybe the Earth might remain flattened at the poles even if it remained at rest in space, provided the set
of all astronomical bodies rotated together once a day around the axis of the Earth.23 Newton rejected
this alternative, considering it absurd. But at least he suggested an alternative conception of motion, with
measurable consequences, which might be presented against his own conception of absolute motion relative
to empty space. The text where Newton presented the consequences of this alternative theory was only
published in 1962. Therefore it did not influence Leibniz and Berkeley.

In any event it is amazing to see that Newton himself could see farther than his own critics what would be
the alternative theory to his own mechanics, and the proper consequences to be derived from it. Leibniz and
Berkeley did not propose this alternative formulation of mechanics. Only Ernst Mach, two hundred years
after Newton, will emphasize once again this alternative relative formulation of mechanics. Mach considered
this concept of relative motion not only viable and reasonable, but also argued strongly in favor of this point
of view, going against the newtonian conception of absolute motion relative to empty space.

In this book we will see that relational mechanics implements mathematically Newton’s alternative sug-
gestion.

Many other authors discussed these aspects of Newton’s theory before Mach. However, they did not
advance much further beyond what Newton, Leibniz and Berkeley had said. A short summary can be found
elsewhere.24 We will not enter into more details here, as the main ideas were developed by Leibniz and
Berkeley. Later on these ideas were greatly extended and explored further by Mach. This is the subject of
Chapter 14.

23[HH62, pp. 127-128], [New83, pp. 66-67] and [Ear89, p. 63].
24[Ale98, pp. xl to xlix], [Jam93, Chapter 5] and [Jam10, Chapter 5], [Mol93], [Ghi95] and [Coe10].



236 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force



Chapter 14

Mach and Newton’s Mechanics

14.1 Defense of Relative Space

In this Chapter we present the criticisms made by Ernst Mach1 (1838-1916) of newtonian mechanics. We
will try to follow some examples discussed in the previous Chapters in order to illustrate the shortcomings
of classical mechanics according to Mach. We will also consider how he suggested overcoming them.

Mach wanted to get rid of the notions of absolute space, absolute time and absolute motion. In the
Preface of the first German edition (1883) of his book The Science of Mechanics, he wrote:2

The present volume is not a treatise upon the application of the principles of mechanics. Its
aim is to clear up ideas, expose the real significance of the matter, and get rid of metaphysical
obscurities.

In the Preface of the seventh German edition (1912) of this book he wrote:3

The character of the book has remained the same. With respect to the monstrous conceptions
of absolute space and absolute time I can retract nothing. Here I have only shown more clearly
than hitherto that Newton indeed spoke much about these things, but throughout made no
serious application of them. His fifth corollary4 contains the only practically usable (probably
approximate) inertial system.

We begin with the problem of uniform rectilinear motion. According to Newton’s first law of motion
(the law of inertia), if there is no net force acting on a body it will stay at rest or move with a constant
velocity. But relative to what frame of reference will the body stay at rest or move with a constant velocity?
According to Newton, the motion is relative to absolute space or relative to any other frame which moves
with a constant velocity relative to absolute space. The problem with this statement is that we do not have
any access to absolute space. We cannot know our position or velocity relative to absolute space.

What did Mach suggest as an alternative to Newton’s absolute space? He proposed the fixed stars and
the rest of matter in the universe:5

The comportment of terrestrial bodies with respect to the Earth is reducible to the comportment
of the Earth with respect to the remote heavenly bodies. If we were to assert that we knew more
of moving objects than this their last-mentioned, experimentally-given comportment with respect
to the celestial bodies, we should render ourselves culpable of a falsity. When, accordingly, we
say, that a body preserves unchanged its direction and velocity in space, our assertion is nothing
more or less than an abbreviated reference to the entire universe.

We quote here other statements of his book arguing that we should utilize the frame of fixed stars to
describe the motion of any body. When discussing Newton’s bucket experiment, he said:6

1[Bla72].
2[Mac60, p. xxii].
3[Mac60, p. xxviii].
4Principia, 1687, p. 19.
5[Mac60, pp. 285-286].
6[Mac60, p. 281].
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The natural system of reference is for him [Newton] that which has any uniform motion or
translation without rotation (relatively to the sphere of fixed stars).

These words in parenthesis, “relatively to the sphere of fixed stars,” are Mach’s, and did not come from
Newton.

Another relevant statement by Mach:7

Now, in order to have a generally valid system of reference, Newton ventured the fifth corollary
of the Principia (p. 19 of the first edition). He imagined a momentary terrestrial system of
coordinates, for which the law of inertia is valid, held fast in space without any rotation relatively
to the fixed stars.

Once more these last words, “relatively to the fixed stars,” are from Mach, as Newton did not mention
the fixed stars in his fifth Corollary.

Another statement of his book The Science of Mechanics:8

There is, I think, no difference of meaning between Lange and myself [...] about the fact that, at
the present time, the set of the fixed stars is the only practically usable system of reference, and
about the method of obtaining a new system of reference by gradual correction.

His clearest answer appeared in pages 336-337 of this book, our emphasis:9

4. I have now another important point to discuss in opposition to C. Neumann,10 whose well-
known publication on this topic preceded mine11 shortly. I contended that the direction and
velocity which is taken into account in the law of inertia had no comprehensible meaning if the
law was referred to “absolute space.” As a matter of fact, we can metrically determine direction
and velocity only in a space of which the points are marked directly or indirectly by given bodies.
Neumann’s treatise and my own were successful in directing attention anew to this point, which
had already caused Newton and Euler much intellectual discomfort; yet nothing more than partial
attempts at solution, like that of Streintz, have resulted. I have remained to the present day the
only one who insists upon referring the law of inertia to the Earth, and in the case of motions of
great spatial and temporal extent, to the fixed stars.

We agree completely with Mach on this point. This last sentence is much more practical than Newton’s
formulation of the first law in terms of absolute space. In typical laboratory experiments (such as the study
of springs, projectile motions, collision of two billiards balls, etc.), which last much less than one hour and
which do not extend very far in space compared to the Earth’s radius, we can utilize the Earth as our
inertial system. Consequently we can apply Newton’s laws of motion without fictitious forces in this frame
in order to study these motions with reasonable accuracy. On the other hand, in experiments which last
many minutes or some hours (such as Foucault’s pendulum or in the study of gyroscopes), or in which we
study motions with long space and time scales (such as the winds, oceanic currents etc.), a better inertial
frame than the Earth is the frame defined by the stars. The fixed stars are also a good inertial frame for
studying the diurnal rotation of the Earth, its flattening at the poles or its translation around the Sun in
one year. In these cases the application of Newton’s laws of motion will yield excellent results in the frame
of fixed stars, without fictitious forces. Nowadays, we might say that a better inertial frame for studying
the rotation or motion of the galaxy as a whole (relative to other galaxies, for instance) is the frame of
reference defined by the external galaxies or the frame of reference in which the cosmic background radiation
is isotropic.

As we saw in Subsection 1.6.3, Newton himself made the hypothesis that the center of gravity of the
solar system was at rest relative to absolute space. He then concluded that the fixed stars are not only at
rest relative to one another, but are also at rest relative to absolute space. When describing the orbits of
the planets around the Sun, for instance, Newton always emphasized in the Principia that he was utilizing
the frame of fixed stars to describe the trajectories of the planets. We might then think that Mach was

7[Mac60, p. 285].
8[Mac60, pp. 294-295].
9[Mac60, pp. 336-337].

10Die Principien der Galilei-Newton’schen Theorie, Leipzig, 1870. [See [Neu70] and [Neu93].]
11Erhaltung der Arbeit, Prague, 1872. (Translated in part in the article on “The Conservation of Energy,” Popular Scientific

Lectures, third edition, Chicago, 1898. [See [Mac10b] and mach81a.])
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not introducing anything new when proposing to replace Newton’s absolute space by the frame of fixed
stars. But this is not true. Although Newton utilized the frame of fixed stars to describe motions in the
solar system, he insisted in supposing the existence of absolute space without relation to anything material.
Newton also insisted that there were real absolute motions relative to empty space. Mach, on the contrary,
argued that absolute space does not exist, that it is a monstrous conception. According to Mach there is only
the distance between material bodies, not only philosophically, but also in practical applications. Therefore,
it does not make sense to define motion relative to empty space, as we can only conceive and measure the
position of one body relative to other bodies.

14.2 Defense of Relative Time

Mach also rejected Newton’s absolute time. Mach argued in his works that there is only relative time. This
relative time is related to the motion between material bodies. Mach argued as well that there in no absolute
time which flows without relation to material bodies. In particular, he thought that we could replace the
time t which appears in Newton’s laws of motion by the angle of rotation of the Earth with respect to the
fixed stars. For instance, in his work on the conservation of energy he wrote:12

I think I must add, and have already added in another publication, that the express drawing of
space and time into consideration in the law of causality, is at least superfluous. Since we only
recognize what we call time and space by certain phenomena, spatial and temporal determinations
are only determinations by means of other phenomena. If, for example, we express the positions
of earthly bodies as functions of the time, that is to say, as functions of the Earth’s angle of
rotation, we have simply determined the dependence of the positions of the earthly bodies on
one another.

The Earth’s angle of rotation is very ready to our hand, and thus we easily substitute it for other
phenomena which are connected with it but less accessible to us; it is a kind of money which we
spend to avoid the inconvenient trading with phenomena, so that the proverb “Time is money”
has also here a meaning. We can eliminate time from every law of nature by putting in its place
a phenomenon dependent on the Earth’s angle of rotation.

In this statement and in others that will be quoted shortly, Mach did not specify relative to which body
this angle of rotation of the Earth should be understood. However, as seen in Section 14.1, he was clearly
thinking on the angle of rotation of the Earth relative to the fixed stars.

In his book The Science of Mechanics he presented this same point of view after quoting the Scholium
of the Principia in which Newton defined the concepts of absolute space, time and motion:13

2. It would appear as though Newton in the remarks here cited still stood under the influence
of the medieval philosophy, as though he had grown unfaithful to his resolve to investigate
only actual facts. When we say a thing A changes with the time, we mean simply that the
conditions that determine a thing A depend on the conditions that determine another thing B.
The vibrations of a pendulum take place in time when its excursion depends on the position of
the Earth. Since, however, in the observation of the pendulum, we are not under the necessity
of taking into account its dependence on the position of the Earth, but may compare it with
any other thing (the conditions of which of course also depend on the position of the Earth), the
illusory notion easily arises that all the things with which we compare it are unessential. Nay,
we may, in attending to the motion of a pendulum, neglect entirely other external things, and
find that for every position of it our thoughts and sensations are different. Time, accordingly,
appears to be some particular and independent thing, on the progress of which the position of
the pendulum depends, while the things that we resort to for comparison and choose at random
appear to play a wholly collateral part. But we must not forget that all things in the world
are connected with one another and depend on one another, and that we ourselves and all our
thoughts are also a part of nature. It is utterly beyond our power to measure the changes of things
by time. Quite the contrary, time is an abstraction, at which we arrive by means of the changes of
things; made because we are not restricted to any one definite measure, all being interconnected.
A motion is termed uniform in which equal increments of space described correspond to equal

12[Mac81a, pp. 60-61].
13[Mac60, pp. 272-273].
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increments of space described by some motion with which we form a comparison, as the rotation
of the Earth. A motion may, with respect to another motion, be uniform. But the question
whether a motion is in itself uniform, is senseless. With just as little justice, also, may we speak
of an “absolute time” — of a time independent of change. This absolute time can be measured
by comparison with no motion; it has therefore neither a practical nor a scientific value; and no
one is justified in saying that he knows aught about it. It is an idle metaphysical conception.

Later on in the same book he said:14

When we reflect that the time-factor that enters into the acceleration is nothing more than a
quantity that is the measure of the distances (or angles of rotation) of the bodies of the universe,
we see that even in the simplest case, in which apparently we deal with the mutual action of only
two masses, the neglecting of the rest of the world is impossible.

Another quotation:15

We measure time by the angle of rotation of the Earth, but could measure it just as well by
the angle of rotation of any other planet. But, on that account, we would not believe that
the temporal course of all physical phenomena would have to be disturbed if the Earth or the
distant planet referred to should suddenly experience an abrupt variation of angular velocity.
We consider the dependence as not immediate, and consequently the temporal orientation as
external. Nobody would believe that the chance disturbance - say by an impact - of one body in
a system of uninfluenced bodies which are left to themselves and move uniformly in a straight
line, where all the bodies combine to fix the system of coordinates, will immediately cause a
disturbance of the others as a consequence. The orientation is external here also. Although we
must be very thankful for this, especially when it is purified from meaninglessness, still the natural
investigator must feel the need of further insight - of knowledge of the immediate connections,
say, of the masses of the universe. There will hover before him as an ideal an insight into the
principles of the whole matter, from which accelerated and inertial motions result in the same
way. [...]

Once again Mach was referring implicitly to the angle of rotation of the planets relative to the frame of
fixed stars.

As seen in Subsection 1.6.2, Newton himself mentioned that the relative rotation between the Earth and
the set of fixed stars was a good measure of absolute time. Therefore, we might think that Mach was not
introducing anything new here. But this is not true. As a matter of fact, Newton utilized the sidereal time
as a good measure of absolute time. However, he emphasized the existence of an absolute time which flowed
equably without relation to anything external. Mach was totally against this concept of an absolute time.
According to Mach, we cannot measure the flow of this absolute time. We can only measure the change of
one thing relative to the change of another thing. There is no philosophical meaning in an absolute time
independent of the material world. Only relative time exists. It is a measure of the changes in the relative
configuration of bodies.

14.3 Comparison between the Kinematic Rotation of the Earth and

Its Dynamic Rotation

Mach was aware of the observational evidence that the kinematic rotation of the Earth relative to the fixed
stars is the same as the dynamic rotation of the Earth relative to inertial frames. These two rotations have
the same numerical value and point towards the same direction. In other words, the best inertial system of
reference known to us (in which we can apply Newton’s second law of motion without centrifugal, Coriolis or
other fictitious forces) does not rotate relative to the set of fixed stars. He expressed this on pages 292-293
of The Science of Mechanics:16

Seeliger has attempted to determine the relation of the inertial system to the empirical astro-
nomical system of coordinates which is in use, and believes that he can say that the empirical
system cannot rotate about the inertial system by more than some seconds of arc in a century.

14[Mac60, p. 287].
15[Mac60, pp. 295-296].
16[Mac60, pp. 292-293].
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Jammer also quoted Seeliger’s work:17

Seeliger18 thought it was possible to compare Lange’s inertial system with the empirical coordi-
nate system used in astronomy and stated that the relative motion between these two systems is
less than 2 seconds of arc within the span of a century.

Nowadays we know that if there is a rotation between these two frames (the inertial frame and the frame
of fixed stars), it is smaller than 0.4 seconds of arc per century,19 that is:

ωk − ωd ≤ ±0.4
seconds of arc

century
= ±1.9× 10−8 rad

year
= ±6.1× 10−16 rad

s
. (14.1)

As ωk = 2π/T = 2π/(23h 56m 4s) = 2π/(86, 164 s) = 7.29× 10−5 rad/s, we get:
∣

∣

∣

∣

ωk − ωd

ωk

∣

∣

∣

∣

≤ 8× 10−12 . (14.2)

Few facts in physics have a precision of one part in 1011, as we find here. Another example, as we saw
in Subsection 8.3.3, is the proportionality between inertial mass and weight, or between inertial mass and
gravitational mass, equation (8.35). These two facts are some of the strongest empirical supports for Mach’s
principle. It is difficult to accept these facts as simple coincidences. As seen in Subsections 10.2.1, 10.2.4,
10.2.5 and 11.4.3, the fact that ~ωk = ~ωd is equivalent to the statement that the universe as a whole (the set
of distant galaxies) does not rotate relative to absolute space, nor relative to any inertial frame of reference.
This coincidence between ~ωk and ~ωd suggests that distant matter determines and establishes the best inertial
frames. The proportionality between inertial mass and gravitational mass, on the other hand, suggests that
there is some kind of gravitational interaction between distant astronomical bodies and local test bodies.
This gravitational interaction would give rise to the normal inertial effects observed in nature (flattening of
the Earth at its poles due to its diurnal rotation, etc.). If this is the case, we need to understand and explain
this connection between distant matter and local inertial systems. No answer to this puzzle is to be found
in newtonian mechanics. There is no relation between the fixed stars and distant galaxies with the inertial
frames in classical physics. The set of stars and the set of galaxies exert essentially no net gravitational force
on bodies located at the solar system. The net force exerted by the stars and galaxies (due to the small
anisotropy in their distribution in space) on any specific planet of the solar system can be neglected as they
are much smaller than the gravitational forces exerted by the Sun and by the other planets and moons of
the solar system.

14.4 New Definition of Inertial Mass

Another problem in classical mechanics is the notion of quantity of matter, or the notion of inertial mass.
This is the mass which appears in Newton’s second law of motion, in the linear momentum and in the kinetic
energy. Newton defined it as the product of the volume of the body by its density, as we saw in Section 1.2,
equation (1.1). This is a poor definition, as we usually define the density by the ratio of the inertial mass
and volume of a body, or as the quantity of matter divided by the volume of the body. Newton’s definition
would only be useful (and would only avoid vicious circles) if Newton had specified previously how to define
and measure the density of a body without utilizing the mass concept, but he did not do this.

The first article written by Mach where he criticized this definition and presented a better one is from
1868.20 It was reprinted in Mach’s book The History and the Root of the Principle of the Conservation of
Energy of 1872.21 In the book The Science of Mechanics he elaborated further his new proposal and wrote:22

Definition I is, as has already been set forth, a pseudo-definition. The concept of mass is not
made clearer by describing mass as the product of the volume into the density, as density itself
denotes simply the mass of unit of volume. The true definition of mass can be deduced only from
the dynamical relations of bodies.

17[Jam54, p. 139], [Jam93, p. 141] and [Jam10, pp. 183-184].
18H. Seeliger, “Über die sogennante absolute Bewegung”, Sitzber. Münchener Akad. Wiss. (1906), p. 85.
19[Sch64] and [Rei73].
20[Mac68].
21[Mac11a, On the definition of mass, pp. 80-85] and [Mac81a, On the definition of mass, pp. 80-85].
22[Mac60, p. 300].
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Instead of Newton’s definition of inertial mass, Mach proposed the following definition:23

All those bodies are bodies of equal mass, which, mutually acting on each other, produce in each
other equal and opposite accelerations.

We have, in this, simply designated, or named, an actual relation of things. In the general case
we proceed similarly. The bodies A and B receive respectively as the result of their mutual action
(see Figure) the accelerations −ϕ and +ϕ′, where the senses of the accelerations are indicated
by the signs.

A B

φ- φ’+

(a) (b)

We say then, B has ϕ/ϕ′ times the mass of A. If we take A as our unit, we assign to that body
the mass m which imparts to A m times the acceleration that A in the reaction imparts to it.
The ratio of the masses is the negative inverse ratio of the counter-accelerations. That these
accelerations always have opposite signs, that there are therefore, by our definition, only positive
masses, is a point that experience teaches, and experience alone can teach. In our concept of
mass no theory is involved; “quantity of matter” is wholly unnecessary in it; all it contains is the
exact establishment, designation, and determination of a fact.

This key definition of the ratio of inertial masses can be expressed mathematically as follows:

mi1

mi2
≡ −a2

a1
. (14.3)

In this key definition of inertial mass, Mach did not specify clearly the frame of reference with respect
to which the accelerations should be measured. It is simple to see that this definition depends on the frame
of reference.24 For instance, observers in two frames which are accelerated relative to one another will find
different mass ratios by analyzing the same interaction of two bodies if each observer utilizes his own frame
of reference to define the accelerations and arrive at the ratio of masses. Let us give an example. We consider
a one-dimensional problem in which two bodies, 1 and 2, interacting with one another obtain accelerations
~a1 = a1x̂ and ~a2 = −a2x̂, respectively, relative to a frame of reference O, figure 14.1, where a1 ≡ |~a1| and
a2 ≡ |~a2|.

0´

0 21
x

x´

a 0´

a1 a2

Figure 14.1: Accelerations a1 and a2 of two bodies relative to a frame of reference O. The frame O′ has an
acceleration ao′ relative to frame O.

Now suppose that a frame of reference O′ has an acceleration ~ao′ = ao′ x̂ relative to frame O, where
ao′ ≡ |~ao′ |, figure 14.1. The accelerations of bodies 1 and 2 relative to O′ will be given by, respectively:
~a′1 = ~a1 − ~ao′ = (a1 − ao′)x̂

′ and ~a′2 = ~a2 − ~ao′ = −(a2 + ao′)x̂
′, as in figure 14.2, with x̂′ = x̂.

Utilizing Mach’s definition, the mass ratio of bodies 1 and 2 relativeo to O is given by:

m1

m2

= −−a2
a1

=
a2
a1

. (14.4)

On the other hand, their mass-ratio relative to O′ is found to be:

m′

1

m′

2

= −−a′2
a′1

=
a2 + ao′

a1 − ao′
6= m1

m2

. (14.5)

23[Mac60, pp. 266-267].
24[Bun66].



Ch. 14: Mach and Newton’s Mechanics 243
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x´

Figure 14.2: Accelerations a′1 and a′2 of two bodies relative to a frame of reference O′.

In other words, if we can utilize any frame of reference to define the mass-ratios, then this definition
becomes meaningless. After all, there will be as many different mass-ratios as there are frames of reference
accelerated relative to one another. The value of m1/m2 would depend on the system of reference, and this
is certainly undesirable.

But it is evident from his writings that Mach had in mind the frame of fixed stars as the only frame to
be utilized in his definition. This was shown conclusively in an important paper by Yourgrau and van der
Merwe.25 Section 14.1 presented several passages from Mach proving this point of view. Therefore, to Mach
the uncertainty presented in the present Section 14.4 did not exist. That is, to Mach we should not utilize in
equation (14.3) the accelerations of bodies 1 and 2 relative to an arbitrary frame of reference. Mach argued
that in his definition of the ratio of inertial masses we should utilize only their accelerations relative to the
frame of fixed stars. Figure 14.3 illustrates this configuration. We tried to clarify Mach’s point of view with
this illustration.

mi1 mi2

1 2

F

a1F a2F

Figure 14.3: Two bodies of inertial masses mi1 and mi2 interacting with one another and obtaining acceler-
ations a1F and a2F relative to the frame F of fixed stars.

We have two bodies 1 and 2 interacting with one another. As a result of their interaction, they acquire
accelerations a1F and a2F , respectively, relative to the frame F of fixed stars. Mach’s definition of the ratio
of their inertial masses is then given by:

mi1

mi2
≡ −a2F

a1F
. (14.6)

In this equation the ratio of the inertial masses of bodies 1 and 2 is defined as the negative inverse ratio
of the counter-accelerations of these bodies relative to the frame of fixed stars. This ratio of inertial masses
will have the same value not only in the frame O or F of the fixed stars, but also in a frame of reference
O′ which is accelerated relative to the frame of fixed stars. Even in the frame O′ the relevant accelerations
are relative to the frame of fixed stars. That is, the accelerations of 1 and 2 relative to O′ do not matter in
order to define their mass-ratio.

It should be observed that nowadays, instead of Newton’s definition of inertial mass (that is, that mi ≡
ρV ), the accepted operational definition of inertial mass is that introduced by Mach and represented by
equation (14.6). This new definition of inertial mass appears in several textbooks, although Mach’s name is

25[YvdM68].
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not usually mentioned explicitly.26

Mach’s operational definition of inertial mass is one of his main contributions to the foundations of
classical mechanics.

14.5 Mach’s Formulation of Mechanics

After clarifying these points, we now present here Mach’s own formulation of mechanics, which he suggested
in order to replace Newton’s postulates and corollaries. Mach presented this formulation for the first time
in 1868.27 Here we present his final formulation:28

Even if we adhere absolutely to the Newtonian points of view, and disregard the complications
and indefinite features mentioned, which are not removed but merely concealed by the abbrevi-
ated designations “Time” and “Space,” it is possible to replace Newton’s enunciations by much
more simple, methodically better arranged, and more satisfactory propositions. Such, in our
estimation, would be the following:

a. Experimental proposition. Bodies set opposite each other induce in each other, under certain
circumstances to be specified by experimental physics, contrary accelerations in the direction of
their line of junction. (The principle of inertia is included in this.)

b. Definition. The mass-ratio of any two bodies is the negative inverse ratio of the mutually
induced accelerations of those bodies.

c. Experimental Proposition. The mass-ratios of bodies are independent of the character of
the physical states (of the bodies) that condition the mutual accelerations produced, be those
states electrical, magnetic, or what not; and they remain, moreover, the same, whether they are
mediated or immediately arrived at.

d. Experimental Proposition. The accelerations which any number of bodies A, B, C ... induce
in a body K, are independent of each other. (The principle of the parallelogram of forces follows
immediately from this.)

e. Definition. Moving force is the product of the mass-value of a body into the acceleration
induced in that body.

These are clear and reasonable propositions, provided we understand the frame of reference to which the
accelerations are to be referred. As we have seen in Sections 14.1 and 14.4, to Mach a reasonable frame of
reference for these accelerations was the Earth. If we need a greater precision and more accurate mass-ratios,
then according to Mach we need to utilize the frame of fixed stars.

This machian formulation of mechanics is vastly superior than the newtonian one. After all it is based
only on practical procedures and on facts of experience, without metaphysical concepts such as absolute
space and time. However, this is not enough. It does not explain the proportionality between inertial mass
and weight (or between mi and mg). It does not explain as well why the frames of fixed stars or distant
galaxies are good inertial systems. It does not explain why the set of distant galaxies does not rotate relative
to an inertial system. Nor does it explain the origin of fictitious forces (such as the centrifugal force and
the Coriolis’s force). Although this formulation represents a tremendous progress compared with Newton,
Leibniz and Berkeley, a complete quantitative implementation of relational mechanics requires much more
than Mach accomplished. Nevertheless, he took a large step in the right direction.

14.6 Mach, the Flattening of the Earth and Foucault’s Pendulum:

Equivalence between the Ptolemaic and Copernican Systems

Beyond these clarifications and important new formulation, Mach presented some extremely relevant sug-
gestions and insights. These suggestions were related with his analysis of Newton’s bucket experiment, the
flattening of the Earth and Foucault’s pendulum. Between these insights, he defended relative motion and

26See, for instance, [Sym71, Section 1.3: Dynamics. Mass and Force, pp. 5-7], [Sym82, Section 1.3, pp. 23-25] and [SJ04,
Section 4.3: Massa inercial, pp. 112-113].

27[Mac68], [Mac11a] and [Mac81a, see especially pages 84-85].
28[Mac60, pp. 303-304].
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emphasized that in physics we should have only relative quantities (relative space, relative motion etc.). That
is, physics should depend only on relative distance between bodies, their relative velocities, and their relative
accelerations. No absolute positions, velocities and accelerations should appear in the laws of physics. As
absolute magnitudes do not appear in the experiments, they should not appear in the theory.

As regards Newton’s bucket experiment, the flattening of the Earth and Foucault’s pendulum, Mach
argued that all these effects were due to the relative rotations between these bodies and the distant astro-
nomical bodies. He defended, in particular, that all dynamic effects should also take place if the test bodies
might remain at rest, while the set of fixed stars rotated around them. These dynamic effects would be the
parabolic figure of the water in the bucket, the flattening of the Earth, or the precession of the plane of
oscillation of Foucault’s pendulum relative to the ground.

Moreover, Mach argued that the ptolemaic and copernican systems were equivalent to one another. This
equivalence would be valid not only for the description of the relative motions between the test body and
the fixed stars, but also as regards the dynamic consequences of these relative accelerations (flattening of
the Earth, etc.).

Mach’s statements in this regard can be found at several places in his works On the Definition of Mass,29

History and Root of the Principle of the Conservation of Energy,30 and The Science of Mechanics.31 We
quote here some of these statements.

In The Science of Mechanics, for instance, he said the following (our emphasis):32

If, in a material spatial system, there are masses with different velocities, which can enter into
mutual relations with one another, these masses present to us forces. We can only decide how
great these forces are when we know the velocities to which those masses are to be brought.
Resting masses too are forces if all the masses do not rest. Think, for example, of Newton’s
rotating bucket in which the water is not yet rotating. If the mass m has the velocity v1 and it is
to be brought to the velocity v2, the force which is to be spent on it is p = m(v1 − v2)/t, or the
work which is to be expended is ps = m(v21 − v22). All masses and all velocities, and consequently
all forces, are relative. There is no decision about relative and absolute which we can possibly
meet, to which we are forced, or from which we can obtain any intellectual or other advantage.
When quite modern authors let themselves be led astray by the Newtonian arguments which are
derived from the bucket of water, to distinguish between relative and absolute motion, they do
not reflect that the system of the world is only given once to us, and the Ptolemaic or Copernican
view is our interpretation, but both are equally actual. Try to fix Newton’s bucket and rotate the
heaven of fixed stars and then prove the absence of centrifugal forces.

A few pages later he wrote:33

Let us now examine the point on which Newton, apparently with sound reasons, rests his dis-
tinction of absolute and relative motion. If the Earth is affected with an absolute rotation about
its axis, centrifugal forces are set up in the Earth: it assumes an oblate form, the acceleration
of gravity is diminished at the equator, the plane of Foucault’s pendulum rotates, and so on.
All these phenomena disappear if the Earth is at rest and the other heavenly bodies are affected
with absolute motion round it, such that the same relative rotation is produced. This is, indeed,
the case, if we start ab initio from the idea of absolute space. But if we take our stand on the
basis of facts, we shall find we have knowledge only of relative spaces and motions. Relatively,
not considering the unknown and neglected medium of space, the motions of the universe are
the same whether we adopt the Ptolemaic or Copernican mode of view. Both views are, indeed,
equally correct; only the latter is more simple and more practical. The universe is not twice given,
with an Earth at rest and an Earth in motion; but only once, with its relative motions, alone
determinable. It is, accordingly, not permitted us to say how things would be if the Earth did not
rotate. We may interpret the one case that is given to us, in different ways. If, however, we so
interpret it that we come into conflict with experience, our interpretation is simply wrong. The
principles of mechanics can, indeed, be so conceived, that even for relative rotations centrifugal
forces arise.

29[Mac68], [Mac11b] and [Mac81b].
30[Mac11a] and [Mac81a].
31[Mac60].
32[Mac60, p. 279].
33[Mac60, pp. 283-284].
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This equivalence between the ptolemaic and copernican world views had already appeared in his work of
1872 on the conservation of energy:34

Obviously it does not matter whether we think of the Earth as turning round on its axis, or at
rest while the celestial bodies revolve round it. Geometrically these are exactly the same case of
a relative rotation of the Earth and of the celestial bodies with respect to one another. Only, the
first representation is astronomically more convenient and simpler.

But if we think of the Earth at rest and the other celestial bodies revolving round it, there is no
flattening of the earth, no Foucault’s experiment, and so on — at least according to our usual
conception of the law of inertia. Now, one can solve the difficulty in two ways: Either all motion
is absolute, or our law of inertia is wrongly expressed. Neumann preferred the first supposition,
I, the second. The law of inertia must be so conceived that exactly the same thing results from
the second supposition as from the first. By this it will be evident that, in its expression, regard
must be paid to the masses of the universe.

From these and other quotations we understand that a relational mechanics following Mach’s point of
view should depend only on relative quantities. In other words, it should depend only on the distance between
the bodies, rmn = |~rm − ~rn|, and their time derivatives: ṙmn = drmn/dt, r̈mn = d2rmn/dt

2, d3rmn/dt
3, etc.

Moreover, the concepts of absolute space and absolute time should not appear.

14.7 Mach and the Bucket Experiment: Defense of Relative Motion

When Mach discussed Newton’s bucket experiment, he emphasized the fact that we cannot neglect the
heavenly bodies in the analysis. According to Mach the parabolic shape of the spinning water is due to its
rotation relative to the fixed stars, and not due to its rotation relative to absolute space. For instance, on p.
284 of The Science of Mechanics, he wrote:35

Newton’s experiment with the rotating vessel of water simply informs us, that the relative rotation
of the water with respect to the sides of the vessel produces no noticeable centrifugal forces, but
that such forces are produced by its relative rotation with respect to the mass of the Earth and
the other celestial bodies. No one is competent to say how the experiment would turn out if the
sides of the vessel increased in thickness and mass till they were ultimately several leagues thick.
The one experiment only lies before us, and our business is, to bring it into accord with the other
facts known to us, and not with the arbitrary fictions of our imagination.

The most important point here is that the issue is not just one of language. Instead of Newton’s absolute
space we could speak of Mach’s frame of fixed stars, and then all would be settled. This would be the case
if it were only a question of language. But the passages cited above indicate a deeper meaning. In fact they
suggest a dynamic origin for the centrifugal force according to Mach. That is, the centrifugal force would be
a real force which appeared only in a frame of reference relative to which the sky of stars was rotating. This
aspect or this interpretation cannot be deduced from Newton’s laws of motion, nor even from his universal
law of gravitation. Let us emphasize once more one of these statements of Mach:36

Try to fix Newton’s bucket and rotate the heaven of fixed stars and then prove the absence of
centrifugal forces.

Figure 14.4 presents Newton’s bucket experiment.
That is, the bucket and the water are rotating quickly around the axis of the bucket. The bucket and

the water are rotating together with angular velocity ωẑ relative to the Earth and also relative to the fixed
stars. The surface of the water is concave. We choose the z axis along the axis of the bucket, which does
not need to be along the North-South axis of the Earth. The joint rotation of the bucket and water relative
to the Earth is much greater than the diurnal rotation of the Earth relative to the fixed stars. Thus we
can consider the Earth to be essentially without acceleration relative to the frame of fixed stars during this
experiment.

We can distinguish clearly Newton’s point of view from that of Mach with figure 14.5.

34[Mac81a, pp. 76-77].
35[Mac60, p. 284].
36[Mac60, p. 279].
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Figure 14.4: Newton’s bucket experiment. The bucket and the water rotate together relative to the ground
and relative to the fixed stars around the axis of the bucket.
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Figure 14.5: What should be expected if we fixed the bucket and the water relative to the ground, while
rotating quickly the set of fixed stars around the axis of the bucket. (a) Prediction according to Newton.
(b) Prediction according to Mach.

In Figure 14.5 (a) we assume that the bucket, water and Earth are at rest relative to absolute space
and that the set of stars rotate relative to this frame or relative to the Earth with an angular velocity
−ωẑ. According to newtonian mechanics, the water will remain flat, as it is at rest relative to absolute
space. Moreover, the set of stars rotating around the bucket exerts no net gravitational force on the water
molecules, according to equation (1.21).

Figure 14.5 (b) shows the outcome of this thought experiment according to Mach. Provided the relative
rotation is the same as in Newton’s original and real experiment (rotating the bucket relative to the Earth
and relative to the set of fixed stars with +ωẑ), the surface of the water should remain concave. To Mach
absolute space does not exist and cannot play any role here. Only the relative rotation between the water
and the fixed stars should matter.

We agree with Mach and not with Newton, as regards the outcome of this thought experiment, if it were
possible to perform it. That is, if the kinematic situation is the same (stars at rest relative to an arbitrary
frame of reference and water spinning with +ωẑ, or water at rest relative to another frame of reference
and the stars spinning with −ωẑ), then the dynamic effects must also be the same (the water must rise
towards the sides of the vessel in both cases). Moreover, the concavity of the water and its corresponding
ascent towards the sides of the bucket should have the same values in both cases, as they are kinematically
equivalent. The only thing Mach did not know is that the cause of the concavity of the water surface was
due to its rotation relative to distant galaxies and not relative to the fixed stars. Later on we explain why.

Obviously the situations of Figures 14.5 (a) and (b) are not completely equivalent to Newton’s real
experiment. The kinematic equivalence would be complete only if the Earth rotated together with the fixed
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stars with −ωẑ relative to the bucket and water. But here we are neglecting the tangential or centrifugal
forces (acting along a plane orthogonal to the axis of rotation) exerted by the spinning Earth on the molecules
of water. That is, we are assuming that the force exerted by the Earth on the water is essentially its weight
pointing downwards, regardless of the rotation of the Earth relative to the water.

Mach wrote:37 “Try to fix Newton’s bucket and rotate the heaven of fixed stars and then prove the
absence of centrifugal forces.” The chief importance of this statement was that it implied clearly that the
centrifugal force is due to the relative rotation between the body which experiences this force and the set
of distant masses in the universe. It does not matter which one of them is rotating, if the test body or the
set of distant masses of the universe. That is, provided the relative rotation between the test body and the
distant masses is the same, the effects due to the centrifugal forces should always appear. Examples of these
effects are the flattening of the Earth at its poles, the curvature of the water in Newton’s bucket experiment,
the precession of the plane of oscillation of Foucault’s pendulum relative to the ground, etc. Many physicists
have been heavily influenced by Mach’s writings and, in the end, his ideas led to relational mechanics. In this
sense it is possible to say that his ideas were more influential than the similar ideas (although less developed)
presented earlier by Leibniz and Berkeley.

It should be remembered here that Newton himself was the first to consider this possibility, as seen in
Subsection 10.2.3. The Earth is observed to be flattened at the poles. According to classical mechanics, this
effect is due to the diurnal rotation of the Earth relative to the frame of fixed stars. Newton imagined a
thought experiment in which the Earth would be stationary relative to absolute space, while the set of all
astronomical bodies would be rotating once a day around the North-South axis of the Earth. He then asked
the following question:38

Fourthly. It also follows from the same doctrine that God himself could not generate motion in
some bodies even though he impelled them with the greatest force. For example, if God urged
the starry heaven together with all the most remote part of creation with any very great force
so as to cause it to revolve about the Earth (suppose with a diurnal motion): yet from this,
according to Descartes, the Earth alone and not the sky would be truly said to move (part III,
Ar. 38).39 As if it would be the same whether, with a tremendous force, He should cause the skies
to turn from East to West, or with a small force turn the Earth in the opposite direction. But
who would imagine that the parts of the Earth endeavour to recede from its centre on account of
a force impressed only upon the heavens? Or is it not more agreeable to reason that when a force
imparted to the heavens makes them endeavour to recede from the centre of the revolution thus
caused, they are for that reason the sole bodies properly and absolutely moved; and that when a
force impressed upon the Earth makes its parts endeavour to recede from the centre of revolution
thus caused, for that reason it is the sole body properly and absolutely moved, although there
is the same relative motion of the bodies in both cases. And thus physical and absolute motion
is to be defined from other considerations than translation, such translation being designated as
merely external.

Newton’s text was only published in 1962. Therefore, it did not influence Leibniz nor Berkeley. These
authors did not arrive at this idea in order to explain Newton’s bucket experiment or the flattening of the
Earth. Only 200 years after Newton did Ernst Mach considered independently this possibility which had
been anticipated by Newton. Newton rejected this explanation, but at least he had the great merit to
entertain a totally relational explanation for the origin of centrifugal forces. Mach, as Newton before him,
when thinking in an explanation for the bucket experiment which did not include absolute space, imagined
that the centrifugal forces acting upon the water might originate in the circular motion of the astronomical
bodies rotating around the axis of the bucket. Mach argued in favor of this idea in order to explain (utilizing
only relative motion between material bodies) not only the bucket experiment, but also the flattening of the
Earth, the precession relative to the ground of the plane of oscillation of Foucault’s pendulum, etc. Instead
of rejecting this possibility, as Newton had rejected it, Mach defended it strongly. Therefore it is fair to
consider Ernst Mach as one of the main pioneers of the relational mechanics presented in this book.

37[Mac60, p. 279].
38[HH62, pp. 127-128], [New83, pp. 66-67] and [Ear89, p. 63], our emphasis.
39[Note by Hall and Hall:] That according to Tycho’s hypothesis, the Earth is said to move around its own centre.
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14.8 Mach’s Principle

Mach did not specify clearly in his writings any specific principle which he advocated. Despite this fact, he
presented cogently argued points of view against Newton’s absolute space and time. He was in favor of a
relational physics. He suggested the physical reality of the centrifugal force and of the Coriolis force. He
also supposed that Newton’s bucket experiment showed a connection between the curvature of the water
and its rotation relative to the fixed stars. The same connection was shown in the flattening of the Earth, in
Foucault’s pendulum experiment, etc. These ideas became generally known by the name “Mach’s principle.”
Here we discuss how different authors have used this principle.40

The first to utilize the expressions “Mach’s principle” and “Mach’s postulates” was M. Schlick in 1915.41

Apparently he was referring to Mach’s general proposals that all motions were relative (that is, there was no
motion of matter relative to empty space, but only motion of matter relative to other matter). According
to Schlick, a consequence of this proposal was the following:42

[...] the cause of inertia must be assumed to be an interaction of masses.

The expression “Mach’s principle” became widely known and utilized after Einstein’s article of 1918 on
the foundations of the general theory of relativity. He said:43

The theory, as it now appears to me, rests on three main points of view, which, however, are by
no means independent of each other [...]:

a) Relativity principle: The laws of nature are merely statements about space-time coincidences;
they therefore find their only natural expression in generally covariant equations.

b) Equivalence principle: Inertia and weight are identical in nature. It follows necessarily from
this and from the result of the special theory of relativity that the symmetric ‘fundamental tensor’
[gµν ] determines the metrical properties of space, the inertial behavior of bodies in it, as well as
gravitational effects. We shall denote the state of space described by the fundamental tensor as
the ‘G-field.’

c) Mach’s Principle44: The G-field is completely determined by the masses of the bodies. Since
mass and energy are identical in accordance with the results of the special theory of relativity
and the energy is described formally by means of the symmetric energy tensor (Tµν), this means
that the G-field is conditioned and determined by the energy tensor of the matter.

Different formulations of Mach’s principle, as given by Einstein, have been pointed out by J. Barbour.45

Below are the words of some other authors when referring to this principle:
“Inertial frames are those which are unaccelerated relative to the ‘fixed stars’, that is, relative to a suitably

defined mean of all the matter in the universe.”46

“Inertia is not due to movement with respect to ‘absolute space’, but due to surrounding matter.”47

“By ‘Mach’s Program’ is meant the intention to understand all inertial effects as being caused by gravi-
tational interaction.”48

“Inertia is not an inherent property of matter but is the result of forces caused by the distant galaxies.”49

“The inertial properties of matter on the local scene derive in some way from the existence of the distant
masses of the universe and their distribution in space.”50

“The motion and consequently the mass of every single body is determined (caused, produced) by the
remaining bodies in the universe.”51

40[Ass93b].
41[Sch15, pp. 170-171] with English translation in [Sch79, p. 185]. See also [Nor95, specially pp. 10 and 47, note 2].
42[Sch15, p. 171], [Sch79, pp. 184 and 189, note 54] and [Nor95, see specially pp. 10 and 47, note 2].
43[Ein18b, pp. 241-242], [Ein02] and [Nor95, pp. 185-186].
44Hitherto I [Einstein] have not distinguished between principles (a) and (c), and this was confusing. I have chosen the name

‘Mach’s principle’ because this principle has the significance of a generalization of Mach’s requirement that inertia should be
derived from an interaction of bodies.

45[BP95, p. 179].
46[Sci53].
47[Bro55].
48[Kae58].
49[MS59].
50[Sch64].
51[Bun66].
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“The inertia of any body is determined by the masses of the universe and their distribution.”52

“The inertial mass of a body is caused by its interaction with the other bodies in the universe.”53

“When the subway jerks, it’s the fixed stars that throw you down.”54 Phipps said that this raw form was
attributed by P. Frank to Mach himself.

“Inertial forces should be generated entirely by the motion of a body relative to the bulk of matter in the
universe.”55

“The inertia force on particles and bodies on earth and in the solar system is due to their acceleration
relative to all matter residing outside the solar system.”56

“Mach suggested that inertial motion here on the Earth and in the solar system is causally determined in
accordance with some quite definite but as yet unknown law by the totality of the matter in the universe.”57

As Mach himself did not specify an explicit principle but only general ideas as presented above, we utilize
in this work these ideas as “Mach’s principle.”

14.9 What Mach did Not Show

Here we present briefly some results which are embodied in Mach’s principle but that he did not implement
quantitatively.

Mach did not emphasize that the inertia of a body should be due to its gravitational interaction with
other bodies in the universe. By “inertia” we mean here the inertial mass of the body or its inertial properties
to resist being accelerated relative to the frame of fixed stars. In principle this connection between the inertia
of a body and the distant celestial bodies might be due to any kind of interaction already known (electric,
magnetic, elastic, nuclear, ...). It might even be due to a completely new kind of interaction. In no place
did he state that the inertia of a body should come from its gravitational interaction with the fixed stars.
The first scientists to suggest this gravitational connection seem to have been the Friedlaender brothers in
1896.58 This idea was also adopted by Höfler in 1900,59 by W. Hofmann in 1904,60 by Einstein in 1912,61

by Reissner in 1914-1915,62 by Schrödinger in 192563 and by many other authors ever since.64 In Chapter
25 we discuss all of these aspects in more detail.

Mach did not derive the proportionality between inertial mass and weight (or the proportionality between
inertial and gravitational masses). On The Science of Mechanics he wrote the following:65

The fact that mass can be measured by weight, where the acceleration of gravity is invariable,
can also be deduced from our definition of mass.

This deduction is not warranted. The fact that two bodies of different weight (and/or different chemical
composition, and/or different form, etc.) fall to the Earth with the same acceleration in vacuum cannot
be derived from Mach’s definition of mass. Only experience shows that two bodies with different chemical
composition fall freely to the ground with the same acceleration. We might let two bodies A and B on a
horizontal frictionless table interact through a spring and determine their mass ratio by Mach’s definition.
In any event, from this ratio of their masses it could not be concluded that they would fall with the same
acceleration in vacuum due to the gravitational attraction of the Earth. Only experiments show that indeed
two bodies fall freely in vacuum with the same acceleration. Moreover, there is nothing in Mach’s operational
definition of inertial mass66 (according to which “the mass-ratio of any two bodies is the negative inverse ratio
of the mutually induced accelerations of those bodies”) which might indicate a connection between inertial
mass and weight (or a connection between mi and mg). For this reason Mach’s statement (that from his

52[Jam93, p. 109] and [Jam10, p. 145].
53[Rei73].
54[Phi78].
55[Rai81].
56[GG93, p. 74] and [GG06, p. 144].
57[Bar89, p. 2].
58[FF96], with partial English translation in [FF95] and with complete English translation in [FF07].
59[BP95, pp. 21, 24, 34-35, 40-41, 46, 53 and 164].
60Partial English translation in [Hof95].
61[Ein12], with complete English translation in [Ein96] and with partial English translation in [BP95, p. 180].
62[Rei14] with English translation in [Rei95b], and [Rei15] with partial English translation in [Rei95a].
63[Sch25], with commented Portuguese translation in [XA94] and with English translation in [Sch95].
64See [Ass94, Sections 7.6 (Mach’s principle) and 7.7 (The Mach-Weber model)] and [Nor95].
65[Mac60, p. 270].
66[Mac60, pp. 266 and 303].
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definition of inertial mass we could deduce that inertial mass might be measured by weight) is not warranted.
In this regard Newton was on better ground than Mach. According to Newton, it comes from experience (of
free fall or with pendulums) that we can measure inertial mass by weight, as we saw in Subsection 1.6.1,
Section 7.2 and Section 8.3.

Mach proposed that the distant matter (such as the fixed stars) establishes a very good inertial frame.
But he did not explain how this connection between the distant stars and the locally determined inertial
frames might arise. He stimulated thinking in the right direction, although he did not supply the key to
unlock the mystery.

Another point is that he did not show how the set of stars rotating around a test body could generate
centrifugal forces acting on this test body. The same can be said of Leibniz, Berkeley and all the others.
Mach suggested that nature should behave like this, but he did not propose a specific force law that possessed
this property. With Newton’s law of gravitation, a spherical shell exerts no forces on internal bodies, whether
the shell is at rest or spinning, regardless of the position, velocity or acceleration of the internal bodies. This
result is valid for a stationary shell, equations (1.11) and (1.15), for a linearly accelerated shell, equation
(1.20), for a spinning shell, equation (1.21), or for a shell having an arbitrary motion relative to the internal
test bodies. The newtonian force exerted by the spherical shell is zero in all these cases not only because
it is central and varies as the inverse square of the distance, but also because it does not depend on the
velocity nor on the acceleration between the interacting bodies. We will see that utilizing a Weber’s law for
gravitation it is possible to show that when the heaven of stars (or the set of galaxies) rotate together around
a test body, centrifugal forces of gravitational origin act on this body. These forces act on the portions of
the body which are not along the axis of rotation. These forces press these portions away from the axis of
rotation. Therefore, these portions tend to move away from the axis of rotation of the stars and galaxies
around the test body.

The time was ripe during Mach’s life for an implementation of relational mechanics. Physical science
and, in particular, electromagnetism, was highly developed during the second half of XIXth century. Weber’s
relational force for electromagnetism appeared in 1846. Mach mentioned this work of Weber in his article
On the fundamental concepts of electrostatics, delivered in 1883, but did not relate Weber’s force with the
origin of inertia. Mach’s only quotation related to Wilhelm Weber or to his work went as follows:67

[...] Then the facts must be so described that individuals in all places and at all times can, from
a few easily obtained elements, put the facts accurately together in thought, and reproduce them
from the description. This is done with the help of the metrical concepts and the international
measures.

The work which was begun in this direction in the period of the purely scientific development
of the science, especially by Coulomb (1784), Gauss (1833), and Weber (1846), was powerfully
stimulated by the requirements of the great technical undertakings manifested since the laying
of the first transatlantic cable, and brought to a brilliant conclusion by the labors of the British
Association, 1861, and of the Paris Congress, 1881, chiefly through the exertions of Sir William
Thomson.

Mach was quoting here the contributions of Coulomb,68 Gauss69 and Weber related to the establishment
of an international system of units for electromagnetic magnitudes.70 That is, he was not referring specifically
to Weber’s force given by equation (2.22).

An expression similar to Weber’s force for electrodynamics, equation (2.22), was applied to gravitation in
the 1870’s, just at the time when Mach was publishing his criticisms of newtonian mechanics and proposing
his new formulation. Mach worked with many branches of physics, including mechanics, gravitation, ther-
modynamics, physiology, acoustics and optics. As regards electromagnetism, his doctoral thesis (1860) was
on electric charge and induction. Mach never related his criticisms of newtonian mechanics with Weber’s
force law. Mach also never suggested that the problems he pointed out in classical physics might be solved
with Weber’s force applied for gravitation.

Other people at that time knew Weber’s theory and did not make the connection between Mach’s ideas
and Weber’s work. If someone happened to have the right insight at that time and connected these two
aspects, relational mechanics might have arisen more than a hundred years before. All the ideas, concepts,

67[Mac10a, p. 108].
68[Cou85a].
69[Gau33] and [Gau94], translated to English in [Gau95], and translated to Portuguese in [Ass03b].
70[Web46], with English translation in [Web07].
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force laws and mathematical tools to implement relational mechanics were available during the second half
of XIXth century. But it simply did not happen at that time, as history shows. Relational mechanics was
not discovered until more than a hundred years later.

Before entering the new world view of relational mechanics, we will first present Einstein’s theories of
relativity and the problems they have inflicted on physics. This is the subject of the next two Chapters.
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Einstein’s Theories of Relativity
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Albert Einstein (1879-1955) published his special theory of relativity in 1905, while his general theory
of relativity was published in 1916. In developing these theories he was greatly influenced by Mach’s book
The Science of Mechanics.71 In his Autobiographical Notes written in 1946 Einstein said that Mach’s ideas
shook his dogmatic faith in mechanics as the final basis of all physical thinking:72

It was Ernst Mach who, in his History of Mechanics, upset this dogmatic faith; this book exercised
a profound influence upon me in this regard while I was a student.

In the last 100 years physics, and mechanics in particular, have been dominated by Einstein’s ideas,
since he became famous after 1919 as a result of the solar eclipse expedition, which apparently confirmed his
predictions for the bending of light. Newtonian mechanics has since been considered only as an approximation
of the “correct” einsteinian theories.

Here we will argue that Einstein’s theories do not implement machian relational ideas. Moreover, we will
show that Relational Mechanics describes the observed phenomena of nature in a better way than Einstein’s
special and general theories of relativity.

71[Pai82, pp. 282-288].
72[Ein79, p. 18] and [Ein82, p. 29].
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Chapter 15

Einstein’s Special Theory of Relativity

Einstein’s special theory of relativity was presented in his paper of 1905 entitled “On the electrodynamics of
moving bodies.”1 He and his followers introduced many problems into physics with this theory. We analyze
a few of them in the following Sections.

15.1 Electromagnetic Induction

15.1.1 Asymmetry Pointed out by Einstein

Einstein began this paper with the following paragraph:2

It is known that Maxwell’s electrodynamics—as usually understood at the present time—when
applied to moving bodies, leads to asymmetries which do not appear to be inherent in the
phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor.
The observable phenomenon here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the two cases in which
either the one or the other of these bodies is in motion. For if the magnet is in motion and
the conductor at rest, there arises in the neighbourhood of the magnet an electric field with
a certain definite energy, producing a current at the places where parts of the conductor are
situated. But if the magnet is stationary and the conductor in motion, no electric field arises
in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force,
to which in itself there is no corresponding energy, but which gives rise—assuming equality of
relative motion in the two cases discussed—to electric currents of the same path and intensity as
those produced by the electric forces in the former case.

The asymmetry of electromagnetic induction pointed out by Einstein does not appear in Maxwell’s
original formulation of electrodynamics, contrary to what Einstein wrote. It appears only with a very
specific interpretation of Lorentz’s formulation of electrodynamics. This asymmetry did not exist as well for
Faraday (1791-1867), who discovered the phenomenon. It does not exist as well in Weber’s electrodynamics.
In the next Subsections we show how this phenomenon was interpreted by these authors.

15.1.2 This Asymmetry Does Not Exist in the Phenomenon Observed Experi-

mentally

This asymmetry does not exist in the observed phenomenon. Figure 15.1 illustrates the experiment described
by Einstein.

There is a horizontal magnet M . Its horizontal axis points along the x direction, with x̂ being an unit
vector pointing from the magnet to the circuit C. The circuit is located in a vertical plane yz orthogonal to
the x axis. It is connected to a galvanometer which indicates the electric current passing through it. In the
situation of figure 15.1 (a) the magnet moves relative to the ground with a velocity ~vM = vx̂, com v > 0,

1[Ein05], [Ein52c] and [Ein78c].
2[Ein52c, p. 37] and [Ein78c, p. 47].
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Figure 15.1: Magnet M with its axis orthogonal to a plane circuit C. (a) Magnet moving relative to the
ground with velocity ~vM = vx̂, with v > 0, while the circuit is at rest. (b) Magnet at rest, while the circuit
moves relative to the ground with velocity ~vC = −vx̂. In both cases the same current i flows in the circuit.

while the circuit is at rest. In the situation of figure 15.1 (b) the magnet is at rest, while the circuit moves
relative to the ground with velocity ~vC = −vx̂.

In both cases there is the same approximation between the magnet and the circuit. That is, they approach
one another with the same relative velocity v. The electric current induced in the circuit by the magnet
depends on several factors such as the intensity of the poles of the magnet, the shape of the circuit, the
resistance of the circuit, and of the distance between magnet and circuit. Moreover, experience shows that
the induced current depends as well on the relative velocity between magnet and circuit. In particular, this
induced current is proportional to this relative velocity. Let i be the intensity of the induced current and
α a symbol representing “proportionality.” The fact shown by experiments like that of figure 15.1 can be
expressed mathematically as follows:

i α |~vM − ~vC | . (15.1)

In the case of figure 15.1 (a) we have ~v a
C = vx̂ and ~v a

M = ~0, considering the ground as our reference
frame. In the case of figure 15.1 (b) we have ~v b

C = ~0 and ~v b
M = −vx̂. In these two cases the relative velocity

between magnet and circuit is the same, namely:

~v a
C − ~v a

M = ~v b
C − ~v b

M = vx̂ . (15.2)

Experiments show that the induced current i is the same in both cases, namely:

ia = ib = i 6= 0 . (15.3)

However, if the magnet and circuit are at rest in the ground, or if both of them move with the same
velocity ~v relative to the ground, as in figure 15.2, no induced current appears in the circuit: i = 0.
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Figure 15.2: (a) Magnet M and circuit C at rest in the ground. (b) Magnet and circuit moving with the
same velocity relative to the ground, ~vM = ~vC = vx̂. In both cases there is no current induced in the circuit,
i = 0.

15.1.3 This Asymmetry Did Not Exist in Faraday’s Explanation of the Phe-

nomenon

This asymmetry pointed out by Einstein did not exist in Faraday’s conception of this phenomenon.
Faraday discovered electromagnetic induction in 1831. Initially he worked with two circuits at rest relative

to the ground. He found that it was possible to induce an electric current in a secondary circuit provided the
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intensity of current in a primary circuit was changing in time. However, while this current in the primary
circuit remained constant, no current was induced in the secondary circuit:3

10. Two hundred and three feet of copper wire in one length were coiled round a large block of
wood; other two hundred and three feet of similar wire were interposed as a spiral between the
turns of the first coil, and metallic contact everywhere prevented by twine. One of these helices
was connected with a galvanometer, and the other with a battery of one hundred pairs of plates
four inches square, with double coppers, and well charged. When the contact was made, there
was a sudden and very slight effect at the galvanometer, and there was also a similar slight effect
when the contact with the battery was broken. But whilst the voltaic current was continuing to
pass through the one helix, no galvanometrical appearances nor any effect like induction upon
the other helix could be perceived, although the active power of the battery was proved to be
great, by its heating the whole of its own helix, and by the brilliancy of the discharge when made
through charcoal.

He also discovered that he could induce a current in the secondary circuit with a constant current in the
primary circuit, provided that he moved one or the other relative to the laboratory, so that a relative motion
between them would result:4

18. In the preceding experiments the wires were placed near to each other, and the contact of the
inducing one with the battery made when the inductive effect was required; but as the particular
action might be supposed to be exerted only at the moments of making and breaking contact, the
induction was produced in another way. Several feet of copper wire were stretched in wide zigzag
forms, representing the letter W, on one surface of a broad board; a second wire was stretched in
precisely similar forms on a second board, so that when brought near the first, the wires should
everywhere touch, except that a sheet of thick paper was interposed. One of these wires was
connected with the galvanometer, and the other with a voltaic battery. The first wire was then
moved towards the second, and as it approached, the needle was deflected. Being then removed,
the needle was deflected in the opposite direction. By first making the wires approach and then
recede, simultaneously with the vibrations of the needle, the latter soon became very extensive;
but when the wires ceased to move from or towards each other, the galvanometer-needle soon
came to its usual position.

19. As the wires approximated, the induced current was in the contrary direction to the inducing
current. As the wires receded, the induced current was in the same direction as the inducing
current. When the wires remained stationary, there was no induced current (54).

He could also induce a current in a secondary circuit at rest in the laboratory, when he moved a permanent
magnet towards the circuit or away from it. This induction also happened with a magnet at rest in the
laboratory, provided the circuit moved relative to the ground towards or away from the magnet:5

39. But as it might be supposed that in all the preceding experiments of this section, it was by
some peculiar effect taking place during the formation of the magnet, and not by its mere virtual
approximation, that the momentary induced current was excited, the following experiment was
made. All the similar ends of the compound helix (34) were bound together by copper wire,
forming two general terminations, and these were connected with the galvanometer. The soft
iron cylinder (34) was removed, and a cylindrical magnet, three-quarters of an inch in diameter
and eight inches and a half in length, used instead. One end of this magnet was introduced into
the axis of the helix (Pl. I, Fig. 4), and then, the galvanometer-needle being stationary, the
magnet was suddenly thrust in; immediately the needle was deflected in the same direction as if
the magnet had been formed by either of the two preceding processes (34, 36). Being left in, the
needle resumed its first position, and then the magnet being withdrawn the needle was deflected
in the opposite direction. These effects were not great; but by introducing and withdrawing the
magnet, so that the impulse each time should be added to those previously communicated to the
needle, the latter could be made to vibrate through an arc of 180o or more.

3[Far52, see especially Series I, §10, p. 266] and [Far11].
4[Far52, see, for instance, Series I, §18 and 19, pp. 266-267] and [Far11].
5[Far52, see, for instance, §39-43 and 50-54, pp. 270-272].
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Figure 15.3: Figure 4 of Faraday’s paper of 1831.

40. In this experiment the magnet must not be passed entirely through the helix, for then a second
action occurs. When the magnet is introduced, the needle at the galvanometer is deflected in a
certain direction; but being in, whether it be pushed quite through or withdrawn, the needle is
deflected in a direction the reverse of that previously produced. When the magnet is passed in
and through at one continuous motion, the needle moves one way, is then suddenly stopped, and
finally moves the other way.

41. If such a hollow helix as that described (34) be laid East and West (or in any constant
position), and a magnet be retained East and West, its marked pole6 always being one way; then
whichever end of the helix the magnet goes in at, and consequently whichever pole of the magnet
enters first, still the needle is deflected the same way: on the other hand, whichever direction is
followed in withdrawing the magnet, the deflection is constant, but contrary to that due to its
entrance.

42. These effects are simple consequences of the law hereafter to be described (114).

43. When the eight elementary helices were made one long helix, the effect was not so great as
in the arrangement described. When only one of the eight helices was used, the effect was also
much diminished. All care was taken to guard against any direct action of the inducing magnet
upon the galvanometer, and it was found that by moving the magnet in the same direction, and
to the same degree on the outside of the helix, no effect on the needle was produced.

[...]

50. As the helix with its iron cylinder was brought towards the magnetic poles, but without
making contact, still powerful effects were produced. When the helix, without the iron cylinder,
and consequently containing no metal but copper, was approached to, or placed between the
poles (44), the needle was thrown 80o, 90o, or more, from its natural position. The inductive
force was of course greater, the nearer the helix, either with or without its iron cylinder, was
brought to the poles; but otherwise the same effects were produced, whether the helix, etc. was
or was not brought into contact with the magnet; i.e., no permanent effect on the galvanometer
was produced; and the effects of approximation and removal were the reverse of each other (30).

51. When a bolt of copper corresponding to the iron cylinder was introduced, no greater effect
was produced by the helix than without it. But when a thick iron wire was substituted, the
magneto-electric induction was rendered sensibly greater.

52. The direction of the electric current produced in all these experiments with the helix, was
the same as that already described (38) as obtained with the weaker bar magnets.

53. A spiral containing fourteen feet of copper wire, being connected with the galvanometer, and
approximated directly towards the marked pole in the line of its axis, affected the instrument
strongly; the current induced in it was in the reverse direction to the current theoretically con-
sidered by M. Ampère as existing in the magnet (38), or as the current in an electro-magnet of
similar polarity. As the spiral was withdrawn, the induced current was reversed.

54. A similar spiral had the current of eighty pairs of 4-inch plates sent through it so as to form
an electro-magnet, and then the other spiral connected with the galvanometer (53) approximated
to it; the needle vibrated, indicating a current in the galvanometer spiral the reverse of that in
the battery spiral (18, 26). On withdrawing the latter spiral, the needle passed in the opposite
direction.

6Faraday explained in §44 that “to avoid any confusion as to the poles of the magnet, I shall designate the pole pointing to
the North as the marked pole” [...]
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In order to explain his observations, Faraday arrived at the following law:7

114. The relation which holds between the magnetic pole, the moving wire or metal, and the
direction of the current evolved, i.e. the law which governs the evolution of electricity by magneto-
electric induction, is very simple, although rather difficult to express. If in Pl. II, Fig. 24, PN
represent a horizontal wire passing by a marked pole, so that the direction of its motion shall
coincide with the curved line proceeding from below upwards; or if its motion parallel to itself be
in a line tangential to the curved line, but in the general direction of the arrows; or if it pass the
pole in other directions, but so as to cut the magnetic curves8 in the same general direction, or
on the same side as they would be cut by the wire if moving along the dotted curved lines—then
the current of electricity in the wire is from P to N . If it be carried in the reverse directions, the
electric current will be from N to P .

P P´

N

N´

Figure 15.4: Figure 24 of Faraday’a paper of 1831.

Or if the wire be in the vertical position, figured P ′N ′, and it be carried in similar directions,
coinciding with the dotted horizontal curve so far, as to cut the magnetic curves on the same
side with it, the current will be from P ′ to N ′. If the wire be considered a tangent to the curved
surface of the cylindrical magnet, and it be carried round that surface into any other position,
or if the magnet itself be revolved on its axis, so as to bring any part opposite to the tangential
wire—still, if afterwards the wire be moved in the directions indicated, the current of electricity
will be from P to N ; or if it be moved in the opposite direction, from N to P ; so that as regards
the motions of the wire past the pole, they may be reduced to two, directly opposite to each
other, one of which produces a current from P to N , and the other from N to P .

Therefore, according to Faraday, the explanation of induction is based on the real existence of lines of
magnetic force, not only when we move a circuit towards a magnet, but also when the magnet moves towards
the stationary circuit. Moreover, his explanation is based on the electric circuit cutting these lines. Faraday
never doubted that these lines of force shared completely the translational motion of the magnet.9 That is,
he believed that when we move a magnet (or when we move a current carrying wire) relative to the laboratory
with a constant linear velocity ~V , the lines of magnetic field ~B (or the lines of force of the magnet) will also
move relative to the laboratory with this same velocity ~V , following the motion of the magnet. For instance,
in 1851 he expressed himself as follows:10

3090. When lines of force are spoken of as crossing a conducting circuit (3087), it must be
considered as effected by the translation of a magnet.

This motion of the lines of the magnetic field relative to the ground is illustrated in figure 15.5.
According to Faraday, there was always the same explanation for the induced current in the secondary

circuit when there was a relative motion between the circuit and the magnet. We consider here the two cases
mentioned by Einstein, (A) and (B), and the explanation given by Faraday. (A) When the magnet was at
rest in the laboratory, Faraday considered that his lines of force also remained stationary. When the circuit
was moving in the laboratory, it could cut these lines of force. An electric current would then be induced in

7[Far52, §114, pp. 281-282].
8[Note by Faraday:] By magnetic curves, I mean the lines of magnetic forces, however modified by the juxtaposition of poles,

which would be depicted by iron filings; or those to which a very small magnetic needle would form a tangent.
9[Mil81, p. 155].

10[Far52, §3090, p. 762].
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Figure 15.5: Faraday believed that when a magnet moved relative to the ground with a constant linear
velocity ~V , its lines of magnetic field ~B would also move relative to the ground with this velocity ~V .

the wire. (B) Consider now the situation in which the wire was at rest in the ground, while the magnet was
moving with a constant velocity in the laboratory. Faraday considered that the lines of force produced by
the magnet would also be moving relative to the ground, following the motion of the magnet. These lines of
force could then cut the wire during their motion. An electric current would then be induced in the wire.

15.1.4 This Asymmetry Did Not Exist in Maxwell’s Explanation of the Phe-

nomenon

Maxwell did agree with Faraday as regards the interpretation of this phenomenon of electromagnetic in-
duction by the relative motion of a magnet and the secondary circuit. He did not see any “asymmetry” in
this phenomenon, no matter which body was moving relative to the ground, the circuit or the magnet. For
instance, at §531 of his book A Treatise on Electricity and Magnetism, he condensed Faraday’s experiments
into a single law:11

531.] The whole of these phenomena may be summed up in one law. When the number of lines of
magnetic induction which pass through the secondary circuit in the positive direction is altered,
an electromotive force acts round the circuit, which is measured by the rate of decrease of the
magnetic induction through the circuit.

Maxwell stated plainly in §541 of his Treatise that the lines of force (of lines of magnetic induction,
or lines of the magnetic field ~B) move relative to the laboratory when the magnet moves relative to the
ground:12

The conception which Faraday had of the continuity of the lines of force precludes the possibility
of their suddenly starting into existence in a place where there were none before. If, therefore,
the number of lines which pass through a conducting circuit is made to vary, it can only be by
the circuit moving across the lines of force, or else by the lines of force moving across the circuit.
In either case a current is generated in the circuit.

In Maxwell’s view the explanation for the induction in the secondary circuit is always the same, depending
only on the relative motion between the secondary circuit and the lines of magnetic field generated by the
magnet (or generated by the primary current-carrying circuit). Whenever the number of lines of magnetic
field passing through a secondary circuit is varied, there will be an electromotive force acting on this circuit
and generating an induced current in it. The number of lines passing through the circuit can change by
moving the circuit relative to the ground towards the stationary magnet, and also by moving the magnet
relative to the ground towards the stationary circuit.

15.1.5 This Asymmetry Does Not Exist in Weber’s Electrodynamics

This asymmetry in the interpretation of electromagnetic induction point out by Einstein does not appear
in Weber’s electrodynamics. Weber’s electrodynamics does not utilize the concept of lines of force, lines
of magnetic induction, nor lines of magnetic field ~B. As seen in Section 2.8, Weber’s force depends only
on the distances, relative radial velocities and relative radial accelerations of the interacting charges.13 The
concepts of electric and magnetic fields do not need to be introduced in Weber’s electrodynamics. Apparently

11[Max54, Vol. 2, §531, p. 179].
12[Max54, Vol. 2, §541, p. 189].
13[Ass92b, Chapter 2], [Ass94, Chapter 3] and [Ass95b, Chapter 2].
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Einstein knew nothing about Weber’s electrodynamics, as there is no work by Einstein in which he mentioned
either Wilhelm Weber’s name or Weber’s electrodynamics, to the best of our knowledge. Despite this lack
of knowledge, Weber’s electrodynamics was the main electromagnetic theory in Germany during the third
quarter of XIXth century. It was also discussed at length in the last Chapter of Maxwell’s Treatise. It
also appears that Einstein never read Maxwell’s Treatise either, even though it was published in 1873 and a
German translation appeared in 1893.14

The phenomenon of induction is aways interpreted in the same way in Weber’s electrodynamics. It does
not matter whether the magnet is at rest in the ground while the circuit is moving, or whether the circuit
is at rest while the magnet is moving relative to the ground. The only important quantity is the relative
velocity between the magnet and the electric circuit in which the current is induced. The velocity of each of
these bodies (magnet or electric circuit) relative to the observer, relative to the frame of reference, or relative
to the laboratory is meaningless in Weber’s electrodynamics. It is meaningless whether the observer is at
rest relative to the magnet or relative to the electric circuit.

Here we present briefly an analysis of this experiment based on Weber’s electrodynamics. The magnet
is represented by a circuit 1 in which a constant current I1 flows. We want to know the current I2 which
will be induced in a secondary circuit 2 due to their relative motion. We then consider two rigid circuits 1
and 2 which move relative to the ground with constant linear velocities ~V1 and ~V2, respectively, without any
rotation relative to the ground, as in figure 15.6.

z

x
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0

I1

I2C1

C2

V1

V2

I 1d 1

I 2d 2
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ℓ

Figure 15.6: Two rigid circuits moving relative to the ground with velocities ~V1 and ~V2.

We suppose there are no batteries or other current sources connected to circuit 2. Let R2 be its electric
resistance. In this case, the induced current which will flow in the secondary circuit due to the induction
exerted by the first circuit is given by:

I2 =
emf12
R2

, (15.4)

where emf12 is the electromotive force induced by the first circuit on the second.
Let I1d~ℓ1 be an infinitesimal current element of circuit 1 located at ~r1 relative to an inertial system

S, figure 15.7. The Earth can be considered a good inertial system in order to study this problem. To
simplify the analysis we consider a neutral current element composed of equal and opposite charges, dq1+
and dq1− = −dq1+. Let I2d~ℓ2 be another neutral infinitesimal current element of circuit 2, composed of
charges dq2+ and dq2− = −dq2+, located at ~r2, figure 15.7

Utilizing figure 15.7, Weber’s electrodynamics gives the infinitesimal electromotive force, represented by
d2emf12, exerted by the current element I1d~ℓ1 acting on I2d~ℓ2. It is given by:15

d2emf12 = −dq1+
4πεo

r̂12 · d~ℓ2
r212c

2

{

2~V12 · (~v1+d − ~v1−d)− 3(r̂12 · ~V12) [r̂12 · (~v1+d − ~v1−d)] + ~r12 · (~a1+ − ~a1−)
}

.

(15.5)
Here r12 = r is the distance between the current elements, r̂12 = r̂ is the unit vector pointing from 2 to 1,
~V12 ≡ ~V1 − ~V2 is the relative velocity between the two current elements, while ~v1+d and ~v1−d are the drifting
velocities of the positive and negative charges of current element 1 (their velocities relative to the wire),
while ~a1+ and ~a1− are their accelerations relative to the terrestrial frame being considered here.

14[Mil81, pp. 138-139, note 7].
15[Ass92b, Section 4.3], [Ass94, Section 5.3] and [Ass95b, Sections 5.3 and 5.4].
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Figure 15.7: Two neutral current elements moving relative to the ground with velocities ~V1 and ~V2.

Integrating this result over the closed circuits C1 and C2 yields the usual expression of Faraday’s law,
namely:16

emf12 = −µo

4π

d

dt

[

I1

∮

C1

∮

C2

(r̂12 · d~ℓ1)(r̂12 · d~ℓ2)
r12

]

= −µo

4π

d

dt

[

I1

∮

C1

∮

C2

d~ℓ1 · d~ℓ2
r12

]

= − d

dt
(I1M) , (15.6)

where

M ≡ (µo/4π)

∮

C1

∮

C2

d~ℓ1 · d~ℓ2
r

. (15.7)

The magnitude M is called the coefficient of mutual induction.
Supposing I1 to be a constant in time and rigid circuits which translate as a whole without rotation,

with velocities ~V1 and ~V2 relative to the ground, this emf can be written in Weber’s electrodynamics as:

emf12 = −µo

4π
I1

∮

C1

∮

C2

d~ℓ1 · d~ℓ2
d

dt

1

r12
=

µo

4π
I1(~V1 − ~V2) ·

∮

C1

∮

C2

(d~ℓ1 · d~ℓ2)r̂12
r212

. (15.8)

This result can also be obtained directly from Weber’s electrodynamics with the energy of interaction
between the circuits.

What is important to realize is that equation (15.8), obtained from Weber’s electrodynamics, depends
only on the relative velocity between the circuits, ~V1 − ~V2. This result shows that whenever this relative
velocity is the same, the induced current in circuit 2 will also be the same. For instance, in the first situation
considered by Einstein, represented here by letter a, we have the magnet in motion relative to the Earth or
laboratory, ~V1a = ~V , while the secondary circuit is at rest in the ground, ~V2a = ~0. In the second situation
discussed by Einstein, represented here by letter b, the magnet was at rest in the laboratory, ~V1b = ~0, while
the circuit was moving in the opposite direction relative to the Earth or laboratory, ~V2b = −~V . The relative
motion between circuit and magnet is the same in both cases, ~V1a − ~V2a = ~V1b − ~V2b = ~V . Therefore,
Weber’s electrodynamics predicts the same induced current, and this is what is observed. There is no “sharp
distinction” in the explanation of the induction in both cases according to Weber’s law.

15.1.6 Origin of the Asymmetry Pointed Out by Einstein

If the asymmetry pointed out by Einstein cannot be found in the works of Faraday, Maxwell and Weber,
where did it originate? Einstein said that this asymmetry was related to the understanding of Maxwell’s elec-
trodynamics at his time. It seems that Einstein was following the discussion of electromagnetic induction as
presented in Föppl’s book of 1894, which Einstein studied during 1896-1900.17 When Einstein mentioned the
asymmetry related to electromagnetic induction, he was apparently referring to a very specific interpretation
of Lorentz’s formulation of electrodynamics.18

16[Ass92b, Section 4.3], [Ass94, Section 5.3] and [Ass95b, Sections 5.3 and 5.4].
17[Mil81, pp. 146 and 150-154].
18[Mil81, p. 145].
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According to Lorentz, when the magnet is in motion with a velocity ~vm relative to the ether, it generates
in the ether not only a magnetic field, but also an electric field given by ~E = ~B × ~vm. This electric field
would then act in the circuit which was at rest relative to the ether, inducing a current in it. If the magnet
was at rest in the ether, it would generate in the ether only a magnetic field ~B and no electric field. When
the circuit were moving relative to the ether with a velocity ~vc, its charges would experience a magnetic force
q~vc × ~B. This magnetic force would then induce a current in the circuit. If ~vm = −~vc, then the induced
current would be the same in both situations. However, the origin of this electric current would then be
completely different in both cases in Lorentz’s theory. In the first case, it would be due to an electric field,
and there was no magnetic force. In the second case, on the other hand, there was no electric field and the
induction was due to a magnetic force.

To Lorentz only velocities relative to the ether were important. But Einstein made the ether concept
superfluous in his theory of relativity, as will be seen in Section 15.2. Einstein then began to interpret the
velocity which appears in the magnetic force of classical electromagnetism, namely, q~v × ~B, as being the
velocity of the test charge relative to the observer in this analysis. This is the beginning of the introduction
in physics of magnitudes which depend on the observer, or quantities which depend on motion relative
to the observer, or frame-dependent magnitudes. Moreover, by relying on Lorentz’s views of Maxwell’s
electrodynamics, with all the asymmetries built into this formulation, Einstein maintained problems which
were to accumulate in the future. However, these asymmetries did not exist for Faraday, for Maxwell, for
Weber, and are not present in the observed phenomena of electromagnetic induction. All of these asymmetries
and sharp distinctions of interpretations might have been avoided if he had opted for the points of view of
Faraday, for the original viewpoint of Maxwell, or if he had opted for Weber’s electrodynamics. The problems
introduced by Einstein with his interpretation of this phenomenon might also have been avoided if he had
been guided only by the experiments of induction, which do not suggest any asymmetry.

This is one of the strong points in favor of Weber’s electrodynamics and against Einstein’s special theory
of relativity. There are many other experiments which can be easily explained in this formulation, as is the
case of unipolar induction.19

15.2 Principle or Postulate of Relativity

After the first paragraph related to electromagnetic induction, Einstein continued his article as follows:20

Examples of this sort, together with the unsuccessful attempts to discover any motion of the
earth relatively to the “light medium,” suggest that the phenomena of electrodynamics as well
as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest
rather that, as has already been shown to the first order of small quantities, the same laws
of electrodynamics and optics will be valid for all frames of reference for which the equations
of mechanics hold good. We will raise this conjecture (the purport of which will hereafter be
called the “Principle of Relativity”) to the status of a postulate, and also introduce another
postulate, which is only apparently irreconcilable with the former, namely, that light is always
propagated in empty space with a definite velocity c which is independent of the state of motion
of the emitting body. These two postulates suffice for the attainment of a simple and consistent
theory of electrodynamics of moving bodies based on Maxwell’s theory for stationary bodies. The
introduction of a “luminiferous ether” will prove to be superfluous inasmuch as the view here to
be developed will not require an “absolutely stationary space” provided with special properties,
nor assign a velocity-vector to a point of empty space in which electromagnetic processes take
place.

In this paragraph Einstein called the statement that “the same laws of electrodynamics and optics will be
valid for all frames of reference for which the equations of mechanics hold good,” by the name the principle
of relativity. This principle was also called postulate in his other papers.21 A little later in this paper he
gave the following formal definition of this principle:22

19[AT94].
20[Ein52c, pp. 37-38] and [Ein78c, p. 48].
21[Ein52c, p. 38] and [Ein52b, p. 111].
22[Ein52c, p. 41] and [Ein78c, p. 52].
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The laws by which the states of physical systems undergo changes are not affected, whether these
changes of state be referred to the one or the other of two systems of coordinates in uniform
translatory motion.

This postulate is limited. The reason for this limitation is that in non-inertial frames of reference,
Newton’s second law of motion in the form of equation (1.4) needs to be modified by the introduction of
“fictitious forces,” as we saw in Chapter 11.

Einstein called this postulate as the principle of relativity. This was a bad and unhappy choice of name.
After all, he retained the newtonian concept of absolute space disconnected from distant matter. Newton
was much more precise and correct when he adopted the words absolute space, absolute time and absolute
motion in order to explain his laws of motion. Newton also knew how to distinguish clearly the differences
which should appear in the phenomena when there was only a relative rotation between local bodies and the
fixed stars, or when there was a real absolute rotation of local bodies relative to absolute space (the bucket
experiment, the flattening of the Earth, etc.).

To Newton, absolute space and the frames of reference not accelerated relative to it form a privileged
set of reference frames, in which the laws of mechanics take their simplest forms. Later on these privileged
frames received the denomination of inertial frames of reference. Einstein’s postulate of relativity continued
to give privileged status to this set of frames of reference. For this reason, instead of calling it “principle or
postulate of relativity,” it might be called, more appropriately, as any one of the following names: “principle
or postulate of inertia,” “inertial principle or postulate,” or then as “absolute principle or postulate.”

15.3 Twin Paradox

We can also see this absolute aspect of Einstein’s theory in one of the famous paradoxes which appears
in special relativity (but not in newtonian mechanics nor in the relational mechanics presented here). A
detailed discussion of this paradox can be found elsewhere.23

Two twins A and B are born on the same day on the Earth. Later on A travels to a distant place and
returns to meet his brother who remained on the Earth. According to relativity, the time runs slower for A
than for B, so that when they meet again B is older than A. But from the point of view of A, it was B who
traveled far away and returned back, so that it should be B who became younger. This is the paradox.

To avoid the paradox we might say that they always kept the same age, but this is not what Einstein’s
theory of relativity predicts. According to this theory, A really becomes younger than B. We can only
understand this statement, by saying that while B remained at rest or in rectilinear motion with constant
velocity relative to absolute space or relative to an inertial frame, the same is not true for A, who was in
motion and accelerated relative either to absolute space or to an inertial system. Once more, we see that
despite the name “relativity,” Einstein’s theory retained the basic absolute concepts of newtonian mechanics.

Here we are only discussing the conceptual aspects of Einstein’s theory. It is usually stated that this
dilation of the proper time of a body in motion has been proved by experiments in which unstable mesons are
accelerated and move at high velocities in particle accelerators. In these experiments it is observed that the
half-lives (time for radioactive decay) of these accelerated mesons are greater than the half-lives of mesons
at rest in the laboratory.

But this is not the only interpretation of these experiments. It can be equally argued that these experi-
ments only show that the half-lives of the unstable mesons depend on their accelerations and high velocities
relative to the distant matter in the cosmos, or that they depend on the strong electromagnetic forces to
which the mesons were subject. Recently Phipps derived this alternative explanation based on relational
mechanics.24

An analogy to this new interpretation is what happens to a common pendulum clock. Suppose two
identical pendulum clocks at rest on the Earth, marking the same time at sea level and running at the same
pace. We then carry one of them to a high mountain, keep it there for several hours, and bring it back to
sea level at the location of the other clock. Comparing the two clocks it is observed that the clock which
was carried to the top of the mountain is delayed relative to the one which stayed all time at sea level. This
is the observational fact.

This fact can be interpreted in two different ways: (I) It can be argued that time ran more slowly for
the clock at the top of the mountain. (II) Or it can be interpreted by saying that time ran equally to both

23[RO89] and [RR89].
24[Phi96].



Ch. 15: Einstein’s Special Theory of Relativity 267

clocks, but that the period of oscillation of the pendulum clock depends on the gravitational force per unit
mass, F/m = g. As the gravitational force per unit mass is weaker at the top of the mountain than at sea
level, the clock which stayed on the mountain is delayed as compared with the one at sea level.

This interpretation (II) seems to us more natural and simple. It is in agreement with the usual procedures
of physics. It gives a correct prediction for this case. Interpretation (I), on the other hand, involves changes
in the fundamental concepts of space and time. Although it may give a correct prediction for this case, it is
very strange and complex, leading to many confusions and abstractions.

The same reasoning can be applied to the meson experiment. Interpretation (I) is that of Einstein,
namely, time runs more slowly for the meson in motion relative to the laboratory than for the other meson
which stayed at rest on Earth. Interpretation (II), on the other hand, states that the half-life of a meson
depends either on the high electromagnetic forces to which it was exposed during this experiment when it was
accelerated relative to the ground, or that its half-life depends on its motion (high velocity and acceleration)
relative to the laboratory and also relative to the distant bodies (stars and galaxies) of the cosmos. A meson
moving relative to the distant bodies in the cosmos would then have a half-life which is different from the
half-life of another meson which is at rest relative to the frame of distant galaxies.

This interpretation (II) seems to us more simple than Einstein’s interpretation (I). Interpretation (II)
seems also more in agreement with the observational facts than interpretation (I).

Explanation (II) is not only more suitable to explain the meson experiment than explanation (I), but
also more in agreement with the standard procedures of physics. It also leads to important new suggestions
which might be checked experimentally (a possible influence of gravitation on radioactive processes etc.).

15.4 Constancy of the Velocity of Light

15.4.1 Einstein Postulated that Light Velocity is Constant for Any Velocity of

the Light Source and Also for Any Velocity of the Observer or Detector

Einstein second postulate of special relativity introduced another absolute concept or entity in mechanics,
the velocity of light. Here is the postulate:25

[...] light is always propagated in empty space with a definite velocity c which is independent of
the state of motion of the emitting body.

On page 41 of this paper he gave a formal definition of this postulate:26

Any ray of light moves in the “stationary” system of co-ordinates with the determined velocity c,
whether the ray be emitted by a stationary or by a moving body.

With this postulate it appears that he is advocating the luminiferous ether. After all, the property of
something moving relative to a medium with a constant velocity independent of the motion of the source
relative to this medium is characteristic of waves moving in this medium. This is the case, for instance, of
sound moving in air. Let us suppose that the air is at rest relative to the ground. As a source of sound we
consider a whistling train moving relative to the ground. In this case, the velocity of sound relative to the
ground does not depend on the velocity of the train relative to the ground.

But soon after the first presentation of this postulate, Einstein stated that:27

The introduction of a “luminiferous ether” will prove to be superfluous inasmuch as the view here
to be developed will not require an “absolutely stationary space” provided with special properties,
nor assign a velocity-vector to a point of the empty space in which electromagnetic processes take
place.

With this statement we can only conclude that for Einstein the velocity of light was constant not only
whatever the state of motion of the emitting body, but also whatever the state of motion of the receiving
body, of the detector, and of the observer. This conclusion is confirmed by Einstein’s own derivation of this
“fact” in another section of his paper. Einstein called K the stationary inertial system of reference, with
coordinates (x, y, z, t), where light propagates at a constant velocity c. The frame of reference k, with

25[Ein52c, p. 38] and [Ein78c, p. 48].
26[Ein52c, p. 41] and [Ein78c, p. 52].
27[Ein52c, p. 38] and [Ein78c, p. 48].
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coordinates (ξ, η, ζ, τ), moves relative to K with a constant velocity v along the positive x direction. Here
is Einstein’s proof:28

We now have to prove that any ray of light, measured in the moving system, is propagated with
the velocity c, if, as we have assumed, this is the case in the stationary system; for we have not as
yet furnished the proof that the principle of the constancy of the velocity of light is compatible
with the principle of relativity.

At the time t = τ = 0, when the origin of the co-ordinates is common to the two systems, let
a spherical wave be emitted therefrom, and be propagated with the velocity c in system K. If
(x, y, z) be a point just attained by this wave, then

x2 + y2 + z2 = c2t2 .

Transforming this equation with the aid of our equations of transformation we obtain after a
simple calculation

ξ2 + η2 + ζ2 = c2τ2 .

The wave under consideration is therefore no less a spherical wave with velocity of propagation
c when viewed in the moving system. This shows that our two fundamental principles are
compatible.

To us these are the main problems with Einstein’s special theory of relativity, namely: (a) Postulate that
the wave equation for light has the same form in all inertial systems; and (b) postulate that light velocity is
constant, no matter the state of motion of the detector or the state of motion of the observer.

These two postulates are against everything known in physics. In the case of light, in particular, there
is a very long discussion in the history of physics in order to know if it is composed by a flux of particles,
usually called photons (ballistic theory of light), or if light is composed of waves propagating in a special
medium, the ether (wave theory of light). In the next Subsections we consider these two basic phenomena
of physics, namely, ballistic and wave phenomena. We will see that none of these properties which Einstein
postulated for light are valid for these phenomena. Our conclusion is then that these results obtained by
Einstein must be wrong.

15.4.2 Ballistic Phenomena

We consider the Earth as a good inertial frame of reference O for this problem. Let (x, y) be the horizontal
and vertical coordinates centered on a man at rest relative to the ground, vm = 0. Suppose that a man at
rest on the Earth’s surface shoots bullets simultaneously in all directions with a certain initial velocity of
magnitude vb relative to the Earth, as in figure 15.8.
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Figure 15.8: Man shooting bullets while at rest relative to the ground.

In this analysis we will neglect air resistance and also the effect of gravity, which would bend the trajec-
tories of the bullets in parabolic orbits. The equation describing the surface of bullets is given by:

x2 + y2 = v2b t
2 , (15.9)

28[Ein52c, p. 46] and [Ein78c, pp. 59-60].
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where t is the time interval since the shooting.
We now suppose that the man begins to move relative to the ground with a constant velocity ~vm =

vmx̂ = vmx̂′. We consider another frame O′ with horizontal and vertical coordinates (x′, y′) always centered
on the man. After shooting a bullet to the right, the velocity of the bullet relative to the ground will be
vb + vm, while the velocity of the bullet relative to the man will remain being vb. After shooting a bullet
to the left, the velocity of the bullet relative to the ground will be vb − vm, figure 15.9, but still moving
relative to the man with velocity vb. After shooting a bullet upwards with velocity vbŷ

′ relative to himself,
this bullet will move relative to the ground with velocity vbŷ + vmx̂ figure 15.9. This behavior is typical of
ballistic effects. Now suppose we have a man holding several guns, each one pointing in one direction. After
shooting these guns simultaneously, the man will generate a spherical surface of bullets centered on him, all
of them moving with magnitude vb relative to him, as in figure 15.9.
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Figure 15.9: Man moving to the right with a constant velocity vm relative to the ground, shooting simul-
taneously several guns. The velocities of the bullets and of the man indicated in this figure are determined
relative to the Earth’s frame.

In this case the equation representing the spherical surface of bullets centered on the moving man is given
by:

x′2 + y′2 = (vbt
′)2 , (15.10)

where t′ = t is the time interval since the shooting. As the man is moving to the right in the positive x
direction we have x′ = x− vmt and y′ = y. Therefore, the equation describing the surface of bullets relative
to an observer which remained at rest relative to the ground at the position of the shooting is given by:

(x − vmt)2 + y2 = (vbt)
2 . (15.11)

For this observer who stayed at rest relative to the ground the surface of bullets will only be centered on
him at the initial instant t = 0. Figure 15.9 shows the situation at a later instant. The spherical surface of
bullets continues to be centered at the moving man, being no longer centered at the stationary man located
at x = 0. Moreover, the form of the equation changed, and is no longer given by x2 + y2 = (vbt)

2, although
this is the form of the equation in the moving frame, equation (15.10).

We can see that Einstein’s conclusion (that the form of the wave equation is invariable) is not valid for
ballistic effects.

Moreover, in these ballistic effects the velocity of the bullet relative to some detector or observer depends
directly on the velocity of the source. Consider the situation of figure 15.9 in which the shooting man is
moving to the right with velocity vm relative to the ground. The velocity of the bullet which is moving
horizontally relative to the right detector Dr of figure 15.10, at rest in the ground, is given by vb + vm. On
the other hand, the velocity of the bullet moving horizontally to the left relative to the left detector, Dl, at
rest in the ground, is given by vb − vm, figure 15.10. Obviously these two velocities, vb + vm and vb − vm,
are different from one another.

15.4.3 Wave Phenomena

The other kind of phenomenon known in physics depends directly on the medium. Some examples: a wave
propagating along a stretched string, sound propagating in air, or an electromagnetic signal propagating
along a copper wire like in telegraphy.

We consider here the case of sound. Suppose we have a train at rest relative to the Earth with the air also
at rest relative to the ground. The whistling sound of the train moves relative to the Earth with velocity vs,
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Figure 15.10: Man moving to the right with velocity vm relative to the ground, shooting a bullet to the right
and another bullet to the left. The velocities of these bullets relative to the left and right detectors, Dl and
Dr, which are at rest in the ground, are given by vb − vm and vb + vm, respectively.

figure 15.11. The train is located at the origin (x, y) = (0, 0) of the inertial coordinate system, beginning
to whistle at t = 0.
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Figure 15.11: Train blowing whistle while at rest relative to the Earth and air.

The form of the sound wave relative to the ground is given by:

x2 + y2 = (vst)
2 . (15.12)

If the train now moves with a velocity vtx̂ relative to the Earth and emits a sound at t = 0, the sound
will still move with the velocity vs relative to the ground, figure 15.12.
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Figure 15.12: Train blowing whistle while moving with velocity vtx̂ relative to the Earth and air.

But now the velocity of the sound relative to the train will be vs − vt in the forward direction and vs + vt
in the backward direction, assuming once more that the air is at rest relative to the ground and that vs > vt.

In the case of sound, the form of the sound wave relative to the Earth is always spherical from the point of
emission, whether the train is at rest or moving relative to the ground. That is, it is always given by equation
(15.12). However, relative to the train’s frame of reference O′, which moves with velocity vtx̂ relative to the
ground, the equation of the sound wave takes the following form:

(x′ + vtt)
2 + y′2 = (vst)

2 . (15.13)

That is, the equation no longer takes the form x′2 + y′2 = (vst
′)2, see figure 15.12. The spherical surface

is no longer centered on the moving train. All velocities in figure 15.12 are relative to the Earth’s surface.
This means that Einstein’s conclusion that the form of the wave equation is invariable is not valid in the

case of sound either, although in this case the sound velocity is independent of the state of motion of the
source.



Ch. 15: Einstein’s Special Theory of Relativity 271

In the ballistic case the velocity of the bullets is constant relative to the source at the moment of emission,
even when the source is moving relative to the Earth. On the other hand, in the case of the whistling train
the velocity of sound is constant relative to the air and does not depend on the velocity of the source relative
to the air or relative to the ground. The form of the equation describing the wave front changes for different
moving frames in both cases, as was seen in equations (15.10) to (15.13).

15.4.4 In the Ballistic and Wave Phenomena the Velocities of the Bullets and

Waves Always Depend on the Velocity of the Observer or Detector

Moreover, the velocity of sound and of the bullets, as measured by a detector or observer, depends on the
velocity of the observer or detector relative to the ground. We show this in the ballistic case and also in the
wave phenomena.

Let us consider an observer or detector o moving with a velocity ~vo = −vox̂ relative to the Earth. Suppose
a canon at rest in the ground shooting a bullet with velocity ~vb = vbx̂ relative to the ground, figure 15.13.
We are neglecting air resistance and the effect of gravity in this problem. In the ballistic case the detector
will measure a velocity of the bullet given by vb + vo.

x

0 vb vovc

Figure 15.13: Observer moving relative to the Earth while the canon is at rest.

Let us now consider the canon moving relative to the ground with velocity ~vc = vcx̂, figure 15.14. The
observer or detector moving relative to the ground with velocity ~vo = −vox̂ will measure a velocity of the
bullet given by vb + vm + vo.
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vovc vb vc

Figure 15.14: Observer and canon moving relative to the ground.

We now consider sound, supposing air at rest relative to the ground. Consider an observer or detector o
moving with velocity ~vo = −vox̂ relative to the ground, figure 15.15. We consider a whistling train at rest
in the ground. The sound moves forward with velocity ~vs = vsx̂ relative to the ground. The detector or
observer will measure a sound velocity given by vs + vo.
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Figure 15.15: Observer moving relative to the Earth and air, while the whistling train is at rest in the
ground.

In the case of figure 15.16 air is once more at rest relative to the ground. The observer is moving relative
to the ground with velocity ~vo = −vox̂, while the train moves relative to the Earth with velocity ~vt = vtx̂.
In this case the velocity of sound relative to the detector or observer will still be measured as vs + vo, no
matter the velocity of the train relative to the ground.

Let us give just another example of reasoning which shows that light velocity must depend on the velocity
of the observer or detector. Consider first a man with a gun at rest in the laboratory. We will neglect the
effect of air friction and the deflection of the bullet due to the gravitational attraction of the Earth. Let us
suppose that the man shoots a bullet with a velocity of 30 m/s. It will take one second for the bullet to
cross a 30 meter long room. Now let us suppose there is a person at each end of the room. If both of them
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Figure 15.16: Observer and whistling train moving relative to the Earth and relative to air.

shoot their guns toward each other at the same time, in half a second each bullet will move 15 meters, and
the two will meet at the center of the room. The velocity of one bullet relative to the other is obviously 60
m/s, as they moved the same 30 meters (15 meters each) but only in half a second. Alternatively, if the two
persons shot the guns at the same time but in the same direction, the two bullets will never meet, keeping
the same distance from each other, no matter how long we wait. This means that in this second situation
the velocity of one bullet relative to the other is obviously zero, as their distance remains constant as time
passes. In order to see that the same must be true for light, we only need to replace the words “gun” with
“light source (like a lantern),” “bullet” with “photon (or wave front)” and “30 m/s” by “3× 108 m/s.” In the
first case the velocity of one photon relative to the other must be 6 × 108 m/s, while in the second case it
must be zero. After all, if two photons (or wave fronts) move in this second case in the same direction with
the same velocity relative to the ground, the velocity of one photon relative to the other must be zero, by
the definition of velocity (change of distance by time interval). This relative velocity of one photon relative
to the other photon in this second case cannot be 3× 108 m/s as Einstein said.

As we see in this Subsection, the velocity of the bullet and the velocity of sound, as measured by a
detector, always depend on the velocity vo of the detector relative to the ground. Einstein, on the other
hand, concluded that light is a completely different entity, such that its velocity in vacuum never depends
on the velocity of the observer, no matter the velocity of the observer relative to the ground or relative
to the light source. However, light is a physical entity which carries momentum and energy, is affected
by the medium in which it propagates (reflection, refraction, diffraction, Faraday rotation of the plane of
polarization, etc.), it acts on bodies (heating them, causing chemical reactions, ionizing atoms, etc.). In this
sense it is not a special entity. As such it has certain similarities with both bullets and waves. Acceptance
of the conclusion that light velocity in vacuum is a constant for all inertial observers, irrespective of their
motion relative to the source and relative to the laboratory, has created a host of problems and paradoxes
in the last 100 years.

To prove that the velocity of light does not depend on the motion of the observer or detector, it would
be necessary to perform experiments in the laboratory in which the detector was moving at high velocities
(close to c) relative to the Earth, while the source of light was at rest in the laboratory. To our knowledge
this kind of experiment has never been performed.

Wesley, Tolchelnikova-Murri, Hayden, Monti and several other authors have presented strong and con-
vincing arguments that the methods employed by Roemer and by Bradley to obtain the velocity of light
prove that the measured value of this velocity depends on the velocity of the observer relative to the frame
of fixed stars and relative to the light source.29 Roemer’s fundamental work can be found in French and in
English.30 Bradley’s work can be found in several places.31

As we have seen, Einstein maintained the newtonian concept of absolute space (or of preferred frames of
reference) independent of distant matter. Moreover, he introduced another absolute quantity in his theory,
namely, light velocity in vacuum. The works of Wesley, Monti and all the others, on the other hand, show
that light velocity is a function of the state of motion of the detector or observer relative to the frame of
fixed stars and relative to the light source.

29See [Wes91, Sections 2.2 (Roemer’s measurement of the velocity of light) and 2.4 (Bradley aberration to measure velocity
of light)]; [Tol92]; [Hay95]; [Mon96]; etc.

30[Coh40], [Tat78, pp. 151-154], [Roe35] and [Coh40].
31[Bra29], [Sar31] and [Bra35].
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15.5 Origins and Meanings of the Velocity ~v which Appears in the

Magnetic Force q~v × ~B

Classical electromagnetism is composed of two main portions, namely, Maxwell’s equations and the electro-
magnetic force acting on a charge q in the presence of an electric field ~E and a magnetic field ~B. Maxwell’s
equations relate the fields ~E and ~B with the sources of these fields, namely, the volume charge density ρ
and the volume current density ~J . Vectors ~E and ~B can also be expressed in terms of the scalar electric
potential φ and in terms of the magnetic vector potential ~A through equations (3.12) and (3.13).

The electromagnetic force ~F , on the other hand, specifies how the fields ~E and ~B act on a point charge
q. This force is normally expressed by the following equation:

~F = q ~E + q~v × ~B = −q∇φ− q
∂ ~A

∂t
+ q~v × ~B . (15.14)

Here we are interested in the magnetic force ~Fm acting on a charge q in the presence of a magnetic field
~B, namely:

~Fm = q~v × ~B . (15.15)

In this Section we will see another problem created by Einstein with his interpretation of the velocity ~v
which appears in equations (15.14) or (15.15).32

Our goal is to discuss the meaning of this velocity ~v which appears in equations (15.14) or (15.15).
Consider for instance the situation of figure 15.17, where all velocities are relative to the ground. The test
charge q moves with velocity ~vq, the magnet with ~vm, the circuit c carrying a current I moves with velocity
~vc, the observer moves with velocity ~vo and the ~B field detector d moves with velocity ~vd. In particular,
relative to what object, body or entity is to be understood the velocity ~v of the charge q which appears in
equations (15.14) or (15.15)?
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Figure 15.17: Velocities of several bodies relative to the ground.

Some possible answers to this fundamental question:

• Relative to Newton’s absolute space.

• Relative to the laboratory or relative to the Earth.

• Relative to the frame of fixed stars.

• Relative to the universal frame of distant galaxies.

• Relative to the macroscopic source of the magnetic field (that is, relative to the magnet or relative to
the current carrying wire).

32[Ass92b, Appendix (A): The Origins and Meanings of the Magnetic Force ~F = q~v × ~B], [AP92], [Ass94, Appendix A: “The
Origins and Meanings of the Magnetic Force ~F = q~v × ~B” ] and [Ass95b, Appendix B: Magnetic Force].
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• Relative to the average velocity of the microscopic charges (normally electrons) which generate the
magnetic field.

• Relative to the magnetic field itself.

• Relative to the detector of the magnetic field.

• Relative to any inertial frame of reference.

• Relative to an arbitrary frame of reference, which does not need to be inertial.

• Relative to the ether.

• Etc.

In this Section we discuss the history of this force and the several interpretations which have been given
to it along the years by different authors.

15.5.1 Meaning of the Velocity According to Maxwell

The force given by equation (15.14) is usually called Lorentz’s force in the textbooks. However, it seems
that Maxwell was the first to obtain it.33 For this reason in this book we will call it the “Maxwell-Lorentz’s
force.”

Maxwell presented this force in 1861-1862 in his article on physical lines of force,34 discussing it also in
1864-1865 in his paper with a dynamical theory of the electromagnetic field,35 and also in his main book
of 1873, A Treatise on Electricity and Magnetism.36 He was considering the force acting on an electrified
body. Sometimes he referred to this test body as a conductor, as a dielectric or insulator, as a particle, as a
current element of an electric circuit, or simply as electricity.

Maxwell interpreted this velocity as being the velocity of the test body relative to the magnetic field.
On page 166 of his paper of 1861-1862 he said:37 “µ is a quantity bearing a constant ratio to the density.”

The “density” here refers to the supposed density of vortices in the medium. On page 283: “To determine the
motion of a layer of particles separating two vortices. Let the circumferential velocity of a vortex, multiplied
by the three direction-cosines of its axis respectively, be α, β, γ, as in Prop. II.” On page 288: “Let P , Q,
R be the forces acting on unity of the particles in the three coordinate directions, these quantities being
functions of x, y, and z.” On page 342: “[...] F , G, and H are the values of the electrotonic components for
a fixed point of space, [...]” The force per unit charge, analogous to ~F/q of equation (15.14), was originally
written as follows in his paper of 1861-1862:38

P = µγ dy
dt − µβ dz

dt +
dF
dt − dΨ

dx ,
Q = µαdz

dt − µγ dx
dt + dG

dt − dΨ
dy ,

R = µβ dx
dt − µαdy

dt +
dH
dt − dΨ

dz .







(77) (15.16)

Soon after this equation he wrote, our emphasis:39

The first and second terms of each equation indicate the effect of the motion of any body in
the magnetic field, the third term refers to changes in the electrotonic state produced by the
alterations of position or intensity of magnets or currents in the field, and Ψ is a function of x,
y, z, and t, which is indeterminate as far as regards the solution of the original equations, but
which may always be determined in any given case from the circumstances of the problem. The
physical interpretation of Ψ is, that it is the electric tension at each point of space.

In the paper of 1864-1865 the force per unit charge, analogous to ~F/q of equation (15.14), was presented
as follows, our emphasis:40

33[Mar90, p. 31], [Rib08], [Cur09, Section 4.6: On the paternity of Lorentz’s force, pp. 122-128], [Hur10, p. 22], [Toma] and
[Tomb].

34[Max, p. 342, equation (77)] and [Max65b, equation (77)].
35[Max65, p. 484, equation (D)] and [Max65a, equation (D)].
36[Max54, Vol. 2, §§598-599, pp. 238-241, equations (B) and (10)].
37[Max].
38[Max, p. 342, equation (77)].
39[Max, p. 342, soon after equation (77)].
40[Max65, p. 484].
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The complete equations of electromotive force on a moving conductor may now be written as
follows:

Equations of Electromotive Force.

P = µ
(

γ dy
dt − β dz

dt

)

− dF
dt − dΨ

dx ,

Q = µ
(

αdz
dt − γ dx

dt

)

− dG
dt − dΨ

dy ,

R = µ
(

β dx
dt − αdy

dt

)

− dH
dt − dΨ

dz .















(D) (15.17)

The first term on the right-hand side of each equation represents the electromotive force arising
from the motion of the conductor itself. This electromotive force is perpendicular to the direction
of motion and to the lines of magnetic force; and if a parallelogram be drawn whose sides represent
in direction and magnitude the velocity of the conductor and the magnetic induction at that point
of the field, then the area of the parallelogram will represent the electromotive force due to the
motion of the conductor, and the direction of the force is perpendicular to the plane of the
parallelogram.

The second term in each equation indicates the effect of changes in the position or strength of
magnets or currents in the field.

The third term shows the effect of the electric potential Ψ. It has no effect in causing a circulating
current in a closed circuit. It indicates the existence of a force urging the electricity to or from
certain definite points in the field.

In his Treatise on Electricity and Magnetism Maxwell defined the electric field ~E, which he represented
by the German letter E, on articles 44 and 68. He also called this electric field by the name “electromotive
intensity:”41

The Electric Field.

44.] The Electric Field is the portion of space in the neighbourhood of electrified bodies, consid-
ered with reference to electric phenomena. [...]

Let e be the charge of the body, and F the force acting on the body in a certain direction, then
when e is very small F is proportional to e, or

F = Re,

where R depends on the distribution of electricity on the other bodies in the field. If the charge
e could be made equal to unity without disturbing the electrification of other bodies we should
have F = R.

We shall call R the Resultant Electromotive Intensity at the given point of the field. When we
wish to express the fact that this quantity is a vector we shall denote it by the German letter E.

Analogously, on article 68 he mentioned that:42

Resultant Intensity at a Point.

68.] In order to simplify the mathematical process, it is convenient to consider the action of an
electrified body, not on another body of any form, but on an indefinitely small body, charged
with an indefinitely small amount of electricity, and placed at any point of the space to which
the electrical action extends. By making the charge of this body indefinitely small we render
insensible its disturbing action on the charge of the first body.

Let e be the charge of the small body, and let the force acting on it when placed at the point
(x, y, z) be Re, and let the direction-cosines of the force be l, m, n, then we may call R the
resultant electric intensity at the point (x, y, z).

If X , Y , Z denote the components of R, then

X = Rl, Y = Rm, Z = Rn.

41[Max54, Vol. 1, §44, pp. 47-48].
42[Max54, Vol. 1, §68, p. 75].
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In speaking of the resultant electric intensity at a point, we do not necessarily imply that any
force is actually exerted there, but only that if an electrified body were placed there it would be
acted on by a force Re, where e is the charge of the body.43

This force not only tends to move a body charged with electricity, but to move the electricity
within the body, so that the positive electricity tends to move in the direction of R and the
negative electricity in the opposite direction. Hence the quantity R is also called the Electromotive
Intensity at the point (x, y, z).

When we wish to express the fact that the resultant intensity is a vector, we shall denote it by
the German letter E. [...]

In Maxwell’s Treatise the vector magnetic induction was represented by B and its components along the
x, y and z direction by a, b and c, respectively.44 In modern vector notation this vector and its components
would be written as ~B, Bx, By and Bz. The vector-potential of magnetic induction was represented by A
and its components by F , G and H , respectively.45 In modern notation this magnetic vector potential and
its components would be written as ~A, Ax, Ay and Az . The vectors ~B and ~A were related by:46 ~B = ∇×A.
The electromotive force E due to induction acting on the secondary circuit was written as follows:47

E =

∫
(

P
dx

ds
+Q

dy

ds
+Rdzds

)

ds . (5) (15.18)

Chapter VIII of Volume 2 of Maxwell’s Treatise on Electricity and Magnetism was devoted to an ex-
ploration of the field by means of the secondary circuit. He mentioned on page 229 that:48 “[...] the
electromagnetic action between the primary and the secondary circuit depends on the quantity denoted
by M , which is a function of the form and relative position of the two circuits.” He wished to study the
electrokinetic momentum of the secondary circuit depending on the primary current i1, which he denoted
by p = Mi1. On page 230 he mentioned that “the part contributed by the element ds of the circuit is Jds,
where J is a quantity depending on the position and direction of the element ds.” On page 232 he said that
the electrokinetic moment at the point (x, y, z) was identical to the vector-potential of magnetic induction.

The force per unit charge representing the equations of electromotive intensity, analogous to ~F/q of
equation (15.14), was expressed in the Treatise as follows:49

P = cdydt − b dzdt − dF
dt − dΨ

dx ,
Q = adz

dt − cdxdt − dG
dt − dΨ

dy ,

R = b dxdt − ady
dt − dH

dt − dΨ
dz .







(B) (15.19)

He summarized these equations which he denoted by the letter (B) as follows:50

The electromotive intensity, as defined by equations (B), may therefore be written in the quater-
nion form,

E = V.GB − ˙A −∇Ψ . (10)

Maxwell’s equation (10) can be written in modern vector notation as follows:

~E = ~v × ~B − ∂ ~A

∂t
−∇Ψ . (15.20)

Maxwell’s expression is then analogous to equation (15.14), expressing the force per unit charge.
In his Treatise, soon after presenting his equations (B) for the electromotive force, that is, our equation

(15.19), he said the following, our emphasis:51

43[Written by Maxwell:] The Electric and Magnetic Intensities correspond, in electricity and magnetism, to the intensity of
gravity, commonly denoted by g, in the theory of heavy bodies.

44[Max54, Vol. 2, §400, p. 25].
45[Max54, Vol. 2, §405, p. 29].
46[Max54, Vol. 2, §405, p. 29, equation (21) and §591, p. 233, equation (A)].
47[Max54, Vol. 2, §598, p. 239].
48[Max54].
49[Max54, Vol. 2, §598, p. 239, equation (B)].
50[Max54, Vol. 2, §599, p. 241, equation (10)].
51[Max54, Vol. 2, §598, pp. 238-241].
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The terms involving the new quantity Ψ are introduced for the sake of giving generality to the
expressions for P , Q, R. They disappear from the integral when extended round the closed
circuit. The quantity Ψ is therefore indeterminate as far as regards the problem now before us,
in which the electromotive force round the circuit is to be determined. We shall find, however,
that when we know all the circumstances of the problem, we can assign a definite value to Ψ, and
that it represents, according to a certain definition, the electric potential at the point (x, y, z).

The quantity under the integral sign in equation52 (5) represents the electromotive intensity
acting on the element ds of the circuit.

If we denote by T.E, the numerical value of the resultant of P , Q, and R, and by ǫ, the angle
between the direction of this resultant and that of the element ds, we may write equation (5),

E =
∫

T.Ecos ǫds . (6)

The vector E is the electromotive intensity at the moving element ds. Its direction and magnitude
depend on the position and motion of ds, and on the variation of the magnetic field, but not on
the direction of ds. Hence we may now disregard the circumstance that ds forms part of a circuit,
and consider it simply as a portion of a moving body, acted on by the electromotive intensity E.
The electromotive intensity has already been defined in Art. 68. It is also called the resultant
electrical intensity, being the force which would be experienced by a unit of positive electricity
placed at that point. We have now obtained the most general value of this quantity in the case
of a body moving in a magnetic field due to a variable electric system.

If the body is a conductor, the electromotive force will produce a current; if it is a dielectric, the
electromotive force will produce only electric displacement.

The electromotive intensity, or the force on a particle, must be carefully distinguished from the
electromotive force along an arc of a curve, the latter quantity being the line-integral of the
former. See Art. 69.

Maxwell continued his book as follows, our emphasis:53

599.] The electromotive intensity, the components of which are defined by equations (B), depends
on three circumstances. The first of these is motion of the particle through the magnetic field.
The part of the force depending on this motion is expressed by the first two terms on the right
of each equation. It depends on the velocity of the particle transverse to the lines of magnetic
induction. If G is a vector representing the velocity, and B another representing the magnetic
induction, then if E1 is the part of the electromotive intensity depending on the motion,

E1 = V.GB , (7)

or, the electromotive intensity is the vector part of the product of the magnetic induction multi-
plied by the velocity, that is to say, the magnitude of the electromotive force is represented by the
area of the parallelogram, whose sides represent the velocity and the magnetic induction, and its
direction is the normal to this parallelogram, drawn so that the velocity, the magnetic induction,
and the electromotive intensity are in right-handed cyclical order.

Maxwell’s equation (7) would nowadays be written in vector notation as follows:

~E = ~v × ~B . (15.21)

It is important to emphasize some aspects here. Maxwell’s equations (B) of the Treatise, our equation
(15.19), is analogous to the Maxwell-Lorentz’s force given by equation (15.14). Maxwell’s seems to have been
the first to write down this equation, publishing his results between 1861 and 1873.

The magnetic component of this force, namely, ~Fm = q~v × ~B, seems to have been obtained by Maxwell
after considering Ampère’s electrodynamic force exerted by a closed circuit C2 and acting on a current
element i1d~ℓ1, equation (2.17). Maxwell, but not Ampère, defined then the magnetic field ~B at the location
~r1 = (x1, y1, z1) of the test element i1d~ℓ1 and being due to the closed current carrying circuit C2 as follows:

~B(~r1) ≡
∮

C2

µo

4π

i2d~ℓ2 × r̂

r2
. (15.22)

52That is, our equation (15.18).
53[Max54, Vol. 2, §599, pp. 240-241].
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With this definition, Ampère’s equation (2.17) exerted by the closed circuit C2 on the current element
i1d~ℓ1 could then be written as follows:

d~F21 = i1d~ℓ1 ×
∮

C2

µo

4π

i2d~ℓ2 × r̂

r2
= i1d~ℓ1 × ~B . (15.23)

Maxwell then finally replaced this current element i1d~ℓ1 by q~v, where q is the charge of the electrified
body and ~v its velocity. The magnetic force ~Fm acting on this charged body moving in a magnetic field
would then be written as:

~Fm = q~v × ~B . (15.24)

Moreover, Maxwell interpreted that this velocity ~v which appears in equations (15.14) or (15.24) as the
velocity of the charge q relative to the magnetic field ~B. As we just saw, in his papers of 1861 and in article
598 of his Treatise he mentioned explicitly the force acting on “a body moving in a magnetic field.”

15.5.2 Meaning of the Velocity According to Thomson and Heaviside

In 1881 J. J. Thomson (1856-1940) obtained theoretically the magnetic force as given by q~v × ~B/2.54 This
velocity ~v in his theory was interpreted as the velocity of the charge q relative to the medium through which
it was moving, a medium whose magnetic permeability was µ. For Thomson this velocity of the charge q
was not relative to the magnetic field, nor relative to the luminiferous ether, nor relative to the magnet or
current carrying wire which generated the magnetic field ~B, nor the velocity of the charge q relative to the
observer. He called this velocity the “actual velocity” of the electrified particle. On page 248 of his original
article he stated:55

It must be remarked that what we have for convenience called the actual velocity of the particle
is, in fact, the velocity of the particle relative to the medium through which it is moving [...],
medium whose magnetic permeability is µ.

In 1889, O. Heaviside (1850-1925) deduced theoretically the magnetic force as q~v × ~B. This is the same
value obtained earlier by Maxwell and twice the value obtained by Thomson. He accepted the interpretation
for the meaning of the velocity ~v, as can be seen from the title of his paper: “On the electromagnetic effects
due to the motion of electrification through a dielectric.”56 This title shows that for him this ~v was the
velocity of the charge q relative to the dielectric material through which it was moving.

15.5.3 Meaning of the Velocity According to Lorentz

In 1895 H. A. Lorentz (1853-1928) presented the force acting on a point charge q as follows:57

~F = q ~E + q~v × ~B . (15.25)

To our knowledge he never performed a single experiment to arrive at his expression. In order to show
how he arrived at it, we present the discussion in Lorentz’s famous book The Theory of Electrons. This
book is based on a course of lectures delivered in Columbia University, New York, in 1906, first published in
1909. We quote from the second edition of 1915. Passages in square brackets are our words and the modern
rendering of some of his formulas (for instance [a · b] is nowadays usually represented by ~a×~b). He utilized
the cgs system of units. What he called “electron” represented a generic electric charge (the particle we call
nowadays “electron,” with a charge of q = −1.6×10−19 C and mass m = 9.1×10−31 kg, was only discovered
in 1897). Here are his words with our emphasis:58

However this may be, we must certainly speak of such a thing as the force acting on a charge, or
on an electron, on charged matter, whichever appelation you prefer. Now, in accordance with the
general principles of Maxwell’s theory, we shall consider this force as caused by the state of the

54[Whi73, pp. 306-310].
55[Tho81, p. 248].
56[Hea89].
57[Lor95, §12, pp. 21-22 and table after page 138], [Pai82, p. 125] and [Pai86, p. 76].
58[Lor15, pp. 14-15].
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ether, and even, since this medium pervades the electrons, as exerted by the ether on all internal
points of these particles where there is a charge. If we divide the whole electron into elements of
volume, there will be a force acting on each element and determined by the state of the ether
existing within it. We shall suppose that this force is proportional to the charge of the element,
so that we only want to know the force acting per unit charge. This is what we can now properly
call the electric force. We shall represent it by f. The formula by which it is determined, and
which is the one we still have to add to (17)-(20) [Maxwell’s equation’s], is as follows:

f = d+
1

c
[v · h].

[

~f = ~d+
~v × ~h

c

]

. (23)

Like our former equations, it is got by generalizing the results of electromagnetic experiments.
The first term represents the force acting on an electron in an electrostatic field; indeed, in this
case, the force per unit charge must be wholly determined by the dielectric displacement. On
the other hand, the part of the force expressed by the second term may be derived from the
law according to which an element of a wire carrying a current is acted on by a magnetic field
with a force perpendicular to itself and the lines of force, an action, which in our units may be
represented in vector notation by

F =
s

c
[i · h],

[

~F =
i~s× ~h

c

]

,

where i is the intensity of the current considered as a vector, and s the length of the element.
According to the theory of electrons, F is made up of all the forces with which the field h acts on
the separate electrons moving in the wire. Now, simplifying the question by the assumption of
only one kind of moving electrons with equal charges e and a common velocity v, we may write

si = Nev , [i~s = Ne~v] ,

if N is the whole number of these particles in the element s. Hence

F =
Ne

c
[v · h],

[

~F =
Ne~v × ~h

c

]

,

so that, dividing by Ne, we find for the force per unit charge

1

c
[v · h].

[

~v × ~h

c

]

.

As an interesting and simple application of this result, I may mention the explanation it affords
of the induction current that is produced in a wire moving across the magnetic lines of force.
The two kinds of electrons having the velocity v of the wire, are in this case driven in opposite
directions by forces which are determined by our formula.

9. After having been led in one particular case to the existence of the force d, and in another to
that of the force 1

c [v · h], we now combine the two in the way shown in the equation (23), going
beyond the direct result of experiments by the assumption that in general the two forces exist at
the same time. If, for example, an electron were moving in a space traversed by Hertzian waves,
we could calculate the action of the field on it by means of the values of d and h, such as they
are at the point of the field occupied by the particle.

O’Rahilly made two very important comments related to this deduction of Lorentz. These comments can
also be applied to Maxwell’s earlier and similar deduction presented in Subsection 15.5.1. It is difficult to
disagree with O’Rahilly, when he noted that this proof of the formula was extremely unsatisfactory, adding
that:59

59[O’R65, p. 561].
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There are two overwhelming objections to this alleged generalization. (1) The two ‘particular
cases’ he ‘combined’ are quite incompatible. In the one case we have charges at rest, in the other
the charges are moving; they cannot be both stationary and moving. (2) Experiments with a
‘wire carrying a current’ have to do with neutral currents, yet the derivation contradicts this
neutrality.

As a matter of fact, normally there is a net charge on any element of a resistive wire carrying a constant
current, although this effect was not considered by O’Rahilly.60

We can also mention that in his generalization Lorentz did not consider the possibility that the electro-
magnetic force might depend on the acceleration of the test body, nor on the square of the velocity of the
test body. These two terms appear in Weber’s force law but not in Lorentz’s force.61

As we can see from the above quotation (“[...] force as caused by the state of the ether, and even, since
this medium pervades the electrons, as exerted by the ether [...]”), for Lorentz the velocity ~v meant originally
the velocity of the charge relative to the ether and not, for instance, relative to the observer or frame of
reference. He did not interpret this velocity as being the velocity of the test charge relative to the magnetic
field, nor relative to the observer or frame of reference. In Lorentz’s theory the ether was in a state of
absolute rest relative to the frame of fixed stars.62

A conclusive proof of this interpretation of the velocity which appears in the magnetic force q~v × ~B can
be found in another work of Lorentz, Lectures on Theoretical Physics. This work is based on a course of
Maxwell’s theory presented in 1900-1902 and on another course on the principle of relativity for uniform
translations presented in 1910-1912 which were first published in 1925 and 1922, respectively. Figure 15.18
shows our representation of the two situations he was considering. In situation (a) three bodies are at rest
relative to the ether and relative to the frame of fixed stars, namely, the Earth E, the circuit carrying a
constant current I and the test charge q. In situation (b) these three bodies are moving together relative to
the ether and relative to the frame of fixed stars with a common velocity ~v.

E

I
q

v

v
v

E

I
q

(a) (b)

Figure 15.18: (a) Earth E, circuit carrying a constant current I and test charge q at rest relative to the
ether and relative to the fixed stars. (b) These three bodies move together with velocity ~v relative to the
ether and fixed stars.

In this work Lorentz said:63

8·9. There is yet one problem worth of attention. Imagine an electric current flowing in a closed
circuit without resistance. Will this current act upon a particle carrying a charge e which is
placed in its neighbourhood? We purposely speak of a circuit without resistance. For, if it had
a resistance, a certain electromotive force would be necessary to sustain the current, and this
would unavoidably give rise to a potential gradient and to charges (no matter how small) spread
over the conductor which would act upon the electrified particle. In fine, our question concerns
the effect of the current as such upon the particle.

The answer to this question was, of course, that the current did not act upon the particle. It would
act upon a magnetic needle placed in the neighbourhood, since it is surrounded by a magnetic

60[AH07], [AH09] and [AH13].
61[Ass92b], [Ass94] and [Ass95b].
62[Pai82, p. 111].
63[Lor31, Volume 3, p. 306] and [O’R65, Volume 2, p. 566].
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field, but there is no trace of an electric field. This is certainly correct so long as the current
and the electrified particle are at rest. Suppose, however, that both share in some motion, e.g.
the Earth’s motion. What then? To begin with, the charged particle will move with a certain
velocity through the magnetic field of the current and it will thus be acted upon by some force.

In this work Lorentz said that when a current carrying wire and an external charge are at rest relative
to one another, and also at rest relative to the ether, then no magnetic force would act on the charge. In his
words: “the current did not act upon the particle.”

On the other hand, if the current carrying wire and the charge were at rest relative to one another, but if
both were moving with the same velocity ~v relative to the ether, then there would be a magnetic force acting
on the charge. In his words: “the charge particle will move with a certain velocity through the magnetic
field of the current and it will thus be acted upon by some force.” In this last situation there was no motion
between the charge and the current carrying circuit, nor between the charge and the Earth or laboratory,
nor even between the charge and the observer or detector of magnetic field (who are supposedly at rest in
the laboratory). But to Lorentz, even in this case there would be a magnetic force acting on the charge. He
could only consider this possibility because he supposed ~v to be the velocity of the charge relative to the
ether or relative to the fixed stars. As the fixed stars did not cause any net force on the charge q, all that
remained was the force exerted by the ether.

15.5.4 Meaning of the Velocity According to Einstein

The velocity ~v of the test charge q which appears in the Maxwell-Lorentz’s force ~F = q ~E+q~v× ~B had several
meanings according to different authors. According to Maxwell, it was the velocity relative to the magnetic
field, according to Thomson and Heaviside it was the velocity of the charge relative to the medium of magnetic
permeability µ, while to Lorentz it was the velocity of the charge relative to a very specific medium, the
ether. In all these cases these authors considered that this force did arise due to an interaction of the test
charge with a material medium, namely, the magnetic field,64 the medium of magnetic permeability µ, or the
ether. As the charge was supposed to be interacting with these material media, it was natural to interpret
~v as the velocity of the charge relative to these media.

Einstein changed all this with his paper of 1905 on the special theory of relativity. What Einstein
proposed in this paper was that the velocity ~v which appears in Maxwell-Lorentz’s force, equation (15.14),
should be interpreted as the velocity of the charge relative to the observer.65 He initially obtained Lorentz’s
transformations for the spatial coordinates and for time. These transformations relate the magnitudes in
one inertial frame to another inertial frame moving relative to the first frame with a constant linear velocity.
Einstein then obtained these transformations also for the electric and magnetic fields. He applied these
transformations for the electric and magnetic fields in the electromagnetic force given by equation (15.14).
In this way Einstein began to utilize the velocity ~v as being the velocity of the charge q relative to the observer
(or relative to the inertial frame of reference). For instance, in this paper Einstein gave the difference between
the old paradigm of electromagnetism and the new one based on his theory of relativity (passages in the
footnotes are our words):66

As to the interpretation of these equations67 we make the following remarks: Let a point charge
of electricity have the magnitude “one” when measured in the stationary system K,68 i.e. let
it when at rest in the stationary system exert a force of one dyne upon an equal quantity of
electricity at a distance of one cm. By the principle of relativity this electric charge is also of the
magnitude “one” when measured in the moving system. If this quantity of electricity is at rest
relatively to the stationary system, then by definition the vector (X, Y, Z)69 is equal to the force

64As we saw in Section 3.2, Maxwell believed that: “The theory I propose may therefore be called a theory of the electromag-

netic field, because it has to do with the space in the neighbourhood of the electric and magnetic bodies, and it may be called
a dynamical theory, because it assumes that in that space there is matter in motion, by which the observed electromagnetic
phenomena are produced.”

65[Ass92b, Appendix (A): The Origins and Meanings of the Magnetic Force ~F = q~v × ~B], [AP92], [Ass94, Appendix A: “The
Origins and Meanings of the Magnetic Force ~F = q~v × ~B” ], [Ass95b, Appendix B: Magnetic Force] and [SC12].

66[Ein52c, p. 54] and [Ein78c, p. 71].
67Equations for the Lorentz’s transformations of the electric and magnetic field components in two different inertial frames

of reference which move relative to one another with a constant velocity.
68A system of coordinates in which the equations of newtonian mechanics hold good.
69This vector (X, Y, Z) represents the electric force per unit charge. That is, it is the vector electric field, which nowadays

would be expressed as: ~E = (Ex, Ey, Ez).
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acting upon it. If the quantity of electricity is at rest relatively to the moving system (at least
at the relevant instant), then the force acting upon it, measured in the moving system, is equal
to the vector (X ′, Y ′, Z ′). Consequently the first three equations above70 allow themselves to
be clothed in words in the two following ways:

1. If a unit electric point charge is in motion in an electromagnetic field, there acts upon it, in
addition to the electric force,71 an “electromotive force” which, if we neglect the terms multiplied
by the second and higher powers of v/c, is equal to the vector-product of the velocity of the
charge and the magnetic force, divided by the velocity of light.72 (Old manner of expression.)73

2. If a unit electric point charge is in motion in an electromagnetic field, the force acting upon it
is equal to the electric force which is present at the locality of the charge, and which we ascertain
by transformation of the field to a system of co-ordinates at rest relatively to the electrical charge.
(New manner of expression.)

Following Einstein, let us call K the stationary inertial system and k the inertial system which is moving
relative to K with a constant velocity v. We will utilize primed symbols for the magnitudes expressed in
k. According to Einstein, the charge has the same value in both coordinate systems, q′ = q. Moreover, it
moves with velocity ~v relative to K and is stationary relative to k, that is, ~v ′ = 0. Therefore, according to
Einstein, the net force acting on the charge in K would be given by ~F = q ~E + q~v × ~B. On the other hand,
the net force acting on the charge in the frame k would be given by ~F ′ = q′ ~E′ + q′~v ′ × ~B′ = q ~E′, as q′ = q
and ~v ′ = ~0.

This is the crucial passage in which Einstein introduced frame-dependent forces, that is, forces whose
value depend on the motion between the test body and the observer. He presented here a completely new
meaning for the velocity ~v which appears in Maxwell-Lorentz’s force, equation (15.14), namely, velocity of the
charge relative to the observer or relative to the frame of reference. The introduction of physical forces which
depend on the state of motion of the observer has created many problems and paradoxes for the explanation
of several simple phenomena of nature. Unfortunately it has been part of theoretical physics ever since that
time. No experiment has suggested or forced this new interpretation. This whole interpretation arose from
Einstein’s mind. The usual expression for the magnetic force might have been maintained, interpreting ~v as
the velocity of the test charge relative to the magnet or relative to the current carrying wire, without any
contradictions with experimental data. Instead of adopting this reasonable point of view, Einstein decided
to change the interpretation of this velocity. He created an enormous confusion with this new interpretation
which has plagued theoretical physics ever since 1905.

In newtonian mechanics, for instance, there are also forces which depend on the velocity of the test body.
However, these forces depend only on the relative velocity between the interacting bodies. That is, these
forces do not depend on the velocity of the test body relative to the observer, nor on the velocity of the test
body relative to the frame of reference. We present here two examples, one in mechanics and the other in
electromagnetism.

Suppose a parachutist falling to the ground after leaving an airplane which was flying horizontally. Its
initial vertical velocity relative to the ground is zero. Due to its weight, the person is initially accelerated
downwards. An upward force due to air resistance begins to act on the body. This dragging force increases
with the velocity of the body relative to air. The vertical velocity increases until it reaches a terminal
constant velocity relative to the ground. In this last situation the weight is balanced by the dragging force
exerted by the air. As seen in Section 2.3, this dragging force depends only on the relative velocity ~vr between
the test body and the air around it. This relative velocity for a rigid body is given by ~vr = ~v − ~vf , where ~v
is the velocity of the body relative to the ground, while ~vf is the velocity of the surrounding fluid relative
to the ground. Suppose air is at rest relative to the ground, ~vf = ~0. Let ~vt represent the terminal velocity
of the parachute relative to the ground. Let us analyze the problem from the terrestrial point of view when
the body is falling with this terminal constant velocity relative to the ground. The dragging force acting
on it will depend on the relative velocity ~vr = ~v − ~vf = ~vt − ~0 = ~vt. By equating the weight of the body
with the upward dragging force we can relate the terminal velocity of the body with its weight, shape, air
density etc. Let us now analyze the problem from the parachutist point of view when he is falling with
the terminal velocity relative to the ground. Although the parachutist is not moving relative to himself,

70That is, equations for the transformation of the electric and magnetic field components in two different inertial systems
which move relative to one another with a constant velocity.

71That is, beyond the force q ~E.
72This “electromotive force” would then be given by q~v × ~B in the International System of Units.
73Therefore, in this old manner of expression the net force on the test charge q would be given by ~F = q ~E + q~v × ~B.
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the dragging force acting on it will not be zero from his own point of view. Let S′ be the frame of the
parachutist. As he is at rest relative to himself, he has a zero velocity, ~v ′ = ~0. The air around him, on the
other hand, is moving upwards and has a velocity ~vf

′ different from zero. When the parachutist is falling
at terminal velocity, the air around him is moving upwards relative to him with a constant velocity given by
~vf

′ = −~vt. Therefore, the relative velocity between the parachutist and the fluid around him will be given
by ~vr

′ = ~v ′−~vf
′ = ~0− (−~vt) = ~vt. That is, this relative velocity has the same value it had in the terrestrial

frame of reference. This means that we can solve the problem not only in the terrestrial frame of reference,
but also in the frame of reference of the parachutist falling with its terminal velocity. No paradoxes appear
here and it is not necessary any transformation of the gravitational field nor of the dragging force.

The second example is that of Ohm’s law. When a potential difference ∆φ is applied between the
terminals of a circuit with a resistance R, a constant current I will flow along the circuit as given by ∆φ = RI.
Microscopically this Ohm’s law can be written at a certain point inside the conductor as ~J = −σ∇φ = σ ~E,
where ~J is the volume current density, σ is the conductivity of the medium and ~E is the force per unit
charge acting at this point. In the case of metals, only conduction electrons move relative to the wire. The
volume current density can then be written as ~J = ρ−~v−, where ρ− is the volume density of negative charges
and ~v− is the relative velocity between the electron and the wire. This relative velocity can be written as
~v− = ~vq − ~vw, where ~vq represents the velocity of the conduction electron relative to the ground, while ~vw
represents the velocity relative to the ground of the portion of the wire around the test electron. As in the
previous case of the parachutist, we can analyze Ohm’s law not only in a frame of reference at rest relative
to the wire, but also in a frame of reference which is moving together with a specific conduction electron. In
both cases there will be the same force exerted by the wire on the electron, as the relative velocity between
them is the same, no matter the frame of reference.

15.6 Michelson-Morley Experiment

Another problem created by Einstein is due to his interpretation of the Michelson-Morley experiment. This
famous experiment sought an interference pattern of two light beams which was thought to depend on the
motion of the Earth relative to the ether. The experiment with a precision of first order in v/c was performed
by Michelson in 1881, where v was the supposed velocity of the Earth relative to the ether, taken in practice
as the velocity of the Earth relative to the frame of fixed stars. In 1887 an analogous experiment was
performed by Michelson and Morley with a precision of second order in v/c. No effect was found with the
predicted order of magnitude.

The most straightforward interpretation of this experiment is that there is no ether. Only the relative
motion between light, the mirrors, the charges in them and the Earth are important, no matter what the
velocity of any of these bodies relative to the ether or relative to absolute space. In this regard the results
obtained by Michelson and Morley agree completely with Weber’s electrodynamics, as in this theory the
ether plays no role.

As noted in Subsection 15.5.3, Lorentz (and Fitzgerald) believed in the ether. Moreover, he assumed the
ether was at rest relative to the frame of fixed stars.74 To reconcile the null result of the experiment with the
idea of an ether which was at rest relative to the set of fixed stars, and which was not dragged by the Earth,
Lorentz and Fitzgerald needed to introduce the idea of length contraction of rigid bodies moving through
the assumed ether. This was strange and ad hoc, but worked.

Let us see what Lorentz had to say in his text of 1895, our emphasis:75

Michelson’s Interference Experiment

1. As Maxwell first remarked and as follows from a very simple calculation, the time required
by a ray of light to travel from a point A to a point B and back to A must vary when the two
points together undergo a displacement without carrying the ether with them. The difference is,
certainly, a magnitude of second order; but it is sufficiently great to be detected by a sensitive
interference method.

The experiment was carried out by Michelson in 1881.76 His apparatus, a kind of interferometer,
had two horizontal arms, P and Q, of equal length and at right angles one to the other. Of the
two mutually interfering rays of light the one passed along the arm P and back, the other along

74[Pai82, p. 111].
75[Lor52] and [Lor78].
76Michelson, American Journal of Science, 22, 1881, p. 120.
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the arm Q and back. The whole instrument, including the source of light and the arrangement
for taking observations, could be revolved about a vertical axis; and those two positions come
especially under consideration in which the arm P or the arm Q lay as nearly as possible in the
direction of the Earth’s motion. On the basis of Fresnel’s theory it was anticipated that when
the apparatus was revolved from one of these principal positions into the other there would be a
displacement of the interference fringes.

But of such a displacement—for the sake of brevity we will call it the Maxwell displacement—
conditioned by the change in the times of propagation, no trace was discovered, and accordingly
Michelson thought himself justified in concluding that while the Earth is moving, the ether does
not remain at rest. The correctness of this inference was soon brought into question, for by an
oversight Michelson had taken the change in the phase difference, which was to be expected in
accordance with the theory, at twice its proper value. If we make the necessary correction, we
arrive at displacements no greater than might be masked by errors of observation.

Subsequently Michelson77 took up the investigation anew in collaboration with Morley, enhancing
the delicacy of the experiment by causing each pencil to be reflected to and fro between a number
of mirrors, thereby obtaining the same advantage as if the arms of the earlier apparatus had been
considerably lengthened. The mirrors were mounted on a massive stone disc, floating on mercury,
and therefore easily revolved. Each pencil now had to travel a total distance of 22 meters, and
on Fresnel’s theory the displacement to be expected in passing from the one principal position to
the other would be 0.4 of the distance between the interference fringes. Nevertheless the rotation
produced displacements not exceeding 0.02 of this distance, and these might well be ascribed to
errors of observation.

Now, does this result entitle us to assume that the ether takes part in the motion of the Earth, and
therefore that the theory of aberration given by Stokes is the correct one? The difficulties which
this theory encounters in explaining aberration seem too great for me to share this opinion, and
I would rather try to remove the contradiction between Fresnel’s theory and Michelson’s result.
An hypothesis which I brought forward some time ago,78 and which, as I subsequently learned,
has also occurred to Fitzgerald,79 enables us to do this. The next paragraph will set out this
hypothesis.

[...]

It follows that the phase differences can be compensated by contrary changes of the dimensions.

If we assume the arm which lies in the direction of the Earth’s motion to be shorter than the
other by 1

2
Lv2/c2, and, at the same time, that the translation has the influence which Fresnel’s

theory allows it, then the result of the Michelson experiment is explained completely.

Thus one would have to imagine that the motion of a solid body (such as a brass rod or the stone
disc employed in the later experiments) through the resting ether exerts upon the dimensions of
that body an influence which varies according to the orientation of the body with respect to the
direction of motion. [...]

Reversing a previous remark, we might now say that the displacement produced by the alterations
of length is compensated by the Maxwell displacement. [...]

We can illustrate Lorentz and Fitzgerald reasoning’s by making an analogy with electric charges. Accord-
ing to Maxwell’s calculations, a displacement between the interference fringes would be expected whenever
the interferometer were moving relative to the ether. In our analogy, let us consider that a positive charge
was expected whenever the interferometer were moving relative to the ether. However, no displacement was
found. In our analogy, they found zero charge. The most obvious conclusion would be that the ether does
not exist, or that the ether was at rest relative to the Earth. However, Lorentz and Fitzgerald wanted to
keep the hypothesis of an existing ether. Moreover, they also believed that the ether was at rest relative to
the fixed stars, so that the Earth was moving through the ether due to its diurnal rotation and due to its
annual translation around the Sun. Therefore, in order to reconcile the null result of Michelson’s experiment
with the existence of the ether, they introduced a new hypothesis. Beyond the effect predicted by Maxwell’s

77Michelson and Morley, American Journal of Science, 34, 1887, p. 333; Phil. Mag., 24, 1887, p. 449.
78Lorentz, Zittingsverslagen der Akad. v. Wet. te Amsterdam, 1892-93, p. 74.
79As Fitzgerald kindly tells me, he has for a long time dealt with his hypothesis in his lectures. The only published reference

which I can find to the hypothesis is by Lodge, “Aberration Problems,” Phil. Trans. R.S., 184 A, 1893.
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calculations, they now assumed that a body moving through the ether should shorten its length along this
direction of motion. In our analogy, we will suppose that this length shortening is analogous to the body
acquiring a negative charge whenever it is moving relative to the ether. They adjusted their hypothesis in
such a way that the two effects should exactly cancel one another up to second order in v/c. In our analogy
this supposition would be equivalent to the following: The body would acquire a positive charge due to the
effected predicted by Maxwell, but it would also acquire a negative charge due to the hypothesis introduced
by Lorentz and Fitzgerald. There would be an exact cancellation of these two charges, in such a way that the
body would acquire no net charge. With this new hypothesis they could explain the null result of Michelson
and Morley’s experiment, as they did not find the displacement in the interference fringes with the expected
order of magnitude.

Einstein, however, stated that “the introduction of a ‘luminiferous ether’ will prove to be superfluous.”80

If this is the case, then he should have discarded length contraction of rods and rigid bodies. After all, this
idea of length contraction was only introduced to reconcile the null result of the Michelson-Morley experiment
with the ether concept. If there is no ether, we should not expect any change in the interference fringes (and
no displacement was found with the expected value). But in this case it makes no sense to introduce or to
suppose a length contraction of bodies. After all, by eliminating the ether and by maintaining simultaneously
the contraction of lengths, we would expect once again a displacement in the interference fringes, but now in
the opposite direction. Making the ether superfluous would require making length contraction superfluous as
well. This was clearly pointed out by O’Rahilly in his book, Electromagnetic Theory - A Critical Examination
of Fundamentals.81 As we know, this logical course was not followed by Einstein. He retained the length
contraction although he had discarded the ether! With this, another source of confusions and paradoxes was
brought into physics.

In our analogy, when Einstein made the ether superfluous, no net charge was expected in Michelson and
Morley’s experiment. Einstein, however, not only made the ether superfluous, but maintained the hypothesis
of length contraction. With these two simultaneous assumptions, a net negative charge would be expected
in this experiment. But no net charge was measured. Therefore, not only the introduction of a luminiferous
ether should be considered superfluous by Einstein, but also the hypothesis of length contraction! But this
obvious point of view was not adopted by Einstein. Although it may seem incredible, Einstein eliminated
the ether while simultaneously maintaining length contraction of bodies. Obviously the only consequence
which could be expected from this point of view was an enormous confusion to explain the experiment of
Michelson and Morley. Moreover, this hypothesis of length contraction introduced innumerable problems
and paradoxes in other areas of physics.

There are several other problems with Einstein’s special theory of relativity: the difficulty in explaining
the Sagnac and Michelson-Gale experiments,82 Einstein’s argument about the rotating disc,83 observations
of Doppler effects for Venus seem to contradict special relativity,84 superluminal solutions of Maxwell’s
equations challenge the principle of relativity,85 etc. We will not go into further detail here.

After discussing some aspects of Einstein’s special theory of relativity, we analyze his general theory in
the next Chapter.

80[Ein52c, pp. 37-38] and [Ein78c, p. 48].
81[O’R65, Vol. 1, Chap. VIII, Sect. 1, p. 259].
82[Wes91], [Hay95], [Mon96], [Kel97] and [Kel01].
83[CR82].
84[Tol93].
85[RL97].
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Chapter 16

Einstein’s General Theory of Relativity

Einstein’s general theory of relativity was presented in its final form in his work of 1916 called “The foun-
dations of the general theory of relativity.”1 We present several problems with this theory, as we have done
with his special relativity.

16.1 Relational Quantities

Einstein began his article with the following paragraphs:2

The special theory of relativity is based on the following postulate, which is also satisfied by the
mechanics of Galileo and Newton.

If a system of co-ordinates K is chosen so that, in relation to it, physical laws hold good in their
simplest form, the same laws also hold good in relation to any other system of co-ordinates K ′

moving in uniform translation relatively to K. This postulate we call the “special principle of
relativity.” The word “special” is meant to intimate that the principle is restricted to the case
when K ′ has a motion of uniform translation relatively to K, but that the equivalence of K ′ and
K does not extend to the case of nonuniform motion of K ′ relatively to K.

In the general theory of relativity Einstein sought to generalize his special theory introducing the following
postulate:3

The laws of physics must be of such a nature that they apply to systems of reference in any kind
of motion.

That is, the laws of physics should apply not only in inertial frames, but also in reference frames which
are accelerated relative to inertial frames. Did he succeed in doing so? We think he was unsuccessful in his
endeavors. One of the reasons for his failure has been the path he chose to follow in order to implement his
ideas.

According to Barbour:4

Einstein himself commented5 that the simplest way of realizing the aim of the theory of relativity
would appear to be to formulate the laws of motion directly and ab initio in terms of relative
distances and relative velocities—nothing else should appear in the theory. He gave as the reason
for not choosing this route its impracticability. In his view the history of science had demonstrated
the practical impossibility of dispensing with coordinate systems.

Here is Barbour’s translation of the relevant section of Einstein’s paper:6

1[Ein16], [Ein52b] and [Ein78b].
2[Ein16], [Ein52b] and [Ein78b].
3[Ein16, p. 772], [Ein52b, p. 113] and [Ein78b, p. 144].
4[Bar89, p. 6].
5A. Einstein, Naturwissenschaften, 6-er Jahrgang, No. 48, 697 (1918) (passage on p. 699).
6[Ein18a, p. 699] and [BP95, p. 186].
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We want to distinguish more clearly between quantities that belong to a physical system as such
(are independent of the choice of the coordinate system) and quantitities that depend on the
coordinate system. One’s initial reaction would be to require that physics should introduce in its
laws only the quantities of the first kind. However, it has been found that this approach cannot
be realized in practice, as the development of classical mechanics has already clearly shown. One
could, for example, think—and this was actually done—of introducing in the laws of classical
mechanics only the distances of material points from each other instead of coordinates; a priori
one could expect that in this manner the aim of the theory of relativity should be most readily
achieved. However, the scientific development has not confirmed this conjecture. It cannot
dispense with coordinate systems and must therefore make use in the coordinates of quantities
that cannot be regarded as the results of definable measurements.

As we will see in this book, it is possible to follow this route successfully with a Weber-type law for
gravitation. Einstein was mistaken when he asserted that this route was impractical. Weber introduced his
relational force in 1846, 70 years prior to this statement by Einstein. In this book we show that with a
Weber-type law applied to gravitation (as suggested by several authors since the 1870’s), we can implement
quantitatively all of Mach’s ideas. We show that by spinning a spherical shell or the set of distant galaxies
around a test body, centrifugal forces and Coriolis’s forces spring into action; we implement a mechanics
without absolute space and time; in relational mechanics there are no frame-dependent forces; the inertial
frames become directly related or determined by the distant material universe, being identified with the
reference frames relative to which the set of distant galaxies is at rest or moving uniformly along a certain
direction; the kinetic energy can be shown to be an energy of interaction like any other potential energy, in
particular, it is interpreted as an energy of gravitational interaction between the test body and the set of
galaxies when there is a relative motion between them; dynamics becomes equivalent to kinematics; whenever
two situations are kinematically equivalent (like the ptolemaic and copernican world views) they become also
dynamically equivalent (the same flattening of the Earth in both world views, the same precession of the
plane of oscillation of Foucault’s pendulum relative to the ground; etc.).

16.2 Invariance in the Form of the Equations

In another part of the paper Einstein explained what he meant by the statement7 that “the laws of physics
must be of such a nature that they apply to systems of reference in any kind of motion.” He clarified his
thoughts by stating that:8

The general laws of nature are to be expressed by equations which hold good for all systems of co-
ordinates, that is, are co-variant with respect to any substitutions whatever (generally co-variant).

The term “covariant” had been introduced by Minkowski (1864-1909) in 1907-1908. He referred to the
identity or equality in the form of the equations in different inertial frames as “covariance.”9 Thus, by laws
of the same nature Einstein meant laws of the same form.

But his requirement is known to be false when we compare an inertial frame of reference with a non-
inertial frame of reference, or when we compare with one another two non-inertial frames of reference. For
instance, in an inertial frame of reference O we write Newton’s second law of motion in the following form:

~F = mi~a . (16.1)

On the other hand, in a non-inertial frame of reference O′ which rotates relative to the frame O with a
constant angular velocity ~ω, this law takes the form of equation (11.42), namely:

~F = mi [~a
′ + ~ω × (~ω × ~r ′) + 2~ω × ~v ′] . (16.2)

This equation (16.2) works perfectly in this non-inertial frame of reference O′, as seen in Chapter 11.
Equation (16.2) has a different form of equation (16.1). Despite this fact, both of them yield equivalent
results in frames O′ and O, respectively. For instance, in both frames of reference we obtain the same

7[Ein16, p. 772], [Ein52b, p. 113] and [Ein78b, p. 144].
8[Ein16, p. 776], [Ein52b, p. 117] and [Ein78b, p. 149].
9[Mil81, pp. 14, 240-241 and 288].



Ch. 16: Einstein’s General Theory of Relativity 289

flattening of the Earth, the same concavity of the water surface in Newton’s bucket experiment, the same
angular velocity of precession of the plane of oscillation of Foucault’s pendulum relative to the ground, etc.

This means that Einstein’s statement that the laws of physics should have the same form in all frames
of reference can only cause confusion and ambiguities. We need to change many concepts of space, time,
simultaneity and of other magnitudes in order for this einsteinian theory to correctly predict the facts in
different accelerated frames of reference. It would be much simpler, more coherent and in agreement with
the previous knowledge of the laws of physics to require that each two-body force have the same numerical
value (although not necessarily the same form) in all frames of reference. Even Newton’s inertial forces have
this property. For instance, the value mi~a in the inertial frame O which appears in equation (16.1) is exactly
equal in magnitude and direction to the value mi [~a

′ + ~ω × (~ω × ~r ′) + 2~ω × ~v ′] which appears in equation
(16.2) in the non-inertial frame O′, although the form is completely different in both cases. This equivalence
in magnitude and direction, although not in form, is implemented in relational mechanics.

16.3 The Forces Exerted by Spherical Shells

16.3.1 Necessary Conditions to Implement Mach’s Principle

There are many other problems with Einstein’s general theory of relativity. In particular, although he tried
to implement Mach’s principle with this theory, he did not succeed as he himself admitted several times.

In a book originally published in 1922, The Meaning of Relativity, Einstein presented three consequences
which ought to be expected in any theory implementing Mach’s ideas:10

What is to be expected along the line of Mach’s thought?

1. The inertia of a body must increase when ponderable masses are pilled up in its neighbourhood.

2. A body must experience an accelerating force when neighbourring masses are accelerated,
and, in fact, the force must be in the same direction as that acceleration.

3. A rotating hollow body must generate inside of itself a ‘Coriolis field’, which deflects moving
bodies in the sense of the rotation, and a radial centrifugal field as well.

We shall now show that these three effects, which are to be expected in accordance with Mach’s
ideas, are actually present according to our theory, although their magnitude is so small that
confirmation of them by laboratory experiments is not to be thought of.

According to Einstein, a fourth consequence which should appear in any theory incorporating Mach’s
principle was:11

A body in an otherwise empty universe should have no inertia.

Related to this last consequence is the following statement:

All the inertia of any body should come from its interaction with other masses in the universe.

Maybe the first time Einstein mentioned this fourth consequence had been in his article of 1912:12

In itself, this result is of great interest. It shows that the presence of the inertial shell K increases
the inertial mass of the material point P within it. This makes it plausible that the entire
inertia of a mass point is the effect of the presence of all other masses, resulting from a kind of
interaction with them. This is exactly the standpoint for which E. Mach has argued persuasively
in his penetrating investigations of this question.

Another statement of Einstein showing that he gave this interpretation for the origin of inertia can be
found in his paper of 1917 called “Cosmological considerations on the general theory of relativity:”13

In a consistent theory of relativity there can be no inertia relatively to “space,” but only an inertia
of masses relatively to one another. If, therefore, I have a mass at a sufficient distance from all
other masses in the universe, its inertia must fall to zero.

10[Ein80, pp. 95-96] and [Ein58, p. 123].
11[Rei73].
12[Ein12], [BP95, p. 180] and [Ein96].
13[Ein17], [Ein52a, p. 180] and [Ein78a, p. 229].
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A statement of Einstein similar to these just quoted can also be found in his book The Meaning of
Relativity:14

Although all of these effects are inaccessible to experiment, because k is so small, neverthless they
certainly exist according to the general theory of relativity. We must see in them a strong support
for Mach’s ideas as to the relativity of all inertial actions. If we think these ideas consistently
through to the end we must expect the whole inertia, that is, the whole gµν-field, to be determined
by the matter of the universe, and not mainly by the boundary conditions at infinity.

Although Einstein at first thought that these four consequences did follow from his general theory of
relativity, he soon realized this was not the case. For a detailed analysis showing that general relativity does
not implement Mach’s principle and for original references, see the works of Dennis Sciama (1926-1999),
Reinhardt, Raine and Pais.15 In the next Subsections we will discuss some aspects in which the general
theory of relativity failed in implementing Mach’s principle, frustrating Einstein’s initial expectations.

16.3.2 Force Exerted by a Stationary Spherical Shell

The first consequence presented in Subsection 16.3.1 does not appear in general relativity.16 That is, there
are no observable effects in a laboratory from a spherically symmetric agglomeration of matter at rest around
it. This means that the inertia of a body does not increase in general relativity with the agglomeration of
masses in its neighborhood.

In 1912 Einstein formulated a scalar theory of relativistic gravitation.17 In this work he initially arrived
at the conclusion that general relativity predicted this effect, although later on it was shown that this
conclusion was wrong. In order to arrive at this conclusion, he considered a spherical shell K of radius R,
with a material point P on its center, figure 16.1.

K(M)

P(m)

Figure 16.1: Spherical shell of mass M and radius R, with a point mass m at its center.

Moreover, Einstein supposed that M denoted the inertial mass of the spherical shell K in the absence of
the material point P , while m denoted the inertial mass of the particle P in the absence of the spherical shell
K. Utilizing his scalar theory, he obtained that the presence of the spherical shell M induced an increase in
the mass of the test particle, from m to m′, such that:

m′ = m

(

1 +
GM

Rc2

)

. (16.3)

According to Einstein:18

The result is of great interest in itself. It shows that the presence of the inertial shell K increases
the inertial mass of the material point P inside the shell.

In his book of 1922 he maintained this conclusion:19

The inert mass is proportional to 1+ σ̄, and therefore increases when ponderable masses approach
the test body.

14[Ein80, p. 114] and [Ein58, p. 126].
15[Sci53], [Rei73], [Rai81] and [Pai82, pp. 282-288].
16[Rei73] and [Pfi95].
17[Ein12] and [Ein96].
18[Ein12] and [Ein96].
19[Ein80, p. 97] and [Ein58, p. 125].
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However, this was a wrong conclusion based on an interpretation of a calculation performed in a particular
coordinate system, as shown conclusively by Brans in 1962.20 Reinhardt summarized the situation with the
following statement:21

Einstein22 thought that effect (i) occurred in general relativity. However this was based on a
misinterpretation of a calculation performed in a special coordinate system as Brans23 was able to
show. There are no observable effects in a laboratory from a spherically symmetric agglomeration
of matter about it. This is a serious blow to Mach’s principle.

We agree with this statement by Reinhardt, except the last sentence. This result obtained by Brans
should not be considered a serious blow to Mach’s principle. Quite the opposite, namely, this result obtained
by Brans is a serious blow to Einstein’s general theory of relativity!

This final result of general relativity, as obtained by Brans and by all others scientists after him who were
working with Einstein’s theory, is analogous to what happened with Newton’s laws of gravitation, as seen
in Section 1.4. Consider a spherical shell of radius R which is stationary relative to a frame of reference S,
with the center at the shell coinciding with the origin O of frame S, figure 16.2. Let Mg be the gravitational
mass of the shell. A test body of gravitational mass mg is located at the position vector ~r relative to the
origin of the shell, moving with velocity ~v and acceleration ~a relative to the frame of reference S.

z

y

x

Mg

S

R

0

r

v

a

mg

Figure 16.2: According to Einstein’s general theory of relativity, a stationary spherical shell exerts no force
on a particle located anywhere inside the shell.

According to Einstein’s general theory of relativity, the stationary spherical shell exerts no force on a
particle located anywhere inside the shell, no matter the velocity ~v nor acceleration ~a of the particle relative
to the shell:

~Fshell on mg
= ~0 . (16.4)

Sometimes the result of equation (16.4) is stated in general relativity by saying that the space-time inside
a static spherical shell is flat. That is, there is no curvature of space inside the shell, the geometry becomes
indistinguishable from that of Minkowski.

We can also express the result of equation (16.4) by saying that the inertial mass of a particle does not
increase, according to general relativity, with the agglomeration of gravitational masses in its neighborhood.
This result obtained by general relativity in its final formulation is against Einstein’s initial expectations.
This result is also totally contrary to Mach’s principle.

16.3.3 Force Exerted by a Linearly Accelerated Spherical Shell

As seen in Subsection 16.3.1, the second consequence predicted by Einstein and which should be satisfied in
any theory implementing Mach’s principle, is that a body should experience an acceleration if nearby bodies

20[Bra62b], [Bra62a], [Rei73] and [Pfi95].
21[Rei73].
22A. Einstein, The Meaning of Relativity, Princeton University Press, Princeton 1955.
23C. Brans, Phys. Rev. 125, 2194 [1962].
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are accelerated. Moreover, the accelerating force should be in the same direction as the acceleration of the
nearby bodies.

Einstein calculated this effect for the first time in 1912.24 Once more he considered a spherical shell K
with mass M and radius R. A material point particle P of mass m was located in the center of the shell.
He then supposed that an external force gave a linear acceleration Γ to the shell, figure 16.3.

K(M)

P(m)

G

G

Figure 16.3: Spherical shell K of mass M and radius R moving with an acceleration Γ, with a point particle
P of mass m located at the center of the shell.

He then made the following question:25

Does a force act on the fixed material point P if I impart an acceleration Γ to the shell K?

After performing the calculation, he concluded that in this case there would be a force acting on the test
body given by FMm = 3GmMΓ/2Rc2. That is, a test particle would experience an induced acceleration γ
given by γ = FMm/m = (3MG/2Rc2)Γ.

In the same year of 1912 Einstein began to develop a tensorial theory of the gravitational field. In
June 1913 he wrote a text with his friend Michele Besso (1873-1955). They performed a new calculation of
the induced acceleration or induced dragging acting on a particle inside a spherical shell whenever a linear
acceleration Γ was given to the shell. The result which they obtained26 was that the particle would be
dragged with an induced acceleration γ given by γ = (2MG/Rc2)Γ. That is, a factor 4/3 bigger than in the
scalar theory of 1912.

Also in his book of 1922 Einstein concluded that:27

There is an inductive action of accelerated masses, of the same sign, upon the test body.

Although in general relativity a test body experiences an accelerating force when neighboring masses are
accelerated, the interpretation of this effect is not unique.28

What then, according to general relativity, is the value of the force exerted by the linearly accelerated
spherical shell on the internal particle? Or, equivalently, what will be the induced acceleration experienced
by the internal test particle when the spherical shell is accelerated? Although these may seem very simple
questions, up to now there is no consensus on the correct answers to these questions in general relativity.
The calculations to arrive at the final answers are becoming each day more complex, as more factors are
being introduced in order to perform the calculations correctly. The interpretations of the final results are
also becoming more complicated along the years. The authors, in particular, need to take into account the
energy of the source which is accelerating the shell, if the shell has or has not an electric charge in addition
to its gravitational mass, if we are in a region of strong or weak field, etc. The references related to these
different treatments, together with the divergent and contradictory results obtained by different authors,
can be found in the papers by Reinhardt, Mashhoon, Hehl, Theiss, Grøn, Eriksen, Pfister, Frauendiener,
Hengge, Essen, and in the references quoted by these authors.29

24[Ein12] and [Ein96].
25[Ein12] and [Ein96].
26[Pfi07].
27[Ein80, p. 98] and [Ein58, p. 125].
28[Rei73] and [PFH05].
29[Rei73], [MHT84], [Mas88], [GE89], [PFH05] and [Ess13].
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16.3.4 Force Exerted by a Spinning Spherical Shell

The third consequence pointed out by Einstein in Subsection 16.3.1 was that a rotating hollow body should
generate inside of itself a ‘Coriolis field,’ which would deflect moving bodies in the sense of the rotation.
Moreover, this hollow body should produce as well a ‘radial centrifugal field.’

These effects appear in general relativity, as was first found by H. Thirring (1888-1976) in 1918, with
a correction of his work appearing in 1921.30 Initially Thirring worked with a spinning hollow spherical
shell and calculated its influence on other bodies. Later on he considered as well a spinning solid sphere
and calculated its influence on external bodies, working in collaboration with J. Lense (1890-1985).31 These
three basic papers have been translated into English by Mashhoon, Hehl and Theiss.32

However, the terms obtained by Thirring based on general relativity are not exactly as they should be.
Consider a spherical shell of mass M , radius R, spinning with a constant angular velocity ~Ω in relation

to a certain frame O, figure 16.4.
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Figure 16.4: Spinning spherical shell.

Let us suppose that inside this spinning spherical shell there is a test particle of mass m, localized at
the position vector ~r relative to the center of the shell, and moving in this frame O with a velocity ~v and
acceleration ~a. Working in the weak field approximation, Thirring showed that this spinning shell would
exert a force ~F on the internal test particle m given by:33

~F = −8GMm(~Ω · ~r)~Ω
15Rc2

− 4GMm~Ω× (~Ω× ~r)

15Rc2
− 8GMm(~v × ~Ω)

3Rc2
. (16.5)

Utilizing the dimensionless coefficient −4GM/(15Rc2) this force can be written as:

~F = − 4GM

15Rc2

[

2m(~Ω · ~r)~Ω+m~Ω× (~Ω× ~r) + 10m(~v × ~Ω)
]

. (16.6)

There is a spurious axial term in these equations proportional to m(~Ω · ~r)~Ω which does not have a
corresponding term in newtoian theory. In other words, there is no “fictitious force” which behaves like this.

Moreover, Einstein wanted to obtain the classical centrifugal and Coriolis forces after integrating this
result for the whole universe. Thirring’s result, on the other hand, showed that the coefficient −4GM/15Rc2

in front of the centrifugal term m~Ω×(~Ω×~r) is different from the coefficient −4GM ·5/15Rc2 = −4GM/3Rc2

in front of the Coriolis’s term 2m~v× ~Ω of equation (16.5). That is, the coefficient multiplying the centrifugal
term m~Ω × (~Ω × ~r) is five times smaller than the coefficient multiplying the Coriolis’s term 2m~v × ~Ω of
equation (16.6). However, in the newtonian fictitious force ~Ff these terms have equal coefficients, as can be
seen in equation (11.41), namely:

~Ff = −m~ω × (~ω × ~r ′)− 2m(~ω × ~v ′)−m
d~ω

dt
× ~r ′ −m

d2~h

dt2
, (16.7)

where d2~h/dt2 is the acceleration of the origin of the non-inertial frame O′ relative to the origin of the inertial
frame O.

30[Thi18] and [Thi21].
31[LT18].
32[MHT84].
33[Thi21], [PR94] and [Pfi95].
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The contradiction between equations (16.6) and (16.7) shows that Einstein’s general theory of relativity
did not succeed in deriving the centrifugal and Coriolis forces simultaneously, contrary to Einstein’s ex-
pectations. Later developments based on general relativity made by Bass, Pirani, Brill, Cohen and many
others did not succeed as well.34 That is, these authors could not derive, based on general relativity, these
two terms simultaneously with the correct coefficients, as they are known to exist in non-inertial frames of
reference in newtonian theory. Moreover, these authors could not eliminate the spurious axial term given by
−8GMm(~Ω ·~r)~Ω/(15Rc2). This spurious term points along the direction of the angular velocity of the shell,
~Ω. This spurious term is predicted in general relativity, although it is known that there is no fictitious force
which behaves like this term in the non-inertial frames of classical mechanics.35 These aspects show that we
cannot derive the correct newtonian results in non-inertial frames of reference with Einstein’s general theory
of relativity.

When ~Ω = ~0 in equation (16.5) we obtain once again equation (16.4). This null result shows once more
that the first consequence pointed out in Subsection 16.3.1 does not take place in general relativity. That
is, a stationary spherical shell which is not spinning exerts no net force on any internal particle, no matter
the position, velocity and acceleration of the particle relative to the shell. Therefore the inertia of any body
is not increased, in general relativity, by placing material spherical shells around the body, against Einstein
expectations.

It is worth while to point out here that Einstein arrived at the third consequence (that a spinning
spherical shell should generate centrifugal forces on internal bodies) influenced by Mach’s ideas. As was
shown in Subsection 13.1.2, Clarke concluded that Leibniz’s ideas led exactly to the same effect, but upside
down. That is, if it were possible to annihilate the set of stars which are rotating as a whole around the solar
system, when seen from the Earth’s frame of reference, the centrifugal forces should disappear (the Earth
should no longer be flattened at the poles etc.). This equivalence of effects shows how similar were the ideas
of Leibniz and Mach.

16.3.5 In General Relativity a Test Body Has Inertia Even in an Otherwise

Empty Universe, Contradicting Mach’s Principle

As was shown in Subsection 16.3.1, Einstein predicted a fourth consequence which should be valid for any
theory implementing Mach’s principle: A body in an otherwise empty universe should have no inertia. That
is, all the inertia of any body should come from its interaction with other masses in the universe.

However, this consequence is also not implemented in general relativity, contradicting once more Einstein’s
initial expectations. Einstein himself showed that his field equations imply that a test particle in an otherwise
empty universe has inertial properties.36 The concept of inertial mass is as intrinsic to the body in general
relativity as it was in newtonian mechanics. Einstein did not succeed in constructing a theory where all the
inertia of a body comes from its gravitational interaction with other bodies in the universe, in such a way
that a body in an otherwise empty universe would have no inertia.

Reinhardt summarized quite well the situation with the following words:37

Consequence (ii)38 has also no place in general relativity. A solution for empty space-time (the
energy-momentum tensor Tµν = 0 everywhere) is the Minkowski space of special relativity where
an infinitesimal test body has its usual inertia. Also in the case of the Schwarzschild space-time,
i. e. of an isolated body in otherwise empty space, Birkhoff’s theorem shows that by prescribing
spherical symmetry we are bound to end up with the pseudo-euclidean Minkowski metric at
infinity, so that again a test body has its full inertia however far from the only mass in the
universe it may be.

In order to avoid this undesirable consequence of his general theory of relativity, Einstein introduced in
1917 a new term in his equations, represented by λ or by Λ.39 This term is called the cosmological constant.
Einstein thought that his field equations with Λ > 0 would have no solutions for Tµν = 0. That is, he
thought that there would be no inertia in the absence of matter, in agreement with Mach’s principle.40

34[BP55], [BC66], [CB68], [Rei73], [PR94] and [Pfi95].
35[BP55], [BC66], [CB68], [Rei73], [PR94] and [Pfi95].
36[Sci53] and [Rei73].
37[Rei73].
38Reinhardt was referring here to Einstein prediction that a body in an otherwise empty universe should have no inertia.
39[Ein17], [Ein52a] and [Ein78a].
40[Rei73].
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But even this introduction of the cosmological constant did not provide a remedy, because in 1917 W.
de Sitter (1872-1934) found a solution of his modified field equations in the absence of matter.41

In the end Einstein abandoned his cosmological constant as being superfluous and without justification.42

Einstein could never avoid the appearance of inertia relative to space in his theories, although this was
required by Mach’s principle.

16.4 Other Aspects Showing that General Relativity Does Not Im-

plement Mach’s Principle

Erwin Schrödinger (1887-1961) presented another argument showing that general relativity did not comply
with Mach’s principle. In a very important paper of 1925, already translated into Portuguese and English,
he said:43

The general theory of relativity too in its original form44 could not yet satisfy the Machian
requirement, as was soon recognized. After the secular precession of the perihelion of Mercury
was deduced, in amazing agreement with experiment, from it, every naive person had to ask:
With respect to what, according to the theory, does the orbital ellipse perform this precession,
which according to experience takes place with respect to the average system of the fixed stars?
The answer that one receives is that the theory requires this precession to take place with respect
to a coordinate system in which the gravitational potentials satisfy certain boundary conditions
at infinity. However, the connection between these boundary conditions and the presence of the
masses of the fixed stars was in no way clear, since these last were not included in the calculation
at all.

That is, as the fixed stars were not included in the calculations of the precession of the perihelion of the
planets in general relativity, it does not make sense to say that this precession takes place relative to the
background of stars. On the other hand, the observations made by astronomers indicate that this precession
happens relative to the background of fixed stars. The agreement between the calculation based on general
relativity and the measured value of the astronomers can only be considered a coincidence. In relational
mechanics, on the other hand, this agreement between theory and observation is no longer a coincidence.
It will be shown that it is the set of galaxies which generates the inertial force −m~a or the kinetic energy
mv2/2. That is, the gravitational mass of the galaxies has a fundamental influence over the motion of the
bodies in the solar system. The precession of the perihelion calculated with relational mechanics is really
relative to the background of galaxies, and not relative to an abstract frame disconnected from the distant
matter in the cosmos, as will be shown in Section 24.1.

In 1949 Kurt Gödel (1906-1978) found solutions of the field equations of general relativity in which the
universe as a whole was rotating relative to a locally inertial system.45 That is, the inertial frame do not
coincide with the frame of fixed stars nor with the frame of distant galaxies. This solution is not only totally
against Mach’s principle, but also in disagreement with observations which show that the universe as a whole
does not rotate relative to an inertial system, as was shown in Chapter 10. The fact that the universe as a
whole does not rotate relative to an inertial frame of reference can be expressed mathematically by saying
that the kinematic and dynamic rotations of the Earth are equal to one another, equations (10.44) and
(10.49).

Important discussion showing that Einstein’s general theory of relativity still maintained the concept
of absolute space-time having its existence independent of distant matter (that is, independent from stars
and galaxies) and, therefore, being in disagreement with Mach’s ideas, can be found in the works of Michel
Ghins, Max Jammer, Borzeszkowski and Treder.46

All of these aspects show that even in Einstein’s general theory of relativity the concepts of absolute
space, or preferred inertial systems of reference disconnected from the distant matter, are still present. The
same happens with the inertia, inertial force or with the inertial mass of bodies.

41[dS17], [Jam54, pp. 189-190], [Rei73], [Pai82, p. 287] and [Jam10, p. 238].
42[Ein31] and [Rei73].
43[Sch25], [XA94] and [Sch95].
44A. Einstein, Ann. d. Phys. 49. S. 769. 1916.
45[Göd49a], [Göd49b], [Car05], [Göd06], [Dah06], [Rin09] and [Car13].
46[Ghi91], [Ghi92], [Jam93, pp. 194-199], [BT96] and [Jam10, pp. 234-241].
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16.5 Incoherences of the General Theory of Relativity

In this Section we analyze some phenomena and experiments which show several incoherences with Einstein’s
general theory of relativity.

16.5.1 Gravitational Force Exerted by the Galaxies on Bodies of the Solar Sys-

tem

In this Subsection we calculate the gravitational force exerted by the galaxies acting on bodies of the solar
system. We perform these calculations in two different frames of reference. The first one is the inertial frame
U in which the set of galaxies is at rest, without an overall linear acceleration and without a global rotation.
This is called the universal frame of reference, as defined in Section 1.8, figure 16.5 (a). The second frame
of reference is the non-inertial frame R in which the set of galaxies is rotating as a whole with an angular
velocity ~ΩGR around the Milky Way and around the solar system, figure 16.5 (b).
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Figure 16.5: (a) Universal frame U . (b) Non-inertial frame R in which the set of galaxies is rotating with
an angular velocity ~ΩGR around the solar system.

We first calculate in the universal frame U the gravitational force exerted by the set of galaxies acting
on a test body of gravitational mass mg located in the solar system. The universe is essentially isotropic in
large scale, having a volume density of gravitational mass given by ρgo. Supposing that we are not at the
center of the universe, this isotropy implies also homogeneity, in such a way that this volume density should
have the same value everywhere in the universe. We can then consider the set of galaxies as composing
a series of spherical shells around the Milky Way. According to general relativity, the force exerted by a
stationary spherical shell on any internal body is zero, equation (16.4). That is, no matter the position,
velocity nor acceleration of the test body relative to the shell, the shell exerts no net force on this body. By
integrating this null force over the whole universe we will continue with a zero value. That is, there is no
net gravitational force exerted by the set of galaxies on any body of the Milky Way, as was the case with
newtonian mechanics. In these two theories we obtain that:

~F frame U
galaxies on mg

= ~0 . (16.8)

This means that in general relativity the equation of motion for a test body of inertial mass mi belonging
to the solar system, moving with acceleration ~amU relative to the inertial frame U , goes back to the newtonian
results given by equations (1.3) or (1.4), that is:

~F = mi~amU , (16.9)

where ~amU = d~vmU/dt is the acceleration of the test body relative to the universal frame U , while ~vmU

represents its velocity in this frame. In this equation ~F represents the net force acting on mi and being due
to its interaction with all other bodies in the universe.

We now present the gravitational force exerted on the test body of gravitational mass mg by the set of
galaxies, as calculated in the non-inertial frame R, figure 16.5 (b). The test particle of gravitational mass
mg is located at a position vector ~rmR relative to the origin of R, moving with velocity ~vmR and acceleration
~amR relative to this frame R. There is then a set of spherical shells rotating around the Milky Way with an
angular velocity ~ΩGR. According to general relativity, the force d~F acting on mg and being exerted by one
of these spherical shells of gravitational mass dMg is given by equation (16.5):
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d~F = −dφGR

[

2mg(~ΩGR · ~rmR)~ΩGR

5
+

mg
~ΩGR × (~ΩGR × ~rmR)

5
+ 2mg(~vmR × ~ΩGR)

]

, (16.10)

where the dimensionless constant dφGR has been defined by:

dφGR ≡ 4GdMg

3Rc2
. (16.11)

In order to know the net force exerted by the set of galaxies acting on mg, it is necessary to integrate the
force of equation (16.10) over the whole known universe. Utilizing that the universe is essentially isotropic
in large scale, having a constant volume density of gravitational mass ρgo, it is possible to express the mass
dMg of this shell of radius R and thickness dr as given by dMg = 4πρgoR

2dR. We can then integrate
equation (16.10) from R = 0 up to the radius RU of the known universe. This integration will yield the force
acting on the test particle mg and being exerted by the set of galaxies. This force will be represented by
~F reference R
galaxies on mg

, being given by:

~F reference R
galaxies on mg

= −ΦGR

[

2mg(~ΩGR · ~rmR)~ΩGR

5
+

mg
~ΩGR × (~ΩGR × ~rmR)

5
+ 2mg(~vmR × ~ΩGR)

]

, (16.12)

where the dimensionless constant ΦGR has been defined by:

ΦGR ≡
∫ RU

0

dφ =

∫ RU

0

4GdMg

3Rc2
=

16πρgoG

3c2

∫ RU

0

RdR =
8πρgoGR2

U

3c2
. (16.13)

We can have an idea of the order of magnitude of the constant ΦGR utilizing that the gravitational
constant is given by G = 6.67 × 10−11 m3kg−1s−2, supposing that RU has the value of Hubble’s length,
c/Ho, and utilizing the limits for the value of Hubble’s constant, Ho, given by equation (4.33). We then
obtain:

0.025 < ΦGR < 1.2 . (16.14)

The average of these extreme values yields ΦGR ≈ 0.6.
It should be remembered that according to newtonian mechanics there is no net force exerted by the set

of galaxies acting on the test body of gravitational mass mg, not only in the universal frame U , but also in
the frame R in which the set of galaxies is rotating, due to equations (1.15) and (1.21). That is:

~F frame U
galaxies on mg

= ~F frame R
galaxies on mg

= ~0 in classical mechanics . (16.15)

Let us now obtain, in general relativity, the equation of motion of a particle of inertial mass mi in
this non-inertial frame of reference R. Beyond the forces of interaction between mi and the other bodies
represented by ~F , it is necessary to introduce the fictitious inertial forces of newtonian mechanics and the
gravitational force exerted by the set of galaxies acting on the test body. The fictitious forces are given by
equation (11.41), where ~ω represents the angular velocity of the non-inertial frame of reference R relative
to an inertial frame. The inertial frame of reference which is being considered here is the universal frame
U . The non-inertial frame of reference is the frame R in which the set of galaxies rotates as a whole with
an angular velocity ~ΩGR relative to R. Therefore, ~ω = ~ΩGR. Combining equation (11.42) with equation
(16.12), together with ~ω = ~ΩGR, and utilizing that mi = mg = m, yields:

~F −m~ΩGR × (~ΩGR × ~rmR)− 2m~ΩGR × ~vmR

− ΦGR

[

2m(~ΩGR · ~rmR)~ΩGR

5
+

m~ΩGR × (~ΩGR × ~rmR)

5
+ 2m(~vmR × ~ΩGR)

]

= m~amR , (16.16)

where ΦGR is given by equations (16.13) and (16.14), while ~amR is the acceleration of the mass m relative
to frame R. This equation can also be written as:
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~F−
(

1 +
ΦGR

5

)

m~ΩGR×(~ΩGR×~rmR)−(1−ΦGR)2m~vmR×~ΩGR−
2ΦGR

5
m(~ΩGR·~rmR)~ΩGR = m~amR . (16.17)

According to newtonian mechanics, on the other hand, there is no net force exerted by the galaxies on m
in frame R, equation (16.15). Therefore, the equation of motion in newtonian mechanics in this non-inertial
frame R is given by equation (11.42) with ~ω = ~ΩGR, d~ΩGR/dt = ~0 and d2~h/dt2 = ~0, that is:

~F −m~ΩGR × (~ΩGR × ~rmR)− 2m~ΩGR × ~vmR = m~amR . (16.18)

There are some discrepancies between equations (16.17) and (16.18). In the first place, in general relativity
there is a spurious axial term proportional to m(~ΩGR · ~rmR)~ΩGR. There is no fictitious force analogous to
this term in classical mechanics. Moreover, in classical mechanics there is a coefficient 1 multiplying not
only the centrifugal force −m~ΩGR × (~ΩGR × ~rmR), but also the Coriolis’s force − 2m~ΩGR ×~vmR. In general
relativity, on the other hand, the coefficient which multiplies the centrifugal force is given by 1 + ΦGR/5,
while the coefficient which multiplies the Coriolis’s force is given by 1 − ΦGR. These two coefficients are
different from one another. Moreover, ΦGR is not negligible compared to 1. As seen in equation (16.14),
utilizing the estimated value of Hubble’s constant one gets 0.025 < ΦGR < 1.2. This means that it is not
possible to neglect, in the non-inertial frame R, the force exerted by the distant galaxies acting on the test
body.

These differences between equations (16.17) and (16.18) generate several inconsistencies in the general
theory of relativity. In the next Subsections we will consider some of these problems in specific situations.

16.5.2 Flattening of the Earth

Let us consider the flattening of the Earth according to general relativity. There is an observed relative
rotation between the Earth and the astronomical bodies around it with a period of one sidereal day. Newton
was the first to predict the flattening of the Earth due to this diurnal rotation of the Earth. This prediction
has been since then confirmed experimentally. As the diurnal angular velocity of the Earth relative to the
fixed stars is much bigger than the angular velocity of the set of fixed stars relative to the background of
distant galaxies, we will neglect here this last rotation. That is, we will consider the fixed stars at rest
relative to the background of galaxies. Figure 16.6 (a) presents the diurnal rotation of the Earth relative to
the background of stars and galaxies. The plane of the paper is considered at rest relative to the frame of
distant galaxies.
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Figure 16.6: Universal frame U . (a) Galaxies and stars at rest, while the Earth spins daily around its axis
with an angular velocity ~ω, being flattened at the poles. (b) According to general relativity, the flattening
would remain the same even if there were no galaxies and stars around the Earth.

In the universal frame U general relativity returns to the same results of newtonian mechanics. The
forces acting on a small volume of water belonging to the planet Earth are the gravitational force due to
the remaining mass of the Earth having an ellipsoidal shape and the buoyant force due to the gradient of
pressure. Equating these two forces with dm~a yields the equation of motion given by equation (10.2). Solving
this equation yields the flattening of the Earth given by equation (10.43) of newtonian mechanics.

Let us now imagine a thought experiment in which all stars and galaxies were annihilated from the
universe. What would be the figure of the Earth? According to general relativity, the set of stars and
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galaxies does not exert a gravitational force on the Earth, equation (16.4). Therefore, the stars and galaxies
can be annihilated without affecting the flattening of the Earth, as indicated in figure 16.6 (b).

This prediction of general relativity is against Mach’s principle. If the Earth were alone in the universe,
its rotation would make no sense, as there would be no other matter relative to which the Earth might
rotate. Therefore, no effects arising from this hypothetic rotation might exist. Consequently, if the Earth
existed alone in the universe, it should necessary remain spherical according to Mach’s ideas.

Let us now consider the same problem from the point of view of someone which is at rest in the ground.
In this terrestrial frame of reference T , the stars and galaxies are seen rotating together around the Earth
with an angular velocity ~ΩGT = −~ω, where ~ω is the angular velocity of the Earth relative to the universal
frame U , figure 16.7.
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Figure 16.7: Terrestrial frame of reference T relative to which the Earth is at rest, while the stars and galaxies
rotate together with an angular velocity ~ΩGT around the North-South axis of the Earth. (a) Qualitative
shape of the Earth according to general relativity. The Earth should no longer be ellipsoidal. (b) According
to general relativity, there should exist a flattening of the Earth even if all stars and galaxies were annihilated.

According to general relativity, four forces should act on a small volume of water in this non-inertial
terrestrial frame of reference T , namely: The gravitational force due to the remaining mass of the Earth,
the buoyant force due to the gradient of pressure, the centrifugal fictitious force, and the gravitational force
exerted by the distant galaxies. This last force had a zero value in newtonian mechanics, equation (1.21), in
such a way that the equation of motion of newtonian mechanics was given by equations (11.29) and (16.15).

In general relativity, on the other hand, there is a force different from zero exerted by the distant galaxies
and acting on any element of mass of the Earth, as given by equation (16.12). The equation of motion in
the terrestrial frame, according to general relativity, is given by equation (16.17), namely:

dm~g−(∇p)dV−
(

1 +
ΦGR

5

)

m~ΩGT×(~ΩGT×~rmT )−(1−ΦGR)2m~ΩGT×~vmT−
2ΦGR

5
m(~ΩGT ·~rmT )~ΩGT = m~amT .

(16.19)
with ΦGR given by equations (16.13) and (16.14).

The water is at rest in this terrestrial frame, such that ~vmT = ~0 and ~amT = ~0. We can then neglect
Coriolis’s force. However, it is not possible to neglect the spurious axial force pointing along the direction
of ~ΩGT which appears in equation (16.19). We then obtain the following equation:

dm~g − (∇p)dV −
(

1 +
ΦGR

5

)

m~ΩGT × (~ΩGT × ~rmT )−
2ΦGR

5
m(~ΩGT · ~rmT )~ΩGT = ~0 . (16.20)

The equation of motion which yielded the ellipsoidal shape of the Earth in newtonian mechanics in this
non-inertial frame R or T was given by equation (11.29). Utilizing that ~amT = ~0, this equation (11.29)
reduces to:

dm~g − (∇p)dV −m~ω × (~ω × ~rmT ) = ~0 . (16.21)

As equations (16.20) and (16.21) are different from one another, they cannot yield the same solution for
the pressure p in all points inside the Earth. The equation of newtonian mechanics yields an ellipsoid for
the free surface of fluid composing the Earth. This ellipsoid has the shape given by equation (10.40), with
the correct value of the flattening given by equation (10.43). Equation (16.20), on the other hand, does not
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yield this ellipsoid due to the spurious term pointing along the direction of ~ΩGT , that is, pointing along
the North-South axis of the Earth. Figure 16.7 (a) presents the qualitative shape of the Earth according
to general relativity. The spurious force given by −2ΦGRm(~ΩGT · ~rmT )/5 is not negligible. It has the same
order of magnitude of the centrifugal force given by −(1 + ΦGR/5)m~ΩGT × (~ΩGT × ~rmT ).

According to Einstein’s theory, the Earth should no longer have an ellipsoidal shape. This wrong predic-
tion conflicts with the observed flattening of the Earth.

Moreover, the coefficient (1 + ΦGR/5) multiplying the centrifugal force m~ΩGT × (~ΩGT × ~rmT ) will yield
an ellipsoid. However, the flattening produced by this term will be different from the observed flattening of
the Earth. These aspects show the inconsistencies which exist in the calculation of general relativity when
compared with the calculation based on classical physics. The theoretical result of the flattening obtained
with general relativity in the terrestrial frame of reference is in disagreement with the calculation of classical
mechanics. Moreover, it disagrees with the empirical value which is measured for this flattening.

Let us now imagine a thought experiment in which all stars and galaxies were annihilated from the
universe, such that the Earth remained alone. According to general relativity, in this situation, as calculated
in the terrestrial frame of reference, the centrifugal fictitious force would remain. The force exerted by
the distant galaxies, on the other hand, would go to zero. The Earth would then acquire an ellipsoidal
shape according to general relativity. This result agrees with the prediction of classical mechanics for this
hypothetical situation. However, the prediction of general relativity is incompatible with Mach’s principle.
After all, if the Earth were alone in the universe, it would make no sense to consider its rotation relative
to anything material. Therefore, all effects arising from this rotation of the Earth, like its flattened shape,
should disappear together with the annihilation of the bodies around the Earth. Nothing of this happens in
general relativity, showing once more that this theory does not implement quantitatively Mach’s ideas.

16.5.3 Foucault’s Pendulum

We now consider Foucault’s pendulum in general relativity. Initially we consider the situation in the universal
frame U in which the set of galaxies is at rest, while the Earth spins once a day around its North-South axis.
Afterwards we consider the same problem in the Earth’s non-inertial frame T in which the Earth is at rest,
while the set of galaxies rotates around the North-South axis of the Earth with a period of one day.

In order to simplify the analysis of the problem, we consider the pendulum located at the North pole
of the Earth, oscillating with an angular frequency ωp, figure 16.8. The Earth rotates daily around its
North-South axis with an angular velocity ωEU relative to the universal inertial frame U .
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Figure 16.8: Foucault’s pendulum in the universal frame U in which the Earth spins once a day around its
North-South axis with an angular velocity ωEU .

The equation of motion in general relativity in this frame U reduces essentially to Newton’s second law of
motion given by equations (1.3) and (1.4). The plane of oscillation of the pendulum will remain stationary
in the universal frame U , while the Earth spins once a day relative to the frame of distant galaxies. Figure
16.9 presents the situation as seen in this frame U . Situation (a) presents the initial configuration, while
situation (b) presents the configuration after 3 hours.
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Figure 16.9: The rectangle indicates a wall fixed in the ground and rotating together with the Earth relative
to the galaxies, while the plane of oscillation of the pendulum remains fixed relative to the galaxies. (a)
Initial configuration. (b) Configuration after 3 hours.

We now consider a thought experiment in which all stars and distant galaxies were annihilated. In general
relativity the set of galaxies does not exert a net force on the pendulum, equation (16.8), as it happened
in newtonian mechanics. Therefore, the set of galaxies does not exert an influence on the motion of the
pendulum. We can increase or decrease material spherical shell around the Earth without affecting what
happens in our planet. This means that in this hypothetical situation, according to general relativity, the
Earth would remain spinning relative to Newton’s absolute space, even in the absence of stars and galaxies,
while the plane of oscillation of the pendulum would remain stationary in this empty space, as represented
in figure 16.10. Situation (a) presents the initial configuration, while situation (b) presents the configuration
after 3 hours.
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Figure 16.10: Even annihilating the stars and galaxies, the Earth would remain spinning in this inertial frame,
while the plane of oscillation of the pendulum would remain fixed in empty space. (a) Initial configuration.
(b) Configuration after 3 hours.

Although this prediction coincides with the prediction of newtonian mechanics, it is not compatible with
Mach’s ideas. According to Mach, as the Earth would be alone in the universe, it would make no philosophical
sense to say that it would be spinning relative to empty space. Therefore, the plane of oscillation of the
pendulum should remain stationary relative to the ground. This example illustrates once more that general
relativity did not implement Mach’s principle.

The situation becomes really incoherent when considered in the terrestrial frame T . In this case the
Earth is at rest while the set of galaxies rotates around the North-South axis of the Earth with a period of
one day, figure 16.11.

As the terrestrial frame is non-inertial, it is necessary to introduce in this frame not only the fictitious
forces (in particular, the centrifugal force and the Coriolis’s force), but also the gravitational force exerted by
the distant galaxies which are rotating together around the Earth. The equation of motion for a test body
of mass m in general relativity is then given by equation (16.17). The centrifugal force and the axial force
pointing in the direction of ~ΩGR = ~ωU will not affect the precession of the plane of oscillation of Foucault’s
pendulum. Therefore they will not be included in our analysis. The interaction forces acting on the mass m
of the pendulum are the tension ~T of the string and the weight mg~g of the body, such that ~F = ~T +mg~g.
utilizing mg = mi = m the equation of motion reduces to:

~T +m~g − (1− ΦGR)2m~ΩGT × ~vmT = m~amT , (16.22)

where ~vmT and ~amT represent the velocity and acceleration of the mass mg in the terrestrial frame, that is,
the velocity and acceleration relative to the ground.

This equation has the same form of the newtonian equation of motion (11.32). The only difference is
the appearance of −(1 − ΦGR)2m~ΩGT × ~vmT instead of −2mi~ωd × ~v ′ = −2m~ΩGT × ~vmT . The solution of
equation (16.22) will have the same form as the solution of the newtonian equation multiplied by (1−ΦGR).
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Figure 16.11: Foucault’s pendulum in the terrestrial frame T in which the Earth is at rest while the set of
galaxies rotates around once a day around its North-South axis, with an angular velocity ΩGT .

Therefore we will have the term (1 − ΦGR) multiplying equation (11.37) in the particular case in which
α = π/2 rad and sinα = 1, as we are considering the situation in which Foucault’s pendulum is located on
the North pole. The precession of the plane of oscillation of a Foucault’s pendulum located at the North
pole according to general relativity, as calculated in the terrestrial frame T , is then given by:

ΩpT = (1 − ΦGR)ΩGT . (16.23)

In this equation ΩpT represents the angular velocity of the plane of oscillation of the pendulum relative to
the ground.

At the North pole the angular velocity of precession of a Foucault’s pendulum relative to the ground
has a period of one sidereal day, that is, ΩpT = 7.29 × 10−5 rad/s. This value coincides with the angular
velocity of the galaxies around the Earth, that is, ΩGT = 7.29×10−5 rad/s. However, according to equation
(16.14) we have 0.025 < ΦGR < 1.2. Therefore, according to general relativity, equation (16.23) predicts a
precession of the plane of oscillation of the pendulum which is different from what is found experimentally.
This theory is not consistent with the measured data.

And what would happen in the hypothetical situation in which the stars and galaxies were annihilated?
According to general relativity, the force exerted by the galaxies on the pendulum would also disappear.
However, the fictitious Coriolis force would still act on the non-inertial terrestrial frame. Therefore, only in
this hypothetical situation would general relativity predict a precession of the plane of oscillation of Foucault’s
pendulum relative to the ground with a period of one day while it were oscillating on the North pole. Although
this precession would coincide with the prediction of newtonian mechanics, it is not compatible with Mach’s
ideas. In this hypothetical situation in which the Earth were alone in the universe, the plane of oscillation of
the pendulum should remain fixed relative to the ground, as it makes no sense to consider the Earth spinning
relative to anything material. Therefore, all the effects which indicated the rotation of the Earth relative to
distant astronomical bodies should disappear together with the annihilation of these astronomical bodies.
However, this is not the prediction of general relativity. These were not Einstein’s initial expectations with
his own theory.

16.5.4 Newton’s Bucket Experiment

How does Einstein’s general theory of relativity cope with Newton’s key bucket experiment? As before, let
us concentrate on two situations. In the first situation the water and the bucket are at rest relative to the
Earth, while in the second situation both are spinning together with a constant angular velocity ωb relative
to the Earth, figure 16.12.

Let ωE ≈ 7 × 10−5 rad/s represent the diurnal angular velocity of the Earth relative to the fixed stars,
ωs ≈ 2 × 10−7 rad/s the yearly angular velocity of the Earth orbiting around the Sun relative to the
fixed stars with a period of one year, while ωg ≈ 7.9 × 10−16 rad/s represent the angular velocity of the
solar system around the center of our galaxy relative to the frame of distant galaxies with a period of
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(a) (b)
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Figure 16.12: Newton’s bucket experiment. (a) Bucket and water at rest relative to the ground, with a flat
surface of water. (b) Bucket and water spinning together relative to the ground with an angular velocity ωb,
with a concave surface of water.

2.5 × 108 years = 7.9 × 1015 s. As ωb ≫ ωE > ωs ≫ ωg, during this experiment we can treat the Earth
as essentially without rotation relative to the frame of fixed stars also also without rotation relative to the
frame of distant galaxies. That is, for all purposes, the set of stars and the set of galaxies can be considered
as being essentially at rest relative to the ground.

Our goal in this Subsection is to try to understand the origin of the curvature of the water in Newton’s
bucket experiment according to Einstein’s general theory of relativity. In particular, we want to know if this
curvature may be due to the rotation of the water relative to the bucket, if it is due to the rotation of the
water relative to the Earth, or if it is due to the rotation of the water relative to the set of galaxies. That
is, we will analyze if the inertial properties of the water are due to its rotation relative to empty space, as
Newton argued, or if they arise due to the rotation of the water relative to the material bodies around it, as
expected by Einstein according to Mach’s principle.

As already discussed in Subsection 9.4.3, the force exerted on the water molecules by the bucket is the
same in both situations of figure 16.12, as in both configurations the bucket is at rest relative to the water.
This means that, in general relativity, the bucket is not responsible for the concave form of the water surface.
We arrived at the same conclusion in newtonian mechanics.

In general relativity, the force exerted by the Earth on the water in the situation of figure 16.12 (a) is
essentially the newtonian result of the weight of the water pointing vertically downwards. This will not
be appreciably modified in the situation of figure 16.12 (b), as vw ≪ c, where vw represents the velocity
of any water molecule relative to the ground. In other words, as the velocities involved in this problem
are negligible compared with light velocity, relativistic corrections will not be relevant (they will not be of
any importance). This means that also in general relativity the rotation of the water relative to the Earth
cannot be responsible for the concavity of the water. After all, in situations (a) and (b) of figure 16.12 the
gravitational force exerted by the Earth on any water molecule points vertically downwards.

What about the fixed stars and distant galaxies? As we have seen in Section 14.7, Mach believed the
answer of the puzzle lay in the rotation of the water relative to distant matter. But in general relativity,
there are no observable effects in a laboratory from a spherically symmetric agglomeration of matter at rest
around it. In general relativity, the set of fixed stars and the set of distant galaxies exert essentially zero net
force on any molecule of water in the situation of figure 16.12 (a), as they are more or less evenly distributed
around the Earth, equation (16.4). In the situation of figure 16.12 (b), as seen from the Earth, the stars
and galaxies still exert essentially zero net force on any molecule of water. We now have the water moving
relative to the fixed distant bodies. According to equation (16.4), there is no net force exerted by the stars
and galaxies on the water molecules. Consequently the fixed stars and distant galaxies do not exert any force,
such as −m~a, on the water molecules. Therefore, according to this analysis based on general relativity, the
concave form of the water surface in the situation of figure 16.12 (b) is also not due to its rotation relative
to the fixed stars and distant galaxies.

The consequence of all this is that, according to general relativity, the concave form of the water in the
situation of figure 16.12 (b) is not due to the rotation of the water relative to any material body around it
(like the bucket, the Earth, the fixed stars and the distant galaxies). However, this is a real effect, as the
water can even spill out of the bucket if it is spinning very fast. The only explanation offered by general
relativity must be analogous to Newton’s explanation. That is, this concavity must be due to the rotation
of the water relative to something immaterial, that is, relative to something else disconnected from matter.
This immaterial entity might be Newton’s absolute space, which is just another name for empty space. We
might also say that the concavity arises due to the rotation of the water relative to any inertial frame of
reference, provided this frame of reference is completely disconnected from the distant matter in the cosmos.
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That is, provided this inertial frame is without any physical relation to the fixed stars or distant galaxies.
Once more we see that general relativity retains the newtonian concepts of absolute space and absolute
motion (or, if you prefer, the concept of an inertial frame disconnected from distant matter).

To emphasize this point, let us suppose an hypothetical situation in the universal frame U of Section 1.8
in which the set of distant galaxies is at rest. Moreover, let us suppose that a planet like the Earth is also
at rest in this frame. When the water and the bucket are at rest in this planet, the surface of the water
remains flat, as in figure 16.13 (a). When the bucket and the water are spinning together around the axis
of the bucket, relative to the ground, with a constant angular velocity ωb, the surface of the water remains
concave, figure 16.13 (b).

(a) (b)

ωb

U U

Figure 16.13: Universal frame U in which the planet and the set of distant galaxies are at rest. (a) Bucket
and water at rest relative to the ground, with a flat surface of water. (b) Bucket and water spinning together
with a constant angular velocity ωb relative to the ground, with a concave surface of water.

In general relativity there are no observable effects from a spherically symmetric distribution of matter
around the laboratory. Therefore, we can double the number and amount of matter of the galaxies around
the bucket without influencing the concavity of the water surface, figure 16.14 (a). Alternatively, we could
make all the distant galaxies disappear (literally annihilate them from the universe) without the slightest
difference in the shape of the water surface, figure 16.14 (b). This prediction is in complete disagreement
with Mach’s ideas (according to which the concavity of the water was due to its rotation relative to distant
matter). This means that according to Mach’s ideas, if the distant matter disappeared, the concavity of
water should vanish accordingly. Or, if we could double the amount of distant matter, the concavity of water
should double for the same relative rotation (always spinning once a second, for instance). None of this
happens in Einstein’s general theory of relativity.

(a) (b)

ωbωb

U U

Figure 16.14: Bucket and water spinning together with the same angular velocity ωb relative to the ground.
(a) The concavity of the water should not change when compared with the case of figure 16.13 (b), even
when we double the number of galaxies. (b) The concavity of the water surface should not change as well if
it were possible to annihilate with all stars and galaxies around the planet.

But the situation becomes hopeless when analyzed in the frame of reference R which rotates together
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with the bucket and water relative to the ground in the situation of figure 16.13 (b). In this frame R we have
the bucket and water at rest, despite the concave form of the water surface. In newtonian mechanics the
term mi~a describing the motion of the water and responsible for the concavity of the surface in the inertial
universal frame U considered previously becomes zero in this new frame R, as the water is now seen at rest.
That is, as ~amR = ~0, where ~amR represents the acceleration of the mass mi relative to R, we get mi~amR = ~0.
But according to newtonian mechanics in the frame R, a centrifugal force mi~ω×(~ω×~rmR) acts on the water.
This centrifugal force has exactly the same value mi~a had in the previous frame of reference U . We may
also say that the term mi~a has been transformed into the centrifugal force. And this centrifugal force in the
frame R has thus exactly the right value to deform the water surface by the same amount as in the previous
frame of reference U . Hence, a quantitative explanation is still possible in newtonian mechanics not only
in the inertial universal frame U (utilizing mi~a), but also in the rotating non-inertial frame R (utilizing the
centrifugal force).

But in Einstein’s theory of relativity a strange thing happens. Although the fixed stars and distant
galaxies exerted no force on the water in the universal frame U in which the stars and distant galaxies were
seen at rest, the same does not happen in this frame R of the bucket in which the stars and galaxies are seen
rotating together with an angular velocity ~ΩGR given by ~ΩGR = −~ωb, where ~ωb is the angular rotation of the
bucket and water relative to the universal frame U . Now, due to the Thirring’s force, equation (16.5), there
will appear a real gravitational force exerted by the spinning distant matter and acting on the water. This
force did not exist in the universal frame U . The problem is that this new force is not exactly the newtonian
fictitious centrifugal force. In this force exerted by distant matter on the water, equation (16.5), it appears
the new axial term, proportional to m(~ΩGR · ~rmR)~ΩGR, which has no analogue in newtonian theory.

This spurious axial force given by −2ΦGRm(~ΩGR · ~rmR)~ΩGR/5, equation (16.17), will let the surface of
the water with a non-parabolic shape, as illustrated qualitatively in figure 16.15.

Ω

R

Ω

Ω

(a) (b)

Figure 16.15: Reference frame R in which the water and bucket are at rest. In this frame the Earth and
the set of distant galaxies rotate together around the axis of the bucket. (a) The surface of the water is no
longer parabolic. (b) Detail of the water in the bucket.

We saw previously that in general relativity, if we are in an inertial frame of reference U , the concavity
of water will be independent of the amount of distant matter around the bucket. But here we see that if
we are in the non-inertial frame R rotating with the bucket and water, something new will appear. In this
frame the set of galaxies is rotating together around the axis of the bucket. In this frame R, according to
general relativity, the distant matter will exert a real gravitational force on the water given by Thirring’s
expression, equation (16.5). In this frame of reference the galaxies influence the motion of the water and
the shape of its surface. If we double the number of distant galaxies, the concavity of the water will change
accordingly!

This is an undesirable consequence, as the physical situation is always the same, only seen from different
frames of reference. After all, we are always analyzing the same physical situation, although from two
different perspectives or from two different frames of reference. It does not make sense for the galaxies
to exert real gravitational forces on the water in one frame (with possible physical consequences, such as
changing the form or concavity of its surface) and exerting no forces at all in the other frame. In the frame
U we can double the amount of distant galaxies, or we can eliminate all of them, without changing the
concavity of the water. In the frame R, on the other hand, there is an influence exerted by the galaxies:
If we double the number of galaxies, maintaining the relative angular rotation of the water relative to the
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ground, the water may even overflow the bucket!
In newtonian mechanics the situation was much better and more coherent. Whether the distant matter

was at rest or rotating, it never exerted any net force on the water, according to equations (1.15) and (1.21).
We could explain the concavity of the water in the inertial frame U utilizing mi~a, or in the frame R rotating
with the water introducing the centrifugal force mi~ω × (~ω × ~rmR). That is, the inertial force −mi~a of the
universal inertial frame U was transformed into the term mi~ω × (~ω × ~rmR) in the frame R. In both frames
the calculations led to the same concavity of the water surface, without any influence being exerted by the
distant galaxies. Neither the centrifugal force nor the inertial force −mi~a had any relation with the distant
galaxies.

But in general relativity we have a gravitational frame-dependent force. In other words, the gravitational
force between material bodies (between the water and distant galaxies here) depends on the state of motion
of the observer. When the distant galaxies are seen at rest relative to U and the water rotates relative to the
set of galaxies, they do not influence the concavity of the water surface, so that even when they disappear or
are doubled in number, the concavity will remain the same. In the frame R which is at rest relative to the
bucket and water something completely different happens. In this frame the set of distant galaxies is seen
rotating as a whole around the axis of the bucket. Then, according to Thirring’s force, equation (16.5), there
will be a real gravitational influence exerted by the distant galaxies and acting on the water. This means
that in this frame R the degree of concavity (whether or not the water overflows the bucket) is a function
of the mass of distant galaxies! Moreover, the surface of the water is no longer parabolic in this frame, as
qualitatively represented in figure 16.15. These results are certainly undesirable in any physical theory. It
is also undesirable that the force exerted by a body B on another body A should depend on the state of
motion of the observer.

The same thing will happen according to general relativity in Newton’s two globes experiment. In the
frame of distant galaxies the tension in the cord is independent of the number of galaxies, while in the frame
which rotates with the globes, the tension in the cord will be a function of the mass of distant galaxies due
to Thirring’s force.

This simple discussion shows that Einstein’s general theory of relativity does not reduce to newtonian
theory in the limit of low velocities (v ≪ c), contrary to what is stated in the textbooks. After all, when
considering Newton’s bucket experiment in the frame of the bucket, there is a gravitational force acting on
the water and being exerted by the distant galaxies rotating around the axis of the bucket, according to
general relativity. According to newtonian theory, on the other hand, there is no net force acting on the
water and being exerted by the set of distant galaxies rotating around it. It might be thought that this force
predicted by general relativity is negligible. But this is not the case. When we integrate Thirring’s force
over the whole known universe we obtain equation (16.12). The terms of this expression have the same order
of magnitude as the Coriolis and centrifugal forces of classical mechanics, equation (11.41). But the form
and numerical values of this integrated Thirring’s force are different from the form and numerical values
of the corresponding terms of classical mechanics, as seen in equation (16.17) when comparing it with the
analogous equation of motion of classical mechanics, equation (16.18).

Even considering only local masses, disregarding the set of distant galaxies, it is possible to show that
general relativity does not reduce to newtonian mechanics in the limit of low velocities. Suppose a spherical
shell of 1 meter radius spinning relative to the ground around an axis passing through the center of the sphere
with an angular velocity of 1 radian per second. Obviously all tangential velocities here of the elements of
the shell are small compared with light velocity. A material point inside this spinning shell will not suffer
any force according to Newton. Thirring’s expression given by equation (16.12), on the other hand, predicts
a force which depends on the mass of the spherical shell. The greater the mass, the greater will be the force.
Nothing of this happens in newtonian mechanics. This simple example shows that these two theories are
incompatible with one another even in the limit of low velocities.

This analysis shows clearly that, in general relativity, kinematically equivalent situations are not dy-
namically equivalent. Mach, on the other hand, believed it would be possible to formulate a mechanics in
which this equivalence would be accomplished. Once more we see that Einstein’s theory does not implement
Mach’s ideas.

The discussion of this Subsection shows that general relativity cannot cope with Newton’s bucket ex-
periment in all frames of reference. Classical newtonian mechanics, on the other hand, could explain this
experiment in all frames of reference. In order to obtain this explanation we utilize the term mi~a in inertial
frames (in other words, we utilize the inertial force −mi~a acting on the water molecules). In the non-inertial
frames of reference, on the other hand, we utilize the centrifugal force −m~ω× (~ω×~r) in order to explain the
concavity of the water. Neither of these forces (the inertial force −mi~a or the centrifugal force) is related to
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distant matter, which shows the coherence of the classical theory. Einstein’s theory, on the other hand, does
not present the same coherence due to its frame dependent forces. Moreover, the predictions of general rela-
tivity as regards the figure of the Earth and about the shape of the water surface in the bucket experiment,
illustrated by figures 16.7 (a) and 16.15, do not agree with the observational data.

16.5.5 Vessel Partially Filled with Liquid Accelerated Relative to the Ground

In Section 7.7 we considered from the point of view of newtonian mechanics a vessel, partially filled with
liquid, having a constant and linear acceleration ~a relative to the ground, figure 16.16 (a).

(a) (b)

a a

a a

Figure 16.16: (a) Inclined fluid due to the acceleration of the vessel relative to empty space. (b) According
to general relativity, the fluid will remain inclined even if all stars and galaxies around the vessel were
annihilated.

According to both theories, newtonian mechanics and Einstein’s general theory of relativity, the free
surface of the liquid should be inclined to the horizontal by an angle α given by:

tanα =
a

g
, (16.24)

where g = GMgE/R
2
E = 9.8 m/s2 is the gravitational force per unit gravitational mass acting on the liquid,

while a = |~a| is the magnitude of the acceleration of the liquid relative to the ground.
According to Einstein’s general theory of relativity, the set of stars and galaxies around the solar system

does not exert any net gravitational force on the molecules of the liquid, equation (16.4). Therefore, if it
were possible to annihilate all stars and galaxies around the Earth, the liquid would remain inclined relative
to the horizontal whenever the vessel were accelerated relative to empty free space, as represented in figure
16.16 (b).

This conclusion was expressed by Mashhoon as follows:47

The physical origin of inertial forces is investigated within the framework of general relativity. It
is shown that the translational inertial force cannot be caused by the gravitational influence of
distant masses.

Several authors have considered, according to Einstein’s general theory of relativity, a spherical material
shell which is linearly accelerated relative to a frame of reference. They considered, in particular, the
force exerted by this spherical shell on a test particle inside the shell. They also considered if there is an
acceleration induced in the test particle by the accelerated shell. Later on some of these authors extended
their calculation by considering the set of stars and galaxies having a common linear acceleration relative
to a frame of reference. They tried to obtain if this set of cosmic bodies, accelerated relative to a frame of
reference, would exert a force on a test particle which were not initially accelerated relative to this frame of
reference. In other words, would the accelerated stars and galaxies induce an acceleration in the test particle?
However, up to now there is no consensus on the correct answers to these questions in general relativity.

47[Mas88].
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There has been several different answers to these questions, depending on how the author interprets general
theory of relativity and depending on how he performs these calculations (which depends on the energy of
the source which is accelerating the stars and galaxies, if we are in a region of strong or weak field, etc.).
The references related to these different treatments, together with the divergent and contradictory results
obtained by different authors, can be found in the papers by Einstein, Reinhardt, Mashhoon, Hehl, Theiss,
Grøn, Eriksen, Pfister, Frauendiener, Hengge, Essen, and in the references quoted by these authors.48

In any event the majority of these authors consider that the correct calculation leads to the conclusion
that when the set of galaxies around the Milky Way is accelerated as a whole relative to empty free space
(that is, relative to Newton’s absolute space), they induce no acceleration on test particles located in the
solar system. This conclusion is illustrate in figure 16.17. In situation (a) we have the usual experiment in
which a vessel partially filled with liquid has a linear acceleration ~a relative to a frame of reference S which
is at rest relative to the ground and also relative to the set of stars and galaxies. The free surface of the
liquid is inclined to the horizontal by an angle α given by equation (16.24).

(a) (b)
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Figure 16.17: (a) Inclined fluid when the vessel has a linear acceleration ~a relative to empty free space. (b)
Horizontal fluid when the vessel is at rest relative to empty free space, while the Earth and the set of stars
and galaxies move together with an acceleration −~a relative to free space.

Consider now the opposite situation in which the vessel is at rest relative to a frame of reference S′, while
the Earth, the set of stars and the set of galaxies all have the same acceleration −~a relative to frame S′.
What will be the shape of the free surface of liquid? According to the calculations of most modern authors
dealing with Einstein’s general theory of relativity, the liquid should remain horizontal.

Mashhoon, Hehl and Theiss, for instance, discussed a linearly accelerated bucket in the following terms:49

Newton considered the introduction of the abstract notion of absolute space necessary for the
mathematical formulation of the laws of mechanics. On the contrary, Mach considered all motion
to be relative. In rejecting the notion of absolute space Mach had predecessors in Leibniz and
Berkeley, among others. If only relative motion has significance, the inertial frames must be
determined by matter.

To give these vague ideas a more definite formulation, one may extend the principle of relativity to
accelerated motion and postulate that inertial forces are due to the gravitational field generated
by all matter in the universe. According to Einstein’s relativistic theory of gravitation (which
has observational support for macroscopic phenomena), however, these notions must be rejected
since they imply the global equivalence of inertial and certain gravitational forces in contrast
to Einstein’s principle of equivalence which is purely local. To illustrate this point, consider a
variant of Newton’s bucket experiment in which the bucket is uniformly accelerated. Other than
forces of electromagnetic origin (such as viscosity), the fluid in the bucket is also subject to a
uniform inertial force field (relative to the bucket). A contradiction arises, however, if the bucket
is now treated as freely falling in the gravitational field generated by all the matter in the universe
in accelerated motion, since according to Einstein’s theory the only external gravitational forces
that affect the motion of the fluid relative to the bucket are tidal forces.

48[Ein12] and [Ein96], [Ein58, p. 125], [Ein80, p. 98], [Rei73], [MHT84], [Mas88], [GE89], [PFH05], [Pfi07] and [Ess13].
49[MHT84, p. 742].



Ch. 16: Einstein’s General Theory of Relativity 309

Mashhoon presented this conclusion as follows:50

In summary, relativity of arbitrary motion is not contained in the general theory of relativity
which is supported by the experimental data available at present. Crudely, when a bucket of
water is accelerated with respect to absolute spacetime, the water inside the bucket is free of
the acceleration so that its motion relative to the bucket reflects the existence of the inertial
force. On the other hand, when the rest of the matter in the universe is accelerated relative to
the bucket of water the resulting gravitational field acts both on the water and the container
so that the relative motion is due to the difference of gravitational force. Hence the origin of
inertial forces in general relativity must be essentially the same as in Newton’s theory, namely,
acceleration with respect to absolute spacetime.

Pfister, Frauendiener and Hengge concluded as follows:51

We try to carry over, as closely as possible, the well-known results for rotational dragging
(Thirring, Brill and Cohen) to dragging due to linearly accelerated masses. To this end, a
spherical, charged mass shell is linearly accelerated by a (weak) external, axisymmetric and dipo-
lar charge distribution. It is shown that the interior of this (Reissner-Nordström-like) shell stays
flat.

There are other problems with Einstein’s general theory of relativity: e.g. the inertial mass is not well
defined and it does not comply with the principle of the conservation of energy.52 We will not go into further
details here.

16.6 General Comments

In conclusion we may say that there are many problems with Einstein’s special and general theories of
relativity. We stress some of them here.

1) They are based on Lorentz’s formulation of Maxwell’s electrodynamics, which suffers from asymmetries
pointed out by Einstein and many others. These asymmetries do not appear in the observed phenomena
of induction nor in other electromagnetic phenomena. There is another theory of electrodynamics which
naturally avoids all these asymmetries, namely, Weber’s electrodynamics.53 In order to explain inertia,
Weber’s law is a better starting point than Maxwell-Lorentz’s force, equation (15.14).

2) Einstein’s special theory of relativity maintains, as in classical mechanics, the concepts of absolute
space and of inertial frames disconnected from distant matter. Moreover, it introduces another absolute
entity, namely, the velocity of light in vacuum. Nothing in physics leads to the conclusion that light velocity
should be constant irrespective of the motion of the observer or detector. All velocities known to us are
constant relative to the source (like bullets) or constant relative to the medium (like sound velocity which
is constant relative to air, irrespective of the motion of the source). But all of them vary according to the
motion of the observer or detector. To assert the opposite, as Einstein did, can only lead to the necessity of
introducing strange and unnecessary concepts in physics such as time dilation, contraction of lengths, proper
times etc. Einstein’s theory maintained the concepts of absolute space and inertial frames disconnected from
distant matter and introduced the absolute character of light velocity in vacuum. To avoid confusion with
Einstein’s theories of relativity we adopt the name “Relational Mechanics” for the theory developed here.
Our work is based only on relative concepts, without absolute space, absolute time, inertial mass, inertial
frames of reference or absolute light velocity.

3) Einstein began to interpret the velocity in Maxwell-Lorentz’s force, equation (15.14), as the velocity of
the test charge relative to the observer. In this way he introduced a great confusion in the whole of physics,
creating innumerable paradoxes by changing frames of reference etc. Other authors had given different
interpretations to this velocity. To Maxwell it was the velocity of the charge relative to the magnetic field.
To Thomson and Heaviside it was the velocity of the charge relative to the dielectric medium in which the
charge was moving. To Lorentz it was the velocity of the charge relative to a very specific medium, namely,
the ether, which he considered at rest relative to the frame of distant stars. There was no experiment or

50[Mas88].
51[PFH05].
52[BR95].
53[Wes91], [Ass92b], [Ass94] and [Ass95b].
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physical phenomenon suggesting to introduce forces depending on the state of motion of the body relative
to the observer.

4) Einstein correctly pointed out that the best way to implement Mach’s principle was to utilize only the
distance between interacting bodies, their relative velocities and their relative accelerations. Unfortunately
he himself did not follow this route because he thought it was impractical. He was mistaken in this conclusion,
as we show in this book. His false conclusion can only be due to the fact that he did not know Weber’s
electrodynamics. He also did not know the applications of Weber’s force to gravitation, although this had
been suggested since the XIXth century.

5) He correctly pointed out four features which should be implemented in any model designed to in-
corporate Mach’s principle, as seen in Section 16.3. However, his own general theory of relativity did not
completely reproduce these four elements, as he himself concluded and as has been shown by several authors
since then. As we will see in this book, these four consequences follow directly and quantitatively from
relational mechanics based on the works of Mach and Weber.

6) The expressions similar to the centrifugal and Coriolis forces which appear in general relativity with
Thirring’s force are not as expected. The numerical coefficients are not exactly equivalent to the terms
which we know to exist in non-inertial frames of reference of classical mechanics, as can be seen comparing
equations (16.17) and (16.18). Moreover, there appear spurious terms such as the axial terms given by
−2ΦGRm(~ΩGR · ~rmR)~ΩGR/5, equation (16.12). It has not been possible to get rid of these spurious terms
of Einstein’s theory. On the other hand, it is known that these axial terms do not exist. In other words, no
one has ever found any effect or force in non-inertial frames which pointed in the direction of ~Ω. That is, no
observed effect has ever being found due to this term, although it has the same order of magnitude as the
centrifugal force which flattens the Earth (as considered in the terrestrial frame of reference), which presses
the water against the sides of the bucket (as considered in the bucket frame of reference), or the Coriolis
force which changes the plane of oscillation of Foucault’s pendulum relative to the ground (considered in the
terrestrial frame of reference).

7) As seen in Subsections 16.5.2 and 16.5.4, general relativity cannot explain the flattening of the Earth
and Newton’s bucket experiment in all frames of reference, contrary to what happens in classical mechanics.

8) The only frame-dependent forces in newtonian mechanics were the inertial forces (like the term −mi~a in
Newton’s second law of motion, the centrifugal force, Coriolis’s force etc.). According to Newton, these forces
had no relation to the fixed stars or distant matter in the universe. For this reason it was understandable that
they had this odd property. All other forces between material bodies were relational forces, that is, depending
only on intrinsic quantities of the system, such as the distance between material bodies, the radial velocity
between them, or the radial acceleration between them. Examples include: Newton’s law of gravitation,
the elastic force of a spring, the electrostatic force, contact forces, frictional forces between solid surfaces in
contact, forces of friction in a fluid which depend on the relative velocity between the test body and the
surrounding medium, etc. Einstein changed all this by introducing frame-dependent electromagnetic forces
with his new interpretation of the velocity in Maxwell-Lorentz’s force, equation (15.14). He also introduced
a frame-dependent gravitational force with his general theory of relativity, as we saw in Subsection 16.5.4
when discussing Newton’s bucket experiment with his theory.

We agree with O’Rahilly as regards the several problems and confusions which Einstein’s theories brought
to physics.54

In our view, several theoretic concepts of modern physics have the same role as the epicycles in the
old ptolemaic theory: Length contraction, time dilation, Lorentz’s invariance, Lorentz’s transformations,
covariant laws, invariant laws, Minkowski’s metric, Minkowski’s spacetime, four-dimensional space-time,
energy-momentum tensor, Riemannian geometry applied to physics, virtual photon, Schwarzschild’s line
element, tensorial algebras in four-dimensional spaces, quadrivectors, metric tensor gµν , Christoffel’s symbols,
string theory, super strings, curvature of space, dark matter, dark energy, wormholes, etc. The relational
mechanics presented in this book is totally against Einstein’s theories and eliminates all these epicycles.

16.7 Mach Rejected Einstein’s Theories of Relativity

Einstein was greatly influenced by Mach’s ideas, as he said several times.55 Despite this fact, Mach himself
rejected Einstein’s theories of relativity. In the preface of his last book, The Principles of Physical Optics

54[O’R65, Volume 2, Chapter XIII, Section 5, pp. 662-71].
55[Ein79, p. 18] and [Ein82, p. 29].
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— An Historical and Philosophical Treatment, Mach wrote (our emphasis):56

On account of my old age and illness I have decided, yielding to pressure from my publisher,
but contrary to my usual practice, to hand over this part of the book to be printed,57 while
radiation, the decline of the emission theory of light, Maxwell’s theory, together with relativity,
will be briefly dealt with in a subsequent part. The questions and doubts arising from the study
of these chapters formed the subject of tedious researches undertaken conjointly with my son,
who has been my colleague for many years. It would have been desirable for the collaborated
second part to have been published almost immediately, but I am compelled, in what may be my
last opportunity, to cancel my contemplation of the relativity theory.

I gather from the publications which have reached me, and especially from my correspondence,
that I am gradually becoming regarded as the forerunner of relativity. I am able even now to
picture approximately what new expositions and interpretations many of the ideas expressed in
my book on Mechanics will receive in the future from the point of view of relativity.

It was to be expected that philosophers and physicists should carry on a crusade against me,
for, as I have repeatedly observed, I was merely an unprejudiced rambler, endowed with original
ideas, in varied fields of knowledge. I must, however, as assuredly disclaim to be a forerunner of
the relativists as I withhold from the atomistic belief of the present day.58

The reason why, and the extent to which, I discredit the present-day relativity theory, which I find
to be growing more and more dogmatical, together with the particular reasons which have led me
to such a view—the considerations based on, the physiology of the senses, the theoretical ideas,
and above all the conceptions resulting from my experiments—must remain to be treated in the
sequel.

The ever-increasing amount of thought devoted to the study of relativity will not, indeed, be lost;
it has already been both fruitful and of permanent value to mathematics. Will it, however, be
able to maintain its position in the physical conception of the universe of some future period as
the theory which has to find a place in a universe enlarged by a multitude of new ideas? Will it
prove to be more than a transitory inspiration in the history of science?

Additional proofs that Mach opposed Einstein’s theories of relativity can be found in Mach’s biography
by Blackmore,59 and in his important paper “Ernst Mach leaves ‘The Church of Physics’.”60 We are also
totally against Einstein’s special and general theories of relativity by the reasons presented in Chapters 15
and 16. Instead of Einstein’s theories, we propose Relational Mechanics as developed in the next Chapters.

56[Mac26, pp. vii-viii].
57The printing was commenced in the summer of 1916, but at the wish of the author there were further experiments to be

tried and completed. The delay in the publication of the present book is due to the long absence of the person to whom this
task was entrusted, as a result of his mobilization during the same summer, and to a series of adverse circumstances resulting
from the conditions of the times.

58“Scientia,” Vol. 7, 4th year (1910), No. 14.
59[Bla72].
60[Bla89].
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Chapter 17

Relational Mechanics

17.1 Basic Concepts and Postulates

We now present a new mechanics to replace the newtonian and einsteinian mechanics. We call it “Relational
Mechanics.” We begin with the complete formulation of the theory, and then discuss its applications. In
Chapter 25 we outline the history of relational mechanics, highlighting the main developments and putting
everything in perspective.

Mechanics is the branch of knowledge which deals with the equilibrium and motion of bodies. By relational
mechanics we understand a formulation of mechanics only in terms of relational quantities. This expression
“relational” refers to the following intrinsic magnitudes of a system of interacting bodies: the distances
r between each pair of bodies, the radial relative velocities between them, dr/dt, and the radial relative
accelerations between them, d2r/dt2. They have the same values in all frames of reference, as discussed in
Appendix A. In relational mechanics we do not utilize the newtonian concepts of absolute space, absolute
time and absolute motion. In relational mechanics we also do not utilize quantities which depend on the
observer, such as the velocity ~v in Maxwell-Lorentz’s force, equation (15.14), as interpreted by Einstein.
This new mechanics is not denominated “relative mechanics,” nor “relativistic mechanics,” in order to avoid
confusion with Einstein’s special and general theories of relativity.

We begin presenting some basic (or primitive) concepts necessary to define more complex ones. We do
not define these basic concepts, since we wish to avoid vicious circles. The basic or primitive concepts which
we will need are:

1. Gravitational mass.

2. Electric charge.

3. Distance between material bodies.

4. Time between physical events.

5. Force or interaction between material bodies.

When we talk of gravitational mass, we mean a body having the ability of interacting with another body
through what is usually called a gravitational force. Likewise, when we talk of electric charge, we mean an
electrified body having the ability of interacting with another electrified body through what is usually called
an electric force.

It may be possible to deduce the gravitational force from an electromagnetic force, as a residual force
between oscillating electric dipoles.1 If this is the case, gravitational mass will not be a basic concept. As
this possibility is not yet proved, we will continue treating gravitational mass as a primitive concept.

In relational mechanics we do not need to introduce the concepts of inertia, inertial mass, inertial frames
of reference, or the concepts of absolute space, absolute time and absolute motion. These concepts will only
appear when we compare relational mechanics with newtonian mechanics.

We now present the three postulates of relational mechanics:

• (I) Force is a vectorial quantity describing the interaction between material bodies.

1[Ass92c] and [Ass95d].
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• (II) The force that a point particle A exerts on a point particle B is equal and opposite to the force
that B exerts on A, and is directed along the straight line connecting A to B.

• (III) The sum of all forces of any nature (gravitational, electric, magnetic, elastic, chemical, frictional,
nuclear, ...) acting on any body is always zero in all frames of reference.

The first postulate qualifies the nature of a force (stating that it is a vectorial quantity, with magnitude
and direction). With this postulate we are also assuming the law of the parallelogram of forces (that they
add like vectors). Observe only that we are not yet talking about accelerations, only forces. This postulate
also clarifies that force is an interaction between material bodies. In relational mechanics a force does not
describe, for instance, an interaction of a body with “space,” the interaction of a body with the observer,
of a body with the frame of reference, nor the interaction of a body with a “field.” We will not refer, for
instance, to a gravitational/electric/magnetic field acting on a body.

The second postulate is similar to Newton’s action and reaction law. Let ~FAB represent the force exerted
by body A on body B, while the force exerted by B on A is represented by ~FBA. Let r̂AB represent the unit
vector pointing from B to A. The second postulate of relational mechanics can be expressed mathematically
by two equations, namely:

~FAB = − ~FBA , (17.1)

and

~FAB points along r̂AB . (17.2)

In addition, we are specifying that all forces between point particles, no matter what their origin (elec-
trical, elastic, gravitational, elastic, chemical, frictional, nuclear, ...), are directed along the straight line
connecting these bodies.

It is important to emphasize here the notion of “point” particles. The reason is simple and can be
illustrated as follows: Consider an electric dipole made up of two point charges q1 > 0 and −q1, separated by
a distance d1. We choose a frame of reference O with origin at the center of this dipole, with z axis along the
line connecting q1 to −q1, pointing from −q1 to q1. The electric dipole moment ~p1 is defined by ~p1 ≡ q1d1ẑ.
Consider another point charge q2 > 0 located along the x axis, at a distance r2 from the origin. We will
consider all charges at rest relative to one another and also at rest in this frame, so that this is a simple
electrostatic problem. The force exerted by q1 on q2 is along the straight line connecting them. The force
exerted by −q1 on q2 is along the straight line connecting these two charges. Adding these two expressions
yields the resultant force exerted by the dipole ~p1 on q2. This force is parallel to the z axis, as shown in
figure 17.1.
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Figure 17.1: Point charge q2 interacting with an electric dipole ~p1. The force ~F represents the net force
acting on q2.

Even when d1 ≪ r2, the force between the dipole and q2 is not along the x axis, which might be considered
the straight line connecting the “point” dipole (its center) to a far away q2. The reason for this behavior is
that even in this case in which d1 ≪ r2, the dipole is not really a point, as there is a small distance between
its two charges.

Neglecting cases like this, it is often possible to replace two large bodies A and B by point particles when
their dimensions (average or maximal diameters) are much smaller than the distance between their centers.

The third postulate is the main departure from newtonian mechanics. We may call it the principle of
dynamical equilibrium. It states that the sum of all forces on a body is always zero, even when the test body
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is in motion and accelerated relative to another body, relative to the ground, relative to ourselves or relative
to any other frame of reference. Later on we derive from relational mechanics an equation of motion which
is similar to Newton’s second law of motion, equation (1.5).

The advantage of this third postulate compared to Newton’s second law of motion given by equations
(1.3), (1.4) or (1.5), is that we do not introduce the concepts of inertia, of inertial mass, of absolute space,
nor the concept of an inertial frame of reference. In newtonian mechanics, the sum of all forces acting on a
body was equal to the time variation of linear momentum (inertial mass of the test body times its velocity
relative to absolute space or relative to an inertial frame of reference), equation (1.3). For constant inertial
mass, this sum of all forces was equal to the inertial mass of the test body times its acceleration relative to
absolute space or relative to an inertial frame of reference, equations (1.4) and (1.5). This means that these
concepts had to be introduced and clarified beforehand, and were an essential part of Newton’s second law of
motion. The third postulate of relational mechanics does not necessitate the introduction of these concepts
and this is his main advantage compared to classical mechanics. Moreover, this third postulate of relational
mechanics is valid in all frames of reference. Newton’s second law of motion in the form of equations (1.3),
(1.4) or (1.5), on the other hand, was valid only in inertial frames of reference. In non-inertial frames of
reference it was necessary to introduce fictitious forces in newtonian mechanics, as seen in Chapter 11.

Suppose a person on the Earth’s surface throws a rock upwards in the presence of a strong wind affecting
the rock’s motion (influencing its direction of motion and velocity relative to the ground). According to
relational mechanics, the person will apply the postulate that the resultant force acting on the rock is always
zero, even when the rock is rising, falling, stopping at the floor and staying there at rest. In the frame of the
rock (a frame that is always at rest relative to the rock) we should also apply the postulate that the resultant
force acting on the rock is always zero. In any other arbitrary frame of reference (like in a merry-go-round)
which is in motion relative to the ground and relative to the rock, the postulate that the resultant force
acting on the rock is zero at all times should also be applied.

The word “always” in the third postulate of relational mechanics has been utilized to indicate that, at
any moment, the net force acting on an arbitrary body will be zero. That is, the sum of forces acting on
any body will be zero for all time, in all instants, no matter how the position, velocity and acceleration of
the test body is changing relative to all other bodies in the universe.

Let ~Fqk represent the force exerted by body q on body k. The third postulate of relational mechanics,
as applied to body k, can be mathematically expressed as follows:

∑

all q

q 6=k

~Fqk = ~0 . (17.3)

This postulate will be applied in this form in all frames of reference. For example, in the case of the
rock being discussed here, it is possible to apply equation (17.3) in the terrestrial frame, in the reference
frame which is always fixed with the rock, in another frame which is accelerated relative to the ground, in
the frame of the fixed stars, in the frame of distant galaxies, or in any other frame. We will see that in all
these frames it will be possible to obtain the same motion of the rock relative to the ground.

When we say that the sum of all forces on any body is always zero in all frames of reference, we arrive
at another result, which is in agreement with Mach’s ideas. That is, we can multiply all forces by the
same constant (no matter the dimensional units of this constant) without affecting the results. In relational
mechanics the only thing that will matter is the ratio of any two forces. We can never know the absolute
value of any force, only how much one force is larger or smaller than another force. The dimensions or units
of the forces also remain unspecified, provided all forces have the same unit. This fact is one example of the
principle of physical proportions.2

If we are working with energies instead of forces, these three postulates might be replaced by one single
postulate, namely:

The sum of all interaction energies (gravitational, electric, magnetic, elastic, chemical, frictional,
nuclear, ...) between all pairs of particles in the universe is always zero in all frames of reference.

Let Upq represent the interaction energy between body p and body q. When there are N bodies interacting
with one another, then this postulate may be expressed mathematically as follows:

2[Ass01], [Ass03a], [Ass04] and [Ass11b] with German translation in [Ass13a].
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1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq = 0 . (17.4)

Once more, only the ratio of any two energies will be of any relevance. The absolute value of any specific
energy will be irrelevant in relational mechanics. We can only know how much one energy is larger or smaller
than another. This postulate may be called the principle of the conservation of energy or the postulate of
the conservation of energy.

In Section 4.4, equation (4.31), we saw that the postulate of the conservation of energy of classical me-
chanics maintained that the total energy of a system (that is, the sum of all potential energies of interaction,
together with the sum of the kinetic energies of all the particles) was constant in time for conservative sys-
tems. The advantage of the fundamental postulate of relational mechanics, equation (17.4), compared to the
analogous postulate of classical mechanics, equation (4.31), is that in relational mechanics it is not necessary
to introduce the concept of kinetic energy of a particle given by miv

2/2. The classical kinetic energy has
embedded in it the concept of inertial mass mi and that of velocity ~v relative to absolute space or relative
to an inertial frame of reference. Later on we will derive in relational mechanics, beginning with equation
(17.4), an energy of interaction similar to the kinetic energy which appeared in equation (4.31), with a new
interpretation of the meaning of this velocity ~v. Moreover, we will also deduce a postulate of the conservation
of energy analogous to equation (4.31) of classical mechanics.

The word “always” which appears in the postulate of the conservation of energy of relational mechanics
has been utilized to indicate that the sum of all interaction energies in a system of particles is zero at all
times. This sum will be always zero, no matter the changes which may take place between the distances,
velocities and accelerations of any body of the system relative to any other body of the system.

Between 1989 and 1999 we had utilized a slightly different formulation of this postulate, namely:3 The
sum of all interaction energies (gravitational, electromagnetic, elastic, nuclear, etc.) between any body and
all other bodies in the universe is always zero in all frames of reference. However, this old formulation seems
no longer appropriate to us as it cannot be applied to all situations. The formulation presented in this book
is more appropriate and general, it can be applied to all situations.

In the study of the rotation of bodies relative to the universal frame of reference U of distant galaxies, it
is also useful the following axiom or postulate:

• The sum of all torques of any nature (gravitational, electric, magnetic, elastic, chemical, frictional,
nuclear, ...) acting on any body is always zero in all frames of reference.

17.2 Equation of Motion in Relational Mechanics

In this Section we show how to obtain the equation describing the motion of a particle in relational mechanics.
This path leads to a quantitative implementation of Mach’s principle based on the postulates of relational
mechanics and based also on Weber’s force.

In order to obtain the equation of motion of a test body, we need to include its interaction with all other
bodies in the universe. We divide all bodies of the universe in two groups, (A) and (B), defined as follows:

(A) The first group is composed by the test body and by local bodies with which the test body is
interacting, together with the anisotropic distributions of bodies around the test body. Consider, for instance,
the test body as being a small body in the laboratory. As regards the local bodies interacting with it, they
can include the Earth, magnets, electrified bodies, springs, fluids or surfaces exerting resistive or frictional
forces, electric currents etc. As regards the anisotropic distributions of bodies around the test body, they can
include the Sun, Moon and planets, the matter around the center of the Milky Way etc. We will suppose that
this group (A) is composed of N bodies, namely: the test body, the other local bodies and the anisotropic
distributions of bodies around the test body.

(B) The second group is composed by the isotropic distributions of matter around the test body. By
isotropic distributions we mean bodies spread with spherical symmetry around the test body. The test body
will be inside these distributions of mass with spherical symmetry, although it does not need to be at the
center of these spherical distributions.

The energy of the N bodies of group (A) interacting with one another will be represented by Uaa, being
given by:

3[Ass89a], [Ass92f], [Ass98, p. 203] and [Ass99a, p. 166].
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Uaa ≡ 1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq , (17.5)

where Upq represents the energy of body p interacting with body q. In this equation body p and body q
belong to group (A). The factor 1/2 appearing in this expression is to guarantee that the interaction energy
between each pair of particles is counted only once. That is, as Upq = Uqp, we have (Upq + Uqp)/2 = Upq.
For example, if there are 3 charges interacting with one another, being the test body one of these charges,
the energy Uaa will be given by U12 + U13 + U23. The subscript aa in Uaa comes from the initial letters of
the expression “anisotropic-anisotropic.” That is, Uaa represents the interaction energy of the bodies which
are distributed anisotropically in space.

The energy of interaction of bodies belonging to group (B) composing the isotropic distributions of
matter around the test body will be represented by Uii. The subscript ii comes from the initial letters of
the expression “isotropic-isotropic.” That is, it contains the sum of the energy Upq of an arbitrary particle
p belonging to these isotropic distributions interacting with another arbitrary particle q of these isotropic
distributions. This energy Uii can be written as:

Uii =
1

2

∑

all p

∑

all q

q 6=p

Upq , (17.6)

in which p and q belong to group (B).
There is also the energy of the N bodies of group (A) interacting with the isotropic distributions of

matter around these local bodies. This energy will be represented by Uai. The subscript ai comes from the
initial letters of the expression “anisotropic-isotropic.” The energy of each particle p of group (A) interacting
with all particles q of group (B), represented by Up

i , can be written as:

Up
i =

∑

all q

Upq . (17.7)

This energy will be called inertial energy, being also represented simply by Ui, in which the subscript i comes
from the word “inertial.” The meaning of this expression in relational mechanics will be discussed in Section
19.8.

Utilizing equation (17.7) we obtain that energy Uai of all N bodies of group (A) interacting with all
anisotropic distributions of matter around the N bodies can be written as:

Uai =

N
∑

p=1

Up
i . (17.8)

As seen in Section 17.1, the fundamental postulate of relational mechanics in terms of interaction energies
states that “the sum of all interaction energies between all pairs of particles in the universe is always zero
in all frames of reference.” With this division of bodies between a part (A) composed of N local bodies
and anisotropic distributions of matter, and another part (B) composed of isotropic distributions of matter
around the local bodies, equation (17.4) can be written as:

Uaa + Uii + Uai =
1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq + Uii +

N
∑

p=1

Up
i = 0 . (17.9)

As regards the forces of interaction, the fundamental postulate of relational mechanics was presented in
Section 17.1. It states that the sum of all forces of any nature acting on any body k is always zero in all
frames of reference, equation (17.3). Let us suppose that k is a body belonging to group (A). With this
division of bodies in two groups, (A) and (B), equation (17.3) can be written as:

∑

all q

q 6=k

~Fqk ≡ ~Fak + ~Fik ≡ ~Fa + ~Fi =

N
∑

p=1

p 6=k

~Fpk + ~Fi = ~0 . (17.10)

In this equation ~Fak ≡ ~Fa represents the net force acting on the test body k with gravitational mass mgk

being exerted by all the N − 1 particles belonging to group (A), while ~Fpk represents the force exerted by
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body p of group (A) and acting on the test body k which also belongs to group (A). The subscript a in the
force ~Fak ≡ ~Fa comes from the word “anisotropic.” In equation (17.10) the symbol ~Fik ≡ ~Fi represents the
net force acting on the test body k and exerted by all bodies of group (B). It will be called inertial force. The
subscript i refers not only to the word “isotropic,” but also to the initial letter of the word “inertial.” The
meaning of this expression in newtonian mechanics and in relational mechanics will be discussed in Section
19.8.

Equations (17.9) and (17.10) are the equations of motion of relational mechanics. In order to utilize these
equations we need to obtain, in particular, the values of Uai and ~Fi.

There is a great distance between the galaxies. They seem to be on average electrically neutral. They
also have magnetic properties of negligible magnitude compared with the magnetic properties of the Earth
and of the solar system. Therefore, the distant galaxies can only interact significantly with any test body
belonging, for instance, to the solar system, by gravitational forces. Then, in order to obtain Uai, we need
to consider the energy of gravitational interaction between local bodies and a spherical shell (representing a
spherical shell composed of galaxies). This energy of a local body interacting with a spherical shell composed
of galaxies is then integrated over the whole known universe. Likewise, in order to obtain the gravitational
force ~Fi exerted by the isotropic distribution of matter and acting on a test body of gravitational mass
mgk, we perform two calculations. We first calculate the force exerted by a spherical shell composed of
galaxies and acting on the test body k located inside the shell (not necessarily at its center). After this
first calculation, it will be necessary to integrate over the whole known universe this force exerted by the
spherical shell acting on mgk.

In the next Sections we consider these integrations in several frames of reference.

17.3 Electromagnetic and Gravitational Forces

The postulates of Section 17.1 refer only to the forces between interacting bodies. Until now the concepts
of gravitational mass, electric charge and distance between material bodies have not appeared. In order to
implement these postulates and obtain the equations of motion following Mach’s principle, we need some
expressions for the forces and energies. These postulates only make sense together with specific forces and
energies describing the several types of interactions. The same happened with Newton’s second law of
motion. It only made sense by combining it with Newton’s force of gravitation, the force between electric
charges etc.

Here we introduce the main contribution of Wilhelm Weber (1804-1891). In 1846 he presented a funda-
mental force law describing the interaction between electric charges depending not only on their distance,
but also on their radial velocity and on their radial acceleration, as seen in Section 2.8. We propose as one
of the basis of relational mechanics that the force ~F21 exerted by charge q2 on charge q1 be given by Weber’s
law, equation (2.22). In vector notation we then have:

~F21 = Heq1q2
r̂12
r212

(

1− ṙ212
2c2

+
r12r̈12
c2

)

= − ~F12 , (17.11)

where ~F12 is the force exerted by q1 on q2. The magnitudes c, r12 = r, r̂12 = r̂, ṙ12 ≡ dr12/dt = ṙ = dr/dt
and r̈12 ≡ dṙ12/dt = d2r12/dt

2 = r̈ = dṙ/dt = d2r/dt2 were defined from equations (2.23) to (2.30). Utilizing
these definitions, equation (17.11) can also be written as:

~F21 = Heq1q2
r̂12
r212

[

1 +
1

c2

(

~v12 · ~v12 −
3

2
(r̂12 · ~v12)2 + ~r12 · ~a12

)]

= − ~F12 . (17.12)

The magnitude He appearing in equations (17.11) and (17.12) is a constant which depends on the system
of units. When Weber’s force was utilized together with Newton’s second law of motion, with classical
mechanics expressed in the International System of Units, we had 1/(4πεo) instead of He, as seen in equations
(2.22) and (2.31). For the time being we will not specify the value of He, we will only require it to have a
constant value.

In relational mechanics we propose as well that the electric energy U12 describing the interaction between
charges q1 and q2 be given by the expression introduced by Weber in 1848, equation (4.25), namely:

U12 = He
q1q2
r12

(

1− ṙ212
2c2

)

. (17.13)
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The force ~F21 can be deduced from the energy U12 utilizing equation (4.27), namely:

~F21 = − dU

dr12
r̂12 = − ~F12 , (17.14)

where ~F12 is the force exerted by 1 on 2, and r̂12 represents the unit vector pointing from 2 to 1.
By analogy with Weber’s electrodynamics, we propose as the basis of relational mechanics that Newton’s

law of gravitation be modified in accordance with Weber’s law. In particular, the energy of interaction
between two gravitational masses mg1 and mg2, and the force ~F21 exerted by 2 on 1, should be given by,
respectively:

U12 = −Hg
mg1mg2

r12

(

1− ξ
ṙ212
2c2

)

, (17.15)

and

~F21 = −Hgmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

= − ~F12 . (17.16)

Once more ~F12 is the force exerted by 1 on 2.
In these equations we assume Hg and ξ to be fundamental constants, with ξ being a dimensionless

constant. With ξ = 0 or with c → ∞ we recover the usual potential energy and force of newtonian
mechanics, if we put Hg = G. For the time being we only require that ξ > 0. In Section 24.1, equation
(24.20), we will see that ξ = 6 in order to derive the observed precession of the perihelion of the planets.

In order to avoid the gravitational paradox presented in Chapter 12, and to avoid an analogous paradox
which appears when we implement Mach’s principle with relational mechanics, we can utilize a weberian
gravitational law with an exponential decay. In this case we postulate that the interaction energy U12

between two gravitational masses mg1 and mg2, and the related force ~F21 exerted by 2 on 1 be given by,
respectively:

U12 = −Hg
mg1mg2

r12

(

1− ξ
ṙ212
2c2

)

e−αr12 , (17.17)

and

~F21 = −Hgmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)

+ αr12

(

1− ξ

2

ṙ212
c2

)]

e−αr12 = − ~F12 . (17.18)

In these equations α is a constant with dimensions of the inverse of a length, namely, length−1.
The force given by equation (17.18) was also derived from the energy given by equation (17.17) utilizing

equation (17.14).

17.4 Properties of Weber’s Potential Energy and Force as Applied

to Electromagnetism and Gravitation

The main properties of Weber’s potential energy and force, as applied to electromagnetism and gravitation,
are the following:

A) These forces follow the second postulate strictly, as they obey the law of action and reaction and are
along the straight line connecting the interacting bodies.

B) We recover the electrostatic force between two charges and Newton’s law of gravitation when there
is no motion between the particles, that is, when ṙ12 = 0 and r̈12 = 0. This will happen when the distance
between the particles is a constant, even if they are moving together relative to an arbitrary frame of
reference, or when they are moving together relative to other bodies.

C) The most important property of Weber’s force and energy is that these are relational expressions.
That is, these forces and energies depend only on the distance r between the interacting bodies, on the
relative radial distance between them, dr/dt, and on the relative radial acceleration between them, d2r/dt2.
Although the position, velocity and acceleration of one particle relative to a frame of reference O may be
different from the position, velocity and acceleration of the same particle relative to another frame of reference
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O′, the distance, relative radial velocity, and relative radial acceleration between two particles are the same
in both frames, no matter if these frames are inertial or non-inertial ones.4 This fundamental property is
discussed at length in Appendix A. In other words, these forces and energies are completely relational in
their nature. They have the same value to all observers and to all frames of reference, irrespective of whether
the observer and frame of reference is inertial or non-inertial from the newtonian point of view.

All energies and force laws to be proposed in the future must have this property in order to implement
Mach’s principle. As we have shown in Section 14.6, Mach emphasized5 that “all masses and all velocities,
and consequently all forces, are relative.”

Even when we have a medium, as in the frictional force acting between a projectile and the surrounding
air or water, only relational quantities should appear. For instance, the force of dynamic friction must be
written in terms of the relative velocity between the projectile and the medium (air or water in this case),
as was done in equations (2.7) to (2.11). If one day the ether is found, the same must be true for it. The
force between the ether and the particles must depend only on the relative velocity and acceleration between
each particle and the ether, but should not depend on the velocity and acceleration of the particle relative
to any observer nor frame of reference.

The situation in physics nowadays is quite different. In Newton’s second law of motion we have acceler-
ations relative to absolute space or to inertial frames of reference, and not relative to the bodies with which
the test body is interacting. The situation is even worse in the electromagnetic force usually called Lorentz’s
force, which is being called Maxwell-Lorentz’s force in this book, equation (15.14), namely, ~F = q ~E+q~v× ~B.
The velocity ~v of the test charge q is understood, after Einstein, as the velocity of the test charge relative to
the observer and not relative to the magnet or current-carrying wire with which the test charge is obviously
interacting. This situation was discussed in detail in Section 15.5.

17.5 The Force Exerted by Spherical Shells

In order to obtain an equation describing the motion of any test body which is interacting with all other
bodies in the universe, we need first to consider the interaction between a material spherical shell and a
particle. This calculation will indicate the main distinction between relational mechanics and newtonian
mechanics. This calculation is also the key for a mathematical implementation of Mach’s principle utilizing
the postulates and the relational forces of this new mechanics.

17.5.1 Force Exerted by a Stationary Spherical Shell

We first consider a test particle of gravitational mass mg interacting with a spherical shell of gravitational
mass Mg. The shell is supposed to have a radius R and an isotropic surface density of gravitational mass
σg = Mg/(4πR

2) having the same value in all points along the surface. We consider the shell to be stationary
in a frame of reference U , with its center at the origin O of U . The point particle mg is located at the
position vector ~rmU relative to the origin of frame U , moving with velocity ~vmU = d~rmU/dt and acceleration
~amU = d~vmU/dt = d2~amU/dt

2 relative to frame U , figure 17.2.
The gravitational mass of the spherical shell is given by:

Mg = 4πσgR
2 . (17.19)

In Appendix B, Section B.1, it is shown how to calculate the energy UMm of gravitational interaction
between this particle mg and the spherical shell of mass Mg beginning from equation (17.15). The final
result is given by:

UMm(rmU < R) = −HgmgMg

R

(

1− ξ

6

~vmU · ~vmU

c2

)

, (17.20)

and

UMm(rmU > R) = −HgmgMg

rmU

[

1− ξ(r̂mU · ~vmU )
2

2c2
− ξ

6

R2

r2mU

~vmU · ~vmU − 3(r̂mU · ~vmU )
2

c2

]

. (17.21)

4[Ass92b, Chapter 2], [Ass94, Section 3.2] and [Ass95b, Chapter 2].
5[Mac60, p. 279].
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Figure 17.2: Spherical shell at rest in the frame U interacting with a particle which is moving relative to the
shell.

The newtonian gravitational potential energy can be obtained from these equations by making ξ/c2 → 0.
Equation (17.20) is the most important relation for the implementation of Mach’s principle. In newtonian

mechanics the interaction energy was given only the constant term −HgmgMg/R. On the other hand, it is
exactly the term including the velocity ~vmU of the test particle relative to the shell which will give rise, in
relational mechanics, to an energy similar to the kinetic energy miv

2/2 of classical mechanics. That is, this
term will be essential for the mathematical implementation of Mach’s principle with relational mechanics.

Also in Appendix B, Section B.1, it is shown how to calculate the gravitational force exerted by this
spherical shell of mass Mg and acting on the test particle of mass mg moving relative to the shell. To this
end it is necessary to integrate over the whole shell equation (17.16) acting between each element of the shell
and the test particle. The final result of the integration is given by:

~Fstationary shell(rmU < R) = −HgξmgMg

3Rc2
~amU , (17.22)

and

~Fstationary shell(rmU > R) = −HgmgMg

r2mU

{[

1+
ξ

c2

(

~vmU · ~vmU − 3

2
(r̂mU · ~vmU )

2 + ~rmU · ~amU

)

]

r̂mU

+
ξ

c2
R2

r2mU

[

rmU

3
~amU − (r̂mU ·~vmU )~vmU−

~vmU · ~vmU

2
r̂mU +

5

2
(r̂mU ·~vmU )

2r̂mU − (~rmU ·~amU )r̂mU

]}

. (17.23)

The newtonian gravitational force exerted by the stationary spherical shell on the test particle can be
obtained from these equations by making ξ/c2 → 0.

Equation (17.22) is the most important relation as regards the implementation of Mach’s principle. This
force would go to zero with Newton’s law of gravitation. With Weber’s law for gravitation, on the other
hand, this force is no longer zero whenever the test particle is accelerated relative to the shell. This force
has always the same value, no matter the position of the test particle inside the shell. This force will give
rise, in relational mechanics, to a term similar to the expression mi~a which appears in Newton’s second law
of motion, ~F = mi~a. That is, the non-zero force given by equation (17.22) is essential for a mathematical
implementation of Mach’s principle.

As seen in Subsection 1.4.1, Newton’s theorem 30th proved in the Principia states that a spherical shell
exerts zero net force on internal particles. This theorem is only valid by supposing that the interaction
between two particles is a central force, varying inversely with the square of the distance between them.
Moreover, the force should be independent of the relative velocity and relative acceleration between the
particles. Newton’s law of gravitation has all of these properties, so that this theorem 30 is valid for it. By
integrating over the whole shell Newton’s law of gravitation between a test particle and a small portion of the
shell, we obtain a zero net force acting on the internal test particle, as was first shown by Newton himself.
Weber’s gravitational force, on the other hand, is given by equation (17.16). It is a central force. It has
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the newtonian term varying inversely with the square of the distance between the particles. However, it has
two additional terms. The additional term proportional to the square of the relative radial velocity between
the particles, that is, proportional to ṙ2, also varies inversely with the square of the distance between the
particles. By integrating this term over the whole shell we also obtain a zero net force due to this term.
However, the other additional term proportional to the relative radial acceleration between the two particles,
that is, proportional to r̈, varies only inversely with the distance r between the particles. This means that
this additional term does not satisfy the initial conditions supposed by Newton when proving theorem 30 of
the Principia, namely, that the forces should be inversely proportional to the square of the distance between
the particles. Therefore, theorem 30 of the Principia does not apply to the third component of Weber’s force
given by equation (17.16). And it is exactly this component of Weber’s force proportional to r̈/r which gives
rise to the force different from zero given by equation (17.22).

17.5.2 Force Exerted by a Spherical Shell Moving with a Constant Velocity

We now consider a frame of reference S in which the test particle of gravitational mass mg is located at
the position vector ~rmS relative to the origin O of frame S, moving with velocity ~vmS and acceleration ~amS

relative to S. We consider that at a certain instant t the center of the spherical shell of gravitational mass
Mg and radius R is passing through the origin O of S. We also assume that at this moment t the spherical
shell is moving as a whole with a constant linear velocity ~VMS relative to frame S, as represented in figure
17.3.
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Mg
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0

rmS
vmS

amS

mg

S

VMS

Figure 17.3: Spherical shell moving with a constant velocity ~VMS in a frame of reference S and interacting
with a test particle which is moving relative to the shell.

In Appendix B, Section B.2, it is shown how to calculate the interaction energy UMm between this test
particle mg and the spherical shell of mass Mg beginning with equation (17.15). The final result is given by:

UMm(rmS < R) = −HgmgMg

R

[

1− ξ

6

(~vmS − ~VMS) · (~vmS − ~VMS)

c2

]

, (17.24)

and

UMm(rmS > R) = −HgmgMg

rmS











1−
ξ
[

r̂mS · (~vmS − ~VMS)
]2

2c2

− ξ

6

R2

r2mS

(~vmS − ~VMS) · (~vmS − ~VMS)− 3
[

r̂mS · (~vmS − ~VMS)
]2

c2











. (17.25)

Also in Appendix B, Section B.2, it is shown how to calculate the gravitational force exerted by this
spherical shell of mass Mg and acting on the test particle of mass mg moving relative to the shell. To this
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end it is necessary to consider the force exerted by a small portion of the shell acting on mg given by equation
(17.16) and to integrate it over the whole shell. The final result is given by:

~Fshell moving with constant velocity(rmS < R) = −HgξmgMg

3Rc2
~amS , (17.26)

and

~Fshell moving with constant velocity(rmS > R) = −HgmgMg

r2mS

{[

1 +
ξ

c2

(

(~vmS − ~VMS) · (~vmS − ~VMS)

− 3

2
(r̂mS · (~vmS − ~VMS))

2 + ~rmS · ~amS

)]

r̂mS +
ξ

c2
R2

r2mS

[

rmS

3
~amS − (r̂mS · (~vmS − ~VMS))(~vmS − ~VMS)

− (~vmS − ~VMS) · (~vmS − ~VMS)

2
r̂mS +

5

2
(r̂mS · (~vmS − ~VMS))

2r̂mS − (~rmS · ~amS)r̂mS

]}

. (17.27)

Once again the equivalent results from newtonian mechanics can be obtained from these equations by
making ξ/c2 → 0. In particular, the force given by equation (17.26) goes to zero in classical mechanics, as
shown by equation (1.20). That is, in newtonian mechanics a spherical shell moving with a constant velocity
exerts no net gravitational force on any internal particle, no matter the acceleration of the particle relative
to the shell.

An important aspect to observe in equations (17.24) to (17.27) is that these energies and forces depend
only on the relative velocity between the particle and the shell, ~vmS − ~VMS , and on the relative acceleration
between the particle and the shell, ~amS− ~AMS = ~amS−~0 = ~amS . When ~vmS− ~VMS = ~0 and ~amS− ~AMS = ~0
we recover once again the newtonian results even with ξ/c2 6= 0.

17.5.3 Force Exerted by a Linearly Accelerated Spherical Shell

We now consider a frame of reference A in which the test particle of gravitational mass mg is located at the
position vector ~rmA relative to the origin O of frame A, moving with velocity ~vmA and acceleration ~amA

relative to frame A. We consider that at a certain instant t the center of the spherical shell of gravitational
mass Mg and radius R is passing through the origin O of frame A. We also assume that at this moment
t the spherical shell is moving as a whole with velocity ~VMA and acceleration ~AMA relative to frame A, as
represented in figure 17.4.
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Figure 17.4: Spherical shell linearly accelerated in a frame of reference A and interacting with a test particle
which is moving relative to the shell.

In Appendix B, Section B.2, it is shown how to calculate the interaction energy UMm between this test
particle mg and the spherical shell of mass Mg beginning with equation (17.15). The final result is given by:
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UMm(rmA < R) = −HgmgMg

R

[

1− ξ

6

(~vmA − ~VMA) · (~vmA − ~VMA)

c2

]

, (17.28)

and

UMm(rmA > R) = −HgmgMg

rmA
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




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ξ
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r̂mA · (~vmA − ~VMA)
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6
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c2


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. (17.29)

Also in Appendix B, Section B.2, it is shown how to calculate the gravitational force exerted by this
spherical shell of mass Mg and acting on the test particle of mass mg moving relative to the shell. To this
end it is necessary to consider the force exerted by a small portion of the shell acting on mg given by equation
(17.16) and to integrate it over the whole shell. The final result is given by:

~Faccelerated shell(rmA < R) = −HgξmgMg

3Rc2
(~amA − ~AMA) , (17.30)

and

~Faccelerated shell(rmA > R) = −HgmgMg

r2mA
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2
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2
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R2

r2mA

[

rmA

3
(~amA − ~AMA)− (r̂mA · (~vmA − ~VMA))(~vmA − ~VMA)
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2
r̂mA +

5

2
(r̂mA · (~vmA − ~VMA))

2r̂mA − (~rmA · (~amA − ~AMA))r̂mA

]}

. (17.31)

Once again the equivalent results from newtonian mechanics can be obtained from these equations by
making ξ/c2 → 0. In particular, the force given by equation (17.30) goes to zero in classical mechanics, as
shown by equation (1.20). That is, in newtonian mechanics a spherical shell exerts no net gravitational force
on any internal particle, no matter the acceleration of the particle and whatever the acceleration of the shell.

An important aspect to observe in equations (17.28) to (17.31) is that these energies and forces depend
only on the relative velocity between the particle and the shell, ~vmA − ~VMA, and on the relative acceleration
between the particle and the shell, ~amA − ~AMA. When ~vmA − ~VMA = ~0 and ~amA − ~AMA = ~0 we recover
once again the newtonian results.

17.5.4 Force Exerted by a Spinning Spherical Shell

We consider now a frame of reference R relative to which a particle of gravitational mass mg has a position
vector ~rmR relative to the origin O of frame R, moving with velocity ~vmR and acceleration ~amR relative to
frame R, respectively. We assume that the center of a spherical shell of gravitational mass Mg and radius
R coincides with the origin O of frame R. We assume, moreover, that the spherical shell is spinning in this
frame R with an angular velocity ~ΩMR(t) around an axis passing through the center of the shell, figure 17.5.

In Appendix B, Section B.3, it is shown how to calculate the gravitational energy UMm of the particle
mg interacting with the spherical shell Mg beginning with equation (17.15). The final result is given by:

UMm(rmR < R) = −HgmgMg

R

[

1− ξ

6

(~vmR − ~ΩMR × ~rmR) · (~vmR − ~ΩMR × ~rmR)

c2

]

, (17.32)

and
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Figure 17.5: Spherical shell spinning in the frame R with angular velocity ~ΩMR around an axis passing
through the origin O of frame R and interacting with a particle moving relative to this frame.
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Also in Appendix B, Section B.3, it is shown how to calculate the net gravitational force exerted by this
spherical shell and acting on the test particle which is moving relative to the shell. To this end we need to
consider the force exerted by a small portion of the shell and acting on the test particle, as given by equation
(17.16), and integrate it over the whole shell. The final result is given by:

~Fspinning shell(rmR < R) = − ξ

3c2
HgmgMg

R

[

~amR + ~ΩMR × (~ΩMR ×~rmR) +2~vmR × ~ΩMR + ~rmR × d~ΩMR

dt

]

,

(17.34)
and

~Fspinning shell(rmR > R) = −HgmgMg
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)]}

. (17.35)

Suppose now the spherical shell still spinning with an angular velocity ~ΩMR relative to an axis passing
through the origin O of a frame R. But now let us suppose the center of the shell is located at ~RoR relative



328 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

to the origin of frame R, moving with velocity ~VoR and acceleration ~AoR relative to frame R. Integration of
equations (17.15) and (17.16) gives results analogous to equations (17.32) to (17.35), but with ~rmR − ~RoR,
|~rmR − ~RoR|, r̂mo ≡ (~rmR − ~RoR)/|~rmR − ~RoR|, ~vmR − ~VoR and ~amR − ~AoR instead of ~rmR, rmR, r̂mR, ~vmR

and ~amR, respectively.
The net forces exerted by the shell in newtonian mechanics can be recovered from these equations by

making ξ/c2 → 0. The right hand side of equation (17.34), in particular, goes to zero in classical mechanics,
as shown in equation (1.21). That is, no matter if the shell is stationary or spinning, it exerts no net force
on any internal particle according to Newton’s law of gravitation, whatever the position and motion of this
internal particle. According to Weber’s law for gravitation, on the other hand, the spinning shell will exert a
net force on internal test particles. The terms given by equation (17.34) are essential for the implementation
of Mach’s principle. These are the terms which will explain in relational mechanics, in the frame which is
rotating together with the test body and in which the set of distant galaxies is spinning, the curvature of the
water in Newton’s bucket experiment, the flattening of the Earth in the terrestrial frame, and the precession
of the plane of oscillation of Foucault’s pendulum in the Earth’s frame of reference.

17.6 The Inertial Energies and the Inertial Forces

In Section 17.2 the gravitational energy Ui describing the interaction between a test particle of gravitational
mass mg and the isotropic distribution of matter around it was called inertial energy. The gravitational force
~Fi exerted by this isotropic distribution of matter around the test body and acting on it was called inertial
force. The similarities and differences of meaning between the inertial forces of newtonian mechanics and
the inertial forces of relational mechanics will be discussed in Section 19.8.

In order to obtain Ui, we need to integrate over the whole known universe the energy of gravitational
interaction between the test body mg and a spherical shell of radius R and gravitational mass Mg. This shell
will be supposed to consist in many galaxies distributed uniformly over the surface of the sphere. Likewise,
in order to obtain the value of ~Fi it is necessary to integrate over the whole known universe the force exerted
on mg by a spherical shell of radius R and gravitational mass Mg.

We now utilize the known fact that the universe is remarkably isotropic when measured by the integrated
microwave and X-ray backgrounds, or by radio source counts and deep galaxy counts.6 It should be observed
that we are not assuming this fact to be true theoretically. We are utilizing this fact as coming from
astronomical observations and not as a theoretical hypothesis. Even if one day it is found that the universe
is not isotropic in the large scale, it will still be possible to derive the main results of relational mechanics.
The reason is that even in this case it will still be possible to divide the matter around any test body in two
parts, an anisotropic part (A) and an isotropic part (B). The inertial force acting on the test body will come
from its interaction with the isotropic portion (B) of the universe. The interaction of the test body with the
anisotropic distribution of matter (A) around it will yield the usual forces of newtonian mechanics.

As the Earth does not occupy a central position with respect to the universe as a whole, this isotropy on
large scale suggests homogeneity on a very large scale. That is, the average density of gravitational mass in
the universe should not depend on R (the distance of the point under consideration from us):

ρg(R) = ρgo = constant for all values of R . (17.36)

In order to perform the integration over the whole known universe, we first replace the two-dimensional
spherical shell of radius R, gravitational mass Mg and surface density of gravitational mass σg = Mg/(4πR

2)
by a spherical shell of radius R, thickness dR, gravitational mass dMg and volume density of gravitational
mass ρgo = dMg/(4πR

2dR), figure 17.6.
The mass of the shell will be then given by:

dMg = 4πR2ρgodR . (17.37)

After this replacement, the integration should be carried out over the whole known universe. This
calculation in presented in the next Subsections in different frames of reference or in different conditions of
motion of the spherical shell.

6[Ass89a].
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Figure 17.6: Spherical shell of radius R, thickness dR and gravitational mass dMg.

17.6.1 Inertial Force in the Universal Frame of Reference Supposing Weber’s

Gravitational Force

Initially we consider the universal frame of reference U introduced in Section 1.8. This is the frame of
reference relative to which the set of distant galaxies is seen at rest, without translational acceleration and
without rotation, figure 1.13. In order to obtain Ui and ~Fi, we need to integrate equations (17.20) and
(17.22) over the whole known universe.

In order to integrate equations (17.20) and (17.22), we replace the mass Mg = 4πR2σg of the two-
dimensional shell of radius R and surface mass density σg by a three-dimensional shell of infinitesimal mass
dMg = 4πR2ρgodR, radius R, thickness dR and volume mass density ρgo. That is, we utilize a constant
average volume density of gravitational mass given by equation (17.36). It is then possible to obtain the
inertial energy Ui, that is, the energy of gravitational interaction between mg and the isotropic distribution
of mass around it. We will also obtain ~Fi, that is, the force exerted on mg by the isotropic portion of mass
in the universe located around it.

This integration is performed over the whole known universe, that is, from R = 0 to R = RU , where RU

represents the radius of the known universe. The integration of equation (17.20) yields the following result
for Ui:

Ui =

∫ RU

0

dUMm(rmU < R) = −
∫ RU

0

HgmgdMg

R

(

1− ξ

6

~vmU · ~vmU

c2

)

= −4πHgmgρgo

(

1− ξ

6

~vmU · ~vmU

c2

)
∫ RU

0

RdR = −2πHgmgρgoR
2
U +Φmg

~vmU · ~vmU

2
, (17.38)

where the constant Φ has been defined by the following relation:

Φ ≡ 4π

3
Hgρgo

ξ

c2

∫ RU

0

RdR =
2πHgρgoξR

2
U

3c2
. (17.39)

If we had utilized a newtonian gravitational potential energy to perform this integration, then we would
obtain only the term −2πHgmgρgoR

2
U in equation (17.38). The term proportional to Φ comes from the

term with ṙ2 arising in Weber’s gravitational potential energy. We can recover the newtonian result from
equations (17.38) and (17.39) by making ξ/c2 → 0, such that Φ → 0.

It should be emphasized that the density ρgo which appears in equation (17.39) represents the average
volume density of gravitational mass of the galaxies in the whole universe. Suppose there are N galaxies
occupying a very large volume V . Therefore, ρgo will be given by N times the average gravitational mass of
each galaxy, divided by this large volume V . Moreover, we are integrating over the whole known universe.

The force ~Fi is given by the integration of equation (17.22) over the same limits. Utilizing equation
(17.36) this integration yields the following final result:

~Fi =

∫ RU

0

d~Fstationary shell(rmU < R) = −
∫ RU

0

HgξmgdMg

3Rc2
~amU = −Φmg~amU . (17.40)
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The constant Φ is once more defined by equation (17.39).
By the principle of action and reaction satisfied by Weber’s law, we obtain that the test particle mg will

exert a net force ~Fmi acting on the isotropic portion of the universe around it given by:

~Fmi = − ~Fi = Φmg~amU . (17.41)

In the figures of this book this force ~Fmi will be represented as acting on only one galaxy. But it should
be understood that this force is in fact distributed over all the galaxies in the universe.

With Newton’s law of universal gravitation we would obtain a zero net force due to the interaction of mg

with the isotropic distribution of mass around it. This newtonian result of zero net force can be recovered
from equation (17.40) by making Φ → 0 or ξ/c2 → 0.

17.6.2 Inertial Force in the Universal Frame of Reference Supposing Weber’s

Gravitational Force with Exponential Decay

The value of Φ given by equation (17.39) diverges to infinity when RU → ∞, that is, if the integration goes
from R = 0 to R = ∞. Therefore, in this case the values of Ui and ~Fi would diverge to infinity. These
divergent results happen by supposing Weber’s law for gravitation together with a constant average volume
density of gravitational mass in the universe. That is, supposing that on average ρgo = constant in all regions
of the supposed infinite universe.

On the other hand, if we had utilized Weber’s law for gravitation with an exponential decay, equations
(17.17) and (17.18), then we could have integrated the potential energy and force with R going from zero to
infinity, obtaining finite results for Ui and ~Fi.

Consider a particle of gravitational mass mg interacting with a spherical shell of mass Mg, radius R and
constant surface density of gravitational mass σg = Mg/(4πR

2). Suppose the situation in which the shell
is at rest, with its center at the origin O of a frame of reference U . Consider an instant t in which the test
particle is passing through the center of the shell with velocity ~vmU and acceleration ~amU relative to U , as
in figure 17.7.

z

y

x

Mg

0 vmU

amU

mg

U

Figure 17.7: Reference frame U in which the spherical shell of mass Mg is at rest and the test particle of
mass mg is passing through the origin with velocity ~vmU and acceleration ~amU .

In Appendix C it is shown that in this case the gravitational energy UMm of the shell interacting with
the test particle, after integration of equation (17.17), is given by:

UMm = −HgmgMge
−αR

R

(

1− ξ

6

~vmU · ~vmU

c2

)

. (17.42)

Also in Appendix C it is shown that the gravitational force exerted by this stationary shell and acting on
the test particle mg, assuming Weber’s law with a gravitational decay, equation (17.18), and the situation
represented in figure 17.7, is given by:

~Fstationary shell = −HgξmgMge
−αR

3Rc2
~amU . (17.43)
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We suppose now the universe to be homogeneous in large scale, with a volume density of gravitational
mass ρgo which is constant on average in all regions of the infinite universe, as represented by equation
(17.36). Any particle can then be considered as the center of the universe, as this infinite and homogeneous
universe has no privileged center. In order to know the inertial energy Ui of the test particle mg interacting
gravitationally with the isotropic portion of the universe, we first replace the two-dimensional spherical shell
of mass Mg, radius R and homogeneous surface density of gravitational mass σg = Mg/(4πR

2) of figure 17.7
by a spherical shell of mass dMg, radius R, thickness dR, volume dV = 4πR2dR and homogeneous volume
density of gravitational mass ρgo = dMg/dV = dMg/(4πR

2dR). We can then integrate equation (17.42)
replacing Mg by dMg as given by equation (17.37). By performing this integration with R going from zero
to infinity we obtain the inertial energy Ui as given by:

Ui =

∫

∞

0

dUMm = −
∫

∞

0

HgmgdMge
−αR

R

(

1− ξ

6

~vmU · ~vmU

c2

)

= −4πHgmgρgo

(

1− ξ

6

~vmU · ~vmU

c2

)
∫

∞

0

Re−αRdR = −4πHgmgρgo
α2

+Φ∞mg
~vmU · ~vmU

2
, (17.44)

where the constant Φ∞ has been defined by the following expression:

Φ∞ ≡ 4πHgρgoξ

3c2

∫

∞

0

Re−αRdR =
4πHgρgoξ

3c2α2
. (17.45)

Equation (17.38) had been obtained with the integration of Weber’s gravitational law with R going
from zero to a finite radius RU , being characterized by the constant Φ given by equation (17.39). Equation
(17.44), on the other hand, was obtained with the integration of Weber’s gravitational law with an exponential
decay with R going from zero to infinity, being characterized by the constant Φ∞ given by equation (17.45).
Equations (17.38) and (17.44) may be considered equivalent to one another, provided we assume the following
relation:

RU =

√
2

α
. (17.46)

Likewise, the inertial force ~Fi exerted by the infinite universe on the test particle mg can be obtained
from equation (17.43). Initially we replace the two-dimensional spherical shell of mass Mg, radius R and
homogeneous surface density of gravitational mass σg = Mg/(4πR

2) of figure 17.7 by a spherical shell of
mass dMg, radius R, thickness dR, volume dV = 4πR2dR and homogeneous volume density of gravitational
mass ρgo = dMg/dV = dMg/(4πR

2dR). We can then integrate equation (17.43) replacing Mg by dMg as
given by equation (17.37). By performing this integration with R going from zero to infinity we obtain the
inertial force as given by:

~Fi =

∫

∞

0

d~Fstationary shell(rmU < R) = −
∫

∞

0

HgξmgdMge
−αR

3Rc2
~amU = −Φ∞mg~amU . (17.47)

Here we have once more the constant Φ∞ defined by equation (17.45).
With Newton’s law for gravitation we would obtain a zero net force exerted by the isotropic portion

of the universe acting on mg. This zero net force can be recovered from equations (17.45) and (17.47) by
making ξ/c2 → 0.

By the principle of action and reaction satisfied by Weber’s law, we obtain that the test particle mg will
exert a net force ~Fmi on the isotropic portion of the universe exactly equal and opposite to the inertial force
~Fi given by equation (17.47), namely:

~Fmi = − ~Fi = Φ∞mg~amU . (17.48)

17.6.3 Contribution of Our Galaxy for the Inertial Force

The gravitational energy of the interaction between the test particle of gravitational mass mg and a spherical
shell of radius R and gravitational mass Mg is given by equation (17.42). The force exerted by this shell
on mg is given by equation (17.43). We can obtain the energy of gravitational interaction between mg and
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our galaxy, the Milky Way, by integrating these expressions and supposing mg to be close to the center of
the galaxy. An approximate calculation can be performed replacing Mg by dMg given by equation (17.37).
In this case dMg will be the gravitational mass of a spherical shell of radius R and thickness dR, with a
volume density of gravitational mass being given by the average volume density of gravitational mass of
the Milky Way, represented here by ρgMW . In Section 4.5 it was given that ρgMW ≈ 1.4 × 10−20 kg/m3.
This integration will be performed with R going from zero to the approximate radius of the Milky Way,
RMW ≈ 2.5 × 1020 m. The energy UMW

i of gravitational interaction between mg and the Milky Way will
be then given by:

UMW
i =

∫ RMW

0

dUMm = −
∫ RMW

0

HgmgdMge
−αR

R

(

1− ξ

6

~vmU · ~vmU

c2

)

= −4πHgmgρgMW

(

1− ξ

6

~vmU · ~vmU

c2

)
∫ RMW

0

Re−αRdR

= −4πHgmgρgMW

α2

[

1− (1 + αRMW )e−αRMW
]

+ΦMW

(

mg
~vmU · ~vmU

2

)

, (17.49)

in which the constant ΦMW has been defined by the following expression:

ΦMW ≡ 4πHgρgMW ξ

3c2

∫ RMW

0

Re−αRdR =
4πHgρgMW ξ

3c2α2

[

1− (1 + αRMW )e−αRMW
]

. (17.50)

Likewise, integrating equation (17.43) with R going from zero to RMW , we obtain the inertial force ~Fi

exerted by the Milky Way and acting on a test body mg located close to its center, namely:

~Fi =

∫ RMW

0

d~Fstationary shell(rmU < R) = −
∫ RMW

0

HgξmgdMge
−αR

3Rc2
~amU = −ΦMWmg~amU . (17.51)

Once more the constant ΦMW has been defined by equation (17.50).
By comparing equations (17.49) and (17.51) with equations (17.44) and (17.47) we obtain that the ratio

of the inertial contribution of the Milky Way to the contribution of the whole universe is given essentially
by ΦMW /Φ∞, that is:

ΦMW

Φ∞

=
ρgMW

ρgo

[

1− (1 + αRMW )e−αRMW
]

. (17.52)

In Section 18.2 we will see that the value of α is between 1.7 × 10−27 m−1 and 5.8 × 10−27 m−1. With
RMW ≈ 2.5 × 1020 m we obtain αRMW ≈ 10−6 ≪ 1. Expanding the exponential e−αRMW up to second
order in αRMW yields:

ΦMW

Φ∞

≈ ρgMW

ρgo

α2R2
MW

2
. (17.53)

We have ρgMW ≈ 1.4 × 10−20 kg/m3. By equation (4.37) we obtain that the value of ρgo is located
between 4.6× 10−28 kg/m3 and 5.5× 10−27 kg/m3. Therefore:

ΦMW

Φ∞

≈ ρgMW

ρgo

α2R2
MW

2
≈ 10−20

10−27

10−12

2
≈ 10−5 . (17.54)

The small value of the ratio ΦMW /Φ∞ means that, as regards the inertial gravitational energy and the
inertial force acting on any test body, the fixed stars belonging to the Milky Way have a negligible effect
compared with the contribution due to the distant galaxies. That is, the main contribution as regards the
gravitational inertial energy of any body interacting with the isotropic distributions of matter around it
comes from the distant galaxies and do not come from our own Milky Way. The same can be said as regards
the contribution for the inertial force acting on this test body. The main component of this inertial force
comes from its gravitational interaction with the distant galaxies. The gravitational force exerted on this
body by the stars belonging to the Milky Way, when this test body is accelerated relative to the fixed stars,
is negligible compared with the gravitational force exerted on this body by the distant galaxies.
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17.6.4 Inertial Force when the Set of Distant Galaxies Moves with a Constant

Velocity

We now obtain the equations of motion of relational mechanics in a frame of reference S in which the set of
distant galaxies moves as a whole with a constant linear velocity ~VGS . We also assume that in this frame
the test body of gravitational mass mg has a position vector ~rmS relative to the origin O of frame S, moving
with velocity ~vmS and acceleration ~amS relative to frame S, respectively, figure 17.8.
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Figure 17.8: Frame of reference S in which the set of galaxies has a common constant linear velocity ~VGS .

In order to obtain Ui and ~Fi it is necessary to integrate equations (17.24) and (17.26) over the whole
known universe. These integrations can be performed following the procedure of Subsection 17.6.1. By
integrating with R going from zero to the radius RU of the known universe we obtain the following values
(writing the velocity ~VMS of the shell as ~VGS):

Ui = −2πHgmgρgoR
2
U +Φmg

(~vmS − ~VGS) · (~vmS − ~VGS)

2
, (17.55)

and

~Fi = −Φmg~amS . (17.56)

Once more the constant Φ has been defined by equation (17.39).
By the principle of action and reaction satisfied by Weber’s law, we obtain that mg will exert a net force

~Fmi on the isotropic portion of the universe located around it as given by the opposite value of equation
(17.56), namely:

~Fmi = − ~Fi = Φmg~amS . (17.57)

The value of the constant Φ given by equation (17.39) diverges to infinity when the integration is per-
formed with R going from zero to infinity, that is, the inertial force diverges when RU → ∞. It is possible
to avoid this infinite inertial force utilizing a Weber’s law with an exponential decay, as given by equations
(17.17) and (17.18). In this case the energy of gravitational interaction between a test particle of gravita-
tional mass mg and a spherical shell of gravitational mass Mg and radius R is given by equation (C.14) of
Appendix C by supposing a reference frame S in which the test particle is passing at time t by the center
of the shell with a velocity ~vmS and acceleration ~amS, while the shell is moving as a whole relative to this
frame with a constant linear velocity ~VMS , figure 17.9.

By replacing the mass Mg of the shell by dMg given by equation (17.37), and integrating the energy with
R going from zero to infinity we obtain (writing the velocity ~VMS of the shell as ~VGS):

Ui = −4πHgmgρgo
α2

+Φ∞mg
(~vmS − ~VGS) · (~vmS − ~VGS)

2
, (17.58)

with Φ∞ given by equation (17.45).
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Figure 17.9: Reference frame S in which the spherical shell of mass Mg is moving with a constant lin-
ear velocity ~VMS , while the test particle of mass mg is passing through the origin with velocity ~vmS and
acceleration ~amS .

Equations (17.55) and (17.58) depend only on the relative velocity ~vmS − ~VGS between the particle and
the set of galaxies.

Likewise, the integration of equation (C.15) of Appendix C with R going from zero to infinity, supposing
also that the spherical shell has no acceleration, that is, ~AMA = ~AMS = ~0, yields the inertial force acting on
mg and being exerted by the set of galaxies moving relative to frame S with a constant velocity as given by:

~Fi = −Φ∞mg~amS . (17.59)

The newtonian result of zero net force can be recovered from equations (17.45) and (17.59) by making
ξ/c2 → 0, or Φ∞ → 0.

By action and reaction, the force ~Fmi exerted by mg and acting on the set of galaxies is given by:

~Fmi = − ~Fi = Φ∞mg~amS . (17.60)

It should be emphasized that equations (17.56), (17.59) and (17.60) depend only on the relative acceler-
ation ~amS − ~AGS = ~amS − ~0 = ~amS between mg and the set of galaxies.

17.6.5 Inertial Force when the Set of Distant Galaxies Is Linearly Accelerated

We now obtain the equations of motion of relational mechanics in a frame of reference A in which the set of
distant galaxies moves as a whole with a translational velocity ~VGA and a translational acceleration ~AGA.
We also assume that in this frame the test body of gravitational mass mg has a position vector ~rmA relative
to the origin O of frame A, moving with velocity ~vmA and acceleration ~amA relative to frame A, respectively,
figure 17.10.

In order to obtain Ui and ~Fi it is necessary to integrate equations (17.28) and (17.30) over the whole
known universe. These integrations can be performed following the procedure of Subsection 17.6.1. By
integrating with R going from zero to the radius RU of the known universe we obtain the following values
(writing the velocity ~VMA and acceleration ~AMA of the shell as ~VGA and ~AGA, respectively):

Ui = −2πHgmgρgoR
2
U +Φmg

(~vmA − ~VGA) · (~vmA − ~VGA)

2
, (17.61)

and

~Fi = −Φmg(~amA − ~AGA) . (17.62)

Once more the constant Φ has been defined by equation (17.39).
By the principle of action and reaction satisfied by Weber’s law, we obtain that mg will exert a net force

~Fmi on the isotropic portion of the universe located around it as given by the opposite value of equation
(17.62), namely:
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Figure 17.10: Frame of reference A in which the set of galaxies has a translational acceleration ~AGA.

~Fmi = − ~Fi = Φmg(~amA − ~AGA) . (17.63)

The value of the constant Φ given by equation (17.39) diverges to infinity when the integration is per-
formed with R going from zero to infinity, that is, the inertial force diverges when RU → ∞. It is possible
to avoid this infinite inertial force utilizing a Weber’s law with an exponential decay, as given by equations
(17.17) and (17.18). In this case the energy of gravitational interaction between a test particle of gravita-
tional mass mg and a spherical shell of gravitational mass Mg and radius R is given by equation (C.14) of
Appendix C by supposing a reference frame A in which the test particle is passing at time t by the center
of the shell with a velocity ~vmA and acceleration ~amA, while the shell is moving as a whole relative to this
frame with translational velocity ~VMA and translational acceleration ~AMA, figure 17.11.
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Figure 17.11: Reference frame A in which the spherical shell of mass Mg is moving with velocity ~VMA and
acceleration ~AMA, while the test particle of mass mg is passing through the origin with velocity ~vmA and
acceleration ~amA.

By replacing the mass Mg of the shell by dMg given by equation (17.37), and integrating the energy with
R going from zero to infinity we obtain (writing the velocity ~VMA and acceleration ~AMA of the shell as ~VGA

and ~AGA, respectively):

Ui = −4πHgmgρgo
α2

+Φ∞mg
(~vmA − ~VGA) · (~vmA − ~VGA)

2
, (17.64)

with Φ∞ given by equation (17.45).
Equations (17.61) and (17.64) depend only on the relative velocity ~vmA − ~VGA between the particle and

the set of galaxies.
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Likewise, the integration of equation (C.15) of Appendix C with R going from zero to infinity yields the
inertial force acting on mg and being exerted by the set of accelerated galaxies as given by:

~Fi = −Φ∞mg(~amA − ~AGA) . (17.65)

The newtonian result of zero net force can be recovered from equations (17.45) and (17.65) by making
ξ/c2 → 0, or Φ∞ → 0.

By action and reaction, the force ~Fmi exerted by mg and acting on the set of galaxies is given by:

~Fmi = − ~Fi = Φ∞mg(~amA − ~AGA) . (17.66)

It should be emphasized that equations (17.62), (17.65) and (17.66) depend only on the relative acceler-
ation ~amA − ~AGA between mg and the set of galaxies.

17.6.6 Inertial Force when the Set of Galaxies is Spinning

We now obtain the inertial energy Ui and the inertial force ~Fi in a reference frame R in which the set of
galaxies is spinning as a whole with an angular velocity ~ΩGR around an axis passing through the origin O
of frame R. We also assume that in this frame the test particle of gravitational mass mg has a position
vector ~rmR relative to the origin O of frame R, moving with velocity ~vmR and acceleration ~amR, respectively,
relative to frame R, figure 17.12.
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Figure 17.12: Set of distant galaxies spinning with an angular velocity ~ΩGR around an axis passing through
the origin O of a frame R.

In order to obtain Ui and ~Fi it is necessary to integrate equations (17.32) and (17.34) over the whole
known universe. These integrations can be performed following the procedure of Subsection 17.6.1. By
integrating these equations with R going from zero to the radius RU of the known universe we obtain
(writing the angular velocity ~ΩMR of the shell relative to frame R as ~ΩGR):

Ui = −Φ

[

3

ξ
mgc

2 −mg
(~vmR − ~ΩGR × ~rmR) · (~vmR − ~ΩGR × ~rmR)

2

]

, (17.67)

and

~Fi = −Φmg

[

~amR + ~ΩGR × (~ΩGR × ~rmR) + 2~vmR × ~ΩGR + ~rmR × d~ΩGR

dt

]

. (17.68)

We utilized once more the constant Φ defined by equation (17.39).
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By the principle of action and reaction satisfied by Weber’s law, the particle mg exerts an equal and
opposite force ~Fmi on the set of distant galaxies located around it given by:

~Fmi = − ~Fi = Φmg

[

~amR + ~ΩGR × (~ΩGR × ~rmR) + 2~vmR × ~ΩGR + ~rmR × d~ΩGR

dt

]

. (17.69)

The constant Φ given by equation (17.39) diverges when RU → ∞. If we wish to integrate the energy
of gravitational interaction between mg and a spherical shell, and also the force exerted by the shell on
mg, with the radius R of the shell going from zero to infinity, then we need to utilize Weber’s law with
exponential decay, equations (17.17) and (17.18). We first consider the test particle mg inside a spherical
shell of mass Mg and radius R. We consider a frame of reference R in which, at instant t, the center of
the shell is located at the origin O of frame R, while the shell is spinning with an angular velocity ΩGR(t)
around an axis passing through the origin O of frame R. We also assume that at this moment the particle
of gravitational mass mg is moving inside the shell with a velocity ~vmR and acceleration ~amR relative to the
shell, figure 17.13.
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Figure 17.13: Spherical shell of mass Mg spinning relative to frame R with angular velocity ~ΩMR relative to
an axis passing through the origin O of frame R and interacting with a particle of mass mg moving relative
to frame R.

In order to integrate equations (17.17) and (17.18) we assume that the distance rmR of the test particle
to the center of the shell is much smaller than 1/α, where α is the constant characterizing the cosmological
exponential decay of equations (17.17) and (17.18). The result of these integrations is given by equations
(C.21) and (C.22) of Appendix C.

We then replace the spherical shell of mass Mg and radius R by a spherical shell of mass dMg, radius R,
thickness dR and volume density of gravitational mass ρgo satisfying equation (17.37). We can then integrate
equations (C.21) and (C.22) of Appendix C with R going from zero to infinity. We also assume that in this
integrated case, as it happened in the universal frame U and in the frame A in which the universe had a
translational acceleration, the result obtained by Weber’s law with exponential decay and with an integration
with R going from zero to infinity coincides with the result obtained with Weber’s law without exponential
decay and with an integration with R going from R = 0 to R = RU , with the relation between RU and the
constant α as given by equation (17.46). With these suppositions the values of Ui and ~Fi integrated over
the infinite universe are then given by (writing the angular velocity ~ΩMR of the shell relative to frame R as
~ΩGR):7

Ui = −4πHgmgρgo
α2

+Φ∞mg
(~vmR − ~ΩGR × ~rmR) · (~vmR − ~ΩGR × ~rmR)

2
, (17.70)

and

7[Ass92f].
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~Fi = −Φ∞mg

[

~amR + ~ΩGR × (~ΩGR × ~rmR) + 2~vmR × ~ΩGR + ~rmR × d~ΩGR

dt

]

. (17.71)

Once more we utilized the constant Φ∞ defined by equation (17.45).
By the principle of action and reaction satisfied by Weber’s law, the particle mg exerts a net force ~Fmi

on the isotropic portion of the universe given by:

~Fmi = − ~Fi = Φ∞mg

[

~amR + ~ΩGR × (~ΩGR × ~rmR) + 2~vmR × ~ΩGR + ~rmR × d~ΩGR

dt

]

. (17.72)

17.7 Inertial Energy and Inertial Force as Expressed in Different

Frames of Reference

The equations of motion of relational mechanics are given by equations (17.9) and (17.10). In order to deal
with these equations we need to know the inertial energy Ui of a particle of gravitational mass mg interacting
with the isotropic distribution of gravitational mass around it. We also need to know the inertial force ~Fi

exerted on mg by this isotropic distribution of mass. In order to obtain these expressions it is necessary
some supposition about the universe in large scale.

The astronomical observations about the distribution of galaxies around the Earth indicate that this
distribution, on average, is isotropic. That is, it has approximately the same average value in all directions.
This isotropy can be expressed mathematically by saying that the average density of gravitational mass of
the set of galaxies does not depend on the direction of observation, having the same value for all angles θ
and ϕ of a coordinate system centered on the Earth. Therefore this density of gravitational mass ρg can
only be a function of the distance R between the observation point and the Earth, namely, ρg(R).

We assume that there is no privileged center in the universe. That is, we assume that the universe
is not only isotropic on large scale, as indicated by the distribution of galaxies around the Earth, but
also homogeneous. We therefore adopt the cosmological model that the universe has a volume density of
gravitational mass ρgo which, on average, is constant in all regions of the cosmos, as expressed by equation
(17.36).

The cosmological model which we adopt is that of a universe which is infinite in space and time, without
expansion. Therefore this constant ρgo should not depend on time in this model. We assume, moreover, that
the universe extends itself indefinitely in all directions around the Earth, having the same average volume
density ρgo at all distances from the Earth, at all moments of time and at all directions. Therefore, in order
to obtain the inertial energy Ui we need to integrate the energy of interaction between a test particle mg and
a spherical shell of mass Mg and radius R, with R going from zero to infinity. Likewise, in order to obtain
the inertial force ~Fi, we need to integrate the force exerted on mg by a spherical shell of mass Mg and radius
R, from R = 0 up to R → ∞. As we wish to obtain finite values for Ui and ~Fi with this cosmological model,
we adopt a weberian gravitational law with exponential decay. That is, we postulate equations (17.17) and
(17.18).

With these assumptions, the integrated values of the inertial energy Ui and inertial force ~Fi can be
expressed in several forms. In the universal frame of reference U in which the set of distant galaxies are at
rest they are given by equations (17.44) and (17.47). In the frame of reference S in which the set of distant
galaxies is moving as a whole with a constant linear velocity ~VGS they are given by (17.58) and (17.59). In
the frame of reference A in which the set of galaxies is moving as a whole with a linear acceleration ~AGA

they are given by equations (17.64) and (17.65). In the frame of reference R in which the set of galaxies is
spinning as a whole with an angular velocity ~ΩGR the inertial energy Ui and the inertial force ~Fi are given by
equations (17.70) and (17.71), respectively. In all these cases the constant Φ∞ is defined by equation (17.45).
In the next Subsections we express the equations of motion of relational mechanics in different systems of
reference.

17.7.1 Equation of Motion in the Universal Frame

We first assume that we are in the universal frame of reference U in which the set of distant galaxies is at
rest, with any linear or angular velocities (neglecting the small peculiar motions between the galaxies) and
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also without any linear or angular accelerations, figure 17.14. As defined in Section 17.2, there is a set (A) of
N bodies interacting with one another and also interacting with a set (B) of bodies distributed isotropically
around these N bodies. Each particle p of group (A), with p = 1, ..., N , has a gravitational mass mgp and
a position vector ~rpU relative to the origin O of frame U , moving in this frame with a velocity ~vpU and
acceleration ~apU relative to frame U . The test particle belonging to these N particles of group (A) will be
called k. Its gravitational mass will be represented by mgk, having a position vector ~rkU relative to the origin
O of frame U , moving relative to U with velocity ~vkU and acceleration ~akU , figure 17.14.
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Figure 17.14: Universal frame U with N local particles. One of these particles is the test particle of
gravitational mass mgk.

Equation (17.44) yields the inertial energy Up
i of each one of these N particles p interacting gravitationally

with the isotropic portion of the infinite universe, with p = 1, ..., N . Combining equations (17.9) and (17.44)
we obtain the equation for the conservation of energy in relational mechanics, in the universal frame, as
given by:

Uaa + Uii + Uai =
1

2

N
∑

p=1

N
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q=1

q 6=p

Upq + Uii +
N
∑

p=1

Up
i

=
1

2

N
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p=1

N
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q=1

q 6=p

Upq + Uii −
4πHgρgo

α2

(

N
∑

p=1
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)

+Φ∞

(
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mgp
~vpU · ~vpU

2

)

= 0 . (17.73)

We assume that the energy of interaction between the particles composing the isotropic distributions
of matter, Uii, is a constant in time. The term 4πHgρgo(

∑N
p=1 mgp)/α

2 is also constant. Therefore, the
equation for the conservation of energy in relational mechanics can be expressed as follows:

1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq +Φ∞

(

N
∑

p=1

mgp
~vpU · ~vpU

2

)

= constant in time . (17.74)

For instance, suppose there are two particles, 1 and 2, interacting with one another. Each one of them
is also interacting with the isotropic distribution of matter around them. In this case the equation for the
conservation of energy assumes the following form, utilizing that Upq = Uqp:

U12 +Φ∞

(

mg1
~v1U · ~v1U

2
+mg2

~v2U · ~v2U
2

)

= constant in time . (17.75)
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Analogously, when there are three particles (1, 2 and 3) interacting with one another, and each one of
them interacting also with the isotropic distribution of matter around them, we obtain:

U12 + U13 + U23 +Φ∞

(

mg1
~v1U · ~v1U

2
+mg2

~v2U · ~v2U
2

+mg3
~v3U · ~v3U

2

)

= constant in time . (17.76)

On the other hand, by combining equations (17.10) and (17.47), we obtain the equation of motion in
relational mechanics for a test particle of gravitational mass mgk moving in this universal frame as given by:

~Fa + ~Fi =

N
∑

p=1

p 6=k

~Fpk + ~Fi =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (17.77)

The most important aspect to observe in this expression is that there will only be an inertial force
~Fi = −Φ∞mgk~akU acting on the test body k when there is a relative acceleration between this test body
and the set of galaxies. This is due to the fact that ~Fi depends on the relative acceleration ~akU − ~AGU =
~akU − ~0 = ~akU . Therefore, when ~akU = ~AGU = ~0, we will have ~Fi = ~0.

Figure 17.15 (a) presents the acceleration of body k relative to frame U . Figure 17.15 (b), on the other
hand, presents the inertial force ~Fi = −Φ∞mgk~akU exerted by the set of galaxies and acting on body k,
pointing along −~akU , and also the reaction force ~Fmi exerted by k and acting on the set of galaxies. Although
this last force ~Fmi is represented as acting on only one specific galaxy, it should be understood that this
force, as a matter of fact, is distributed over all galaxies, acting on all of them.

U U
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mgk

Fi

Fmi
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Figure 17.15: (a) Acceleration ~akU of body k relative to the universal frame U . (b) Inertial force ~Fi exerted
gravitationally by the set of galaxies and acting on the test body k, together with the force ~Fmi exerted by
k and acting on the set of distant galaxies.

Suppose, for instance, there are two particles 1 and 2 interacting with one another, and each one of them
interacting also with the isotropic distribution of matter around them. The equation of motion for particle
1 in relational mechanics takes the following form:

~F21 − Φ∞mg1~a1U = ~0 . (17.78)

Likewise, the equation of motion for particle 2 in this situation takes the following form:

~F12 − Φ∞mg2~a2U = ~0 . (17.79)

Suppose now there are three particles (1, 2 and 3) interacting with one another. Each one of these
particles interacts as well with the isotropic distribution of matter around them. According to relational
mechanics the equation of motion for particle 1 takes the following form:

~F21 + ~F31 − Φ∞mg1~a1U = ~0 . (17.80)

Analogously, the equations of motion for particles 2 and 3 are given by, respectively:

~F12 + ~F32 − Φ∞mg2~a2U = ~0 , (17.81)

and

~F13 + ~F23 − Φ∞mg3~a3U = ~0 . (17.82)
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As seen in Section 1.2, Newton’s absolute space had no relation to anything external. The universal frame
of reference U introduced in Section 1.8, on the other hand, is totally determined by the distant material
world composed by the set of distant galaxies. Therefore, the velocity ~vkU and acceleration ~akU of the test
particle k which appear in equations (17.73) to (17.82) are totally related to the distant galaxies. The frame
U is the reference frame in which the distant matter as a whole is at rest, although there are peculiar or
proper motions of the galaxies in this frame (that is, there are small velocities of one galaxy relative to other
galaxies). That is, the frame U is the reference frame in which the average velocity of the galaxies is zero,
although it is not necessary to assume that all galaxies are at rest in this frame. In this universal frame the
universe appears isotropic in large scale, with the distant galaxies being distributed more or less uniformly
in this frame. From the astronomical observations it appears that this frame U is the same frame in which
the cosmic background radiation is isotropic, not presenting any dipole anisotropy, Section 1.8. It is in
this universal frame U that the equation of motion of relational mechanics takes its simplest form given by
equation (17.77). In this equation there is no term containing the acceleration of the set of distant galaxies.

17.7.2 Equation of Motion when the Set of Galaxies Moves as a Whole with a

Constant Velocity

We now obtain the equation for the conservation of energy in relational mechanics in a frame of reference S
in which the set of galaxies moves as a whole with a constant linear velocity ~VGS , figure 17.16.
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Figure 17.16: Frame of reference S in which the set of galaxies moves with a constant linear velocity ~VGS .
The test particle of mass mgk belongs to a group of N local particles.

We assume once more the existence of the two groups (A) and (B) defined in Section 17.2. Group (A)
is composed of N particles, namely, the test body of gravitational mass mgk, the other local bodies and the
anisotropic distributions of matter. Group (B) is composed by the isotropic distributions of matter around
the test body. Each particle p belonging to group (A), with p = 1, ..., N , has a gravitational mass mgp, being
located at ~rpS relative to the origin O of frame S, moving in this frame S with velocity ~vpS and acceleration
~apS , figure 17.16.

Combining equations (17.9) and (17.58) we obtain:
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= 0 , (17.83)
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where the constant Φ∞ has been defined by equation (17.45).
The term −(4πHgρgo/α

2)(
∑N

p=1 mgp) is a constant. We assume that Uii is also a constant in time. With
this assumption equation (17.83) can be written as:
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Upq +Φ∞

[

N
∑
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mgp
(~vpS − ~VGS) · (~vpS − ~VGS)

2

]

= constant in time . (17.84)

This is the equation for the conservation of energy in relational mechanics in this frame S. It should be
observed that the inertial energy Up

i depends only on the relative velocity ~vpS − ~VGS between body p and
the set of distant galaxies.

By combining equations (17.10) and (17.59) we obtain the equation of motion of relational mechanics for
a test particle of gravitational mass mgk moving in this frame S with an acceleration ~akS , namely:

~Fa + ~Fi =

N
∑

p=1

p 6=k

~Fpk + ~Fi =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akS = ~0 . (17.85)

The most important aspect to observe in this expression is that there will only be an inertial force ~Fi =
−Φ∞mgk~akS acting on the test body k when there is a relative acceleration between this test body and the
set of galaxies. This is due to the fact that ~Fi depends on the relative acceleration ~akS− ~AGS = ~akS−~0 = ~akS .
Therefore, when ~akS = ~AGS = ~0, we will have ~Fi = ~0.

Figure 17.17 (a) presents the acceleration of body k relative to frame S and the velocity ~VGS of the
galaxies in frame S. Figure 17.17 (b), on the other hand, presents the inertial force ~Fi = −Φ∞mgk~akS
exerted by the set of galaxies and acting on body k, pointing along −~akS , and also the reaction force ~Fmi

exerted by k and acting on the set of galaxies. Although this last force ~Fmi is represented as acting on
only one specific galaxy, it should be understood that this force, as a matter of fact, is distributed over all
galaxies, acting on all of them.
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Figure 17.17: (a) Acceleration ~akS of body k relative to frame S and velocity ~VGS of the galaxies relative to
S. (b) Inertial force ~Fi exerted gravitationally by the set of galaxies and acting on the test body k, together
with the force ~Fmi exerted by k and acting on the set of distant galaxies.

17.7.3 Equation of Motion when the Set of Galaxies is Linearly Accelerated

We now obtain the equation for the conservation of energy in relational mechanics in a frame of reference A
in which the set of galaxies moves as a whole with a linear velocity ~VGA and linear acceleration ~AGA, figure
17.18.

We assume once more the existence of the two groups (A) and (B) defined in Section 17.2. Group (A)
is composed of N particles, namely, the test body of gravitational mass mgk, the other local bodies and the
anisotropic distributions of matter. Group (B) is composed by the isotropic distributions of matter around
the test body. Each particle p belonging to group (A), with p = 1, ..., N , has a gravitational mass mgp, being
located at ~rkA relative to the origin O of frame A, moving in this frame A with velocity ~vkA and acceleration
~akA, figure 17.18.

Combining equations (17.9) and (17.64) we obtain:
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Figure 17.18: Frame of reference A in which the set of galaxies moves with linear velocity ~VGA and linear
acceleration ~AGA. The test particle of mass mgk belongs to a group of N local particles.
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where the constant Φ∞ has been defined by equation (17.45).
The term −(4πHgρgo/α

2)(
∑N

p=1 mgp) is a constant. We assume that Uii is also a constant in time. With
this assumption equation (17.86) can be written as:
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This is the equation for the conservation of energy in relational mechanics in this frame A. It should be
observed that the inertial energy Up

i depends only on the relative velocity ~vpA − ~VGA between body p and
the set of distant galaxies.

By combining equations (17.10) and (17.65) we obtain the equation of motion of relational mechanics for
a test particle of gravitational mass mgk moving in this frame A with an acceleration ~akA, namely:

~Fa + ~Fi =

N
∑

p=1

p 6=k

~Fpk + ~Fi =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk(~akA − ~AGA) = ~0 . (17.88)

The symbol ~AGA represents the linear acceleration of the set of galaxies relative to frame A.
The most important aspect to observe in this expression is that there will only be an inertial force

~Fi = −Φ∞mgk(~akA − ~AGA) acting on the test body k when there is a relative acceleration between this test
body and the set of galaxies. This is due to the fact that ~Fi depends on the relative acceleration ~akA− ~AGA.
Therefore, when ~akA = ~AGA, we will have ~Fi = −Φ∞mgk(~akA − ~AGA) = ~0, even when ~akA 6= ~0.

Figure 17.19 (a) presents the acceleration of body k and also the acceleration of the set of galaxies in
frame A. Figure 17.19 (b), on the other hand, presents the inertial force ~Fi = −Φ∞mgk(~akA − ~AGA) =

Φ∞mgk( ~AGA − ~akA) exerted by the set of galaxies and acting on body k, pointing along ~AGA − ~akA, and
also the reaction force ~Fmi exerted by k and acting on the set of galaxies. Although this last force ~Fmi is
represented as acting on only one specific galaxy, it should be understood that this force, as a matter of fact,
is distributed over all galaxies, acting on all of them.
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Figure 17.19: (a) Acceleration ~akA of body k in frame A, together with the acceleration ~AGA of the set of
galaxies relative to A. (b) Inertial force ~Fi exerted gravitationally by the set of galaxies and acting on the
test body k, together with the force ~Fmi exerted by k and acting on the set of distant galaxies. The inertial
force ~Fi points along ~AGA − ~akA.

If the galaxies are not accelerated in frame A, ~AGA = ~0, the force they exert on the test body k will point
oppositely to the acceleration ~akA of the body in this frame. If, on the other hand, there is no acceleration
of the test body in this frame, ~akA = ~0, then the force exerted by the galaxies on k will point along the
acceleration ~AGA of the galaxies.

17.7.4 Equation of Motion when the Set of Galaxies is Rotating

We now consider a reference frame R in which the set of galaxies is rotating as a whole with an angular
velocity ~ΩGR(t) around an axis passing through the center O of R, figure 17.20.

R

y

x

0

rkR
v

kR

akR

mgk

ΩGR

ΩGR

z

1 2 3
... N

Figure 17.20: Frame of reference R in which the set of galaxies is rotating together with an angular velocity
~ΩGR around an axis passing through the origin O of R.

Once more we assume the existence of the two groups (A) and (B) defined in Section 17.2. Group (A) is
composed of N particles, namely, the test body with gravitational mass mgk, the other local bodies and the
anisotropic distributions of mass. Group (B) is composed by the isotropic distributions of matter around the
test body. Each particle p belonging to group (A), with p = 1, ..., N , has a gravitational mass mgp, being
located at the position vector ~rkR relative to the origin O of frame R, moving in frame R with a velocity
~vkR and acceleration ~akR, figure 17.20.

Combining equations (17.9) and (17.70), we obtain the equation for the conservation of energy in relational
mechanics, in frame R, as given by:
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(17.89)
in which the constant Φ∞ has been defined by equation (17.45).

The term −(4πHgρgo/α
2)(
∑N

p=1 mgp) is constant. Assuming once more that the interaction energy of
the particles belonging to the isotropic group (B), Uii, is a constant in time, equation (17.89) can be written
as:
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This is the equation for the conservation of energy for relational mechanics in frame R.
The equation of motion for a test particle k of gravitational mass mgk moving in frame R can be obtained

combining equations (17.10) and (17.71), namely:
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(17.91)
We consider here a particular situation in which the test body k and the set of galaxies are rotating around

the z axis of frame R with angular velocities given by ~ωkR = ωkRẑ and ~ΩGR = ΩGRẑ, respectively. These
angular velocities can be different from one another. In this situation we will utilize cylindrical coordinates
(u, ϕ, z) = (

√

x2 + y2, arctan(y/x), z). The position vector of particle k relative to the origin O of frame
R is given by:

~rkR = xkx̂+ ykŷ + zkẑ = ~uk + zkẑ = ukûk + zkẑ , (17.92)

where uk =
√

x2
k + y2k represents the distance of particle k to the axis of rotation, while ûk represents the

unit vector in the xy plane, perpendicular to the axis of rotation, and pointing from the z axis to this particle.
The velocity of k relative to frame R is given by:

~vkR = ~ωkR × ~rkR = ~ωkR × ~uk = (ωkR)ukϕ̂k , (17.93)

where ϕ̂k represents the unit vector pointing along the tangential ϕ direction, at the position of particle k,
figure 17.21.

As the angular velocities considered here are supposed constant in time, this particle has only a centripetal
acceleration given by:

~akR = −ω2
kR~uk = −(ω2

kR)ukûk . (17.94)

Application of equations (17.93) and (17.94) into equations (17.90) and (17.91) yields:
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and
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~Fpk +Φ∞mgk

[

(ω2
kR)ukûk − ΩGRẑ × (ΩGRẑ × ukûk)− 2(ωkR)ukϕ̂k × ΩGRẑ

]
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Figure 17.21: Test body k at a distance uk from the z axis of rotation moving with an angular velocity ωkRẑ
in frame R, while the set of galaxies is rotating together in this frame with an angular velocity ΩGRẑ. (a)
Perspective view. (b) View projected in plane xy.
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The most important aspect to be observed in equation (17.95) is that the inertial energy of test body
k, namely, Uk

i = Ui = Φ∞mgk(ωkR − ΩGR)
2u2

k/2, depends only on the relative angular velocity ωkR − ΩGR

between test body k and the set of galaxies. Likewise, the most important feature of equation (17.96) is
that the inertial force ~Fi = Φ∞mgk(ωkR − ΩGR)

2ukûk depends only on the relative rotation ωkR − ΩGR

between the test body k and the set of galaxies. These two expressions, Uk
i and ~Fi, will only be different

from zero if ωkR 6= ΩGR, that is, when there is a relative rotation between the test body and the set of
galaxies. Moreover, in this case equation (17.96) shows that this inertial force will behave like a centrifugal
force, that is, pointing from the z axis of rotation towards the test particle k. Therefore this force will point
along the same direction as the unit vector ûk, acting along a plane perpendicular to the axis of rotation.
Figure 17.22 presents the forces of action and reaction between test body k and the set of galaxies.
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Figure 17.22: Inertial force ~Fi exerted gravitationally by the set of galaxies and acting on the test body k,
together with the reaction force ~Fmi exerted by k and acting on the set of galaxies.

We have then obtained the equations of motion of relational mechanics valid in the main systems of
reference, namely, in the universal frame U , in the frame S in which the set of galaxies has no acceleration
but in which the galaxies move as a whole with a linear velocity ~VGS , in the frame A in which the set of
galaxies has a common translational acceleration ~AGA, and in the frame R in which the set of galaxies rotates
as a whole around an axis passing through the origin O of R with a common angular velocity ~ΩGR.



Chapter 18

Additional Topics of Relational

Mechanics

18.1 Attraction of Two Bodies in the Frame of Distant Galaxies

In order to clarify the similarities and differences between relational mechanics and classical mechanics, we
now consider the motion of two bodies (like an apple and the Earth) in the frame of distant galaxies.

The free fall in newtonian mechanics was analyzed in Subsection 7.2.3. We now consider this problem
from the point of view of relational mechanics. We have then body 1 of gravitational mass mg1, body 2
of gravitational mass mg2 and the set of distant galaxies. Bodies 1 and 2 will be considered as particles,
neglecting their sizes in comparison with the distance r between them. Their motions will be analyzed in
the universal frame U , figure 18.1.

0
a1

a2

2

1

U

Figure 18.1: Motion of two gravitational masses in the universal frame U of distant galaxies.

Let ~r1 and ~r2 represent the position vectors of bodies 1 and 2 relative to the origin of coordinates O of
frame U . We assume that bodies 1 and 2 are moving in frame U with velocities ~v1U and ~v2U , while their
accelerations in the universal frame are represented by ~a1U and ~a2U , respectively. In Section 17.2 we divided
the bodies of the universe in two groups, (A) and (B). In the situation being considered here the local bodies
belonging to group (A) are particles 1 and 2, while group (B) is composed by the isotropic distributions of
matter around these two particles, that is, is composed by the set of distant galaxies.

The postulate of the conservation of energy in relational mechanics is given by equation (17.74). Particle
1 is interacting with particle 2 and also with the isotropic distribution of matter around it. Likewise, particle
2 is interacting not only with particle 1, but also with the set of distant galaxies. We then obtain the
following equation, utilizing that U21 = U12:

U12 +Φ∞

(

mg1
~v1U · ~v1U

2
+mg2

~v2U · ~v2U
2

)

= constant in time . (18.1)

The energy U12 of gravitational interaction between particles 1 and 2 is given by equation (17.17). We
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here assume that αr12 ≪ 1, where r12 ≡ r represents the distance between the centers of particles 1 and
2. We also assume that ṙ212/c

2 ≪ 1, where ṙ12 ≡ ṙ represents the radial relative velocity between 1 and 2.
With these assumption U12 simplifies to:

U12 = −Hg
mg1mg2

r12
. (18.2)

Combining equation (18.1) and (18.2), and dividing both sides of the resulting equation by the constant
Φ∞ yields:

− Hg

Φ∞

mg1mg2

r12
+mg1

~v1U · ~v1U
2

+mg2
~v2U · ~v2U

2
= constant in time . (18.3)

The postulate of zero net force of relational mechanics is given by equation (17.77). As regards body 1,
it suffers the gravitational force exerted by body 2 and also the gravitational force exerted by the isotropic
distribution of matter around it (that is, exerted by the set of distant galaxies). Therefore, the postulate of
zero net force as applied to 1 takes the following form in the universal frame U :

~F21 − Φ∞mg1~a1U = ~0 . (18.4)

The gravitational force ~F21 exerted by 2 on 1 is given by (17.18). We assume once more αr12 ≪ 1,
ṙ212/c

2 ≪ 1 and |r12r̈12|/c2 ≪ 1, where r12 ≡ r is the distance between 1 and 2, ṙ12 ≡ ṙ is the radial
relative velocity between them, while r̈12 ≡ r̈ is the relative radial acceleration between them. With these
assumptions equation (17.18) simplifies to:

~F21 = Hgmg1mg2
r̂21
r212

, (18.5)

where r̂21 ≡ −r̂12 represents the unit vector pointing from 1 to 2.
Combining equations (18.4) and (18.5), and dividing the resulting equation by the constant Φ∞, yields

the equation of motion for particle 1 as given by:

Hg

Φ∞

mg1mg2
r̂21
r212

−mg1~a1U = ~0 . (18.6)

By following the same procedure for particle 2 and utilizing that r̂ = r̂21 = −r̂12 we obtain the equation
of motion for particle 2 as given by:

− Hg

Φ∞

mg1mg2
r̂21
r212

−mg2~a2U = ~0 . (18.7)

18.2 The Values of the Constants which Appear in the Forces of

Relational Mechanics

In this Section we discuss the values of the constants He, Hg and α which appear in equations (17.11),
(17.13), (17.15), (17.16), (17.17) and (17.18).

We can compare equations (18.3), (18.6) and (18.7) with the analogous equations of newtonian mechanics,
namely, equations (7.25), (7.27) and (7.28). They have the same form and will yield the same numerical
values in the International System of Units, provided the ratio Hg/Φ∞ has the same value of the constant
G of universal gravitation. We postulate that this is indeed the case. That is, we impose that the following
relation is exactly valid:

Hg

Φ∞

= G . (18.8)

Combining equation (18.8) with the definition of the constant Φ∞ given by equation (17.45) yields:

Hg

Φ∞

=
Hg

4πHgρgoξ/(3c2α2)
=

3c2α2

4πρgoξ
= G . (18.9)

Equation (18.9) yields the value of the constant α which had been introduced in equations (17.17) and
(17.18). That is, equation (18.9) yields:
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α =

√

4πρgoξG

3c2
. (18.10)

The value of the constant ξ will be obtained from the comparison of the theoretical prediction of the
advance of the perihelion of the planets with the observational values. As will be seen in Section 24.1, this
comparison yields:

ξ = 6 . (18.11)

Equations (18.10) and (18.11), together with the value of G given by equation (1.8) and the limits for
the mean density of gravitational mass in the universe ρgo given by equation (4.37) yield:

1.7× 10−27 m−1 < α < 5.8× 10−27 m−1 . (18.12)

The constant dg defined by dg ≡ 1/α may be called the characteristic distance of gravitational interac-
tions. Equations (12.19) and (18.12) yield the following limits for this constant:

1.7× 1026 m < dg < 5.9× 1026 m . (18.13)

The value of dg as given by equation (18.13) has the same order of magnitude as Hubble’s distance Ro

given by equation (4.34). Equations (17.17) and (17.18) indicate that when the distance r between two point
particles has the value dg, the potential energy describing their interaction will be 1/e times smaller than the
analogous newtonian potential energy. This distance dg has no relation with the size or radius of the universe.
Remember that we are assuming here a homogeneous universe, having everywhere a constant average volume
density of gravitational mass ρgo, with this universe extending itself indefinitely in all directions.

If the constant α happens to be related with Hubble’s constant Ho by equation (12.22), then equation
(18.10) can be written as:

H2
o

k21
=

4πρgoξG

3
. (18.14)

In this equation the dimensionless constant k1 would have a value equal to 1 or a value having this order
of magnitude, like 0.5; 1.3; 0.8; or .... Equation (18.14) is similar to equation (12.23) relating G, Ho and ρgo.
It has been obtained by several authors along the XXth century.1

Equation (18.9) shows that the value of the constant Hg cannot be determined in relational mechanics.
This result is compatible with the principle of physical proportions.2 That is, it is only possible to determine
the ratio of forces, but not the absolute value of any particular force. Likewise, it is not possible to determine
the value of the constant He given by equations (17.11) and (17.13).

On the other hand, it is possible to determine the value of the ratio He/Hg. In order to understand how
is it possible to determine this ratio He/Hg, we consider the interaction of two bodies 1 and 2 electrified with
charges q1 and q2. Their motions will be considered in the universal frame U utilizing relational mechanics.
These particles interact electrically with one another and we will assume that this electric force is much
larger than the gravitational force between them. Moreover, each one of them also interacts gravitationally
with the isotropic distribution of matter around them, that is, with the set of distant galaxies. To simplify
the analysis we assume once more that ṙ212/c

2 ≪ 1 and |r12r̈12|/c2 ≪ 1. By following a procedure analogous
to that presented in Section 18.1, together with equations (17.11) and (17.13), we can obtain equations of
motion as being given by equations analogous to equations (18.3), (18.6) and (18.7), but now replacing the
gravitational interaction between 1 and 2 by their electrical interaction, namely:

He

Φ∞

q1q2
r12

+mg1
~v1U · ~v1U

2
+mg2

~v2U · ~v2U
2

= constant in time , (18.15)

− He

Φ∞

q1q2
r̂21
r212

−mg1~a1U = ~0 , (18.16)

and
1[Sch25] with commented Portuguese translation in [XA94] and with English translation in [Sch95], [Dir38], [Sci53], [Bro55]

and [Bro82, p. 57], [Dic59], [Fre71, Chapter 12: Inertial Forces and Noninertial Frames], [Edw74], [Eby77], [Ass89a], [Ass98,
Sections 8.3 and 11.4], [Ass99a, Sections 8.5 and 11.4], [Unz10], [UJ13] and [Gin11].

2[Ass01], [Ass03a], [Ass04] and [Ass11b] with German translation in [Ass13a].
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He

Φ∞

q1q2
r̂21
r212

−mg2~a2U = ~0 . (18.17)

These equations will be analogous to the equivalent equations of classical mechanics, expressed in the
International System of Units and with the charges measured in coulombs, provided the following relation
is valid:

He

Φ∞

=
1

4πεo
. (18.18)

From now on we will assume this relation to be exactly valid.
The constant Φ∞ given by equation (17.45) is proportional to Hg. Therefore it is possible to determine

the ratio He/Hg utilizing equations (18.8) and (18.18), namely:

He

Hg
=

1

G

1

4πεo
. (18.19)

The same procedure can be applied to forces of other nature (elastic, friction, magnetic etc.). For instance,
the elastic force exerted by a spring in relational mechanics is to be written like equation (2.6) of classical
mechanics, but with an elastic constant K instead of the usual elastic constant k of newtonian mechanics
expressed in the International System of Units:

~F = −K(ℓ− ℓo)x̂ = −Kxx̂ . (18.20)

Supposing the test body is interacting elastically with this spring and also gravitationally with the distant
galaxies, equation (17.77) yields:

−Kxx̂− Φ∞mgk~akU = ~0 . (18.21)

This equation will yield the same values of equation (8.2) of classical mechanics, provided the following
equation is true:

K

Φ∞

= k . (18.22)

From now on we will assume that equation (18.22) is exactly valid.
As the constant Φ∞ given by equation (17.45) is proportional to Hg, we can obtain the value of the ratio

K/Hg utilizing equations (18.8) and (18.22):

K

Hg
=

k

G
. (18.23)

The force of friction exerted by a fluid and acting on a test body moving in the fluid is written in relational
mechanics like equation (2.8) of classical mechanics, but now with the constants B0, B1 and B2 instead of
the constants b0, b1 and b2 written in the International System of Units. That is, the frictional force is
written as:

~F = −(B0 +B1rvr +B2ρfr
2v2r)v̂r , (18.24)

where the relative velocity ~vr between the body and the fluid around it has been defined in equation (2.7).
Suppose now the test body of gravitational mass mgk is interacting with this fluid and is also interacting

gravitationally with the distant galaxies. In this case the equation of motion (17.77) of relational mechanics
in the universal frame can be written as:

−(B0 +B1rvr +B2ρfr
2v2r)v̂r − Φ∞mgk~akU = ~0 . (18.25)

Equation (18.25) will yield the same values for the velocity and acceleration of the test body as given by
classical mechanics written in the International System of Units, provided the following relation is valid:

B0

Φ∞

= b0 ,
B1

Φ∞

= b1 ,
B2

Φ∞

= b2 . (18.26)

From now on we will assume that this relation is exactly valid.
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Equations (18.8) and (18.26) yield:

B0

Hg
=

b0
G

,
B1

Hg
=

b1
G

,
B2

Hg
=

b2
G

. (18.27)

We will assume that equations (18.8) to (18.27) are always valid, the same happening when comparing
the other forces of interaction of relational mechanics with the analogous forces of classical mechanics. That
is, if in classical mechanics there is a constant δ in some law of force, the same equation should be written in
relational mechanics with the constant ∆ replacing the constant δ. Moreover, we assume that ∆/Φ∞ = δ.
In this way the predictions of relational mechanics will yield the same values as the analogous predictions of
newtonian mechanics when expressed in the International System of Units.

The main conceptual differences between relational mechanics and classical mechanics happen when the
test body is accelerated in the universal frame U . When there is no acceleration of body p relative to the
frame of distant galaxies we have ~apU = ~0, where ~apU represents the acceleration of p relative to the universal
frame.

In order to express all forces of relational mechanics in the International System of Units, including the
weight of the body, it is simpler to impose that the constant Hg of relational mechanics is given by the value
of the universal constant G of classical mechanics, namely:

Hg = G . (18.28)

Utilizing the value of the constant α obtained in equation (18.10), together with the definition of Φ∞

given by equation (17.45), we then obtain:

Φ∞ =
4πGρgoξ

3c2α2
= 1 . (18.29)

By assuming equations (18.28) and (18.29), all other constants ∆ appearing in the forces of interaction of
relational mechanics (such as He, K, B0, B1, B2, ...) can then be written directly as the equivalent constants
δ of classical mechanics (such as 1/(4πεo), k, b0, b1, b2, ...) From now on we will assume equations (18.28)
and (18.29).

The assumptions expressed by equations (18.28) and (18.29) simplify the transition from relational me-
chanics to classical mechanics. They also simplify the comparison between these two theories. For this reason
we will adopt the validity of these equations in this book. But it should be kept in mind that we cannot
obtain the value of Hg in relational mechanics, as it is only possible to obtain the ratio of two forces in this
theory. It is not possible to obtain the absolute value of any single force in relational mechanics, but only
how many times one specific force is greater or smaller than another specific force.

Utilizing equations (18.11), (18.28) and (18.29), the inertial energy Ui and the inertial force ~Fi expressed
in the universal frame U , as given by equations (17.44) and (17.47), are then simplified to the following
forms:

Ui = −4πHgmgρgo
α2

+Φ∞mg
~vmU · ~vmU

2
= −mg

c2

2
+mg

~vmU · ~vmU

2
, (18.30)

and

~Fi = −Φ∞mg~amU = −mg~amU . (18.31)

Likewise, utilizing equations (18.28) and (18.29), we can express the gravitational potential energy, the
gravitational force, the electric potential energy and the electric force of relational mechanics given by
equations (17.17), (17.18), (17.13) and (17.11), as follows:

U12 = −G
mg1mg2

r12

(

1− ξ
ṙ212
2c2

)

e−αr12 , (18.32)

~F21 = −Gmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)

+ αr12

(

1− ξ

2

ṙ212
c2

)]

e−αr12 = − ~F12 , (18.33)

U12 =
1

4πεo

q1q2
r12

(

1− ṙ212
2c2

)

, (18.34)

and
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~F21 =
q1q2
4πεo

r̂12
r212

(

1− ṙ212
2c2

+
r12r̈12
c2

)

= − ~F12 . (18.35)

Moreover, if we are dealing with the gravitational interaction between two bodies belonging to the solar
system, their distance r = r12 will have a maximum value of the order of magnitude of the distance between
the Sun and the planet Pluto, that is, will have a maximum value of the order of 1013 m. By equation
(18.12) the value of the constant α is of the order of magnitude of 10−27 m−1. Therefore, the maximum
value of rα will be of the order of 10−14. As 10−14 ≪ 1, we have e−αr ≈ 1. This value of e−αr ≈ 1 means
that in general the gravitational potential energy and the gravitational force between two bodies, instead
of being given by equations (18.32) and (18.33) which have an exponential decay, can then be expressed as
the weberian potential energy and as the weberian force given by equations (17.15) and (17.16), with the
constant G replacing the constant Hg, namely:

U12 = −G
mg1mg2

r12

(

1− ξ
ṙ212
2c2

)

, (18.36)

and

~F21 = −Gmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

= − ~F12 . (18.37)

Moreover, when the relative motion between bodies 1 and 2 satisfy the conditions ṙ212/c
2 ≪ 1 and

|r12r̈12|/c2 ≪ 1, equations (18.34) to (18.37) will become identical to the newtonian and coulombian potential
energies and forces, namely:

U12 = −G
mg1mg2

r12
, (18.38)

~F21 = −Gmg1mg2
r̂12
r212

= − ~F12 . (18.39)

U12 =
1

4πεo

q1q2
r12

, (18.40)

and

~F21 =
q1q2
4πεo

r̂12
r212

= − ~F12 . (18.41)

It should be emphasized once more that the supposition represented by equations (18.28) and (18.29) is
based on a simple convention. In relational mechanics it is not possible to determine the absolute value of any
force, we can only determine the ratio of two forces. Although equation (18.28) is an arbitrary supposition,
it will be adopted in this book to simplify the representation of forces in the cases in which the test bodies
are not accelerated relative to the universal frame U . This supposition makes the value of the constant Φ∞

to be given by 1, equation (18.29). Despite this assumption, we will still write explicitly the constant Φ∞

is all equations representing the situation in which the test body is accelerated in the universal frame U .
In this way we will emphasize the fundamental role played by the distant galaxies in the origin of inertial
forces.

18.3 Conservation of Linear Momentum

Suppose there is a set of N particles interacting with one another. Suppose, moreover, that each one of
these N particles also interacts gravitationally with the distant galaxies. Let O be the origin of the universal
reference frame U in which the set of galaxies is at rest (apart from the small peculiar motions of one galaxy
relative to the other galaxies). We will represent by ~rpU the position vector of particle p relative to the origin
O of frame U , with p = 1, ..., N .. Likewise, ~vpU ≡ d~rpU/dt and ~apU ≡ d~vpU/dt = d2~rpU/dt

2 represent the
velocity and acceleration of p in frame U , figure 18.2. The gravitational mass of p will be represented by
mgp.

The total linear momentum ~pt of this system of particles is defined in the universal frame U by:
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mgp

vpU

apU

Uz

y

x

0

rpU

1 2
3...

N

Figure 18.2: Position vector, velocity and acceleration of particle p relative to the origin O of the universal
frame U .

~pt ≡
N
∑

p=1

mgp~vpU . (18.42)

Deriving the total linear momentum relative to time and utilizing the equation of motion of relational
mechanics in the frame U given by equation (17.77) we obtain, supposing constant gravitational masses:

d~pt
dt

=

N
∑

p=1

mgp~apU = mg1~a1U +mg2~a2U + ...+mgN~aNU =
1

Φ∞







N
∑

p=1

p 6=1

~Fp1 +

N
∑

p=1

p 6=2

~Fp2 + ...+

N
∑

p=1

p 6=N

~FpN







=
1

Φ∞

[(

~F21 + ~F31 + ...+ ~FN1

)

+
(

~F12 + ~F32 + ...+ ~FN2

)

+ ...+
(

~F1N + ~F2N + ...+ ~FN−1, N

)]

.

(18.43)
Supposing that the forces between each pair of particles satisfy the principle of action and reaction given

by equation (17.1) we obtain, for each pair of particles pq belonging to this set of N bodies:

~Fpq = − ~Fqp . (18.44)

The right hand side of equation (18.43) goes to zero utilizing equation (18.44):

~pt = constant in time . (18.45)

That is, provided there is action and reaction between each pair of interacting particles, as represented
by equation (18.44), the total linear momentum of this system of particles in the universal frame U remains
constant in time, no matter how the distance between the particles may change while they are interacting
with one another.

18.4 Conservation of Angular Momentum

We consider now once more the situation of Section 18.3. The total angular momentum of this system of N
particles relative to the universal frame U is defined by:

~Lt ≡
N
∑

p=1

~rp × (mgp~vpU ) . (18.46)
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Deriving the total angular momentum relative to time yields, supposing constant gravitational masses
and utilizing that ~vpU × ~vpU = ~0:

d~Lt

dt
=

N
∑

p=1

~rp × (mgp~apU ) = ~r1 ×mg1~a1U + ~r2 ×mg2~a2U + ...+ ~rN ×mgN~aNU . (18.47)

Combining equation (18.47) with the equation of motion of relational mechanics expressed in the universal
frame U , equation (17.77), yields:

d~Lt

dt
=

1

Φ∞

[

~r1 ×
(

~F21 + ~F31 + ...+ ~FN1

)

+ ~r2 ×
(

~F12 + ~F32 + ...+ ~FN2

)

+ ...+ ~rN ×
(

~F1N + ~F2N + ...+ ~FN−1, N

)]

. (18.48)

Utilizing equation (18.44) into equation (18.48) yields, with ~rpq ≡ ~rp − ~rq:

d~Lt

dt
=

1

Φ∞

[

~r12 × ~F21 + ~r13 × ~F31 + ...+ ~rN−1, N × ~FN, N−1

]

. (18.49)

We now suppose that the forces between each pair of particles satisfy the principle of action and reaction
in the strong form. That is, the force ~Fpq exerted by p on q is not only equal and opposite to the force
~Fqp exerted by q on p, equation (18.44), but is also along the straight line connecting these two particles,
equation (17.2):

~Fpq points along r̂pq . (18.50)

The right hand side of equation (18.49) goes to zero utilizing equation (18.50):

~Lt = constant in time . (18.51)

That is, the total angular momentum of a system of particles relative to the universal frame U is conserved
in relational mechanics whenever the force between each pair of particles satisfies the principle of action and
reaction in the strong form, as given by equations (18.44) and (18.50).

18.5 Center of Gravitational Mass

Consider once again the system of N particles presented in Section 18.3. The position vector ~r g
cmU of the

center of gravitational mass of this system of particles relative to the origin O of the universal frame U is
defined by:

~r g
cm ≡

N
∑

p=1

mgp~rpU
mgt

, (18.52)

where mgt ≡
∑N

p=1 mgp has been defined as the total gravitational mass of this system of particles.
Likewise, the velocity ~v g

cmU of the center of gravitational mass of this system of particles relative to frame
U is defined by:

~v g
cm ≡ d~r g

cm

dt
=

N
∑

p=1

mgp~vpU
mgt

, (18.53)

where ~vpU represents the velocity of particle p relative to frame U .
With these definitions the total linear momentum ~pt of this system of particles in the universal frame U ,

given by equation (18.42), can be written as:

~pt =

N
∑

p=1

mgp~vpU = mgt
d~r g

cm

dt
= mgt~v

g
cm . (18.54)
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18.6 Expanding Universe and Universe Without Expansion

18.6.1 Interpretations of Hubble’s Law

Nowadays the most accepted cosmological model is that the universe arose out of nothing, being created
a finite time ago. Moreover, it is believed that the universe has been expanding since its creation. This
cosmological model has been pejoratively termed big bang by Fred Hoyle (1915-2001) during a radio program
presented at BBC, when referring to an “exploding” universe.3 Hoyle was one of the most acid critics of this
model of the universe.

In 1929 Edwin Hubble presented a linear law relating the redshifts observed in the spectra of galaxies
with their distances to the Earth.4 In this paper of 1929 Hubble himself interpreted that these redshifts
were due to a Doppler effect associated with the recession of the galaxies relative to our own galaxy. He and
other astronomers collected more redshift data, showing that the fainter the galaxy was, normally it had a
larger redshift. The values of these redshifts became very high during his lifetime. The interpretation of
these redshifts as being due to a recession of the galaxies implied that the faintest galaxies would be moving
away from us at a significant fraction of the velocity of light. He soon became suspicious of this Doppler
interpretation as the cause of the cosmological redshifts. He began to refer to this velocity as an “apparent”
velocity of recession between the galaxies. Since the early 1930’s until his death in 1953 he changed his mind
and began to defend the idea that the cosmological redshift was not related to motion between the galaxies,
being in fact due to a new principle of nature which was not related with the motion of separation between
the galaxies.5 By analyzing Hubble’s published works we find that they present two opposite phases, as
discussed in detail by Assis, Neves and Soares in a work presenting several quotations from Hubble’s original
papers and book.6 In the first and earlier phase he defended the idea of a finite expanding universe. He
soon changed his mind. In the second and later phase he began to defend the idea of an universe which was
infinite in space and in time (extending itself indefinitely in all directions, having always existed). Moreover,
he argued that this infinite universe was not expanding.

Our own point of view is that the cosmological redshift related with Hubble’s law is due to some kind of
interaction of light in its journey from a distant galaxy until reaching the Earth. Probably this interaction
happens between the light originating in a distant galaxy and the intergalactic medium. Light would loose
energy to this medium. Consequently the frequency of light would change towards the red extremity of the
spectrum. That is, we believe that the cosmological redshift is not due to a Doppler effect. Therefore, it
would not be related to a recession between the galaxies. A model explaining the cosmological redshift as
being due to some kind of interaction of light with the intergalactic medium is usually called a “tired light
model.” We believe Hubble’s law is due to an interaction between the light emitted by a distant galaxy and
the intergalactic matter. It seems to us that the principal cause of this redshift is the loss of the photon
energy as it interacts with the intergalactic medium. With this supposition Hubble’s law can be easily
deduced without assuming it to be due to a Doppler effect.7 Essentially we utilize the photon energy E as
given by E = hν = hc/λ, where h = 6.6 × 10−34 Js is Planck’s constant, ν the frequency of the photon
and λ its wavelength. We also assume as usual an exponential decay for this energy due to the interaction
of the photon with the intervening medium, namely, E(r) = Eoe

−Hor/c, where Eo is the emitted energy of
the photon in the distant galaxy at a distance r from our own, being E(r) the energy of the photon arriving
here. The redshift z is defined by z ≡ [λ(r)− λo]/λo, where λo is the original wavelength of the photon and
λ its final wavelength. Utilizing the photon energy and the exponential decay of this energy, the redshift is
found to be given by z = eHor/c − 1 ≈ Hor/c. This expression represents Hubble’s law. It has been deduced
from tired light models by many authors since 1929. No Doppler effect has been assumed in this deduction.

We are not yet sure what kind of mechanism is at work here (photon-photon interaction, inelastic collision
between photons and free electrons, or between photons and molecules, interaction between the light emitted
by the galaxies and the molecules or ions of the intergalactic medium, etc.). Nevertheless, we have explored
this possibility in other works.8 In these articles many more references can be found to other authors working
along the same lines. In essential aspects we are continuing the works of Erich R. A. Regener (1881-1955),
Walther Nernst (1864-1941), Finlay-Freundlich (1885-1964), Max Born (1882-1970) and Louis de Broglie

3[Hoy], [Soa02] and [Alp12].
4[Hub29].
5[HT35], [Hub37, pp. 29-30, 49 and 63-66], [Hub42] and [Hub58, pp. 3, 88-89, 104, 121-123 and 193-197].
6[ANS08], [ANS09] and [ANS13].
7[Ass92f].
8[Ass92f], [Ass92e], [Ass93c], [NA95] and [AN95b] with Portuguese translation in [AN13c] and with German translation in

[AN13a].
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(1892-1987) on an equilibrium cosmology without expansion.9

Halton Arp (1927-2013) has shown that many quasars of high redshift are physically connected to nearby
low redshift galaxies.10 These observations indicate that the redshift of cosmic bodies is not necessarily
connected with their distance to the solar system. Probably there are intrinsic mechanisms creating the
redshift which are related to the distribution of matter around the source of light and radio radiation
(around the quasar in this case) or related to the distribution of matter in the space between the source of
light and its detection here on Earth. This has been shown to be the case in the center to limb redshift of
the Sun.11 This phenomenon shows that the redshift has a component which is proportional to the length
of the path of light through the Sun’s atmosphere.12

As there is no expansion of the universe in this model, it does not need a continuous creation of matter,
as required by the steady-state model of Hoyle, Bondi and Gold. Our model is a universe in dynamical
equilibrium without expansion and without creation of matter. It should be emphasized here that Walther
Nernst (the father of the third law of thermodynamics and Nobel prize winner) and Louis de Broglie (one of
the founders of quantum mechanics and Nobel prize winner) never accepted the idea of the big bang, always
working with a model of the universe in dynamical equilibrium without expansion. We agree with them on
these fundamental aspects. More recent developments and different approaches to these models of a universe
in dynamic equilibrium without expansion can be found elsewhere.13

18.6.2 Interpretations of the Cosmic Background Radiation with a Tempera-

ture of 2.7 K

It is important to discuss here briefly the cosmic background radiation, CBR, see Subsection 10.1.4. This
is a radiation with the spectrum characteristic of a black body having a temperature of 2.7 K.14 Usually
it is claimed that the CBR is a proof of the big bang and of the expansion of the universe as it had been
predicted by Gamow and collaborators (proponents of the big bang) prior to the discovery by Penzias and
Wilson in 1965.15

However, we performed a bibliographic search and found something quite different from this view.16 The
main point to be stressed here is that the published predictions of this temperature made by Gamow and
collaborators (based on the big bang) were of 5 K in 1948, > 5 K in 1949, 7 K in 1953, and 50 K in 1961.17

These values were always increasing and each time they departed more and more from the 2.7K temperature
measured later on!

On the other hand we have found several predictions or estimations of this temperature based on a
stationary universe without expansion, always varying between 2 K and 6 K. Moreover, one of these
estimates was performed by Guillaume in 1896 prior to Gamow’s birth in 1904! Charles Edouard Guillaume
(1861-1928) was a Swiss physicist who received the Nobel prize in physics in 1920 in recognition of the service
he had rendered for precision measurements by his discovery of anomalies in nickel steel alloys. He was also
the head of the International Bureau of Weights and Measures. The estimates utilizing a stationary universe
without expansion are: 5 K < T < 6 K (Guillaume in 1896), 3.1 K (Eddington in 1926), 2.8 K (Regener
and Nernst between 1933 and 1938), 2.3 K (Herzberg in 1941 based on measurements by McKellar) and
1.9 K < T < 6.0 K (Finlay-Freundlich and Max Born between 1953 and 1954).18

The conclusion is that the discovery of the CBR by Penzias and Wilson in 1965 is a decisive factor in favor
of a universe in dynamical equilibrium without expansion. That is, the discovery of the cosmic background
radiation is a strong argument against the big bang.

9[Reg33] with English translation in [Reg95], [Ner37] and [Ner38] with English translation in [Ner95a] and [Ner95b], [FF53],
[FF54a], [FF54b], [Bor53], [Bor54] and [dB66].

10[Arp87], [Arp91], [Arp98] and [Arp01].
11[FF53], [FF54a] and [FF54b].
12[Ass93c].
13[Reb77], [Reb86], [Gho84], [Gho86], [Gho88], [Gho93], [LaV86], [Jaa87], [Gen88], [Pec88], [PV88], [Rud89], [Rud91], [MR89],

[Mar91], [Jaa89], [Jaa90], [Jaa91], [AKR93] and papers therein, [Mon96] etc.
14A celestial map of the CBR can be found in [LVES85] and [LV86].
15[PW65].
16[Ass92e], [Ass93c], [AN95a] with German translation in [AN13b], and [AN95b] with Portuguese translation in [AN13c] and

with German translation in [AN13a].
17[AH48], [AH49], [FF54b] and [Gam61, pp. 42-43].
18[Gui96] with partial English translation in [AN95a], [Edd88], [Reg33] with English translation in [Reg95], [Ner37] and

[Ner38] with English translations in [Ner95a] and [Ner95b], [Her41, p. 496], [FF53], [FF54a], [FF54b], [Bor53], [Bor54], [AN95a]
with German translation in [AN13b], and [AN95b] with Portuguese translation in [AN13c] and with German translation in
[AN13a].
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18.6.3 Our Cosmological Model

Our own cosmological model is that of a homogeneous universe in large scale, without spatial or temporal
limits or barriers. That is, an universe with an average density of gravitational mass which is essentially
constant at all locations, and also constant at all times. This average density of gravitational mass ρgo has
a finite value which is different from zero. This universe has no boundaries (extending indefinitely in all
directions) and is eternal (not being created). Moreover, there is no expansion and no creation of matter in
our model.

In order to calculate the inertial force acting on a test body, with this force being due to a gravitational
interaction of the test body with the isotropic distributions of matter around it, we need to integrate over
the whole universe the force acting on the test body and being exerted by a spherical shell of radius R. Due
to the cosmological model we assume for the universe, we prefer to integrate this force with the radius R of
the shell going from R = 0 to R → ∞, instead of integrating this force with R going from zero to a finite
radius RU . Therefore, we utilize equations (17.42) and (17.43), instead of utilizing equations (17.20) and
(17.22).

In this case Ro = c/Ho would be seen as a characteristic length of gravitational interactions, instead of
denoting the radius or size of the universe. Moreover, the magnitude α appearing in equations (17.42) and
(17.43), and also all other magnitudes like c, ξ, G and ρgo, should be considered as constant magnitudes,
that is, they are not functions of time.

18.7 Implementation of Einstein’s Ideas

We saw in Section 16.3 that in 1922 Einstein presented four consequences which should be implemented in
any theory incorporating Mach’s principle:

1. The inertia of a body should increase when ponderable masses were pilled up in its neighbourhood.
2. A body should experience an accelerating force when neighbourring masses were accelerated. Moreover,

this force should be in the same direction as that acceleration.
3. A rotating hollow body should generate inside of itself a Coriolis’s force, which should deflect moving

bodies in the sense of the rotation, and a radial centrifugal force as well.
4. A body in an otherwise empty universe should have no inertia, or all the inertia of any body should

come from its interaction with other masses in the universe.
These four consequences are not fully implemented in Einstein’s general theory of relativity, as we ana-

lyzed in Section 16.3. Here we show that all of them are completely implemented in relational mechanics.19

18.7.1 Increase in the Inertia of a Body by Placing It Inside a Material Spherical

Shell

We begin with the first consequence. Let us suppose a test body k of gravitational mass mgk interacting
an anisotropic distribution of matter and interacting also with the isotropic distribution of galaxies around
it. The force exerted by this anisotropic distribution of matter composed of N bodies (with the body k

belonging to this group) is represented by ~Fak ≡ ~Fa =
∑N

p=1

p 6=k

~Fpk. Between these N bodies we can have

the Earth, a spring, a magnet, several other local gravitational masses, etc. This situation is represented in
figure 18.3.

The gravitational force exerted on the test body by the isotropic distribution of galaxies is represented
by ~Fi = −Φ∞mgk~akU , where ~akU represents the acceleration of body k in the universal frame U .

As we have seen, in this case the equation of motion in frame U is given by equation (17.77), namely:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (18.55)

This equation of relational mechanics is analogous to Newton’s second law of motion, equation (1.5).
Equation (18.55) of relational mechanics and the analgous equation (1.5) of classical mechanics can assume
the same form by defining, in relational mechanics, an effective inertial mass mik by the following expression:
mik ≡ Φ∞mgk.

According to equation (18.55), the acceleration of body k relative to the universal frame U is given by:

19[Ass93b] and [Ass94, Chapter 7].
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Figure 18.3: Test body k interacting with other N − 1 local bodies in the universal frame U . Body k is also
interacting gravitationally with the distant galaxies.

~akU =

∑N
p=1

p 6=k

~Fpk

Φ∞mgk
. (18.56)

We now surround the test body and other local bodies with a spherical shell which is supposed to be at
rest and without rotation in the universal frame U . The shell has a radius R, thickness dR, and isotropic
gravitational mass density ρg. The gravitational mass of this spherical shell is simply Mg = 4πR2ρgdR,
figure 18.4.

...
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a = ?kU
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Mg
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Figure 18.4: The previous situation of figure 18.3, but now with the test body and other local bodies
surrounded by a spherical shell.

We then apply in this second case the third postulate of relational mechanics, the principle of dynamical
equilibrium, which states that the sum of all forces acting on mgk is zero, equation (17.77). Applying this
principle together with equation (17.22), expressing the gravitational force exerted by this spherical shell
acting on mgk, yields:

N
∑

p=1

p 6=k

~Fpk −Hg
ξ

3c2
mgkMg

R
~akU − Φ∞mgk~akU = ~0 . (18.57)

This equation can also be written as, utilizing equation (18.8):
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N
∑

p=1

p 6=k

~Fpk − Φ∞mgk

(

1 +G
ξ

3c2
Mg

R

)

~akU = ~0 . (18.58)

The new acceleration of the test body k relative to the universal frame U is then given by:

~akU =

∑N
p=1

p 6=k

~Fpk

Φ∞mgk[1 +GξMg/(3c2R)]
. (18.59)

This acceleration is smaller than the acceleration given by equation (18.56).
Equation (18.58) of relational mechanics can be written as having a form analogous to Newton’s second

law of motion, equation (1.5), that is,
∑N

p=1

p 6=k

~Fpk = mik~ak. In order to express equation (18.58) is this form,

we only need to define an “effective inertial mass” mik by the following expression:

mik ≡ Φ∞mgk

(

1 +G
ξ

3c2
Mg

R

)

. (18.60)

With this definition, equation (18.58) can then be written as:

N
∑

p=1

p 6=k

~Fpk = mik~akU . (18.61)

Equations (18.60) and (18.61) indicate that the effective inertial mass of a test body must increase
when ponderable masses are accumulated in its neighbourhood. This effect can also be seen comparing the
accelerations given by equations (18.56) and (18.59). These consequences were required by Mach’s principle,
as correctly pointed out by Einstein. However, while these consequences are not implemented in Einstein’s
general theory of relavity, they are implemented in relational mechanics.

That is, by surrounding the test body with a spherical shell of gravitational mass Mg, the test body
behaves as having an effective inertial mass which is larger than the effective inertial mass it had when the
test body was not surrounded by the spherical shell. In particular, if he moved with an acceleration ~akU
given by equation (18.56) when the test body was interacting with N − 1 local bodies and also with the
distant galaxies around it, its new acceleration should be smaller than the old one by surrounding it with
the spherical shell, as indicated by equation (18.59).

In classical mechanics a spherical shell exerts no net force on internal particles, equation (1.11). Also in
Einstein’s general theory of relativity a stationary spherical shell exerts no net force on internal particles,
equation (16.4). Therefore, in classical mechanics and also in general relativity the inertia of a body does not
increase by placing a stationary spherical shell around the test body. Although Einstein wished to implement
this requirement of Mach’s principle in his theory, he was not successful. This consequence does not appear
in his general theory of relativity, and it also does not take place in newtonian mechanics. Only relational
mechanics implements this consequence of Mach’s principle.

In Subsection 24.5.1 we discuss how to test this prediction of relational mechanics.

18.7.2 Accelerated Body Exerting a Force on Another Body

Let us now analyze the second consequence mentioned in Section 18.7. We show in two different configurations
how this second consequence pointed out be Einstein is implemented in relational mechanics.

To simplify the analysis we consider a one dimensional motion. The reference of the paper is supposed
to coincide with the universal frame U of the distant galaxies. There are two gravitational masses mg1 and
mg2 interacting by Weber’s force, equation (17.16). Each one of them is also interacting gravitationally with
the distant galaxies. We consider bodies 1 and 2 located at positions x1 and x2, respectively, along the x
axis. We suppose x1 < x2, such that r̂12 = − x̂, as in figure 18.5.

The velocities and accelerations of these bodies relative to the universal frame U are given by, respectively:
~v1 = ẋ1x̂, ~v2 = ẋ2x̂, ~a1 = ẍ1x̂ and ~a2 = ẍ2x̂.

We simplify the notation utilizing that r12 = |~r1 − ~r2| = |x1 − x2| ≡ r. Moreover, ~r12 = (x1 − x2)x̂,
~v12 = (ẋ1 − ẋ2)x̂ and ~a12 = (ẍ1 − ẍ2)x̂. We can then write ṙ12 = r̂12 · ~v12 = −(ẋ1 − ẋ2) and r12r̈12 =

~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12 = (x1 − x2)(ẍ1 − ẍ2). The force ~F21 exerted by 2 on 1, equation (17.16), is
then simplified to the form:
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Figure 18.5: Two gravitational masses interacting along the x axis.

~F21 = + Hgmg1mg2
x̂

r2

{

1− ξ

c2

[

(ẋ1 − ẋ2)
2

2
− (x1 − x2)(ẍ1 − ẍ2)

]}

. (18.62)

One of the consequences which can be immediately observed from equation (18.62) is that if mg2 is
accelerated to the right (ẍ2 > 0), then there will be a component of the force acting on mg1 proportional to
ẍ2, namely:

Hgmg1mg2ξ(x2 − x1)ẍ2x̂

c2r2
. (18.63)

As ξ > 0 and (x2 − x1) > 0, this force component points to the right, that is, in the same direction as
the acceleration of mg2. Moreover, this force is proportional to the acceleration ẍ2 of body 2 relative to the
frame of distant galaxies, figure 18.6. If body 1 is free to move, it will also be accelerated to the right, that
is, in the same direction as the acceleration of body 2.

a2F211 2

U

Figure 18.6: When body 2 moves to the right with an acceleration ~a2 relative to the universal frame U , it
exerts a force ~F21 on body 1 also pointing to the right.

If the gravitational mass mg2 were accelerated to the left, there would also appear a force component on
body 1 pointing to the left and proportional to ẍ2.

When we say that body 2 is accelerated “to the right,” this should be interpreted, for instance, as meaning
that body 2 is accelerated in the direction pointing from the Milky Way to the Andromeda galaxy. In this
case body 1 would experience a force in this direction, so that it will also be accelerated in this direction
if it is free to move. In this example, an acceleration “to the left” should be interpreted as pointing from
Andromeda galaxy to the Milky Way.

Therefore, we have shown that in relational mechanics body 1 experiences an accelerating force exerted
by body 2 when this body 2 is accelerated relative to the frame of distant galaxies. Moreover, this force is
in the same direction as the acceleration of body 2, being proportional to this acceleration. Einstein had
pointed out that any theory implementing Mach’s principle should satisfy this condition. This consequence
is implemented in relational mechanics with Weber’s gravitational force.
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Figure 18.7 illustrates another situation showing the existence of this effect in relational mechanics. We
have a test body of gravitational mass mg inside a spherical shell of radius R and gravitational mass Mg.
The acceleration of the test body relative to frame U and the acceleration of the spherical shell relative to
frame U are represented by ~amU and ~AMU , respectively.

Mg

R

0

mg

U

AMU

amU

Figure 18.7: Test body inside a spherical shell. Both are accelerated relative to the universal frame U

According to relational mechanics, the force exerted by the accelerated shell and acting on the internal
accelerated test particle is given by equation (17.30), namely:

~Faccelerated shell(rmU < R) = −HgξmgMg

3Rc2
(~amU − ~AMU ) . (18.64)

There is a component of this force given by HgξmgMg
~AMU/(3Rc2). This component points along the

direction of the accelerated shell, being proportional to this acceleration.
Suppose, for instance, that initially the test body is at rest in the universal frame U , that is, ~amU = ~0.

We surround the test body by a spherical shell of gravitational mass Mg and radius R. This spherical shell is
also initially at rest in the universal frame U , that is, ~AMU = ~0. A force is applied only on the spherical shell,
making it move to the right, relative to the universal frame U , with an acceleration given by ~AMU = AMU x̂.
This accelerated shell will then exert an inertial force ~Fi on the internal test body, of gravitational origin, also
pointing to the right. Moreover, this inertial force of gravitational origin is proportional to the acceleration
of the shell, being given by ~Fi = HgξmgMgAMU x̂/(3Rc2), figure 18.8. If the test body is free to move, it
will begin to move in the same direction as the accelerated shell around it.

x

Mg

R

0

mg Fi

U

AMU

Figure 18.8: When a spherical shell moves to the right with an acceleration ~AMU in the universal frame U ,
it exerts gravitationally an inertial force ~Fi on a test body inside the shell pointing to the right. This force
will accelerate the test body to the right.

That is, we have shown that in relational mechanics a test body experiences an accelerating force when
neighboring masses are accelerated. Moreover, this force is in the same direction as the acceleration of the
neighboring masses, being proportional to this acceleration. These consequences were required in order to
implement quantitatively Mach’s principle, as correctly pointed out by Einstein. The derivation of this effect
in relational mechanics is extremely simple and natural. In Einstein’s general theory of relativity similar
consequences can also be deduced, but in a confuse and much more complicated way. The comparison of
this effect in these two theories is then another positive bonus of relational mechanics.

In Subsection 24.5.4 it will be shown how to test experimentally this prediction of relational mechanics.
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18.7.3 Centrifugal Force and Coriolis’s Force Exerted by a Spinning Spherical

Shell and Acting on an Internal Test Body

Let us now analyze the third consequence pointed out in Section 18.7. Suppose we are in the universal frame
U of distant galaxies. A spherical shell of gravitational mass Mg and radius R has its center coinciding with
the origin O of frame U . The spherical shell is supposed to be spinning relative to the frame of distant
galaxies with an angular velocity ~ΩMU , around an axis passing through the origin O of U , figure 17.5. An
internal test body of gravitational mass mg is located at the position vector ~rmU relative to the center of the
shell, moving relative to frame U with velocity ~vmU and acceleration ~amU in the frame of distant galaxies,
as in figure 18.9.

U
z

y

x

Mg

R

0

rmU
vmU

amU

mg

ΩMU(t)

Figure 18.9: Spherical shell spinning relative to the universal frame U with an angular velocity ~ΩMU around
an axis passing through the origin O of frame U , while a test particle is moving inside it relative to frame U .

According to relational mechanics, the gravitational force exerted by the shell on the internal test body
is given by equation (17.34), namely:

~F = −Hgξ

3c2
mgMg

R

[

~amU + ~ΩMU × (~ΩMU × ~rmU ) + 2~vmU × ~ΩMU + ~rmU × d~ΩMU

dt

]

. (18.65)

This equation shows that in relational mechanics a rotating hollow body generates inside it a Coriolis’s
force proportional to 2mg~vmU × ~ΩMU which deflects moving bodies in the sense of the rotation, and also
a radial centrifugal force proportional to mg

~ΩMU × (~ΩMU × ~rmU ). These two consequences of relational
mechanics are in complete agreement with Mach’s principle.

In Subsections 24.5.7 and 24.5.8 it will be shown how to test experimentally this prediction of relational
mechanics.

As we have seen in Subsection 16.3.4, the analogous effects in general relativity were derived by Thirring,
equation (16.5). However, Thirring’s force has wrong coefficients in front of the Coriolis’s component of this
force and in front of the centrifugal component of this force, that is, coefficients which are not observed
experimentally. Moreover, general relativity predicts a spurious effect not found in any experiment, namely,
the axial force proportional to m(~Ω ·~r)~Ω. This component has never been found in any experiment, although
it has the same order of magnitude as the usual Coriolis’s force and centrifugal force which are ordinarily
observed in the non-inertial frame of the Earth (flattening of the Earth and Foucault’s pendulum experiment,
when considered in the terrestrial frame of reference).

18.7.4 A Test Body in an Otherwise Empty Universe Has No Inertia

Let us now analyze the fourth consequence mentioned in Section 18.7. This consequence also follows im-
mediately from relational mechanics. The inertia of a body, namely, the inertial force −Φ∞mg~amU , was
obtained only supposing the contribution from the distant galaxies. This force is exerted gravitationally by
the distant galaxies on the test body, whenever the test body is accelerated relative to the frame of distant
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galaxies. To annihilate these galaxies is analogous to making ρgo → 0 in equations (17.45) and (17.47). In
this hypothetical case the inertial force exerted by the galaxies on the test body goes to zero. Therefore
there will be no force analogue to the newtonian term mi~a. The inertia of the body disappears.

Another way of observing this consequence in relational mechanics is that all forces in this theory are based
on two-body interactions. There is no force on any body being exerted by “space.” It is then meaningless to
speak of the motion of a single body in an otherwise empty universe. The simplest system we can consider
with motion is a universe composed of two particles.

As we have seen in Subsection 16.3.5, this consequence does not happen in Einstein’s general theory of
relativity. In this theory a body in an otherwise empty universe is endowed with its full inertia, contradicting
Mach’s principle.

18.8 Ptolemaic and Copernican World Views

As we have seen in Chapters 13 and 14, Leibniz and Mach emphasized that the ptolemaic geocentric system
and the copernican heliocentric system are equally valid and correct. With relational mechanics we implement
this equivalence quantitatively, showing the validity of these two views of the world.

Let us consider motions over the Earth’s surface and in the solar system such that we can neglect the
acceleration of the solar system relative to the frame of distant galaxies (with a typical value of 10−10 m/s2).
Moreover, as the mass of the Sun is much greater than the masses of the planets, we can, in a first approx-
imation, disregard the motion of the Sun relative to the fixed stars, as compared with the motion of the
planets relative to the stars. We can then say that the Sun is essentially at rest relative to the fixed stars (or
moving with a constant linear velocity relative to them), while the Earth and other planets move relative to
the stars while orbiting around the Sun.

We first consider the copernican world view, which is usually seen as being proved to be true by Galileo
and Newton. Here we consider the Sun in the center of the universe while the Earth and the planets orbit
around it and rotate around their axes relative to the frame of fixed stars. To simplify the analysis we
consider only circular orbits. Relational mechanics can be applied here with astounding success in the form
of equation (17.77), where ~akU represents the acceleration of the test body of gravitational mass mgk relative
to the universal frame U . In the approximation which is being considered here, this acceleration ~akU coincides
with the acceleration ~akF of body k relative to the frame F of fixed stars. That is, ~akU = ~akF .

Despite the gravitational attraction exerted by the Sun and acting on the Earth and other planets, the
planets do not decrease their distances to the Sun due to their accelerations relative to the fixed stars. The
set of distant galaxies exerts an inertial force of gravitational origin on the accelerated planets given by
−Φ∞mgk~amU . This force keeps the planets in their orbits around the Sun (the Earth, for instance, with a
period of one year). The diurnal rotation of the Earth around its axis relative to the fixed stars explains
its oblate form, with a smaller distance between the poles than at the Equator between East and West.
Foucault’s pendulum is explained by noting that at the poles the plane of oscillation remains at rest relative
to the fixed stars. Etc.

In the ptolemaic system the Earth is considered to be at rest and without rotation in the center of the
universe, while the Sun, other planets and fixed stars rotate around the Earth. There is a diurnal component
of this rotation with a period of 23 hours, 56 minutes and 4 seconds, that is, with a period of 86,164 seconds.
There is also an annual component of this rotation with a period of 1 year = 3.156 × 107 s. In relational
mechanics this rotation of distant matter yields the inertial force (17.68) in the Earth’s frame of reference.
This force has a gravitational origin. The corresponding equation of motion in relational mechanics is given
by equation (17.91). Now the gravitational attraction of the Sun is balanced by a real gravitational centrifugal
force due to the annual rotation of the distant masses around the Earth (with a component having a period
of one year). In this way the Earth can remain at rest and at an essentially constant distance from the Sun.
The diurnal rotation of distant masses around the Earth (with a period of one day) yields a real gravitational
centrifugal force flattening the Earth at the poles. Foucault’s pendulum is explained by a real Coriolis’s force
acting on moving masses over the Earth’s surface in the form −Φ∞2mg~vmT × ~ΩGT , where ~vmT represents
the velocity of the test body relative to the terrestrial frame T , while ~ΩGT represents the angular velocity
of the set of galaxies around the Earth. The effect of this force on a pendulum located at the North pole of
the Earth will be to keep the plane of oscillation of the pendulum precessing, relative to the surface of the
Earth, together with the rotation of the fixed stars relative to the ground. Etc.

As a matter of fact, any other frame of reference would be equally valid. Anyone or any arbitrary frame
of reference can be considered really at rest, while the entire universe moves relative to this person according
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to his will. This equivalence between the several frames of reference happens not only kinematically, as has
been always known, but also dynamically. All local forces acting on the person will be balanced by the force
exerted by the rest of the universe in such a way that the acceleration and velocity of the person will be
always zero. For instance, consider a rock falling freely to the Earth due to its weight ~Fg. In the frame of
the rock it will always remain at rest, while the Earth and the set of distant galaxies are accelerated upwards
(in the direction of the Earth towards the rock). The gravitational force ~Fg exerted by the Earth on the
rock is balanced by the gravitational force exerted on the rock by the distant galaxies with a value given by
Φ∞mg

~AGA, such that ~Fg + Φ∞mg
~AGA = ~0, where ~AGA represents the acceleration of the set of galaxies

relative to the frame A which remains connected to the rock. This equality of forces will make the rock
remain at rest relative to itself, ~vmA = ~0 and ~amA = ~0.

Relational mechanics implements quantitatively and dynamically the old objective of making all frames
of reference equally valid and correct. The form of the force exerted by distant masses on a test body may
be different in different frames of reference, but not the value or direction of this force relative to other
masses. It may be more practical, simple or mathematically convenient to consider one frame of reference as
preferred relative to other frames of reference when considering a specific problem. However, as a matter of
fact, all frames of reference will yield the same dynamical consequences (although it may be more difficult
to perform the calculations in certain frames of reference in order to arrive at the final results).

An important consequence of relational mechanics is that kinematically equivalent motions have been
shown to be dynamically equivalent. Regardless of whether we say that the stars and galaxies are at rest
while the Earth rotates around its axis with a period of one day, or that the Earth is at rest while the stars
and galaxies rotate in the opposite direction relative to the Earth with a period of one day, in both cases
relational mechanics will yield the flattening of the Earth as a consequence of this relative rotation. No
other theory of mechanics ever proposed has implemented quantitatively this consequence. Although other
theories have tried to implement this philosophical and aesthetic appealing consequence, no one has ever
succeeded. What was missing was a relational force law like Weber’s force. It is totally relational, depending
on the relative distance between material bodies, on the relative radial velocity between them, and on the
relative radial acceleration between them, pointing along the straight line connecting these bodies.

18.9 Conditions in which the Equation of Motion Takes Its Sim-

plest Form, being Based on the Acceleration of the Test Body

Relative to the Ground or Relative to the Fixed Stars

The equation of motion of relational mechanics for a test body k of gravitational mass mgk moving in the
universal frame U is given by equation (17.77):

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (18.66)

In this equation ~akU represents the acceleration of k relative to the frame U of distant galaxies, figure
1.13.

The centripetal acceleration of the solar system around the center of our galaxy, relative to the background
of distant galaxies, has the value agalaxy centripetal ≈ 1.6× 10−16 m/s2, equation (4.44) and figure 4.5. The
centripetal acceleration of the Earth due to its annual orbit around the Sun, relative to the background of
fixed stars belonging to our galaxy, has the value aannual centripetal ≈ 6.0× 10−3 m/s2, equation (4.43) and
figure 4.4. The centripetal acceleration of a body located at the terrestrial Equator, at rest relative to the
ground, due to the diurnal rotation of the Earth relative to the fixed stars, has the value adaily centripetal ≈
3.4× 10−2 m/s2, equation (4.42) and figure 4.3.

There are many situations in which the magnitude of the acceleration of a test body k relative to the
terrestrial frame T , akT ≡ |~akT |, is much greater than the accelerations described in the previous paragraph:

akT ≫ adaily centripetal > aannual centripetal ≫ agalaxy centripetal . (18.67)

Simple examples include the free fall of an apple, the parabolic trajectory of a projectile, a ball rolling
down an inclined plane, a body connected to a spring and oscillating relative to the ground, a pendulum
oscillating at the Equator, etc. Let us suppose that in these situations the amplitudes of motion are small
compared with the terrestrial radius. Moreover, let us also suppose these situations take place during a
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small time interval compared with a sidereal day. In these cases we can then consider that the acceleration
of the test body relative to the Earth, ~akT , has essentially the same value as the acceleration of the test body
relative to the frame F of the fixed stars, ~akF , having also essentially the same value as the acceleration of
the test body relative to the universal frame U :

~akT = ~akF = ~akU . (18.68)

Equation of motion (18.66) can then be written as:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU =
N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akF =
N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akT = ~0 . (18.69)

That is, the equation of motion can be written in its simplest form considering the acceleration of the
test body relative to the frame of distant galaxies, relative to the fixed stars, or relative to the ground, figure
18.10.
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Figure 18.10: Test body having essentially the same acceleration relative to the Earth or terrestrial frame,
T , relative to the fixed stars, F , and relative to the universal frame of galaxies, U .

There are other situations in which the magnitude of the acceleration of the test body k moving relative
to the ground has an approximate value of the order of magnitude of 10−2 m/s2 or 10−3 m/s2. Sometimes
these situations refer to motions having a large spatial extent, compared to the Earth’s radius, as is the case
of whirlwinds at the North and South hemispheres. These situations may also have a small spatial extent,
but they may last for a reasonable time compared with a sidereal day, as in experiments with Foucault’s
pendulums lasting some minutes or even hours. In these situations the effect which is being investigated may
have the magnitude of the acceleration of the test body relative to the ground, akT , with a numerical value
close to the centripetal acceleration of any point in the Equator due to the diurnal rotation of the Earth
relative to the fixed stars, adaily centripetal. This last acceleration has the same order of magnitude as the
centripetal acceleration of the Earth due to its annual translation around the Sun, aannual centripetal. And
all these three accelerations are much larger than the centripetal acceleration of the solar system around the
center of our galaxy, agalaxy centripetal, namely:

akT ≈ adaily centripetal > aannual centripetal ≫ agalaxy centripetal . (18.70)

In these cases we can consider the acceleration of the test body relative to the fixed stars, ~akF , as having
essentially the same value as the acceleration of the test body relative to the universal frame U :

~akF = ~akU . (18.71)

Equation of motion (18.66) can then be written as follows:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akF = ~0 . (18.72)

The equation of motion can then be written in its simplest form considering the acceleration of the test
body relative to the frame of distant galaxies, or relative to the fixed stars, figure 18.11.

Another situation in which we can utilize the equation of motion of relational mechanics in the form of
equation (18.72) occurs when we are studying the diurnal rotation of the Earth relative to the frame of fixed
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Figure 18.11: Test body having essentially the same acceleration relative to the fixed stars, F , and relative
to the galaxies, U .

stars. The same can be said of the annual orbit of the Earth around the Sun, the orbit of any planet around
the Sun, the orbit of the Moon around the Earth, the orbit of a Moon of another planet relative to this
planet, etc. In all these cases we can consider the background of fixed stars belonging to our galaxy in order
to describe the motion of these bodies. In these cases the magnitude of the acceleration of the test body k
relative to the frame F of the fixed stars, akF ≡ |~akF |, will have a value equal to the centripetal acceleration
of a point at the terrestrial Equator due to the diurnal rotation of the Earth relative to the fixed stars (or a
value of the same order of magnitude). Or the magnitude of akF will have a magnitude like the centripetal
acceleration of the Earth due to its annual orbit around the Sun, relative to the fixed stars. That is, in these
situations the following relation will be valid:

akF ≈ adaily centripetal > aannual centripetal ≫ agalaxy centripetal . (18.73)

In these cases, during the time interval in which the motions of these test bodies take place, we can say
that the set of fixed stars has a negligible acceleration relative to the frame of distant galaxies. It is then
possible and convenient to describe the motions of these test bodies relative to the fixed stars, instead of
referring their motions relative to the set of distant galaxies, as indicated by equations (18.71) and (18.72).
This situation is also represented in figure 18.11.



Chapter 19

Laws and Concepts of Relational

Mechanics Compared with Those of

Classical Mechanics

19.1 Deduction of an Equation of Motion Analogous to Newton’s

First Law

The equation of motion of relational mechanics for a test body k of gravitational mass mgk moving in
the universal frame U is given by equation (17.77). In this Section we consider the case in which the net
anisotropic force acting on the test body goes to zero:

~Fa =

N
∑

p=1

p 6=k

~Fpk = ~0 . (19.1)

From equations (17.77) and (19.1), together with the fact that mgk 6= 0, we conclude that the test body
will have no acceleration in the universal frame:

~akU = ~0 , that is, ~vkU = constant in time . (19.2)

Equation (1.24) of newtonian mechanics has the same form as equation (19.2) of relational mechanics.
Therefore, it follows from equation (19.2) of relational mechanics that the test body k will move with a

constant velocity in the universal frame U in which the set of distant galaxies is at rest, figure 19.1.
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Figure 19.1: When ~Fa = ~0 the test particle k moves with a constant velocity ~vkU in the universal frame U .
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When we identify equation (1.24) of newtonian mechanics, with equation (19.2) of relational mechanics,
we can deduce a law of motion similar to Newton’s first law. However, instead of saying that the test body
will move with a constant velocity relative to absolute space (an entity to which we have no empirical access),
we say in relational mechanics that the test body will move with a constant velocity relative to the frame of
distant galaxies.

Consider now a frame of reference S in which the set of distant galaxies is moving as a whole with
a constant linear velocity ~VGS . The equation of motion of relational mechanics in this frame is given by
equation (17.85). From equations (17.85) and (19.1), together with the fact that mgk 6= 0, we conclude that
when ~Fa = ~0, the test body will have no acceleration relative to frame S, namely:

~akS = ~0 , that is, ~vkS = constant in time . (19.3)

Equation (1.24) of newtonian mechanics has the same form as equation (19.3) of relational mechanics.
If the test body is moving with a constant velocity relative to the universal frame of reference U , then it

will also move with another constant velocity ~vkS relative to any other frame S which moves with a constant
velocity relative to the frame of distant galaxies. In this frame S the set of distant galaxies is moving as a
whole with a constant linear velocity ~VGS , figure 19.2.
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Figure 19.2: When ~Fa = ~0 the test particle k moves with a constant velocity ~vkS relative to frame S. In this
frame the set of galaxies moves as a whole with a constant linear velocity ~VGS .

These reference frames U or S in which the test body moves with a constant velocity whenever ~Fa =
∑N

p=1

p 6=k

~Fpk = ~0 can then be identified with the inertial frames of classical mechanics. However, these frames

are now completely determined by the distant matter. In particular, in these frames the set of distant
galaxies is either at rest or it moves as a whole with a constant linear velocity ~VGS .

19.2 Deduction of an Equation of Motion Analogous to Newton’s

Second Law of Motion

We first consider the universal frame U in which the set of galaxies is at rest, figure 17.14. In this case the
equation of the conservation of energy, equation (17.74), is analogous to the equation of the conservation of
energy of classical mechanics in an inertial frame of reference, equation (4.31). Although these equations
have similar forms, there are some relevant conceptual differences between these equations, namely:

• The kinetic energy mipv
2
p/2 appearing in equation (4.31) of classical mechanics is an energy of pure

motion of the test body relative to an inertial frame of reference (or relative to Newton’s absolute
empty space). This kinetic energy does not come from any physical interaction of the test body with
other bodies in the universe. On the other hand, the inertial energy Φ∞mgpv

2
pU/2 which appears in
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equation (17.74) of relational mechanics is an energy describing the gravitational interaction of the test
body with the set of distant galaxies.

• The mass mip which appears in the kinetic energy of newtonian mechanics is the inertial mass of the
test body. Conceptually this inertial mass has no relation with gravity. On the other hand, the mass
mgp of the inertial energy of relational mechanics is a gravitational mass.

• The velocity ~vp which appears in the kinetic energy of equation (4.31) represents the velocity of the
test body relative to Newton’s absolute space, or relative to any inertial frame of reference which is
moving relative to this absolute space along a straight line with a constant velocity. This velocity has
different values in different inertial frames of reference. Therefore, the kinetic energy mipv

2
p/2 also has

different values in different frames of reference. On the other hand, the velocity ~vpU which appears
in the inertial energy of equation (17.74) represents the relative velocity between the test body and
the set of distant galaxies. Suppose that we change to a system of reference S relative to which the
set of distant galaxies is moving as a whole with a certain linear velocity ~VGS , while the test body is
moving in this frame S with velocity ~vpS , figure 17.16. In this frame S the inertial energy still has the
same value which it had in the universal frame U , as can be seen from equation (17.84). After all, in
this inertial energy it only matters the relative velocity between the test body and the set of distant
galaxies. That is, as ~vpU = ~vpS − ~VGS , we have ~vpU · ~vpU = (~vpS − ~VGS) · (~vpS − ~VGS). Therefore, the
inertial energy Ui in frame S has the same value as the inertial energy Ui in the universal frame U , as
can be seen by equation (17.86). The same fact happens in all other reference frames.

The equation of motion of classical mechanics in an inertial frame of reference is given by Newton’s second
law of motion, equation (1.5). The equation of motion of relational mechanics in the universal frame U is
given by equation (17.77). When we move the term −Φ∞mgk~akU to the right side of equation (17.77), this
equation can be written as:

N
∑

p=1

p 6=k

~Fpk = Φ∞mgk~akU . (19.4)

Consider now a frame of reference S relative to which the set of galaxies moves as a whole with a
constant linear velocity ~VGS , figure 17.8. According to relational mechanics, the equation of motion for a
test particle moving relative to frame S with an acceleration ~akS is given by equation (17.85). By moving the
term −Φ∞mgk~akS to the right side of equation (17.85) we arrive at an equation similar to equation (19.4),
namely:

N
∑

p=1

p 6=k

~Fpk = Φ∞mgk~akS . (19.5)

Relational mechanics began with the postulate that the sum of all forces acting on any body is always
zero in all frames of reference. Despite this postulate, we have just deduced the equations of motion given
by equations (19.4) and (19.5), which are similar to Newton’s second law of motion given by equation (1.5).
Despite the similarities in form of these two equations when compared with Newton’s second law of motion,
there are several conceptual differences between them, namely:

• The term mik~ak on the right hand side of Newton’s second law of motion, equation (1.5), arises as a
consequence of the application of a net force

∑N
p=1

p 6=k

~Fpk acting on the test body. On the other hand,

the term Φ∞mgk~akU has been artificially moved to the right hand side of equation (17.77) in order
to let this last equation with a form similar to Newton’s second law of motion. As a matter of fact,
what we have in relational mechanics is that the gravitational force acting on the test body and being
exerted by all the isotropic distribution of matter around it is given by −Φ∞mgk~akU . This expression
−Φ∞mgk~akU represents a real force of interaction in relational mechanics, as it happens with the forces
~Fpk acting on the test body k and being exerted by local bodies p, yielding a net local force represented
by
∑N

p=1

p 6=k

~Fpk.

• The mass which appears in the right hand side of Newton’s second law of motion, equation (1.5),
represents the inertial mass mik of the test body. Conceptually this inertial mass has no relation with
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the gravitational mass of the test body. In relational mechanics, on the other hand, the mass mgk

which appears in the term −Φ∞mgk~akU of equation (17.77), represents the gravitational mass of the
test body.

• The acceleration ~ak appearing in Newton’s second law of motion, equation (1.5), represents the accel-
eration of the test body relative to absolute space, or relative to any inertial frame of reference which is
moving with a constant linear velocity relative to absolute space. On the other hand, the acceleration
~akU appearing in equation (17.77) represents the relative acceleration between the test body and the
set of distant galaxies.

In relational mechanics we derive an inertia analogous to newtonian inertia from a generalized law of
gravitation (Weber’s law). The opposite approach of deriving gravitation from inertia has been taken by
Roscoe.1

19.3 Conditions in which the Earth and the Fixed Stars Can Be

Considered Good Inertial Frames of Reference

As seen in Section 18.9, equations (18.67) and (18.68) are valid whenever the test body moves relative to the
ground with an acceleration which has a large value compared with the centripetal acceleration of a point
at rest in the Equator, relative to the frame of fixed stars, due to the diurnal rotation of the Earth relative
to the stars. The equation of motion for the test body can then be written as equation (18.69).

When, moreover, the net anisotropic force acting on the test body goes to zero, ~Fa = ~0 or equation (19.1),
then equation (18.69) leads to the following result:

~akU = ~akF = ~akT = ~0 , (19.6)

and

~vkU = ~vkF = ~vkT = constant in time . (19.7)

That is, the test body will move with velocities which are constant in time relative to the terrestrial
frame T , ~vkT , relative to the frame F of the fixed stars, ~vkF , and also relative to the universal frame U ,
~vkU . Equation (19.7) also means that the test body will move with a constant velocity relative to any other
frame which is moving with a constant velocity relative to the ground, relative to the fixed stars, or relative
to the universal frame U . Whenever the conditions considered here are satisfied, these reference frames can
be identified with the inertial frames of classical mechanics. But now these frames are determined by the
Earth, by the fixed stars or by the set of distant galaxies. That is, these frames are no longer specified by
Newton’s absolute empty space.

As seen in Section 18.9, there are other situations in which the test body moves relative to the ground with
accelerations of the order of 10−2 m/s2. Moreover, in order to describe the orbits of planets and satellites
in the solar system, we can describe their motions in the frame F of the fixed stars belonging to our galaxy,
and also in the universal frame U of distant galaxies. In all these situations the following equations are valid,
namely: (18.70), (18.71), or (18.73). The equation of motion can then be written as equation (18.72).

Whenever the net force acting on the test body due to local interactions goes to zero, ~Fa = ~0, as indicated
by equation (19.1), equation (18.72) leads to the following result:

~akU = ~akF = ~0 , (19.8)

and

~vkU = ~vkF = constant in time . (19.9)

That is, the test body will move with a constant velocity relative to the fixed stars, or relative to the
frame of distant galaxies. It will also move with a constant velocity relative to any other frame of reference
which moves with a constant velocity relative to the fixed stars or relative to the set of distant galaxies.
Whenever these conditions are satisfied, these reference frames can be identified with the inertial frames of

1[Ros91b] and [Ros91a].
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classical mechanics. However, in relational mechanics these reference frames are determined by the fixed
stars and distant galaxies, instead of being specified by Newton’s absolute empty space.

The discussion presented in this Section allows the comprehension of an important aspect which had
been correctly pointed out by Mach. In his book The Science of Mechanics he had written:2

I have remained to the present day the only one who insists upon referring the law of inertia to
the Earth, and in the case of motions of great spatial and temporal extent, to the fixed stars.

During Mach’s lifetime the existence of galaxies external to the Milky Way was not yet known. However,
what is important here is the essence of his statement. In relational mechanics we deduced laws analogous
to Newton’s first and second laws of motion. Newton’s first law presented in Section 1.2 is usually called
the law of inertia: “Every body continues in its state of rest, or of uniform motion in a right line, unless it
is compelled to change that state by forces impressed upon it.”

In this Section we have shown that, according to relational mechanics, the law of inertia only takes place
when referring the motion of the test body relative to other observable material bodies, namely: the Earth,
the fixed stars belonging to the Milky Way, or the set of distant galaxies. And this conclusion of relational
mechanics is totally compatible with Mach’s statement just presented.

19.4 Equivalence between the Kinematic Rotation of the Earth and

Its Dynamic Rotation

Another aspect which receives an immediate explanation in relational mechanics is the equality between ~ωk

and ~ωd, that is, between the kinematic and dynamic rotations of the Earth, equations (10.44) and (10.49).
The equations of motion of relational mechanics assume their simplest forms, namely, like equations

(17.74) and (17.77), in the universal frame of reference U in which the universe as a whole (the set of distant
galaxies) is at rest. In another system of reference R in which the set of galaxies is rotating there will appear
terms in the inertial energy Ui and in the inertial force ~Fi which will depend on ~VGR and on ~ΩGR. That is,
there will appear terms which depend on the linear velocity ~VGR or on the angular velocity ~ΩGR of the set of
galaxies relative to R, as indicated in equations (17.90) and (17.91). In equation (17.91) it appears the term
−Φ∞mgk

~ΩGR × (~ΩGR × ~rkR) which is similar to the centrifugal force in non-inertial frames of reference of
classical mechanics. In this equation it also appears the term −Φ∞2mgk~vkR × ~ΩGR which is similar to the
Coriolis’s force which arises in non-inertial frames of reference of classical mechanics. When we identify this
fact of relational mechanics with newtonian mechanics, then it becomes obvious and intelligible the equality
between the kinematic and dynamic rotations of the Earth. That is, in classical mechanics it is a coincidence
that ~ωk = ~ωd. The explanation of this remarkable equality, according to relational mechanics when compared
with newtonian mechanics, is that the distant galaxies define the best inertial frame of reference (which is
the frame of reference in which Newton’s laws of motion are valid without the introduction of the centrifugal
force and without the introduction of the Coriolis’s force). Therefore, the set of distant galaxies does not
rotate relative to absolute space (this is the meaning of the observational fact that ~ωk = ~ωd), due to the fact
that exactly this set of galaxies define what is absolute space, as seen in Section 19.3.

In order to let this point very clear, we emphasize once more that in relational mechanics the following
concepts do not appear: absolute space, inertial frame of reference, or fictitious force. These concepts exist
only in classical newtonian mechanics. The inertial frames of reference are those frames which are at rest or
that are moving along a straight line with a constant velocity relative to absolute space, as seen in Section
1.7. In these inertial frames Newton’s second law of motion can be written in its simplest form given by
equation (1.5). In its simplest form there are no fictitious forces, such as the centrifugal force or the Coriolis’s
force. Observation of the set of distant galaxies and experiments in different frames of reference indicate that
in the inertial frames the set of distant galaxies is not rotating. This fact is mathematically characterized
by the equation ~ωk = ~ωd. This equality between ~ωk and ~ωd has no explanation in classical mechanics, being
a coincidence.

However, by identifying the equations of motion obtained in relational mechanics in the universal frame
U and in the reference frame R in which the set of galaxies is rotating as a whole with an angular velocity
~ΩGR, equations (17.77) and (17.91), with the equations of motion of classical mechanics in an inertial frame
of reference S and in a non-inertial frame S′ which is rotating relative to S, equations (1.5) and (11.42), it
becomes possible to understand the equality between ~ωk and ~ωd.

2[Mac60, pp. 336-337].
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In a frame of reference R in which the universe as a whole is rotating around an axis passing through
the origin of this frame with an angular velocity ~ΩGR(t), without having a translational acceleration, the
equation of motion of relational mechanics takes the form given by equation (17.91), namely:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk

[

~akR + ~ΩGR × (~ΩGR × ~rkR) + 2~vkR × ~ΩGR + ~rkR × d~ΩGR

dt

]

= ~0 . (19.10)

Here ~rkR represents the position vector of the test particle k of gravitational mass mgk relative to the origin
O of frame R. Moreover, ~vkR and ~akR represent the velocity and acceleration of k relative to this frame R.

This result of relational mechanics has the same form of Newton’s second law of motion including fictitious
force, equation (11.42):

~F −mi~ω × (~ω × ~r ′)− 2mi~ω × d~r ′

dt
−mi

d~ω

dt
× ~r ′ −mi

d2~h

dt2
= mi

d2~r ′

dt2
. (19.11)

We can identify equations (19.10) and (19.11), utilizing ~rkR = ~r ′, ~vkR = ~v ′ = d~r ′/dt, ~akR = ~a ′ =

d2~r ′/dt2 and ~ΩGR = −~ω. The identification of these two equations leads to the conclusion that the centrifugal
and Coriolis’s forces of classical mechanics should no longer be considered fictitious forces when interpreted in
relational mechanics. In this last theory these terms represent real forces of gravitational origin, originating
whenever the set of galaxies is rotating around the test body.

Mach had made the following statement:3

Try to fix Newton’s bucket and rotate the heaven of fixed stars and then prove the absence of
centrifugal forces.

In Subsection 17.6.3 it was seen that the contribution of the fixed stars belonging to the Milky Way is
negligible when compared with the contribution of the distant galaxies, as regards the inertial force acting
gravitationally on any test body and being exerted by the bodies distributed isotropically around the test
body. Therefore, relational mechanics is implementing almost completely Mach’s ideas, as we have seen in
this book that “rotating the heaven of galaxies, centrifugal forces arise.”

The only difference as regards Mach’s ideas, is that he knew only the existence of fixed stars. It was only
in 1924 that Hubble established undoubtedly the existence of galaxies existing externally to the fixed stars
belonging to our own galaxy, the Milky Way. This discovery of external galaxies happened only after Mach’s
death in 1916. We have seen in Subsection 17.6.3 that rotating only our own galaxy (that is, rotating only
the set of fixed stars) in relation to an observer or frame of reference, there will appear only an extremely
small centrifugal force, which should be very difficult to detect experimentally. On the other hand, the
rotation of the whole known universe (that is, the rotation of the set of distant galaxies) in relation to an
observer or frame of reference, will yield exactly the centrifugal force which is known to exist in reference
frames in which the set of galaxies is rotating.

For example, the component −Φ∞mgk
~ΩGR×(~ΩGR×~rkR) which appears in equation (19.10) is analogous

to the centrifugal force −mi~ω× (~ω×~r ′) of classical mechanics. This force component of relational mechanics
appears only in a reference frame R in which the set of distant galaxies is rotating as a whole. The same
happens with the force component −Φ∞2mgk~vkR × ~ΩGR of equation (19.10), which is analogous to the
Coriolis’s force of classical mechanics given by −2mi~ω×d~r ′/dt. Once more, this force component of classical
mechanics appears only in this frame of reference R. We can stop the rotation of the set of galaxies by
making ~ΩGR → ~0, returning then to the universal frame U . In this case the equation of motion of relational
mechanics simplifies to equation (17.77), in which are absent the centrifugal component and the Coriolis’s
component of the inertial force acting on any test body.

19.5 Proportionality between the Inertial Mass and the Gravita-

tional Mass

The equation for the conservation of energy in classical mechanics and Newton’s second law of motion are
given by equations (4.31) and (1.5), namely:

3[Mac60, p. 279].
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and
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~Fpk = mik~ak . (19.13)

The equation for the conservation of energy in relational mechanics in the universal frame U is given by
equation (17.74), while the equation of motion of relational mechanics is given by equation (17.77), namely:

1

2

N
∑

p=1

N
∑

q=1

q 6=p

Upq +Φ∞

(

N
∑

p=1

mgp
~vpU · ~vpU

2

)

= constant in time , (19.14)

and

~Fa + ~Fi =
N
∑

p=1

p 6=k

~Fpk + ~Fi =
N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (19.15)

Equation (19.14) is analogous to the equation for the conservation of energy in classical mechanics in
inertial frames of reference, equation (19.12). Likewise, equation (19.15) is analogous to Newton’s second
law of motion valid in absolute space or in inertial frames of reference, equation (19.13). The main difference
between newtonian mechanics and relational mechanics is that we have now deduced an expression analogous
to the kinetic energy and an equation of motion analogous to Newton’s second law of motion. In classical
mechanics, on the other hand, we were obliged to begin with the concept of kinetic energy. That is, we
were obliged to postulate this concept, without knowing from where did it come from, without identifying
its physical origin. Likewise, Newton was obliged to begin with ~F = d~p/dt, as he had nowhere to deduce
this equation. That is, in classical mechanics we need to begin with the basic equation of motion given by
~F = mi~a, without knowing from where it did come from, without knowing its origin. For this reason Newton
had to introduce a priori the concept of inertial mass, without knowing from where did it come from.

In relational mechanics we are deducing an energy analogous to the classical kinetic energy. But when
the inertial energy Φ∞mgpv

2
pU/2 of equation (19.14) is identified with the kinetic energy mipv

2
p/2 of equation

(19.12), we understand immediately the misterious proportionality between inertial mass and gravitational
mass which arises in newtonian mechanics. That is, in relational mechanics the inertial energy Φ∞mgpv

2
pU/2

has been obtained as an interaction energy, like any other kind of potential energy. It is an energy of
gravitational interaction arising when there is a relative motion between the particle p of gravitational mass
mgp and the universe as a whole around this body.

The same fact can be also concluded identifying equation (19.15) of relational mechanics with Newton’s
second law of motion, equation (19.13). Identification of these two equations leads immediately to a com-
prehension of the proportionality between inertial mass and gravitational mass which happens in classical
mechanics. That is, the inertial force −Φ∞mg~amU of equation (19.15) is a real force of gravitational inter-
action between mg and the universe in large scale when there is an acceleration between them. That is,
this inertial force is different from zero when there is a relative acceleration between the test body and the
set of distant galaxies. In relational mechanics the concept of inertial mass does not exist, as there is only
the concept of gravitational mass. It is only by comparing the equations of relational mechanics with the
equivalent equations of newtonian mechanics that it becomes possible to identify what would be, in relational
mechanics, the analogous to the inertial mass of classical mechanics.

In classical mechanics the observed proportionality between inertial mass and gravitational mass was a
mysterious experimental fact. In newtonian mechanics this fact can be understood naturally, leading to a
new and profound understanding of the origin of inertia. That is, the inertial energy Φ∞mgpv

2
pU/2 and the

inertial force −Φ∞mgk~akU arise from a gravitational interaction between the test body and the set of distant
galaxies distributed isotropically around the test body. These facts were seen in Section 17.6, in equations
(17.38) up to (17.40), or also in equations (17.44) up to (17.47).

We can identify equations (19.14) and (19.15) of relational mechanics with the classical equation for the
conservation of energy and with Newton’s second law of motion, equations (19.12) and (19.13). The identi-
fication of these equations explains immediately the proportionality between inertial mass and gravitational
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mass of newtonian mechanics. The following concepts were never introduced in relational mechanics: inertia
of a body, inertial mass, inertial frames of reference, kinetic energy, etc. Only when we identify equations
(19.14) and (19.15) with the analogous equations of classical mechanics can we understand and explain this
mysterious enigma of newtonian theory. That is, we can then explain why the inertial mass of newtonian
mechanics is proportional to the gravitational mass, as found in the experiment of free fall described in
Subsection 7.2.2, and as also found with Newton’s pendulum experiments described in Subsections 8.3.2 and
8.3.3. The reason for this proportionality is that the second terms in the left hand side of equations (19.14)
and (19.15) did arise from gravitational interactions between the gravitational mass mg and the gravitational
mass of the set of distant galaxies, whenever there was a relative motion between the test body of mass mg

and the set of distant galaxies. That is, the mass which appear in the term Φ∞mgv
2
mU/2 and also the mass

which appear in the term −Φ∞mg~amU represent the gravitational mass mg of the test body. Only when we
identify these terms of relational mechanics with the analogous terms of newtonian mechanics, namely, with
miv

2/2 and mi~a, where mi represents the inertial mass of the test body, it becomes clear that these “kinetic”
expressions of newtonian mechanics have in fact a “gravitational” origin. Newtonian mechanics gains then
a new meaning. We begin then to have a clear comprehension and see the deep meaning of the concepts of
newtonian mechanics when we see it through the point of view of relational mechanics.

In relational mechanics we do not need to postulate the proportionality (or equality) between mg and mi.
In Einstein’s general theory of relativity, on the other hand, it was necessary to postulate the proportionality
between mg and mi. Einstein postulated the equality between mg and mi in the principle of equivalence
described in Section 14.8. Einstein expressed this principle or postulate in the following words:4

Equivalence principle: Inertia and weight are identical in nature.

Einstein postulated this relation between inertia and weight without offering explanations for this relation.
That is, he could not present any fundamental reason why these two concepts should be identical in nature.
He also did not explain the proportionality between the inertial mass of a body and the gravitational mass
of this body. Therefore, he could not deduce this proportionality in his general theory of relativity.

In relational mechanics, on the other hand, the proportionality between mg and mi arises as a direct
consequence of this theory, when comparing it with newtonian mechanics. We have shown in this book that
the inertial energy has a gravitational origin, arising from an interaction between the test body and the set
of galaxies around it. Likewise, we have shown that the inertial force is a real gravitational force. It acts on
the test body, being exerted by the set of distant galaxies, whenever there is a relative acceleration between
the test body and the set of galaxies. This deduction of the proportionality between mg and mi, which is
obtained only in relational mechanics, presents one of the great advantages of this theory over Einstein’s
general theory of relativity.

19.6 Ratio of the Masses as the Inverse Ratio of Their Accelerations

Relative to the Universal Frame of Reference

We now discuss the definition of inertial mass as presented by Mach in Section 14.4. To this end we consider
only a typical situation, namely, two bodies of gravitational masses mg1 and mg2 which are interacting with
one another. Each one of them is also interacting gravitationally with the distant galaxies. We consider the
situation when their motion happen along the straight line connecting them, as discussed in Section 18.1,
figure 18.1.

By adding equations (18.6) and (18.7) we obtain ~a2U = −(mg1/mg2)~a1U . By writing ~a1U = a1U x̂ and
~a2U = a2U x̂, with the choice of axis x along the line connecting 1 and 2, we get:

mg1

mg2
= −a2U

a1U
. (19.16)

This equation is analogous to the definition of inertial mass proposed by Mach, as represented by equations
(14.3) and (14.6). Two aspects should be observed here. The first one is that in the left hand side of equation
(19.16) it appears the ratio of two gravitational masses, while in Mach’s definition it appeared the ratio of
two inertial masses. This modification can be easily understood remembering that in relational mechanics
there is no concept of inertial mass. Only when we compare relational mechanics with newtonian mechanics

4[Ein18b, pp. 241-242], [Ein02] and [Nor95, pp. 185-186].
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can we understand that the ratio of two classical inertial masses is analogous to the ratio of two gravitational
masses.

The second aspect to take notice of in equation (19.16) is that in the right hand side there appears the
ratio of the accelerations of the bodies relative to the universal frame U and not the ratio of their accelerations
relative to an arbitrary frame of reference. However, for the majority of terrestrial bodies moving relative
to the ground, or for bodies of the solar system moving relative to the frame of fixed stars, their typical
accelerations are much larger than the centripetal acceleration of the solar system relative to the frame of
distant galaxies, of the order of 10−10 m/s2. Therefore, in all these situations we can replace the ratio of their
accelerations in frame U by the ratio of their accelerations relative to the frame F of fixed stars, namely:

mg1

mg2
= −a2F

a1F
. (19.17)

Equation (19.17) of relational mechanics is similar to equations (14.3) and (14.6) proposed by Mach,
provided we interpret the accelerations in Mach’s definition of inertial mass as being the accelerations of
the test bodies relative to the frame F of fixed stars. Certainly this was what Mach had in mind in his
definition,5 although he did not specify this condition explicitly in his definition, as we discussed in Section
14.4.

19.7 Coordinate Transformations Are Not Necessary in Relational

Mechanics

In classical mechanics we needed to be very careful when dealing with non-inertial frames of reference, as seen
in Chapter 11. It was necessary to make coordinate transformations between different frames of reference,
especially as regards the component m~a of Newton’s second law of motion ~F = m~a.

In Einstein’s theories of relativity the situation became very complicated and confuse when he introduced
forces ~F on a body which depended on the velocity of the test body relative to the observer or relative to
the frame of reference, as was seen in Chapters 15 and 16. Therefore, we should not only be careful with the
transformation of the acceleration ~a in frame S to acceleration ~a′ in frame S′, but should also consider how
to transform the force ~F in frame S to force ~F ′ in frame S′.

Einstein also introduced coordinate transformations in order to relate the electric and magnetic fields ~E
and ~B in a frame of reference S to the electric and magnetic fields ~E′ and ~B′ in another frame of reference
S′. Since then Lorentz’s transformations have been introduced into the analysis not only in complicated
problems, but also in the simplest possible situations, creating an enormous conceptual confusion.

None of these coordinate transformations are necessary in relational mechanics. In this theory there are
only relational magnitudes, like the distance rpq between particles p and q, the relative radial velocity between
them, ṙpq = drpq/dt, and the relative radial acceleration between them, r̈pq = dṙpq/dt = d2rpq/dt

2. That is,
the only magnitudes which have physical significance, or which are relevant as regards the interaction between
bodies, is their distance, relative radial velocity and relative radial acceleration. These three magnitudes,
rpq, ṙpq and r̈pq have always the same value in all frames of reference, as discussed in Appendix A. The
values of these three magnitudes in a frame of reference S have the same value in another frame of reference
S′, not only when both of them are inertial from the classical point of view, but also when one of them
is inertial and the other is non-inertial, and even when both of them are non-inertial from the newtonian
point of view. Therefore, in relational mechanics we do not need to worry about coordinate transformations,
such as Galileo’s transformations or Lorentz’s transformations. These transformations created innumerable
difficulties and confusions in classical mechanics and specifically in Einstein’s theories of relativity.

The value of the kinetic energy of classical mechanics depended on the system of reference. In relational
mechanics, on the other hand, the inertial energy has the same value in all frames of reference. The reason
for this constant value is that the inertial energies Ui arising from the gravitational interactions of any body
with the isotropic distributions of matter around it, as given by equations (17.44), (17.64) and (17.70),
always have the same numerical value (although not necessarily the same form) in all frames of reference.
Consider, for instance, the inertial energy arising from the gravitational energy of a particle of gravitational
mass mg interacting with the distant galaxies. In the universal frame U the portion of this inertial energy
depending on the velocity of mg is given by mgv

2
mU/2, as given by (17.44). In another frame of reference A

in which the universe as a whole (that is, the set of distant galaxies) is not spinning, but only moving with a

5[YvdM68].
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constant translational velocity ~VGA relative to frame A, the portion of the inertial energy depending on the
velocity is given by mg|~vmA− ~VGA|2/2, as given by equation (17.64), where ~vmA represents the velocity of mg

relative to frame A. And obviously mgv
2
mU/2 = mg|~vmA − ~VGA|2/2, due to the fact that ~vmA = ~vmU + ~VGA.

Therefore, the inertial energy Ui has the same value in frames U and A.
In classical mechanics the value of the term mi~a depends on the system of reference. In relational

mechanics, on the other hand, the inertial force ~Fi has always the same numerical value in all frames of
reference. Moreover, it points along the same direction (that is, it always points to the same specific body,
like from the center of the Earth towards the center of the Andromeda galaxy) in all frames of reference.
However, the inertial force ~Fi does not need to have the same form in all frames of reference. For instance,
in the universal frame of reference U we have ~Fi = −Φ∞mg~amU , equation (17.47). In another frame of
reference A in which the set of distant galaxies moves with a translational acceleration ~AGA, the inertial
force is given by ~Fi = −Φ∞mg(~amA − ~AGA), equation (17.65), where ~amA represents the acceleration of the
test body mg relative to frame A. And obviously −Φ∞mg~amU = −Φ∞mg(~amA− ~AGA), due to the fact that
~amA = ~amU + ~AGA. Therefore, the inertial force ~Fi has the same value in frames U and A, although the
form of the inertial force is different in these two frames of reference.

In another frame of reference R in which the set of distant galaxies rotates with a common angular velocity
~ΩGR, the inertial force is given by: ~Fi = −Φ∞mg[~amR+~ΩGR×(~ΩGR×~rmR)+2~vmR×ΩGR+~rmR×d~ΩGR/dt],
equation (17.71).

Although the form of the inertial force ~Fi is different in these three frames of reference (U , A and R),
the numerical value of ~Fi is always the same. For this reason we do not need to introduce superscripts to
identify the inertial force, like ~FU

i , ~FA
i or ~FG

i . That is, we do not need to introduce the superscripts U , A
and R to represent the inertial force.

Moreover, the direction of the inertial force ~Fi is always the same in all these frames of reference. That is,
the inertial force points along the same direction (towards the same material body) in all frames of reference.
For instance, we calculate the inertial force ~Fi in the universal frame U as being exerted gravitationally by
the set of galaxies and acting on the test body mg in a specific situation. Suppose that at a certain moment
of time this inertial force points from mg towards the center of the Andromeda galaxy. Then if we calculate
this inertial force in frame A, in frame R or in any other frame, it will also point from mg towards the center
of the Andromeda galaxy.

As a specific example, suppose that bodies 1 and 2 are interacting with one another through a spring,
oscillating along the line connecting them. Each one of them is also interacting gravitationally with the
set of galaxies. Suppose that the straight line connecting 1 and 2 passes through the center of Andromeda
galaxy. Then the inertial forces acting on 1 and 2, namely, ~Fi1 and ~Fi2, will also point along the straight
line connecting 1 and 2, and also along the straight line connecting these bodies with Andromeda galaxy.
And this will happen not only in the universal frame U , but also in frames A and R presented before, or in
any other arbitrary frame of reference.

This constant numerical value and constant direction presented by the inertial force in relational me-
chanics is due to the fact that Weber’s force depends only on relational magnitudes, such as r12, ṙ12 and
r̈12. These relational magnitudes have the same value in all frames of reference, as shown in Appendix A.
Therefore, Weber’s force has also the same value in all frames of reference.

19.8 Interpretation of the Inertial Force in Classical Mechanics and

in Relational Mechanics

19.8.1 The Inertial Force −m~a

Newton introduced the equivalent expressions vis insita or vis inertiae in the third definition in the beginning
of the Principia, as discussed in Section 1.2. These expressions were defined as a power of resisting, by which
every body continues in its present state, whether it be of rest, or of moving uniformly forwards in a right line
relative to absolute space. This state might be changed through the action of an external force impressed
on the body. The vis insita was also called an innate force of matter by Newton, that is, as something
inherent or internal to the body. He also called the vis inertiae as a force of inactivity. This expression may
be translated as inertial force or force of inertia. Sometimes it is translated by a single word, inertia.6

6[Fre71, Chapter 12: Inertial Forces and Noninertial Frames], [Coh80, pp. 190 and 257], [GG93, pp. 44-45 and 59-101],
[AG95], [AG96], [GG06, Chapter 5: Newton’s Force of Inertia: The Basis of Dynamics], [Cur09, pp. 266-268], [Gin11] and
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It is important to quote once more Newton’s words, now in the translation of Cohen and Whitman:7

Definition 3: Inherent force of matter is the power of resisting by which every body, so far as it
is able, perseveres in its state of resting or of moving uniformly straight forward.

This force is always proportional to the body and does not differ in any way from the inertia of
the mass except in the manner in which it is conceived. Because of the inertia of matter, every
body is only with difficulty put out of its state either of resting or of moving. Consequently,
inherent force may also be called by the very significant name of force of inertia. Moreover,
a body exerts this force only during a change of its state, caused by another force impressed
upon it, and this exercise of force is, depending on the viewpoint, both resistance and impetus:
resistance insofar as the body, in order to maintain its state, strives against the impressed force,
and impetus insofar as the same body, yielding only with difficulty to the force of a resisting
obstacle, endeavors to change the state of that obstacle. Resistance is commonly attributed to
resisting bodies and impetus to moving bodies; but motion and rest, in the popular sense of the
terms, are distinguished from each other only by point of view, and bodies commonly regarded
as being at rest are not always truly at rest.

In Newton’s third rule of reasoning in philosophy, as presented in the beginning of Book III of the
Principia, he mentioned that the inertial force should be universal (that is, belonging to all bodies). He also
compared it with the gravitational force:8

Rule III. The qualities of bodies, which admit neither intensification nor remission of degrees, and
which are found to belong to all bodies within the reach of our experiments, are to be esteemed
the universal qualities of all bodies whatsoever.

[...] That all bodies are movable, and endowed with certain powers (which we call the inertia) of
persevering in their motion, or in their rest, we only infer from the like properties observed in the
bodies which we have seen. The extension, hardness, impenetrability, mobility, and inertia of the
whole, result from the extension, hardness, impenetrability, mobility, and inertia of the parts;
and hence we conclude the least particles of all bodies to be also all extended, and hard and
impenetrable, and movable, and endowed with their proper inertia. And this is the foundation
of all philosophy.

[...] Not that I affirm gravity to be essential to bodies: by their vis insita I mean nothing but
their inertia. This is immutable. Their gravity is diminished as they recede from the Earth.

In his book Optics he said that the force of inertia is a passive principle by which bodies persist in their
motion or rest:9

The vis inertiae is a passive principle by which bodies persist in their motion or rest, receive
motion in proportion to the force impressing it, and resist as much as they are resisted.

In the same book he also said:10

It seems to me farther, that these particles have not only a vis inertiae, accompanied with such
passive laws of motion as naturally result from that force, but also that they are moved by certain
active principles, such as is that of gravity, and that which causes fermentation, and the cohesion
of bodies.

The inertial force acting on a test body k of inertial mass mik may be mathematically represented in
classical mechanics, in inertial frames of reference, by the expression −mik~ak. Here ~ak represents the acceler-
ation of body k relative to the inertial frame under consideration. That is, the inertial force may considered
as the right hand side mik~ak of Newton’s second law of motion given by equation (1.5),

∑N
p=1

p 6=k

~Fpk = mik~ak,

transported to the left side. Therefore the term mik~ak is transformed in the inertial force −mik~ak, so that
Newton’s second law of motion take the form

∑N
p=1

p 6=k

~Fpk −mik~ak = ~0.

The main aspects or properties of the inertial force (the vis insita or vis inertiae) pointed out by Newton,
which is being represented here mathematically by the expression −mik~ak, are as follows:

[Mar12].
7[New99, p. 404].
8[New34] and [New08b, pp. 186-187].
9[New79, Query 31, p. 397] and [New96, Questão 31, p. 287].

10[New79, Query 31, p. 401] and [New96, Questão 31, p. 290].
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• It is proportional to the body, that is, is proportional to the inertial mass of the body.

• It is proportional to the acceleration of the test body relative to absolute space.

• It is immutable. The gravitational force, on the other hand, depends on the distance between the
interacting bodies.

• It is innate or intrinsic to the test body. Therefore, it does not depend on the amount of other bodies
around the test body. It also does not depend on how other bodies are distributed around the test
body.

• It is a power of resisting by which every body, so far as it is able, perseveres in its state of resting or
of moving uniformly straight forward relative to absolute space.

• A body only exerts this inertial force when another force, impressed upon it, endeavors to change its
condition of resting or of moving uniformly straight forward relative to absolute space.

• An impressed force acting on the test body may change the state of the body. Therefore, the inertial
force controls the effect and the order of magnitude of this change of state. For instance, if the same
impressed force acts on two bodies with different inertial masses, the body with greater inertial mass
will move relative to absolute space with smaller acceleration, while the body with smaller inertial mass
will move with greater acceleration. As an example of the same impressed force acting on two bodies
of different inertial masses, we consider the same spring stretched by the same amount ℓ− ℓo when one
of its extremities is fixed to a wall and the other extremity is connected to one of these bodies, with
the stretched spring being released from rest relative to absolute space.

In relational mechanics, as seen in Sections 17.2 and 17.6, we have called inertial force to the force
~Fi which acts on the test body of gravitational mass mg, being exerted gravitationally by the isotropic
distribution of matter around it. In the universal frame of reference U in which the set of distant galaxies is
at rest, we showed that this inertial force is given by −Φ∞mg~amU , where ~amU represents the acceleration of
the test body in frame U , equation (17.47). This force received the denomination of “inertial force” because
it has many similarities with Newton’s inertial force. The equation of motion of relational mechanics in the
universal frame is given by equation (17.77), namely,

∑N
p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0.

We now present the main properties of the inertial force in relational mechanics, −Φ∞mg~amU , comparing
them with the analogous properties of the inertial force in classical mechanics, −mik~ak, namely:

• It is proportional to the body. In relational mechanics this force is proportional to the gravitational
mass of the body, while in classical mechanics it is proportional to its inertial mass.

• It is proportional to the acceleration of the test body. In relational mechanics this acceleration must
be considered relative to the set of distant galaxies. In classical mechanics this acceleration must be
considered relative to Newton’s absolute space or relative to an inertial frame of reference. Newton’s
absolute space and the inertial frames of classical mechanics have no relation with material bodies
around the test body. Therefore, they are not connected to the set of distant galaxies.

• In relational mechanics the inertial force depends on the amount and distribution of matter around
the test body. When this distribution changes, automatically the inertial force also changes. However,
while this distribution of matter remains the same, the inertial force also remains immutable. In
newtonian mechanics, on the other hand, the inertial force is always immutable, as it does not depend
on the distribution of matter around the test body.

• In relational mechanics the inertial force is due to a gravitational interaction between the test body and
the isotropic distribution of matter around it. In classical mechanics, on the other hand, it is innate
or intrinsic to the test body. Therefore, it does not depend on the amount nor on the distribution of
other bodies around the test body. It does not arise from any kind of interaction of the test body with
other material bodies around it.

• It is a power of resisting by which every body perseveres in its state of resting or of moving uniformly
straight forward. In relational mechanics this state of rest or of moving uniformly straight forward
should be understood relative to the universal frame U defined by the set of galaxies around the test
body. In newtonian mechanics, on the other hand, this state of rest or of moving uniformly straight
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forward should be understood relative to Newton’s absolute space (or relative to an inertial frame)
which, according to Newton, is without relation to anything external. Therefore, the inertial frames of
classical mechanics have no relation with the set of distant galaxies.

• In relational mechanics this inertial force exerted by the set of galaxies acts on the test body only when
another force, impressed upon it, endeavors to change its condition of resting or of moving uniformly
straight forward relative to the frame of distant galaxies. In classical mechanics, on the other hand, it
is the test body itself which exerts this inertial force when another force, impressed upon it, endeavors
to change its condition of resting or of moving uniformly straight forward relative to Newton’s absolute
space or relative to an inertial frame.

• An impressed force, exerted by the anisotropic distribution of matter around the test body, acting on
the test body, may change the state of the body. Therefore, the inertial force controls the effect and
the order of magnitude of this change of state.

• As an example of the same impressed force acting separately on two bodies, we consider the same
spring stretched by the same amount ℓ − ℓo when one of its extremities is fixed to a wall and the
other extremity is connected to one of these bodies, with the stretched spring being released from rest.
In relational mechanics, if the same impressed force acts on two bodies with different gravitational
masses, the body with greater gravitational mass will move relative to the frame U of distant galaxies
with smaller acceleration, while the body with smaller gravitational mass will move relative to U with
greater acceleration. In classical mechanics, on the other hand, if the same impressed force acts on
two bodies with different inertial masses, the body with greater inertial mass will move relative to
absolute space with smaller acceleration, while the body with smaller inertial mass will move relative
to absolute space with greater acceleration.

In essence, while in classical mechanics the inertial force is exerted by the test body itself, in relational
mechanics the inertial force acts on the test body, being exerted gravitationally by the set of galaxies around
it. In relational mechanics the inertial force is no longer intrinsic to the test body, as it comes from an
interaction between the test body and the isotropic distribution of matter around it. This inertial force will
exist in relational mechanics whenever there is a relative acceleration between the test body and the set of
galaxies around it.

The behavior and the effects produced by the inertial force −mi~a in the inertial frames of classical
mechanics are similar to the behavior and effects produced by the gravitational force ~Fi ≡ −Φ∞mg~amU

acting on the test body and being exerted by the set of galaxies in the universal frame of relational mechanics.
For this reason we decided to call this last expression by the name “inertial force.” This is a tribute to Newton
which had introduced this expression in the Principia. He was also very clear as regards the properties and
effects associated with this force. These two forces, −mi~a of classical mechanics and ~Fi ≡ −Φ∞mg~amU of
relational mechanics, have the same name. Despite this fact, the conceptual interpretation of the inertial force
in classical mechanics is very different from the conceptual interpretation of the inertial force in relational
mechanics.

The following aspects illustrate the distinction of these forces in these two theories:

• In newtonian mechanics there is no physical agent responsible for the inertial force, that is, this force
is not due to any body acting on the test body. In relational mechanics there is such an agent,
namely, the set of distant galaxies. Moreover, the kind of interaction has also been identified, namely,
a gravitational interaction. In particular, the inertial force arises from the component of Weber’s force
which depends on the relative radial acceleration r̈ between the interacting bodies. The inertial force
arises in relational mechanics whenever there is a relative acceleration between the test body and the
set of galaxies.

• In classical mechanics the inertial force −mi~a depends only on the intrinsic inertial mass of the test
body and on its acceleration relative to Newton’s absolute space, without relation to anything external.
In relational mechanics, on the other hand, the inertial force −Φ∞mg~amU exerted by the set of distant
galaxies and acting on the test body of gravitational mass mg depends not only on this mass mg and on
the acceleration of the test body relative to the set of galaxies, but depends also on the average volume
density of gravitational mass of the universe represented by ρgo. This density appears in equations
(17.47) and (17.77) through the constant Φ∞, which is proportional to the density ρgo through equation
(17.45). If it were possible to increase or decrease this average mass density ρgo, as compared with the
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measured value obtained by the astronomers, it would be possible to control the inertial force acting
on any body.

19.8.2 Action and Reaction of the Inertial Force

There is a very important distinction between classical mechanics and relational mechanics as regards the
principle of action and reaction related to the inertial force.

In classical mechanics the inertial force −mi~a does not satisfy the principle of action of reaction. There
are several forces which are called “inertial forces” in classical mechanics: the term −mi~a of Newton’s second
law of motion, the centrifugal force, Coriolis’s force, etc. Einstein pointed out clearly that the inertial forces
do not comply with the principle of action and reaction in the foreword of the book Concepts of Space, by
Max Jammer:11

[...] This role is absolute in the sense that space (as an inertial system) acts on all material
objects, while these do not in turn exert any reaction on space.

In the book The Meaning of Relativity the same point of view has been expressed as follows:12

The principle of inertia, in particular, seems to compel us to ascribe physically objective properties
to the space-time continuum. Just as it was consistent from the newtonian standpoint to make
both the statements, tempus est absolutum, spatium est absolutum, so from the standpoint of
the special theory of relativity we must say, continuum spatii et temporis est absolutum. In this
latter statement absolutum means not only ‘physically real’, but also ‘independent in its physical
properties, having a physical effect, but not itself influenced by physical conditions’.

As long as the principle of inertia is regarded as the keystone of physics, this standpoint is
certainly the only one which is justified. But there are two serious criticisms of the ordinary
conception. In the first place, it is contrary to the mode of thinking in science to conceive of a
thing (the space-time continuum) which acts itself, but which cannot be acted upon. [...]

This fact pointed out by Einstein can be clearly seen in the case of Newton’s bucket experiment. When
the bucket and water are at rest or moving uniformly along a straight line relative to Newton’s absolute
space, the surface of water remains flat. When the water is spinning around the axis of the bucket, relative
to absolute space, the surface of water remains concave, being higher at the walls of the bucket and lower
along the axis of rotation. It is possible to say that absolute space is acting on water, pressing it against the
walls of the bucket. On the other hand, nothing happens with absolute space. That is, the spinning water
does not exert any force on space.

Graneau and Graneau considered a failure of newtonian theory the fact that the inertial force does not
comply with the principle of action and reaction.13

In relational mechanics, on the other hand, the inertial force complies with the principle of action and
reaction, as it happens with all other forces of nature. Consider, in particular, that we are analyzing the
motion of a test body of gravitational mass mg moving relative to the universal frame U with acceleration
~amU . The inertial force exerted by the set of distant galaxies and acting on the test body is given by
~Fi = −Φ∞mg~amU , equation (17.47). The gravitational force exerted by this test body and acting on the set
of galaxies is given by ~Fmi = Φ∞mg~amU , equation (17.48). That is, these two forces are equal and opposite.
In the figures of this book the force ~Fmi will be represented as acting only on one galaxy, but it should be
kept in mind that this force is acting on all galaxies, being distributed between all of them.

In relational mechanics the inertial torque which may be acting on a test body is due to its gravitational
interaction with the set of galaxies. When this inertial torque is different from zero, then the test body
exerts and equal and opposite reaction torque acting on the set of galaxies. It is very helpful to consider this
inertial torque in order to understand the behavior of tops, gyroscopes and flywheels.14

11[Jam93, p. xvi] and [Jam10, p. 18].
12[Ein23, p. 59], [Ein58, pp. 71-72] and [Ein97, p. 58].
13[GG06, p. 96].
14[AG95].
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19.8.3 The Inertial Centrifugal Force and the Inertial Coriolis’s Force

Beyond the force −mi~a, the other inertial forces which appear in classical mechanics are the centrifugal
force and the Coriolis’s force. They were discussed in Section 11.3 and in Subsection 11.4.2, respectively.
These two forces are considered as fictitious forces in classical mechanics. They appear only in non-inertial
frames of reference which are rotating relative to an inertial frame. In classical mechanics we cannot find the
physical agent responsible for these forces, that is, we do not locate the body which exerts these forces on
the test body. Therefore, in classical mechanics these inertial forces do not arise from any kind of interaction
between the test body and other material bodies around it.

In relational mechanics the term analogous to the centrifugal force of classical mechanics is the component
−Φ∞mg

~ΩGR × (~ΩGR × ~rmR) of equation (17.71). This component is proportional to the gravitational mass
mg of the test body. It is also proportional to the average volume density of gravitational mass ρgo of the
universe, due to the fact that the constant Φ∞ is proportional to this average density, equation (17.45).
Moreover, this component also depends on the angular velocity ~ΩGR of the set of galaxies rotating, relative
to frame R, around an axis passing through the origin O of frame R.

In relational mechanics the term analogous to the Coriolis’s force of classical mechanics is the component
−Φ∞2mg~vmR × ~ΩGR of equation (17.71). This component is proportional to the gravitational mass mg of
the test body. It is also proportional to the average volume density of gravitational mass ρgo of the universe
through the constant Φ∞, equation (17.45). Moreover, this component also depends on the velocity ~vmR of
the test body relative to frame R and on the angular velocity ~ΩGR of the set of galaxies rotating, relative to
frame R, around an axis passing through the origin O of frame R.

The behavior of tops, gyroscopes and flywheels can be intuitively understood in relational mechanics by
considering this real Coriolis’s force of gravitational origin.15

The centrifugal force of classical mechanics and the analogous force component of relational mechanics
have the same formula, they yield the same numerical value and they point along the same direction relative
to other bodies when they act on a test body. The same can be said when we compare the Coriolis’s force
of classical mechanics and the analogous force component of relational mechanics. However, the conceptual
interpretation as regards the origin of the centrifugal force and of the Coriolis’s force in classical mechanics is
totally different from the conceptual interpretation of the analogous force components in relational mechanics.

Everything which has been said in Subsection 19.8.1 related to the inertial force −mi~a of classical me-
chanics, when compared with the inertial force −Φ∞mg~amU of relational mechanics, can also be applied if
we wish to compare the centrifugal force and the Coriolis’s force of classical mechanics with the analogous
force components of relational mechanics.

19.8.4 The Kinetic Energy of Classical Mechanics and the Inertial Energy of

Relational Mechanics

We can also find similarities and differences between the kinetic energy of classical mechanics and the
inertial energy of relational mechanics, as we did in Subsection 19.8.1 as regards the inertial force in these
two theories.

The kinetic energy of newtonian mechanics is given by mi(~v ·~v)2/2, where mi represents the inertial mass
of the test particle and ~v its velocity relative to Newton’s absolute space or relative to an inertial frame of
reference. The inertial energy of relational mechanics, on the other hand, is given in the universal frame
U by the expression Φ∞mg(~vmU · ~vmU )

2/2, where mg represents the gravitational mass of the test particle
and ~vmU its velocity relative to the frame of distant galaxies. The kinetic energy does not originate in any
kind of interaction, being an energy of pure motion in classical mechanics. The inertial energy, on the other
hand, arises from a gravitational interaction between the test body and the isotropic distribution of matter
around it. Its value depends on the relative velocity between the test particle and the set of distant galaxies.

19.9 Transition from Classical Mechanics to Relational Mechanics

Newton’s second law of motion for a test body k of inertial mass mik moving with acceleration ~ak relative
to an inertial frame of reference is given by equation (1.5):

15[AG95].



382 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

N
∑

p=1

p 6=k

~Fpk = mik~ak . (19.18)

Here
∑N

p=1

p 6=k

~Fpk represents the net force acting on k.

The equation of motion in relational mechanics of particle k moving in the universal frame U is given by
equation (17.77):

N
∑

p=1

p 6=k

~Fpk + ~Fi =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (19.19)

Here
∑N

p=1

p 6=k

~Fpk represents the net force acting on k being due to the anisotropic distributions of matter

around it, while ~Fi = −Φ∞mg~amU represents the net force acting on k due to the isotropic distributions of
matter around it. Moreover, ~akU is the acceleration of k relative to the universal frame U , while the constant
Φ∞ is given by equations (17.45) and (18.29).

From what has been seen up to now, it is simple to make the transition from classical mechanics to
relational mechanics. Here we present the main changes which should be made in order to obtain a soft
transition:

• In classical mechanics there are the concepts of inertial mass and gravitational mass. In relational
mechanics only the concept of gravitational mass is introduced. The transition can be made by talking
only of gravitational mass in classical mechanics.

• Newton’s second law of motion assumes its simplest form, without fictitious forces, when the motion of
the test body is described relative to absolute space or relative to an inertial frame of reference, equation
(19.18). The equation of motion of relational mechanics assumes its simplest form, equation (19.19),
in the universal frame U of distant galaxies or relative to any other frame of reference which moves
along a straight line with a constant velocity relative to U . The transition can be made describing the
motions in newtonian mechanics in the universal frame U , or in any other frame of reference which
moves with a constant velocity relative to U .

• In Newton’s second law of motion applied to an inertial frame of reference, the term mik~ak should be
replaced by the term Φ∞mgk~akU .

• In all drawings of classical mechanics describing the motion of a test particle in an inertial frame, some
galaxies should be introduced in the background. The motion of the test body can then be understood
as taking place relative to these galaxies, instead of being conceived as taking place relative to empty
space (or relative to the sheet of paper where the drawing has been made). The presence of these
background galaxies helps enormously in the clarification of the situation, especially when considering
rotational motions of the test body. Their presence in the drawings has the effect of emphasizing their
crucial importance as regards the origin of the inertial force acting on the test body.

• Moreover, in all drawings of classical mechanics describing the motion of a test particle in an inertial
frame and in which the forces acting on the test body are represented, it should be introduced the
inertial force −mik~ak. That is, it should be introduced the gravitational force −Φ∞mgk~akU acting on
the test body and being exerted by the set of distant galaxies.

• It should be kept in mind that in relational mechanics the inertial force is a real force, as it happens with
all other forces of interaction. In particular, the inertial force comes from a gravitational interaction
between the test body and the set of distant galaxies. This force will be different from zero whenever
there is a relative acceleration between the test body and the set of galaxies. Therefore, by introducing
the inertial force −mik~ak in the figures of classical mechanics, this force should be considered as
originating in an interaction between material bodies, as it happens with all other forces which are
usually represented in the force diagrams of newtonian mechanics.

• The non-inertial frames of reference are now understood as the reference frames in which the set of
galaxies is accelerated. When the set of galaxies has a common linear acceleration ~AGA relative to a
certain frame A, it will exert an inertial force on the test body pointing along the direction of this
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acceleration. When the set of galaxies has a common angular velocity ~ΩGR relative to a certain frame
R, usually some real forces will arise, namely, the centrifugal inertial force and the inertial Coriolis’s
force. These forces should be understood as real forces of gravitational origin, arising once more from
an interaction between the test body and the set of galaxies.

• The set of accelerated galaxies should also appear in the background of the figures in the frames of
reference A or R just mentioned.

With this procedure it is possible to maintain most results of newtonian mechanics, with all of its amazing
successes. There will only be a total change of perspective as regards the interpretation of the experiments,
especially as regards the origin of all inertial effects.

Chapters 20 and 23 present the inverse procedure. That is, to begin with relational mechanics and arrive
at results similar to those of classical mechanics.

19.10 Summary of the Main Results of Relational Mechanics when

Comparing It with Newtonian Mechanics

We present here a summary of the main consequences of relational mechanics when it is compared with
newtonian mechanics:

• We deduced equations of motion similar to Newton’s first and second laws of motion.

• We deduced the proportionality between inertial mass and gravitational mass.

• We deduced the fact that the best inertial frame available to us is the universal frame U of distant
galaxies.

• We deduced the equality between the kinematic rotation of the Earth and its dynamics rotation. That
is, the observed fact that ~ωk = ~ωd was deduced in relational mechanics.

• We deduced the kinetic energy as just another energy of interaction, as it happened with all other
known energies (gravitational potential energy, electric potential energy, magnetic potential energy,
elastic potential energy, nuclear energy, etc.). As regards the kinetic energy, it was shown that it is an
energy arising from the gravitational interaction between the test body and the set of distant galaxies.
This energy will be different from zero whenever there is a relative velocity between the test body and
the set of distant galaxies.

• We deduced the fact that the so-called fictitious forces of newtonian mechanics are real forces, as it
happened with all other known forces (gravitational force between two gravitational masses, electric
force between two electrified bodies, magnetic force between two magnets, electrodynamic force between
two current carrying wires, electromagnetic force between a magnet and a current carrying wire, elastic
force, force of friction between a body and the surrounding fluid, etc.) Between these fictitious forces
we can include the centrifugal force and the Coriolis’s force. In relational mechanics these two forces
have a gravitational origin, acting on the test body and being exerted by the set of galaxies. These
two forces arise in any frame of reference R in which the set of galaxies is rotating as a whole in this
frame R.

• We deduced equation (18.9) relating the constant G of the law of universal gravitation of classical
mechanics with the cosmological constants α and ρgo of relational mechanics. The constant α represents
the characteristic length of gravitational decay expressed by equation (17.17), while ρgo represents the
mean volume density of gravitational mass of the universe.

• We also deduced equation (18.14) relating G with ρgo and with Hubble’s constant Ho.

• The inertial forces of relational mechanics, represented by ~Fi, have always the same numerical value
in all frames of reference. But the form of this inertial force can change from one frame of reference
to another frame of reference. Suppose that this inertial force points from the test body to a certain
galaxy at a specific moment. Then this inertial force will always point from the test body to this galaxy
in all frames of reference. Therefore, we do not need to worry about coordinate transformations in
relational mechanics. In classical mechanics and in Einstein’s theories of relativity, on the other hand,
it was necessary to deal with Galileo’s transformations, Lorentz’s transformations, etc.
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• We deduced that the component −mik~ak arising in Newton’s second law of motion described in an
inertial frame of reference, as given by equation (1.5), is equivalent to the inertial force −Φ∞mgk~akU of
relational mechanics, equation (17.77). This component can then be understood as a real force acting
on the test body k of gravitational mass mgk, whenever it moves with acceleration ~akU relative to the
universal frame U in which the set of galaxies is at rest. This force has a gravitational origin, arising
from the component of Weber’s gravitational force which depends on the radial relative acceleration
between the interacting bodies. This force acts on the test body, being exerted by the set of distant
galaxies around it. This force will be different from zero whenever there is a relative acceleration
between the test body and the set of galaxies around it.
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Chapter 20

Bodies at Rest or in Rectilinear Motion

with Constant Velocity Relative to the

Ground

20.1 Equation of Motion when There Is No Net Force Acting on a

Body Due to Its Interaction with Local Bodies

Suppose there are N local bodies interacting with one another. Each one of these bodies also interacts with
the isotropic distribution of matter around them. Let k be a test body of gravitational mass mgk belonging
to the set of N local bodies. The equation of motion for body k in relational mechanics expressed in the
universal frame U of distant galaxies is given by equation (17.77):

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (20.1)

Here ~akU represents the acceleration of body k in frame U .
In this Section we assume that there is no net force acting on k due to the other N − 1 local bodies, that

is:

N
∑

p=1

p 6=k

~Fpk = ~0 . (20.2)

Equations (20.1) and (20.2) lead to the following consequences (observing that mgk 6= 0):

~akU = ~0 , that is, ~vkU =
d~rkU
dt

= constant in time . (20.3)

The body will then move along a straight line with a constant velocity. When this equation is compared
with equation (1.24) of newtonian mechanics, the difference is that the velocity ~vkU which appears in equation
(20.3) is the velocity of the test particle of gravitational mass mgk relative to the reference frame U defined
by the distant galaxies. Obviously if the velocity of the test body is constant in this reference frame, it will
also be constant relative to any other frame of reference which moves with a constant velocity relative to the
universal frame U .

The typical centripetal acceleration of the solar system when it describes a circular orbit around the center
of our galaxy, relative to the frame of distant galaxies, figure 4.5, has an order of magnitude of 10−10 m/s2.
In the situations in which it is possible to neglect accelerations of this order of magnitude, we can say that
the test body will move along a straight line with a constant velocity relative to the frame F of fixed stars:

~akF = ~0 , that is, ~vkF =
d~rkF
dt

= constant in time . (20.4)

387



388 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

It will then also move with a constant velocity relative to any other frame of reference moving with a
constant linear velocity relative to the set of fixed stars.

The typical centripetal acceleration of the Earth when it describes an elliptic orbit around the Sun,
relative to the frame of fixed stars, has an order of magnitude of 6× 10−3 m/s2, figure 4.4. The centripetal
acceleration of a particle at rest at the terrestrial Equator, due to the diurnal rotation of the Earth around
its axis, relative to the frame F of fixed stars, has an order of magnitude of 3.4 × 10−2 m/s2, figure 4.3.
In the situations in which we can neglect accelerations with these orders of magnitude, then we can say
that the test body will move along a straight line with a constant velocity relative to the Earth or relative
to any other frame of reference which moves with a constant linear velocity relative to the Earth. In this
Chapter we will assume that these conditions are satisfied. The equation of motion for test body k can then
be written as:

~akT = ~0 , that is, ~vkT =
d~rkT
dt

= constant in time , (20.5)

where ~akT represents the acceleration of body k relative to the Earth, while ~vkT represents its velocity
relative to the ground.

By choosing the constant Hg as the constant G of universal gravitation, equation (18.28), we obtain that
the forces of interaction of relational mechanics can then be written as the usual forces of classical mechanics
expressed in the International System of Units, as seen in Section 18.2.

All results obtained with relational mechanics coincide with the equivalent results obtained in classical
mechanics in the situations in which the net force due to the interactions of the test body with the anisotropic
distribution of bodies around it goes to zero. That is, these results coincide whenever ~Fa = ~0, equation (20.2),
where this net anisotropic force ~Fa was presented in Section 17.2. Although the results coincide with one
another, they have different interpretations. In classical mechanics we say that in these conditions the test
body will remain at rest or moving along a straight line with a constant velocity relative to absolute space,
figure 20.1 (a), or relative to any inertial frame of reference which moves with a constant velocity relative
to absolute space. In relational mechanics, on the other hand, we say that in these conditions the test body
will remain at rest or moving along a straight line with a constant velocity relative to the universal frame
U of distant galaxies, figure 20.1 (b), or relative to any frame of reference which is moving with a constant
velocity relative to U .

mgk

a = 0kU

U

mik

a = 0k

(a) (b)

Figure 20.1: Situations in which there is no net force acting on the test body k due to local bodies. (a) In
classical mechanics the body of inertial mass mik has no acceleration relative to absolute empty space. (b)
In relational mechanics, on the other hand, the body of gravitational mass mgk has no acceleration relative
to the universal frame U .

There are situations in which the conditions specified by equations (18.70) or (18.73), together with
equation (20.2), are valid. In these cases equation (20.1) of relational mechanics leads to the conclusion that
the test body will remain at rest or moving along a straight line with a constant velocity not only relative
to the universal frame U , but also relative to frame F of fixed stars, figure 20.2. As the Milky Way moves
relative to the universal frame U , the velocities ~vkU and ~vkF can be different from one another, although
both of them will be constant in time.

When the conditions specified by equations (18.67) and (20.2) are satisfied, we can also say that in
relational mechanics the body will remain at rest or moving along a straight line with a constant velocity
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mgk

a = a = 0kU kF

UF

Figure 20.2: In relational mechanics the body of gravitational mass mgk has no acceleration relative to the
universal frame U , nor relative to the frame F of fixed stars.

relative to the universal frame U of galaxies, relative to the frame F of fixed stars, and also relative to the
terrestrial frame T , figure 20.3.

mgk

a = a = a = 0kU kF kT

UF

T

Figure 20.3: In relational mechanics the body of gravitational mass mgk has no acceleration relative to the
universal frame U , relative to the frame F of fixed stars, and relative to the terrestrial frame T .

20.2 Body Suspended by a Spring which Is at Rest or Moving with

a Constant Velocity Relative to the Ground

We consider here a single case of a body at rest relative to the ground in order to illustrate the similarities and
differences between classical mechanics and relational mechanics. We consider a test body of gravitational
mass mg which is suspended by a vertical spring and which is attracted gravitationally by the Earth. We
neglect the gravitational mass of the spring compared with the gravitational mass of the test body. This
situation was studied in Sections 5.2 and 11.1. We suppose the spring and the test body to be at rest relative
to the ground. We also assume that the spring has a length ℓo when it is vertically at rest relative to the
ground, without the test body, but with its upper extremity connected to a support fixed in the ground.
The test body is placed in its lower extremity and released from rest. After some damped oscillations due
to frictions, the body acquires a new equilibrium configuration remaining once more at rest relative to the
ground. In this case the stretched spring has a new length ℓ, figure 20.4 (a). The downward gravitational
force Fg exerted by the Earth on the test body is balanced by the upward elastic force Fe = k(ℓ− ℓo) exerted
by the stretched spring, figure 20.4 (b). In this figure we are neglecting the acceleration of the solar system
and the acceleration of the Earth relative to the universal frame U .

Figure 20.5 (a) presents the same situation of figure 20.4 (a), but now considered from a reference frame
A relative to which the set of galaxies has an acceleration ~AGA, the Earth has an acceleration ~aEA, the spring
has an acceleration ~asA, while the test body has an acceleration ~amA. These four accelerations are equal to
one another: ~AGA = ~aEA = ~asA = ~amA ≡ ~a. They can have an arbitrary value, such as 20 m/s2. According
to equation (17.88), the inertial force exerted by the set of distant galaxies on the test body connected to
the spring remains having a zero value in frame A, due to the fact that ~amA − ~AGA = ~0. Therefore, even in
this frame A relative to which the test body mg has an acceleration, the only forces acting on it according
to relational mechanics are still the gravitational force exerted by the Earth and the elastic force exerted by
the stretched spring, figure 20.5 (b).
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mg

(a)

mg

(b)

U

Fe

Fg

Figure 20.4: (a) Body at rest in the ground while being suspended by a stretched spring, as seen in the
universal frame U . (b) The gravitational force ~Fg is balanced by the elastic force ~Fe.

mg
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Fg

a
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a

a

a

a

mg

Figure 20.5: (a) Test body at rest in the ground suspended by a spring, as seen in frame A in with the test
body, the spring, the Earth and the set of galaxies have the same common constant acceleration ~a. (b) The
gravitational force ~Fg is balanced by the elastic force ~Fe.

In classical mechanics this last situation received another interpretation. The non-inertial frame S′ of
Section 11.1 coincides with the reference frame A of this Section. As seen in figure 11.4, it was then necessary
to introduce in this non-inertial frame S′ (or A) a fictitious horizontal force Ff . This was necessary due to
the fact that the acceleration which appears in Newton’s second law of motion was interpreted as being the
acceleration of the test body relative to the frame in which the motion of the particle was being analyzed.

In relational mechanics, on the other hand, the only relevant acceleration as regards the inertial force is
the relative acceleration between the test body and the set of distant galaxies. When this relative acceleration
goes to zero, there will be no inertial forces in frame U , in frame A, and in any other arbitrary frame in
which the motion of the test body is being analyzed. That is, in all these frame we will have ~Fi = ~0.

Consider now the situation in which the upper extremity of the vertical spring is connected to a wagon
which can move relative to the ground. Even when the wagon is moving with a constant velocity relative to
the ground, it is observed that the spring remains vertical, parallel to the walls of the wagon, figure 20.6 (a).

ℓ

mg
vT

U

mg

(b)

Fe

Fg

(a)

Figure 20.6: (a) Wagon moving relative to the ground with a constant velocity vT . (b) Forces acting on the
body connected to the spring.
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In relational mechanics the forces acting on the body of gravitational mass mg are still only the weight
of the body Fg and the elastic force Fe. The weight Fg = mgg is a gravitational downward force exerted
by the Earth, while the upward elastic force Fe = k(ℓ− ℓo) is exerted by the stretched spring. Even in this
situation there is no inertial force exerted gravitationally by the set of galaxies and acting on the test body.
As there is no acceleration between the test body and the set of galaxies in the approximation which is being
considered here, we have ~Fi = ~0.

The main differences between relational mechanics and newtonian mechanics arise when the test body is
accelerated relative to the universal frame U . This is the subject of the next Chapters.
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Chapter 21

Bodies in Rectilinear Uniformly

Accelerated Motion Relative to the

Ground

We now consider situations in which equation (18.67) is valid. Therefore, we only need to consider the
acceleration of the test body relative to the surface of the Earth. In this approximation the acceleration of
test body k of gravitational mass mgk relative to the set of distant galaxies, ~akU , will have essentially the
same value as its acceleration relative to the frame F of fixed stars, ~akF , having also the same value as its
acceleration relative to the Earth, ~akT :

~akU = ~akF = ~akT . (21.1)

The equation of motion for this test body of gravitational mass mgk is then given by equation (18.69):

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akF =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akT = ~0 . (21.2)

We consider in this approximation a situation in which
∑N

p=1

p 6=k

~Fpk = ~Fo = constant. Application of

equation (21.2) leads to:

~akT =
d~vkT
dt

=
~Fo

Φ∞mg
= constant . (21.3)

This acceleration ~akT is not the acceleration of the test body relative to absolute space, nor relative to
inertial frames of reference. In the approximation being considered here in which equation (18.67) is satisfied,
this is the acceleration of the test body relative to the surface of the Earth, relative to the set of fixed stars,
or relative to the universal frame of distant galaxies. This is one important difference between relational
mechanics and classical mechanics.

Consider now that we are in a frame of reference A in which the set of distant galaxies has a translational
acceleration ~AGA, having no overall rotation. The equation of motion of relational mechanics in this frame
A is given by equation (17.88), namely:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk(~akA − ~AGA) = ~0 . (21.4)

Suppose that in the test body acts a constant net anisotropic force,
∑N

p=1

p 6=k

~Fpk = ~Fo = constant. Equation

(21.4) leads to:

~Fo +Φ∞mgk
~AGA − Φ∞mgk~akA = ~0 . (21.5)

Here ~akA represents the acceleration of test body k in this frame of reference A. When this reference
frame is connected to the test body, we have ~akA = ~0. In this case the constant force ~Fo is balanced by the

393
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gravitational force exerted on k by the set of distant galaxies which is moving relative to frame A with an
acceleration ~AGA. That is, ~Fo = −Φ∞mgk

~AGA.

21.1 Free Fall

21.1.1 Study of the Motion in the Terrestrial Frame and in the Frame of the

Test Body

When we consider the weight of a body over the surface of the Earth in relational mechanics, it is no longer
given simply by ~Fg = mg~g, with ~g = −GMgE r̂/R

2
E, as this expression had been obtained with Newton’s law

of gravitation. In relational mechanics we need to replace Newton’s law of gravitation by Weber’s law of
gravitation. In order to know the force exerted by the Earth on a test body moving relative to the ground,
we need to integrate equation (17.35) over the whole Earth. However, in this Chapter we consider only
situations in which v2/c2 ≪ 1 and |ra|/c2 ≪ 1, where v represents the velocity of the test body relative to
the ground, r its distance to the center of the Earth, and a its acceleration relative to the Earth. In general
we will consider the problems in the Earth’s frame of reference, such that the Earth has no angular velocity,
~Ω = ~0.

With these approximations Weber’s gravitational force exerted by the Earth on a test body moving
relative to the ground reduces itself to the newtonian result given by ~Fg = mg~g, where ~g = −GMgE r̂/R

2
E .

The approximate value of g close to the Earth’s surface is given by 9.8 m/s2, pointing radially towards the
center of the Earth.

We now consider the free fall of a body like an apple over the surface of the Earth, neglecting air resistance.
Initially we neglect the acceleration of the Earth relative to the frame U of distant galaxies when compared
with the acceleration of the apple relative to the set of distant galaxies, due to the fact that the apple has a
gravitational mass which is much smaller than the gravitational mass of the Earth.

In this case the constant force ~Fo considered in this Chapter is the weight of the body. This weight
originates in the gravitational attraction of the Earth acting on bodies close to its surface. Therefore,
~Fo = mg~g, where ~g = −GMgE r̂/R

2
E represents the gravitational force per unit gravitational mass. Utilizing

this result in equation (21.3) yields:

~amT =
~Fo

Φ∞mg
=

mg~g

Φ∞mg
=

~g

Φ∞

= constant . (21.6)

The acceleration of the test body in this universal frame U is represented in figure 21.1 (a). In the
approximation being considered here this acceleration coincides with the acceleration of the test body relative
to the fixed stars, coinciding also with the acceleration of the test body relative to the ground. Figure 21.1
(b) presents the forces acting in this case.

E
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i mg

inertial
action and reaction
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action and reaction
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- Fg

i

(a) (b)

Figure 21.1: (a) Acceleration of the test body in the terrestrial frame T . (b) Forces of action and reaction
between the test body and the ground (Fg and −Fg), together with the forces of action and reaction between
the test body and the set of galaxies (Fi and −Fi).
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There is action and reaction in the gravitational interaction between the test body and the Earth. This
fact is represented by the weight Fg exerted by the Earth and acting on the body, and by the reaction force
−Fg exerted by the test body and acting on the Earth, figure 21.1 (b). That is, the weight of the test body
has its pair in the opposite force acting on the Earth.

There is also action and reaction in the gravitational interaction between the test body and the set of
distant galaxies. The gravitational force exerted by the galaxies and acting on mg is given by the inertial
force ~Fi = −Φ∞mg~amT . This force has its pair in the opposite force exerted by mg and acting on the set
of distant galaxies, − ~Fi = Φ∞mg~amT . In newtonian mechanics, on the other hand, the inertial forces, like
the term −mi~a in Newton’s second law of motion, were not associated with an opposite force acting on any
other body.

In relational mechanics there are two forces acting on the test body in this situation, namely: (I) Its
weight ~Fg = mg~g, which is a force exerted by the Earth. (II) The inertial force exerted by the set of galaxies,
given by ~Fi = −Φ∞mg~amT . These forces balance one another, generating the acceleration of the test body
relative to the universal frame U given by ~amU = ~amT .

This problem can also be considered in the frame of reference A of the test body. Figure 21.2 (a) presents
the accelerations in this frame A. This frame A coincides with the frame of the test body. Therefore the
test body has no acceleration relative to itself, ~amA = ~0. On the other hand, in this frame A it is observed
that the Earth, the stars and galaxies have a common acceleration of 9.8 m/s2 pointing from the center of
the Earth to the body, as indicated in figure 21.2 (a).
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Figure 21.2: (a) Accelerations in the frame of reference A of the test body. The test body is at rest relative
to itself, ~amA = ~0. (b) Forces Fg and −Fg of action and reaction between the test body and the Earth.
Forces Fi and −Fi of action and reaction between the test body and the set of galaxies.

Equation (21.5) with ~amA = ~0 and with ~Fo = mg~g can be written as:

mg~g +Φ∞mg
~AGA = ~0 . (21.7)

Once more there is action and reaction between the test body and the Earth, Fg and −Fg. There is also
action and reaction between the test body and the set of galaxies, Fi and −Fi. The numerical value of each
one of these four forces in the frame A connected to the test body has the same value it had in the terrestrial
frame T . Also the direction of each one of these four forces in the frame A connected to the test body has
the same direction it had in the terrestrial frame T .

The interpretation of the situation in frame A is slightly different from its interpretation in the terrestrial
frame T . In the terrestrial frame the inertial force was given by ~Fi = −Φ∞mg~amT , where ~amT represented
the acceleration of the test body relative to the ground. In the frame A connected with the test body,
the test body is at rest, such that ~amA = ~0. However, in this frame A the set of galaxies moves with an
acceleration ~AGA pointing from the Earth to the test body. These accelerated galaxies exert an inertial
force ~Fi = Φ∞mg

~AGA on the test body. As ~AGA = −~amT , the inertial forces are the same in both frames
of reference. We say, in frame A of the test body, that the weight of the body is balanced by an upward
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gravitational force exerted by the set of distant galaxies which are accelerated in this direction. As a
consequence of this equilibrium, the test body does not move relative to its own reference frame.

21.1.2 Explanation of the Reason Why Two Bodies Fall Freely to the Ground

with the Same Acceleration, No Matter Their Weights or Chemical Com-

positions

Equation (21.6) explains clearly the observational fact first obtained by Galileo that all bodies fall in vacuum
with the same acceleration relative to the ground, no matter their weights, shapes, chemical compositions
etc. This equality of the free fall acceleration arises in relational mechanics from the fact that the force
−Φ∞mg~amT is a real force due to a gravitational interaction between the test body and the distant masses
of the cosmos. Therefore, the mass mg which appears in −Φ∞mg~amT is the same mass which appears in the
weight of the test body due to its gravitational interaction with the Earth, that is, the gravitational mass
which appears in the force of weight ~Fg = mg~g. The explanation of this remarkable fact which intrigued
Galileo, Newton, Einstein and many other scientists is obvious in relational mechanics. The explanation
obtained here is very simple and elegant. We do not need to postulate this proportionality between inertia
and weight, as was done in Einstein’s general theory of relativity. Instead of postulating this proportionality,
without obtaining a better comprehension of the phenomenon, this result is deduced in relational mechanics.
We then obtain a complete comprehension of the fact, opening our minds to many new possibilities.

The explanation of this curious fact is very interesting in relational mechanics. When we increase the
gravitational mass of the test body, we increase its weight. However, simultaneously, we also increase the
gravitational force exerted on the test body by the set of galaxies. This simultaneous increase in the weight
and in the inertial force has a remarkable consequence, namely, the acceleration of the test body relative to
the ground is independent of the value of this gravitational mass of the test body.

21.1.3 The Average Volume Density of the Gravitational Mass of the Universe

Controls the Value of the Acceleration of Free Fall

It is worth while considering here what would happen, according to relational mechanics, if the gravitational
masses of the Earth and of the test body remained inalterable, while the gravitational mass or density of
external galaxies doubled their values. In this hypothetical situation the constant Φ∞ would double its value,
according to equation (17.45). Therefore, equation (17.77) would only remain valid with

∑N
p=1

p 6=k

~Fpk 6= ~0 if

the acceleration ~akU of the test body halved its present value, as we are assuming that the gravitational
mass mgk of the test body remained constant, the same happening with

∑N
p=1

p 6=k

~Fpk. In the example of free

fall, this fact implies that the acceleration of the test body towards the ground should have its value divided
by two. That is, by doubling the amount of galaxies in the universe, while simultaneously keeping the Earth
and the test body inalterable, the acceleration of free fall should be halved. Likewise, if it were possible to
annihilate half of the galaxies, the acceleration of free fall should double.

This analysis can also be considered mathematically. The equation of motion is given by equation (21.6).
Equations (17.45), (18.28) and (21.6) yield:

~amT =
~g

Φ∞

= − 1

Φ∞

GMgE

R2
E

r̂ = − 3c2α2

4πGρgoξ

GMgE

R2
E

r̂ , (21.8)

where r̂ points from the center of the Earth towards the test body. According to this equation, the acceleration
~amT of free fall is inversely proportional to the average volume density of gravitational mass in the universe,
ρgo. With the known density given by equation (4.37), the value of the free fall acceleration close to the
surface of the Earth is given by 9.8 m/s2 relative to the ground. If it were possible to double the value of
ρgo, without changing the gravitational mass of the Earth, then this acceleration of free fall would change
to 4.9 m/s2. If it were possible to divide by 3 the present value of ρgo, without changing the gravitational
mass of the Earth, the acceleration of free fall would be given by 29.4 m/s2.

Let us call (A) the present situation in which an apple has an acceleration of free fall close to the surface
of the Earth given by 9.8 m/s2. Let (B) be the situation in which we double the masses of the galaxies,
without changing the masses of the Earth and of the apple. Let (C) be the situation in which the galaxies
have their present masses, but in which the masses of the Earth and of the apple have been halved. In these
three cases we keep inalterable the distances between all bodies.
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Cases (B) and (C) are analogous to one another and should lead to the same consequences. This equiv-
alence between (B) and (C) is due to the fact that the ratio of any two masses is the same in (B) and in
(C). For instance, the mass of the Earth divided by the mass of the apple has the same value in (B) and
in (C). The same can be said of the ratio of the mass of the Earth to the mass of any specific galaxy like
Andromeda. The same can also be said of the ratio of the mass of the apple to the mass of any specific
galaxy like Andromeda. All these ratios have the same values in (B) and in (C). However, in newtonian
mechanics and in Einstein’s general theory of relativity the acceleration of free fall in situation (C) is given
by 4.9 m/s2, while in case (B) it remains with its present value of 9.8 m/s2. Only relational mechanics
predicts that in both situations, (B) and (C), the acceleration should be given by 4.9 m/s2. This prediction
of relational mechanics is more intuitive and philosophically appealing than the predictions of newtonian
and einsteinian mechanics. After all, when we say that the mass of the Earth and of the apple halved their
values, this should be analogous to the statement that all other masses in the universe doubled their values.
Therefore, the dynamical consequences of situations (B) and (C) should be the same. Only relational me-
chanics leads to the same dynamical consequences in cases (B) and (C). This analysis indicates that only
relational mechanics is compatible with the principle of physical proportions.1

In these examples, when we say that the masses of the Earth, apple or galaxies halved or doubled their
values, it should be understood that we are comparing these three masses with the mass of a standard body
(for instance, the standard kilogram weight kept at Paris).

We cannot test the consequences of situation (B), as we do not have control over the mass of each galaxy,
nor over the average volume density of gravitational mass of the universe. In any event, these situations
and analyses are excellent to indicate the implications of relational mechanics and its differences compared
with the formulations of Newton and Einstein. Moreover, these ideas suggest a test which might be made in
the laboratory in order to distinguish relational mechanics from classical mechanics and also from Einstein’s
theory of relativity, as will be seen in Subsection 24.5.1.

21.1.4 Attraction of Two Bodies in the Universal Frame

As was done in Subsection 7.2.3 and in Section 18.1, we can generalize the treatment presented up to now
in order to consider the motion of the Earth and of the apple in the universal frame U . Let us call these two
bodies by 1 and 2. Body 1 exerts a force on body 2 and body 2 exerts an equal and opposite force on body
1. The set of distant galaxies also exerts gravitational forces on bodies 1 and 2. The gravitational masses of
bodies 1 and 2 will be represented by mg1 and mg2, respectively. We will consider that these two bodies are
particles located at their centers of gravitational mass.

The equation for the conservation of energy in relational mechanics is given by equation (17.74). Utilizing
equations (18.28) and (18.38), the equation for the conservation of energy can be written as:

−G
mg1mg2

r12
+Φ∞mg1

~v1U · ~v1U
2

+ Φ∞mg2
~v2U · ~v2U

2
= constant in time . (21.9)

That is, the total energy has always the same value, no matter the values of r12, ~v1U or ~v2U .
The equations of motion of bodies 1 and 2 based on forces are given by equations (18.6), (18.7) and

(18.28). Utilizing that r̂ = r̂21 = −r̂12 we obtain the following equations:

Gmg1mg2
r̂21
r212

− Φ∞mg1~a1U = ~0 , (21.10)

and

−Gmg1mg2
r̂21
r212

− Φ∞mg2~a2U = ~0 . (21.11)

In relational mechanics the total linear momentum and the total angular momentum in the universal
frame U are constant in time, equations (18.45) and (18.51). Supposing that the particles begin their
interaction being at rest in frame U , ~v1U (t = 0) = ~v2U (t = 0) = ~0, then the total linear momentum will have
always a zero value, the same happening with the total angular momentum. Let us suppose, moreover, that
the center of gravitational mass of these two particles is located at the origin of coordinates of the reference
frame U . That is, ~r g

cm = ~0, with ~r g
cm defined by equation (18.52). Therefore:

1[Ass01], [Ass03a], [Ass04] and [Ass11b] with German translation in [Ass13a].
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~r g
cm = mg1~r1U +mg2~r2U = ~0 , (21.12)

and

~r2U = −mg1

mg2
~r1U , ~v2U = −mg1

mg2
~v1U , ~a2U = −mg1

mg2
~a1U . (21.13)

Utilizing r1 ≡ |~r1|, r2 ≡ |~r2|, equations (17.45) and (18.28), then we obtain from equations (21.10),
(21.11) and (21.13) the following results:

~a2U = − G

Φ∞

mg1

(r1 + r2)2
r̂21 = − 3c2α2

4πGρgoξ

Gmg1

(r1 + r2)2
r̂21 = −mg1

mg2
~a1U . (21.14)

If, for example, mg1 = 3mg2, then ~a2U = −3~a1U . On the other hand, if mg1 ≫ mg2, then r1U ≪ r2U ,
|~v1U | ≪ |~v2U | and |~a1U | ≪ |~a2U |. Consider, for instance, an apple with a gravitational mass mg2 = 100 g =
0.1 kg. Utilizing the gravitational mass of the Earth = mg1 = 6 × 1024 kg, and utilizing that the free fall
acceleration of the apple is given by |~a2U | = 9.8 m/s2, we obtain that the acceleration of the Earth relative
to the universal frame U is given by, from equation (21.13): |~a1U | = 1.666× 10−26|~a2U | = 1.6× 10−25 m/s2.
This value is totally negligible compared with the acceleration of the apple. That is, as the mass of 1 is much
bigger than the mass of 2, it is possible to neglect the acceleration of body 1 compared with the acceleration
of body 2 in frame U . However, it should be kept in mind that these two bodies are in fact accelerated
relative to the universal frame U . The conservation of linear momentum in relational mechanics takes place
in this universal frame.

The accelerations of particles 1 and 2 in the universal frame U are represented in figure 21.3 (a). Figure
21.3 (b) presents the forces acting on body 1, on body 2, and also the forces acting on the set of galaxies.
The gravitational force exerted by body 2 on the set of galaxies is represented by ~F2i. Although the arrow
representing this force in figure 21.3 (b) is located at a single galaxy, it should be understood that this force
is distributed over all galaxies. The same can be said of the gravitational force exerted by body 1 and acting
on the galaxies, represented by ~F1i.

0
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Fi1

Fi2
F12

F1i

F2i

(a) (b)

inertial action and reaction

gravitational action and reaction

inertial action and reaction

Figure 21.3: (a) Accelerations in the universal frame U of two masses interacting with one another. Each
one of them is also interacting gravitationally with the galaxies. (b) From top to bottom: Forces of action
and reaction between body 2 and the set of galaxies, forces of action and reaction between 1 and 2, together
with the forces of action and reaction between body 1 and the set of galaxies.

From equation (21.14) it can be observed once more that the accelerations of bodies 1 and 2 in the
universal frame U are controlled by the average volume density of gravitational mass of the universe, ρgo.
It it were possible to increase this average density, without changing the gravitational masses of 1 and 2,
then the accelerations of 1 and 2 in the universal frame U would decrease, supposing the same distance
r1 + r2 between the interacting bodies. On the other hand, if it were possible to make ρgo → 0, then the
accelerations of 1 and 2 in the universal frame would go to infinity.
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21.2 Accelerated Charge Inside an Ideal Capacitor

The other example analyzed here is that of an electrified particle with an electric charge q which suffers
the action of an ideal capacitor which is supposed at rest relative to the ground. The capacitor is charged
with surface charge densities ±σ over its plates which are orthogonal to the z axis, located at ±zo. The test
charge is located at time t at ~r = zẑ inside the capacitor. We also consider that it is moving with velocity
~vqT = vxx̂+ vy ŷ + vz ẑ and acceleration ~aqT = axx̂+ ay ŷ + az ẑ relative to the plates of the capacitor, figure
21.4.

aqU

q

Figure 21.4: Accelerated charge inside a capacitor at rest in the ground.

The force exerted by this capacitor on the point charge q moving inside it, according to Weber’s electrody-
namics, is given by equation (7.34). We consider here only motions such that v2qT /c

2 ≪ 1 and |zaqT |/c2 ≪ 1.
In this case Weber’s force reduces to the electrostatic case obtained with Coulomb’s force, namely:

~F = −q
σẑ

εo
≡ q ~E , (21.15)

where ~E ≡ −σẑ/εo represents the electrostatic force per unit charge.
Equations (21.2) and (21.15) lead to:

~aqT =
q

Φ∞mg

~E = − 3c2α2

4πGρgoξ

qσ

mgεo
ẑ . (21.16)

There is no relation between the electric charge q and the gravitational mass mg of the particle. Therefore
two distinct bodies, like an alpha particle and a proton, can move with different accelerations inside the same
charged capacitor. As a matter of fact, these two particles move with different accelerations inside the same
capacitor.

The acceleration of the charge relative to the capacitor is controlled by the average volume density of
gravitational mass of the universe, ρgo. If it were possible to double this density, keeping the charges of
the test particle and of the capacitor unchanged, keeping also the gravitational mass of the test particle
unchanged, then the acceleration of the test particle would halve its value according to relational mechanics.
If we could divide by two the value of ρgo, without changing q, σ and mg, then the acceleration of the test
particle would double.

21.3 Body Accelerated Relative to the Ground while Connected to

a Spring

We consider now two bodies with the same gravitational mass mg inside a frictionless wagon. The bodies
are connected to two equal horizontal springs of relaxed length ℓo when the wagon is at rest in the ground,
figure 21.5 (a). The springs are connected to the wagon. Each body is connected to a single spring. We
will neglect the gravitational mass of each spring in comparison with the gravitational mass mg of the body
connected to it, mg spring ≪ mg.

A force is then applied to the wagon until the moment in which it is moving relative to the ground with
a constant velocity vmT . After reaching this situation, both springs and the bodies connected to them also
move relative to the ground with this constant velocity, as they are connected to the wagon. It is observed
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that the two springs remain relaxed, keeping their initial length ℓo, figure 21.5 (b). The cylinder represents
a body external to the wagon, at rest relative to the ground.

(a)

vmT

ℓo ℓomg mg

(b)

ℓo ℓomg mg

Figure 21.5: (a) Wagon at rest in the ground. (b) Wagon moving with a constant velocity relative to the
ground.

When a constant acceleration amT is supplied to the wagon, both springs and bodies also move with this
same constant acceleration relative to the ground, as they are connected to the wagon. It is observed that
one of the springs becomes compressed, while the other becomes stretched, figure 21.6. In this figure the
wagon is being accelerated towards the cylinder at rest in the ground. The left spring becomes compressed.
Its extremity connected to the wagon has a greater distance to the cylinder than its extremity connected to
the body of gravitational mass mg. The right spring, on the other hand, becomes stretched. Its extremity
connected to the wagon has a smaller distance to the cylinder than its extremity connected to the body of
gravitational mass mg.

amT

ℓ > ℓo

ℓ<ℓo

mgmg

Figure 21.6: Wagon moving with a constant acceleration relative to the ground.

Let us consider positive the direction pointing from the wagon to the cylinder. The vertical force exerted
by the Earth is balanced by the upward normal force exerted by the floor of the wagon and acting on each
mass. According to Weber’s gravitational force, the Earth will also exert a small horizontal force on each
mass mg when they are accelerated relative to the ground. In the following calculations we will neglect this
horizontal component when compared with the elastic force exerted by the springs. We can then utilize
Hooke’s law together with the equation of motion of relational mechanics, equations (2.6) and (21.2), in
order to obtain the compression of the left spring:

−k(ℓ− ℓo)− Φ∞mgamT = 0 . (21.17)

With the same equations (2.6) and (21.2) we can also obtain the how much the right spring has stretched,
namely:

k(ℓ − ℓo)− Φ∞mgamT = 0 . (21.18)

These two springs suffer then the same change of length given by:
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|ℓ− ℓo| =
Φ∞mg|amT |

k
. (21.19)

21.3.1 What is the Origin of the Force which is Stretching the Spring?

In figure 2.5 a spring was stretched by forces of different nature, namely: (a) gravitational, (b) electric and
(c) magnetic. A spring does not stretch by itself. In order to stretch a spring, two equal and opposite forces
must act on the extremities of the spring. The force in each extremity must point from the center of the
spring to this extremity, as seen in figures 2.4 (c) and 2.6.

What is then the origin of the force which is stretching the right spring of figure 21.6? What is the origin
of the force which is compressing the left spring of figure 21.6?

The answer of the first question in relational mechanics is that the right spring of figure 21.6 is being
stretched by the gravitational force exerted by the set of galaxies and acting on the body of gravitational
mass mg attached to the spring, as this force is transmitted to the spring. Therefore, the spring is being
stretched by a real force of gravitational origin.

Figure 21.7 (a) presents the stretched right spring with the body of mass mg being accelerated to the right.
Figure 21.7 (b) presents the forces acting on the test body. There is the inertial force Fi = −Φ∞mgamU =
−Φ∞mgamT exerted gravitationally by the set of galaxies, pointing to the left, and the elastic force Fe =
k(ℓ − ℓo) exerted by the stretched spring, pointing to the right. Figure 21.7 (c) presents the forces acting
on the spring. The inertial force Fi acting on the test body is transmitted to the spring, pulling the left
extremity of the spring to the left side. The wall of the wagon exerts a force T of traction or tension, pulling
the right extremity of the spring to the right side.

amT

ℓ > ℓomg

Fi Fe Fi T

(a) (b) (c)

Figure 21.7: (a) Spring and body of gravitational mass mg accelerated to the right. (b) Forces acting on the
test body: Elastic force Fe and inertial force Fi. (c) Forces acting on the stretched spring: Inertial force Fi

and force of tension T .

Figure 21.8 (a) presents the compressed left spring of figure 21.6, with the test body of gravitational mass
mg being accelerated to the right. Figure 21.8 (b) presents the forces acting on the test body. There is the
inertial force Fi = −Φ∞mgamU = −Φ∞mgamT exerted gravitationally by the set of galaxies, pointing to
the left, and the elastic force Fe = k(ℓo − ℓ) exerted by the compressed spring, pointing to the right. Figure
21.8 (c) presents the forces acting on the extremities of the compressed spring. The inertial force Fi acting
on the test body is transmitted to the spring, pressing its right extremity to the left side. The wall of the
wagon exerts a force of traction T on the left extremity of the spring, pointing to the right.

In figure 2.5 (a) the force of weight exerted by the Earth and acting on each body suspended by the spring
is transmitted to the spring, through contact forces. The spring is stretched due to these transmitted forces
of weight. In figure 2.5 (b) the electric force acting on each body connected to the spring is transmitted
to the spring, stretching it. In figure 2.5 (c) it is the magnetic force acting on each body connected to the
spring which is transmitted to the spring, stretching it. In figure 2.4 (c) the force of weight exerted by the
Earth and acting on the test body suspended by the spring is transmitted to the spring, pulling downwards
the lower extremity of the spring. As the upper extremity of the spring is connected to the fixed support,
the spring is stretched up to a point in which the fixed support exerts an upward force of traction on this
upper extremity of the spring which has the same magnitude as the downward weight acting on the lower
extremity of the spring. The spring is then stretched by these opposite forces acting on its two extremities.

The same effect happens in figure 21.7. That is, the set of galaxies exerts a left force on the block when
it is accelerated to the right relative to the galaxies. This force of gravitational origin is transmitted to the
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ℓ<ℓo
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Fi Fe FiT

(a) (b) (c)

Figure 21.8: (a) Spring and test body of gravitational mass mg being accelerated to the left. (b) Forces
acting on the test body: Elastic force Fe and inertial force Fi. (c) Forces acting on the extremities of the
compressed spring: Inertial force Fi and force of traction T .

left extremity of the spring, stretching it. As the right extremity of the spring is connected to the wagon, the
spring is stretched up to a point when the wagon exerts a force of traction on the right extremity, pointing
to the right, and having a magnitude equal to the inertial force (when the weight of the spring is negligible
compared with the weight of the block).

21.3.2 The Average Volume Density of Gravitational Mass in the Universe Con-

trols the Acceleration of a Test Body Connected to a Stretched Spring

From equations (18.29) and (21.19) it is possible to obtain the variation of the length of the springs of figure
21.6 as given by:

|ℓ− ℓo| =
Φ∞mg|amT |

k
=

4πGρgoξ

3c2α2

mg|amT |
k

. (21.20)

This equation indicates that the variation of length |ℓ− ℓo| is directly proportional to the average volume
density ρgo of gravitational mass in the universe. If it were possible to double the value of this average
volume density of gravitational mass, while keeping unchanged the elastic constants k of the springs and also
keeping unchanged the gravitational masses mg of the test bodies connected to these springs, then we would
double the variation of length of these springs when the wagon were moving with the same acceleration ~amT

relative to the ground. If we could divide by 2 this volume density ρgo, the variation of the length of these
springs would also have half of the value indicated in figure 21.6.

A possible experimental test of these ideas can be found is Subsection 24.5.4.
By making this average volume density of gravitational mass in the universe go to zero, ρgo → 0, then the

springs would not change their lengths when they were accelerated relative to the ground. This last result
is only an approximation. According to Weber’s law for gravitation, the Earth exerts an horizontal force
on the test bodies connected to the extremities of the springs when these masses are accelerated relative to
the ground. This effect has not been taken into account in the calculations which yielded equation (21.19).
When this effect is taken into account in the calculations of the variation of length of the accelerated springs,
then there would still remain a small change of length of the springs when they were accelerated relative to
the ground, even when ρgo → 0.

21.3.3 Forces in the Frame of the Wagon

Figure 21.9 presents the situation of figure 21.7 as seen by a person located inside the wagon. This is the
frame A in which the set of galaxies is seen as having a common acceleration ~AGA to the left. In this frame
A the planet Earth has an acceleration to the left, ~aEA. Both accelerations are equal to one another, namely,
~aEA = ~AGA.

The equation of motion in this case is given by equation (21.4) with ~akA = ~0. The forces acting on
the test body are represented in figure 21.9 (b). Once more there is the inertial force pointing to the left.
This inertial force Fi is exerted by the galaxies. That is, the set of galaxies accelerated to the left exert a
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a = 0mA
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Figure 21.9: (a) In frame A of a person inside the wagon, the block and the spring are seen at rest. On the
other hand, the Earth and the set of galaxies are seen having the same acceleration to the left, ~aEA = ~AGA.
(b) Forces acting on the test body: Elastic force Fe and inertial force Fi. (c) Forces acting on the extremities
of the stretched spring: Inertial force Fi and force of traction T .

gravitational force on the test body given by Φ∞mg
~AGA, pointing to the left. The body is connected to the

left extremity of the spring. Therefore, the force exerted by the galaxies on the test body is transmitted to
the left extremity of the spring. The right extremity of the spring is connected to the wagon. The spring
stretches up to a point when the wagon exerts a force of traction T on the right extremity, pointing to the
right, which has the same magnitude as the inertial force. These two opposite forces, Fi and T , stretch the
spring. The stretched spring exerts an elastic force Fe on the test body, balancing the inertial force exerted
by the galaxies on the test body.

Even for someone thinking on this situation from the point of view of newtonian mechanics, it may be
more evident to perceive that the inertial force is a real force by considering this problem in the frame
of reference A of the wagon, as represented in figure 21.9. That is, in this frame the spring is at rest.
The galaxies, accelerated to the left, exert a force on the test body also pointing to the left. This force is
transmitted to the spring, stretching it. The stretching of the spring happens due to the fact that its right
extremity is connected to the stationary wagon. In any event, the inertial force Fi has the same value and
direction in all frames of reference, as in this frame A, in the terrestrial frame and also in the universal frame
U .

A similar analysis may be performed for the left spring of figure 21.8 from the point of view of a frame
of reference A which is at rest relative to the wagon.

21.3.4 What Would Be the Length of the Spring If it Were Possible to Accel-

erate the Set of Galaxies Relative to the Ground?

In this Subsection we discuss an hypothetical situation illustrating the machian aspects of relational me-
chanics. We utilize the Earth as being the reference frame relative to which all velocities and accelerations
are being considered. As in the previous situations, we consider two equal horizontal springs connected to
the wagon, each one having a test body of gravitational mass mg connected to its free extremity, figure 21.10
(a). Let ℓo be the relaxed length of each spring of elastic constant k, when the spring and the set of galaxies
are at rest relative to the ground. We also assume that the gravitational mass of each spring is negligible
compared with the gravitational mass of the test body connected to it.

Suppose now an hypothetical situation in which the wagon is put in motion relative to the ground moving
with a constant horizontal velocity vmT in the terrestrial frame, while the set of galaxies moves relative to
the ground with a common constant horizontal velocity VGT in the terrestrial frame. As the springs and
test bodies are connected to the wagon, they will also move relative to the ground with a constant velocity
vmT . According to equation (17.65) of relational mechanics, the set of galaxies does not exert a net force
on any test body connected to the springs, as there is no acceleration between this test body and the set of
galaxies. Therefore the springs should remain relaxed with their lengths ℓo, figure 21.10 (b).

Suppose now that an external force is applied to the wagon making it move with a constant horizontal
acceleration amT relative to the ground, while the set of galaxies receives a common horizontal acceleration
AGT relative to the ground. These two accelerations may have different values, being always considered
relative to the terrestrial frame T , that is, relative to the ground. What will be the length ℓ of each spring
in this thought experiment?



404 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

(a)

vmT

ℓo ℓo
mg mg

(b)

ℓo ℓo
mg mg

VGT

VGT

VGT

VGT

VGT

Figure 21.10: (a) Springs and galaxies at rest relative to the ground. (b) Wagon, springs and test bodies of
masses mg moving together relative to the ground with a constant velocity vmT , while the set of galaxies
moves relative to the ground with a common constant velocity VGT .

As each spring has one extremity connected to the wagon and the other extremity connected to a test
body, each spring and test body will also acquire the same constant acceleration amT which has been supplied
to the wagon. This hypothetical situation is represented in figure 21.11.

amT

ℓ > ℓo

ℓ<ℓo

mgmg

AGT

AGT

AGT

AGT

AGT

Figure 21.11: Wagon, springs and test bodies of masses mg moving together relative to the ground with a
constant horizontal acceleration amT , while the set of galaxies moves with a common horizontal acceleration
AGT relative to the ground. Situation in which amT > AGT .

Let us consider positive the direction pointing from the wagon to the cylinder fixed in the ground of
figure 21.11. According to equation (17.65) of relational mechanics, the inertial force acting on each test
body will be given by Fi = −Φ∞mg(amT −AGT ). The elastic force exerted by the left spring of figure 21.11
is given by Fe = −k(ℓ− ℓo), while the elastic force exerted by the right spring is given by Fe = k(ℓ− ℓo).

Therefore, by the principle of dynamical equilibrium given by equation (17.88) and neglecting the force
of the Earth acting on the accelerated springs, the equation of motion for the left test body is given by:

−k(ℓ− ℓo)− Φ∞mg(amT −AGT ) = 0 . (21.21)

Therefore, when amT > AGT we will have ℓ < ℓo, as indicated in the left spring of figure 21.11. On the other
hand, when amT < AGT then ℓ > ℓo.

The equation of motion for the right test body can be obtained by a similar procedure, leading to:

k(ℓ− ℓo)− Φ∞mg(amT −AGT ) = 0 . (21.22)

Therefore, when amT > AGT we will have ℓ > ℓo, as indicated in the right spring of figure 21.11. On the
other hand, when amT < AGT then ℓ < ℓo.

The most important aspect to take notice here is that for these two springs we will have ℓ = ℓo whenever
amT = AGT . That is, they will remain relaxed whenever there is no acceleration between each test body and
the set of galaxies. In particular, the springs will remain relaxed as in figure 21.5 (a) even when ~amT 6= ~0,
provided ~amT = ~AGT . That is, the compression of each spring is independent of the acceleration of the test
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body relative to the ground, but depends on the relative acceleration between the test body and the set of
galaxies.

We will also have ℓ = ℓo if it were possible to annihilate the set of galaxies by making ρgo → 0, as Φ∞

is proportional to the average volume density of gravitational mass in the universe according to equations
(17.45) and (18.29).

A possible experimental test of these ideas can be found in Subsection 24.5.4.

21.4 Test Body Accelerated Relative to the Ground while Sus-

pended by a String

We now consider an ideal string of constant length ℓ with its upper extremity connected to the ceiling of
a closed wagon which can move relative to the ground. A test body of gravitational mass mg is connected
to the lower extremity of the string. When the body and spring remain at rest relative to the ground, the
string remains vertical, parallel to the walls of the wagon, figure 21.12 (a). To simplify the analysis the set of
galaxies has been considered at rest relative to the ground, although they might be moving with a common
constant velocity relative to the ground without affecting the discussion being presented here. The downward
weight Fg of the test body is balanced by the upward force of traction T exerted by the stretched string.
The weight is the gravitational force exerted by the Earth on the test body, while the traction represents
the force exerted by the stretched string on the test body.

ℓ

vT

ℓ

mg

(a) (b)

mg

Figure 21.12: (a) Wagon at rest relative to the ground. (b) Wagon, string and test body moving with a
constant horizontal velocity vT relative to the ground.

The wagon is then put in motion relative to the ground, moving with a constant horizontal velocity
vT . After the situation has been stabilized, with the string and test body also moving with this constant
horizontal velocity relative to the ground, it is observed that the string remains vertical, as indicated in
figure 21.12 (b).

An external horizontal force is then applied to the wagon, making it move with a constant horizontal
acceleration aT relative to the ground. We will consider only the situation in which the situation has been
stabilized, so that the string and test body move together with the wagon with this constant acceleration
aT relative to the ground. The string is observed to remain inclined at an angle θ relative to the vertical or
relative to its walls, as represented in figure 21.13 (a).

ℓ
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q

Fg

q

T

mg
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Figure 21.13: (a) Wagon accelerated relative to the ground, with the string inclined by an angle θ relative
to the vertical. (b) Forces acting on the test body.
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This problem can be considered in relational mechanics utilizing equation (21.2). There are three forces
acting on the test body, namely: (a) The gravitational force exerted by the Earth, which is the downward
weight of the body ~Fg, neglecting the small horizontal force exerted by the Earth when the test body
is accelerated relative to it. (b) The force of tension ~T exerted by the stretched string, pointing along its
length. (c) The inertial force ~Fi = −Φ∞mg~amU = −Φ∞mg~amT exerted gravitationally by the set of galaxies.
This inertial force points in the opposite direction of the acceleration ~amU = ~amT of the test body relative to
the galaxies. These three real forces are represented in figure 21.13 (b). Equation (21.2) can then be written
as:

~Fg + ~T − Φ∞mg~amT = ~0 . (21.23)

Utilizing the angle θ represented in figure 21.13 (b) and the fact that the body has only a horizontal
acceleration we obtain:

T sin θ = Φ∞mgamT , (21.24)

and

T cos θ = Fg . (21.25)

Dividing equation (21.24) by equation (21.25), utilizing that Fg = mgg and equation (18.29), yields:

tan θ =
Φ∞mgamT

Fg
=

Φ∞mgamT

mgg
= Φ∞

amT

g
=

4πGρgoξ

3c2α2

amT

g
=

amT

g
. (21.26)

That is, the tangent of the angle of inclination θ of the string relative to the vertical is proportional to
the acceleration of the test body relative to the set of galaxies. In the approximation being considered here
in which the set of galaxies has no acceleration relative to the ground, this acceleration of the test body
relative to the set of galaxies coincides with the acceleration of the test body relative to the ground. As
this acceleration of the test body relative to the ground may be controlled by changing the horizontal force
applied to the wagon, it is possible to control the angle of inclination of the string relative to the vertical.

Squaring equations (21.24) and (21.25), and utilizing equation (18.29), the tension T of the string is given
by:

T =
√

Φ2
∞
m2

ga
2
mT + F 2

g = mg

√

Φ2
∞
a2mT + g2 = mg

√

(

4πGρgoξ

3c2α2

)2

a2mT + g2 = mg

√

a2mT + g2 . (21.27)

This tension might be measured utilizing a dynamometer connected to the string.

21.4.1 What is the Origin of the Force which is Inclining the String?

As seen in figure 21.13 (b), the horizontal force which is inclining the string according to relational mechanics
is the inertial force. This is a force of gravitational origin, exerted by the set of galaxies on the test body
connected to the string, whenever there is a relative acceleration between this test body and the set of
galaxies. The direction of this inertial force is to decrease the relative acceleration, that is, in the opposite
direction of the acceleration ~amU of the body relative to the universal frame U , which coincides in our
example with the acceleration of the test body relative to the ground.

The downward force of weight is proportional to the gravitational mass mg of the test body connected to
the string. Also the horizontal inertial force is proportional to the gravitational mass mg of the test body.
As these two forces are proportional to mg, we can cancel the two gravitational masses which appear in
equation (21.26). Therefore, the angle θ of inclination of the string to the vertical will be independent of the
gravitational mass of the test body connected to it.

On the other hand, equation (21.26) indicates that the tangent of this angle, tan θ, is directly proportional
to the average volume density of gravitational mass of the universe, ρgo. It is also inversely proportional to
the gravitational mass of the Earth, MgE . The gravitational mass of the Earth appears in the force of weight
per unit gravitational mass of the test body, Fg/mg = g = GMgE/R

2
E , where RE represents the Earth’s

radius.
The magnitude of the acceleration of free fall at the surface of the Moon is 1/6 of the magnitude of

the acceleration of free fall at the surface of the Earth, gM = 1.6 m/s2. Suppose that a wagon has the
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same horizontal acceleration at the surface of the Moon, relative to the universal frame U , as the horizontal
of another wagon at the surface of the Earth, also relative to the universal frame U . Therefore, equation
(21.26) leads to the result that the tangent of the angle of inclination of the string in the Moon will be 6
times greater than the angle of inclination of the string in the Earth.

If it were possible to control the average volume density of gravitational mass in the universe, ρgo, it
would be possible to control the angle of inclination of the string relative to the vertical, without changing
the acceleration of the test body connected to the string relative to the universal frame U , and also without
changing the gravitational mass of the planet which is attracting this test body. Equation (21.26) indicates
that tan θ is proportional to ρgo. Therefore, we could control this angle, even with a constant value of
amT /g, by changing the value of ρgo. In particular, by increasing the value of ρgo we would increase the
angle of inclination, while by decreasing the value of ρgo would simultaneously decrease the value of the θ. By
annihilating the set of galaxies and stars around the Earth, by making ρgo → 0, equation (21.26) indicates
that the string would become vertical, that is, θ → 0, despite the acceleration of the test body relative to
the ground. This last conclusion is only an approximation. According to Weber’s law for gravitation, when
a test body has an horizontal acceleration relative to the ground, there will appear an horizontal component
of the gravitational force exerted by the Earth on the test body, depending on the value of this acceleration.
In order to arrive at equation (21.26) we neglected this horizontal component of the force exerted by the
Earth on the test body. If this small component had not been neglected, then we would conclude that there
would remain a small inclination of the string to the vertical when the test body were accelerated relative
to the ground, even in the limit in which ρgo → 0.

The influence of the set of distant galaxies in this problem can also be observed due to the fact that
the tension T in the string depends on the average volume density ρgo of gravitational mass in the universe
through equation (21.27). If it were possible to increase this average density of gravitational mass in the
universe, the tension in the string would also increase, even by keeping unchanged the acceleration amT of
the test body relative to the ground.

A possible experimental test of these ideas is discussed in Subsection 24.5.4.

21.4.2 Forces in the Reference Frame in which the Test Body is at Rest

The problem may also be considered in the reference frame A of a person inside the wagon. In this frame
the string and the test body connected to the string are seen at rest, ~vmA = ~0 and ~amA = ~0, although the
string has an angle of inclination θ to the vertical. The Earth and the set of galaxies are seen as having the
same horizontal acceleration pointing to the left in this frame A, namely, ~aEA = ~AGA, figure 21.14.
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Figure 21.14: Situation of figure 21.13 as seen in a reference frame A which is at rest relative to the wagon.
(a) String and test body of gravitational mass mg are seen at rest, while the Earth and the set of galaxies
move together to the left with the same acceleration. (b) Forces acting on the test body.

The inclination of the string to the vertical takes place in the same sense as the acceleration of the
galaxies. This fact is explained in relational mechanics due to the inertial force Fi exerted by the set of
galaxies and acting on the test body connected to the string. This force of gravitational origin points in
the same sense as the acceleration of the galaxies relative to this frame A, according to equation (21.4),
figure 21.14 (b). As the galaxies pull the test body to the left, they also increase the tension T in the string
compared with the value T = mgg which was valid when the wagon was at rest in the ground, with the
string vertical. This increase in the tension of the string happens due to the inertial force exerted by the
galaxies, as indicated by equation (21.27).
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21.4.3 What Would Be the Inclination of the String to the Vertical If it Were

Possible to Accelerate the Set of Galaxies Relative to the Ground?

The previous discussions can be generalized considering an hypothetical situation in which the wagon has an
horizontal acceleration ~amT relative to the ground, while simultaneously the set of galaxies has an horizontal
acceleration ~AGT relative to the ground, figure 21.15. These two accelerations may be different from one
another, being always considered relative to the terrestrial frame T . As the string and the test body of
gravitational mass mg are connected to the wagon, they will also attain and maintain the acceleration ~amT

relative to the ground. What would be the angle θ of inclination of the string to the vertical in this thought
experiment?
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Figure 21.15: (a) Wagon and set of galaxies moving relative to the ground with constant horizontal ac-
celerations amT and AGT , respectively. Situation in which amT > AGT . (b) Forces acting on the test
body.

The equation of motion for the test body in this case is given by equation (21.4). The set of galaxies exert
an inertial force ~Fi on the test body. This inertial force points opposite the relative acceleration between
the test body and the set of galaxies. There is also the downward weight of the body, ~Fg = −mggẑ. Here
we are neglecting the small horizontal component exerted by the Earth on the test body due to the relative
acceleration between the test body and the Earth. There is also the tension ~T exerted by the stretched
string, pointing along its length. These three forces are represented in figure 21.15 (b). The horizontal and
vertical components of this equation of motion can be written as, respectively:

T sin θ = Φ∞mg(amT − AGT ) , (21.28)

and

T cos θ = Fg . (21.29)

Diving equation (21.28) by equation (21.29), utilizing that Fg = mgg and equation (18.29), we obtain:

tan θ =
Φ∞mg(amT −AGT )

Fg
= Φ∞

(amT −AGT )

g
=

4πGρgoξ

3c2α2

(amT −AGT )

g
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g
. (21.30)

Squaring equations (21.28) and (21.29) yields the tension T of the string as given by:

T =
√

Φ2
∞
m2

g(amT −AGT )2 + F 2
g = mg

√

Φ2
∞
(amT −AGT )2 + g2 . (21.31)

The most important aspect to take notice in equations (21.30) and (21.31) is that, according to relational
mechanics, the tangent of the angle θ of inclination of the string to the vertical, and the tension T of the
string, depend only on the relative acceleration amT − AGT between the test body and the set of galaxies.
The value of each one of these accelerations relative to the ground or relative to the observer, namely, amT

or AGT , are irrelevant. The only thing which matters as regards the value of tan θ and the value of the
tension T , is the relative acceleration amT −AGT . Remember that we neglected in this calculation the small
effects arising due to the acceleration of the test body relative to the ground or relative to the set of fixed
stars belonging to our galaxy. In particular, whenever amT − AGT = 0, the string will be vertical, with the
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tension in the string being given simply by the weight of the test body, T = Fg = mgg. These two effects
will happen even when amT 6= 0, provided amT = AGT .

A possible experimental test of these ideas can be found in Subsection 24.5.4.

21.5 Body being Accelerated Relative to the Ground while Being

Suspended by a Spring

We can consider the case of a test body suspended by a spring, while being accelerated relative to the ground,
in analogy to what was done in Sections 7.6, 20.2 and 21.4. Once more we neglect the gravitational mass
of the spring compared with the gravitational mass of the test body connected to it. Essentially we replace
the ideal inextensible string of Section 21.4 by a spring of elastic constant k and relaxed length ℓo. When
the wagon moves with a constant horizontal acceleration ~aT relative to the ground, it is observed that the
spring becomes inclined at an angle θ to the vertical, having a stretched length ℓ, figure 21.16 (a).
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Figure 21.16: (a) Spring accelerated relative to the ground, inclined by an angle θ to the vertical. (b) Forces
acting on the test body.

All results of Section 21.4 remain valid here. The only difference is that the tension T in the spring can
be visualized by the change of its length through T = k(ℓ− ℓo).

There are some important aspects to take notice when comparing relational mechanics with classical
mechanics. According to relational mechanics, the angle θ of inclination of the spring to the vertical and its
stretch ℓ− ℓo are related to the gravitational interaction between the test body connected to the spring and
the set of galaxies. The inertial force Fi exerted by the set of galaxies on the test body is transmitted to the
spring, inclining it to the vertical and stretching it. This inertial force depends on the average volume density
ρgo of gravitational mass in the universe, and also on the relative acceleration between the test body and
the set of galaxies, amT −AGT . In particular, the spring will remain vertical with its tension equilibrated by
the weight of the test body, T = k(ℓ− ℓo) = Fg = mgg, not only when ρgo → 0, but also when amT = AGT .

21.6 Vessel Accelerated Relative to the Ground, Partially Filled

with Liquid

We consider now from the point of view of relational mechanics the situation discussed in Sections 5.3, 6.3
and 7.7. A vessel is partially filled with an incompressible liquid. The free surface of the liquid is observed to
remain horizontal not only when the vessel is at rest in the ground, but also when it is moving horizontally
with a constant velocity relative to the ground, figure 21.17. In this figure we are representing the set of
galaxies at rest relative to the ground to simplify the analysis, but the same effects also happen when the
set of galaxies moves with a constant velocity relative to the ground.

Consider an infinitesimal element of fluid having gravitational mass dmg and volume dV . The forces
acting on this element are the downward weight d~Fg exerted by the Earth and the upward buoyant force
d~Fb = −(∇p)dV exerted by the surrounding fluid due to the gradient of pressure in the liquid. In the
approximation being considered here there is no acceleration of the liquid in the universal frame U , ~amT =
~amU = ~0. The mathematical analysis of this problem is the same given by newtonian mechanics. The
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Figure 21.17: Vessel at rest or moving horizontally with a constant velocity relative to the ground. The
vessel is partially filled with an incompressible liquid.

pressure p(z) varies linearly with the depth of the liquid according to equation (5.11), where po represents
the atmospheric pressure at the free surface of the liquid and g represents the gravitational force per unit
mass exerted by the Earth on an element of the liquid. The isobaric surfaces are horizontal planes parallel
to the free surface of the liquid.

However, when the vessel moves with a constant horizontal acceleration ~aT relative to the ground, the
free surface of the fluid is observed to be inclined by an angle α to the horizontal, figure 21.18 (a).
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Figure 21.18: (a) Vessel with a constant horizontal acceleration aT relative to the ground, partially filled
with an incompressible liquid. (b) Weight force dFg, buoyant force dFb and inertial force dFi acting on an
element of the liquid.

The forces acting on an element of liquid having gravitational mass dmg are shown in figure 21.18 (b).
There are two components of the gravitational force exerted by the Earth on this element of fluid. The most
important one is the downward weight d~Fg = −dmggẑ. The second component is horizontal, coming from
Weber’s gravitational force when there is an acceleration between the liquid and the ground. In the analysis
presented here we will neglect this horizontal component when compared with the vertical component given
by the weight of this element of liquid. Beyond the force exerted by the Earth, there are two other forces
being exerted on this element of liquid. One is the buoyant force exerted by the fluid around it, being due to
the gradient of pressure in the liquid, namely, d~Fb = −(∇p)dV . The other force is the inertial force exerted
by the set of galaxies due to the acceleration ~amU = ~amT of the liquid relative to the galaxies. This inertial
force is given by d~Fi = −Φ∞dmg~amU = −Φ∞dmg~amT . By the principle of dynamical equilibrium, equation
(21.2), the equation of motion for an infinitesimal element of liquid is given by:

−dmggẑ − (∇p)dV − Φ∞dmg~amT = ~0 . (21.32)

Following the procedure of Section 7.7 we obtain the tangent of the angle α of inclination of the liquid to
the horizontal and the pressure p(x, y, z) inside the liquid as given by (with h and ℓ represented in figure
21.18):

tanα = Φ∞

amT

g
=

4πGρgoξ

3c2α2

amT

g
=

amT

g
=

h

ℓ
, (21.33)
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and

p(x, y, z) = −Φ∞ρgamTx− ρggz + po . (21.34)

That is, the isobaric surfaces are planes parallel to the plane of free surface of the liquid given by
z = −(tanα)x.

The free surface of the fluid becomes inclined to the horizontal when the liquid is accelerated relative
to the set of distant galaxies. According to relational mechanics, these galaxies exert gravitationally the
horizontal inertial force d~Fi acting on any element of the fluid, inclining its free surface to the horizontal.

21.6.1 What is the Origin of the Force which is Inclining the Liquid to the

Horizontal?

According to relational mechanics, the horizontal force d~Fi indicated in figure 21.18 (b) is the inertial force
exerted by the set of galaxies and acting on the element of fluid. It is given by d~Fi = −Φ∞dmg~amU . In
the approximation being considered here we have ~amU = ~amT . The inertial force will be exerted whenever
there is an acceleration of the fluid relative to the frame U of distant galaxies. This force has a gravitational
origin, coming from the component of Weber’s force which depends on the relative acceleration r̈ between the
interacting bodies. As this force has a gravitational origin, the element of mass dmg of the fluid appearing
in the force d~Fi represents an element of gravitational mass.

The influence of the gravitational mass of the set of galaxies is indicated in equation (21.33) through
the average volume density ρgo of gravitational mass in the universe. If it were possible to increase ρgo,
while amT /g remained constant, then the angle α would increase. That is, we would increase the angle
of inclination of the fluid to the horizontal. A possible experimental test of these ideas can be found in
Subsection 24.5.4.

In general relativity, on the other hand, as discussed in Subsections 16.3.3 and 16.5.5, the inclination of
the water in a linearly accelerated bucket is not due to its gravitational interaction with the distant matter
in the cosmos.2

21.6.2 What Would Be the Inclination of the Fluid to the Horizontal If All

Other Astronomical Bodies Were Annihilated?

According to equation (21.33), the angle α of inclination of the fluid to the horizontal would go to zero if it
were possible to annihilate the set of distant galaxies by making ρgo → 0, even if the liquid maintained the
same acceleration amT relative to the ground.

As a matter of fact, this prediction of relational mechanics is only an approximation. In order to arrive
at equation (21.33) we neglected the small horizontal component of the gravitational force exerted by the
Earth and acting on any element of liquid when there is a relative acceleration of the element relative to
the ground. If this small component were included in the calculations, then we would conclude that a small
inclination of the fluid relative to the horizontal would remain even when ρgo → 0.

21.6.3 Forces in the Frame of Reference in which the Liquid Is at Rest

Figure 21.19 (a) presents this same situation in a reference frame A fixed in the vessel. The vessel and the
liquid are at rest in this frame A, while the Earth and the set of galaxies are seen with the same common
horizontal acceleration ~aEA = ~AGA pointing to the left. Figure 21.19 (b) presents the forces acting on an
element of gravitational mass of the liquid according to relational mechanics.

The equation of motion for an element of the fluid is given by equation (21.4) with ~akA = ~0. There is
the downward force of weight d~Fg exerted by the Earth, the buoyant force d~Fb exerted by the surrounding
liquid, and the inertial force d~Fi exerted by the set of galaxies. As the galaxies are accelerated to the left,
they exert an inertial force d~Fi = Φ∞dmg

~AGA pointing to the left. This inertial force acting on all elements
of the fluid incline the free surface of the fluid to the horizontal.

2[Rei73], [MHT84], [Mas88], [GE89], [PFH05] and [Ess13].
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Figure 21.19: Frame of reference A connected to the wagon. The vessel and the liquid are seen at rest, while
the Earth and the set of galaxies have the same constant horizontal acceleration to the left, ~aEA = ~AGA. (a)
Liquid inclined by an angle α to the horizontal. (b) Forces acting on an element of liquid.

21.6.4 What Would Be the Inclination of the Liquid to the Horizontal If it

Were Possible to Accelerate the Galaxies Relative to the Ground?

In this Subsection we consider the terrestrial frame T as being the reference relative to which the accelerations
should be considered. Figure 21.20 presents an hypothetical situation in which the liquid has an horizontal
acceleration ~amT , while the set of galaxies has an horizontal acceleration ~AGT relative to the ground.
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Figure 21.20: Vessel and liquid moving with a constant horizontal acceleration ~amT relative to the ground,
while the set of galaxies moves with a constant horizontal acceleration ~AGT , supposing amT > AGT .

The equation of motion is given by equation (21.4). By performing calculations similar to those presented
in Section 21.6 it is obtained that the tangent of the angle α of inclination of the liquid to the horizontal is
given by:

tanα = Φ∞

amT −AGT

g
=

4πGρgoξ

3c2α2

amT −AGT

g
=

amT −AGT

g
=

h

ℓ
. (21.35)

The important aspect to observe in this equation is that the angle α of inclination of the liquid to
the horizontal depends on the relative acceleration amT − AGT between the fluid and the set of galaxies.
Therefore, if amT −AGT = 0, then α → 0, even when amT 6= 0.

This angle of inclination is controlled not only by the relative acceleration between the fluid and the set of
galaxies, but also by the average volume density ρgo of gravitational mass in the universe. If it were possible
to change the value of ρgo, then it would be possible to change the angle of inclination of the liquid to the
horizontal, even maintained unchanged the relative acceleration between the liquid and the set of galaxies,
while maintaining unchanged as well the gravitational mass of the Earth.

A possible experimental test of these ideas can be found in Subsection 24.5.4.
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21.7 Distinction between Newtonian Mechanics, Einstein’s General

Theory of Relativity, and Relational Mechanics

Figure 21.21 summarizes a prediction of relational mechanics which is different from the predictions of
newtonian mechanics and of Einstein’s general theory of relativity. We consider here bodies moving relative
to the ground supposing once more that conditions (18.67) and (21.1) are satisfied.
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Figure 21.21: (a) Bodies and galaxies without acceleration relative to the ground, ~amT = ~AGT = ~0. (b)
Observed effects when the test bodies are accelerated relative to the ground, ~amT = ~a and ~AGT = ~0. (c)
Prediction of newtonian mechanics and of Einstein’s general theory of relativity of what would happen to
the test bodies if it were possible to accelerate the set of galaxies relative to the ground, ~AGT = −~a, while
the bodies remained at rest in the ground, ~amT = ~0. (d) Prediction of relational mechanics for this last
situation.

Figure 21.21 (a) presents a wagon at rest in the ground. The test bodies inside the wagon are also at rest
in the ground. These test bodies are the two gravitational masses mg connected to the horizontal springs, a
liquid inside a vessel and a body suspended by a string. The identical springs have the same elastic constant
k and have their relaxed length ℓo when they are supported by the frictionless floor of the wagon. A test
body of gravitational mass mg is connected to one extremity of each one of these springs, while the other
extremity of each spring is connected to the wall of the wagon. The vessel is partially filled with an ideal
incompressible liquid. The free surface of the liquid remains horizontal when the vessel is at rest or moving
with a constant horizontal velocity relative to the ground. The string connected to the ceiling of the wagon
has a test body of gravitational mass mg connected to its lower extremity. This ideal string has a constant
length ℓ. These test bodies have no acceleration relative to the ground, ~amT = ~0. The set of galaxies around
the Earth is also represented in this figure. It is considered that they have no acceleration relative to the
ground, ~AGT = ~0. They are represented at rest relative to the ground in order to simplify the analysis of
the problem. Nothing would change if they were moving together with a constant velocity relative to the
ground.

Figure 21.21 (b) indicates what happens with these test bodies when the wagon moves with a constant
horizontal acceleration ~amT = ~a relative to the ground, pointing to the right in this figure. This direction to
the right might be, for instance, pointing from a specific house to a cylinder fixed in the ground. The value
of this acceleration might be, for instance, a = |~a| = 20 m/s2. We are supposing that the set of galaxies
remains without a common acceleration relative to the ground, that is, ~AGT = ~0. The relative acceleration
between the test bodies and the set of galaxies is given by ~amT − ~AGT = ~a−~0 = ~a. The observed effects are
as follows: The compressed left spring, the stretched right spring, the fluid inclined to the horizontal and
the string inclined to the vertical.

Figure 21.21 (c) represents what would happen to these bodies, according to newtonian mechanics and
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to Einstein’s general theory of relativity, in an hypothetical situation in which the test bodies remained at
rest relative to the ground, ~amT = ~0, while the set of galaxies moved to the left relative to the ground with
a constant acceleration ~AGT = −~a. This direction to the left might be, for instance, pointing from the
cylinder fixed in the ground to a specific house. Once more we would have a = |~a| = 20 m/s2. The relative
acceleration between the test bodies and the set of galaxies is given by ~amT − ~AGT = ~0− (−~a) = ~a. This is
the same relative acceleration represented in figure 21.21 (b). Although the relative acceleration between the
test bodies and the set of galaxies is the same in situations (b) and (c) of figure 21.21, the dynamical effects
are not the same. According to classical mechanics and general relativity, the set of galaxies accelerated
relative to the ground exerts no net force on any test body located in the Earth. Therefore, the horizontal
springs should maintain their relaxed lengths ℓo, the free surface of the liquid should remain horizontal and
the string connected to the ceiling should remain vertical.

Figure 21.21 (d) represents what would happen to these bodies, according to relational mechanics, in this
thought experiment in which the test bodies remained at rest relative to the ground, ~amT = ~0, while the set
of galaxies moved to the left with a common constant acceleration ~AGT = −~a relative to the ground. The
relative acceleration between the test bodies and the set of galaxies is given by ~amT − ~AGT = ~0− (−~a) = ~a.
It has the same value as the relative acceleration between the test bodies and the set of galaxies represented
in figure 21.21 (b). Therefore, according to relational mechanics the dynamic effects in case (d) should be the
same as the dynamic effects in case (b). The set of galaxies exerts inertial forces on the test bodies located
inside the wagon in situation (d) which have the same direction and intensity as the inertial forces exerted
by the galaxies on the test bodies of situation (b). These are forces of gravitational origin depending only
on the relative acceleration ~amT − ~AGT between each test body and the set of distant galaxies. Therefore,
relational mechanics predicts that the left spring should be compressed, the right spring should be stretched,
the free surface of the fluid should be inclined to the horizontal, while the string connected to the ceiling
should be inclined to the vertical.

It is not possible to control the acceleration of the set of galaxies relative to the ground. Therefore, it
is not possible to test these predictions of relational mechanics. In any event, the ideas expressed in this
Subsection suggest an experimental test which might be performed in the laboratory, as will be seen in
Subsection 24.5.4.

Another distinction between relational mechanics on the one hand, and newtonian mechanics and Ein-
stein’s general theory of relativity on the other hand, is summarized in figure 21.22.

a

a a

(a) (b)

(c) (d)

Figure 21.22: (a) Bodies and galaxies without acceleration relative to the ground, ~amT = ~AGT = ~0. (b)
Observed effects when the test bodies are accelerated relative to the ground, ~amT = ~a and ~AGT = ~0. (c)
Prediction of newtonian mechanics and of Einstein’s general theory of relativity of what would happen to
the test bodies if it were possible to annihilate the set of galaxies and stars around the Earth. (d) Prediction
of relational mechanics for this last situation.
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Figure 21.22 (a) and (b) represent the same situation of figure 21.21 (a) and (b). The acceleration of the
test bodies relative to the ground in figure 21.22 might be, for instance, a = |~a| = 20 m/s2. We now consider
a thought experiment in which all galaxies and stars around the Earth were annihilated. Would there be
any difference in the behavior of test bodies accelerated relative to the ground compared with the situation
of figure 21.22 (b)?

According to newtonian mechanics and to Einstein’s general theory of relativity, nothing would change
in this case. The set of stars and galaxies did not make any net force on the test bodies of figure 21.22 (b).
Therefore, these stars and galaxies can disappear without affecting the behavior of the test bodies. Therefore,
if the wagon of figure 21.22 (c) is moving horizontally relative to the ground with the same acceleration of
20 m/s2 of figure 21.22 (b), the same effects should appear (springs compressed and stretched, pendulum
inclined to the vertical, liquid inclined to the horizontal etc.). The bodies of figure 21.22 (c) should behave
in the same way as the bodies of figure 21.22 (b).

According to relational mechanics, on the other hand, there will be no bodies exerting the inertial forces
on the test bodies. Therefore, all inertial effects should disappear in this thought experiment. Therefore, the
springs should not be compressed nor stretched, the pendulum should remain vertical and the free surface of
water should remain horizontal. Therefore the bodies of figure 21.22 (d) should behave as the bodies of figure
21.22 (a). There should be only small effects distinguishing these two situations due to the accelerations of
the test bodies relative to the ground, as there are no such accelerations in case (a), while these accelerations
are different from zero in case (d). But in our calculations we did not include these small effects when
compared with the inertial effects due to the gravitational interactions of the test bodies with the set of
galaxies. Therefore, when ρgo → 0, all inertial effects should disappear.
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Chapter 22

Oscillatory Motions

In this Chapter we consider test bodies moving relative to the ground in such a way that conditions (18.67)
and (21.1) are satisfied. That is, the acceleration of the test body relative to the frame U of distant galaxies
has essentially the same value as the acceleration of the test body relative to the ground. In this case the
equation of motion of relational mechanics reduces to equation (21.2).

22.1 Spring

We first consider a test body of gravitational mass mg connected to a spring and oscillating horizontally over
a frictionless surface. The downward weight of the body is balanced by the upward normal force exerted by
the frictionless surface, figure 22.1.

k
mg

0 x
x

ℓo

ℓ

Figure 22.1: Body connected to an extremity of a horizontal spring while the other extremity is connected
to a fixed support in the ground.

The spring of elastic constant k has a relaxed length ℓo, while ℓ represents its length when compressed
or stretched. Let x represent a horizontal axis with origin x = 0 at the position of the body when the spring
is relaxed. Let x ≡ ℓ− ℓo represent the variation in length of the spring, with x > 0 indicating the situation
when the spring is stretched, while x < 0 indicates the situation when it is compressed. The forces acting on
the test body are the elastic force ~Fe = −k(ℓ− ℓo)x̂ = −kxx̂ exerted by the compressed or stretched spring,
and the inertial force ~Fi = −Φ∞mg~amU = −Φ∞mg~amT exerted by the set of galaxies when the test body is
accelerated in the universal frame U . In this case the equation of motion (21.2) can be written as:

− kx− Φ∞mgamT = 0 . (22.1)

As we are considering only motion along the x axis, we can write amT = ẍ. The solution of this equation
is then given by:

x(t) = A cos(ωt+ θo) . (22.2)

Here A represents the amplitude of oscillation (specified by the initial conditions), θo the phase of oscillation
(also specified by the initial conditions) and ω is the angular frequency of oscillation. Utilizing equation
(18.29) this angular frequency is given by:

417
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ω =

√

k

Φ∞mg
=

√

3c2α2

4πGρgoξ

√

k

mg
=

√

k

mg
. (22.3)

This result shows that for springs oscillating horizontally, the frequency of vibration is inversely propor-
tional to the square root of the gravitational mass of the test body, as observed experimentally.

Comparison of equation (22.3) with equation (8.4) of newtonian mechanics shows that the main difference
between these two results is that in relational mechanics we have Φ∞mg replacing the inertial mass mi.

According to equation (17.45), the constant Φ∞ is directly proportional to the average volume density
of gravitational mass in the universe, ρgo. Therefore, if it were possible to double the value of ρgo, without
changing the spring, the Earth and the test body, then the frequency of oscillation of the spring would
decrease by

√
2 compared with the normal frequency of oscillation of this spring connected to this test body.

Therefore, doubling ρgo in relational mechanics would have the same effect as doubling the inertial mass of
the test body in newtonian mechanics. In relational mechanics the frequency of oscillation of the spring is
controlled by the average volume density of gravitational mass in the universe.

A possible experimental test of these ideas is discussed in Subsection 24.5.2.

22.2 Simple Pendulum

We now consider a simple pendulum oscillating at the surface of the Earth, at the Equator. We suppose
an ideal inextensible string of length ℓ and a polar coordinate system (ℓ, θ) in which θ represents the angle
of inclination of the string to the vertical. A test body of gravitational mass mg is connected to the lower
extremity of the string, while its upper extremity is connected to a fixed support relative to the ground,
figure 22.2 (a).
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Figure 22.2: (a) Simple pendulum of length ℓ inclined by an angle θ to the vertical, with a test body of
gravitational mass mg in its lower extremity. (b) Forces acting on mg according to relational mechanics:
Weight ~Fg, tension ~T in the string, and inertial force ~Fi exerted gravitationally by the set of galaxies.

Neglecting air resistance, the forces acting on the test body of gravitational mass mg are the downward
weight ~Fg, the tension ~T in the string acting along its length, and the gravitational force exerted by the
set of galaxies. This last force is being called here the inertial force acting on the test body, given by
~Fi = −Φ∞mg~amT . These three forces are represented in figure 22.2 (b).

The motion is described by equation (21.2):

~T +mg~g − Φ∞mg~amT = ~0 . (22.4)

Utilizing that the length ℓ of the string is constant, the acceleration of the test body relative to the
ground can be expressed in polar coordinates as follows:

~amT = −ℓθ̇2ℓ̂+ ℓθ̈θ̂ . (22.5)

Here ℓ̂ represents an unit vector pointing along the length of the string in each instant, while θ̂ represents
an unit vector pointing tangentially along the azimuthal direction θ in each instant, figure 22.3.

The tension in the string is given by ~T = −|~T |ℓ̂ = −T ℓ̂, where T ≡ |~T | is the magnitude of the tension.
The weight of the test body is given by ~Fg = −mggẑ = mgg(cos θℓ̂ − sin θθ̂), where we have chosen the z

axis pointing vertically upwards, such that ẑ = − cos θℓ̂+ sin θθ̂, figure 22.3. Utilizing these values of ~T and
~Fg, together with equations (22.4) and (22.5), make the equation of motion assume the following form:
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Figure 22.3: Unit vector ℓ̂ along the length of the string and unit azimuthal vector θ̂ pointing tangentially
along the azimuthal direction θ. It is also represented the unit vector ẑ pointing vertically upwards.

−T ℓ̂+mgg(cos θℓ̂ − sin θθ̂) + Φ∞mg(ℓθ̇
2ℓ̂− ℓθ̈θ̂) = ~0 . (22.6)

Equation (22.6) can be written in terms of its ℓ̂ and θ̂ components, namely:

−T +mgg cos θ +Φ∞mgℓθ̇
2 = 0 , (22.7)

and

mgg sin θ +Φ∞mg(ℓθ̈) = 0 . (22.8)

Equation (22.8) shows that even without further approximations the value of the angle θ of oscillation
as a function of time does not depend on mg, as the gravitational mass of the test body cancels out in this
equation. The tension T , on the other hand, depends on the value of mg according to equation (22.7).

In the approximation of small oscillations (θ ≪ 1 rad, such that sin θ ≈ θ), equation (22.8) and its
solution can be written as, respectively:

θ̈ +
g

Φ∞ℓ
θ = 0 , (22.9)

and

θ = A cos(ωt+B) , (22.10)

where A and B are constants depending on the initial conditions, while ω represents the angular frequency
of oscillation. Utilizing equations (18.29), (22.9) and (22.10), this angular frequency can be written as:
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. (22.11)

In this equation T represents the period for a complete round trip oscillation of the pendulum. Although
we are utilizing the same symbol T to represent the tension in the string and the period of oscillation of the
pendulum, it should be emphasized that these are distinct concepts which have different dimensions or units
of measure (period measured in seconds, s, and tension measured in Newtons, N).

Newton obtained experimentally that bodies of different chemical compositions, oscillating at the same
location of the Earth when connected to pendulums of the same length, have the same period. Mathemati-
cally this fact is represented by the angular frequency of oscillation ω of equation (22.11) being independent
of the gravitational mass mg of the test body. This fact is explained in relational mechanics remembering
that the gravitational mass mg appears not only in the weight of the body, but also in the inertial force
acting on the test body and being exerted gravitationally by the set of distant galaxies, equation (22.8).

By choosing as initial conditions that the test body is released from rest, θ(t = 0) = θo and θ̇(t = 0) = 0,
then we obtain A = θo and B = 0. Therefore, the solution (22.10) can then be written as:

θ = θo cos(ωt) . (22.12)

In particular, when t = T/4 = π/(2ω), we obtain θ = 0. At this moment the tangential velocity of the
test body relative to the ground has its maximum value given by vθ = ℓθ̇ = −ℓθoω.

The tension T of the string is given by equation (22.7):

T = mgg cos θ +Φ∞mgℓθ̇
2 . (22.13)
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At t = 0 the initial value of the tension is given by To = mgg cos θo, as θ̇o = 0. This is the minimum
value of the tension in the string. At t = π/(2ω), when θ = 0 and θ̇ = −θoω, the tension in the string has
its maximum value given by Tmax = mgg +Φ∞mgℓθ

2
oω

2.
With these initial conditions the inertial force is given by:

~Fi = −Φ∞mg~amT = Φ∞mg(ℓθ̇
2ℓ̂− ℓθ̈θ̂) = Φ∞mgℓθoω

2
[

θo sin
2(ωt)ℓ̂+ cos(ωt)θ̂

]

. (22.14)

At t = 0, when θ = θo and θ̇ = 0, soon after the release of the pendulum, the initial inertial force
is orthogonal to the string, ~F o

i = Φ∞mgℓθoω
2θ̂. At this initial moment the inertial force has its smaller

magnitude. On the other hand, at t = π/(2ω), when θ = 0 and θ̇ = −θoω, the inertial force has its greater
magnitude, pointing vertically downwards: ~Fi = Φ∞mgℓθ

2
oω

2ℓ̂.

22.2.1 Inertial Force Acting on the Pendulum

It is important to consider in detail the forces acting on the simple pendulum.1 Our analysis here is based
on relational mechanics. All velocities and accelerations mentioned here should be considered relative to
the ground. We consider three typical moments in the first fall of the pendulum after being released from
rest and before beginning to rise again in the other side. The first moment is soon after the release of the
pendulum at the initial angle θo, when to = 0. It has no initial velocity, such that θ̇o = 0 and vo = 0. But
even at this initial moment the test body has an initial acceleration which is different from zero, ao 6= 0,
as indicated in figure 22.4 (a). The instant t1 corresponds to an intermediary angle θ1 along the fall of the
pendulum such that 0 < θ1 < θo. At this instant t1 the tangential velocity of the pendulum has a finite value.
At this moment the test body has a tangential acceleration which increases the magnitude of the tangential
velocity along the circular path. It has also a centripetal acceleration related with the change in its direction
of motion. The instant t2 = T/4 = π/(2ω) corresponds to the lower point of the trajectory, θ2 = 0. At this
moment the body has a tangential velocity with its maximum value, θ̇2 = −θoω and v2 = −ℓθoω. There is
no tangential acceleration at this moment, θ̈2 = 0. The centripetal acceleration, on the other hand, has its
maximum value pointing vertically upwards, ac = ℓθ̇22 = ℓθ2oω

2, figure 22.4 (a).
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Figure 22.4: (a) Velocity v and acceleration a of the test body relative to the ground in three moments: At
the initial instant to = 0 soon after being released from rest with θ = θo and θ̇0 = 0, at an intermediary
moment t1 during its fall and at the moment t2 = T/4 = π/(2ω) when the test body reaches the lowest point
with θ2 = 0 and θ̇2 = −θoω. (b) Weight Fg, tension T in the string and inertial force Fi acting on the test
body at these three moments. (c) Forces acting on both extremities of the string at these three moments.

The forces acting on the test body of gravitational mass mg connected to the string at these three moments
are represented in figure 22.4 (b). The downward weight ~Fg is exerted by the Earth, having always the same
value and direction. The inertial force ~Fi is exerted gravitationally by the set of distant galaxies. It points
oppositely to the acceleration ~amU = ~amT of the test body relative to the universal frame U of galaxies. In
the approximation being considered here, equation (21.1), this acceleration coincides with the acceleration

1[GG06, pp. 57-63].
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of the test body relative to the ground. At the initial moment the inertial force is orthogonal to the string,
pointing tangentially along increasing θ. At the lowest point of the trajectory, when t2 = T/4 = π/(2ω),
θ2 = 0 and θ̇2 = −θoω, the inertial force has its greatest magnitude, pointing vertically downwards like the
weight of the body. Beyond these two forces, there is a third force exerted on the test body, namely, the
tension ~T exerted by the stretched string. This force of traction is a reaction of the string to the net force
acting on it along its length, as the upper extremity of the string is connected to the ceiling and cannot
move. We then add the component of the weight along the direction of the string with the component of
the inertial force along the direction of the string. The reaction force exerted by the stretched string on the
test body has the value of this sum, but acts in the opposite direction. That is, the force exerted by the
stretched string on the test body also points along the direction of the string, but pointing from the test
body towards the fixed upper extremity of the string.

Figure 22.4 (c) presents the net force acting on the lower extremity of the string. The magnitude of this
net force is equal to the traction T of the string. It is also shown the contact force Fc exerted by the ceiling
on the upper extremity of the string. The string is stretched by these two forces of the same magnitude, but
opposite senses, acting at the two extremities of the string. At the initial moment, soon after the release of
the test body from rest, the traction in the string is given only by the weight component along this direction,
namely, To = Fg cos θo. At this initial moment the traction has its lowest value. As the body increases
its acceleration relative to the set of galaxies, these galaxies exert a gravitational force on the test body
pointing oppositely to this acceleration. The component of this force acting along the string is transmitted
to the string, as the test body is connected to the string and the upper extremity of the string is fixed at the
ceiling. At the intermediary moment t1 the tension T1 in the string is given by the sum of Fg cos θ1 with the
component of the inertial force acting along the string, that is, T1 = Fg cos θ1 + Φ∞mgℓθ̇

2
1 . At the lowest

point of the trajectory the centripetal acceleration points upwards along the string. Therefore the inertial
force exerted by the galaxies points vertically downwards, like the weight of the body. At this moment the
tension in the string has its maximum value, T2 = Fg +Φ∞mgℓθ̇

2
2. The sum of the weight of the body with

the inertial force acting on it can be so great as to break the string.
This inertial force is exerted by the galaxies, depending on the average volume density of gravitational

mass in the universe, ρgo. If it were possible to increase only ρgo, without affecting the length of the
pendulum or the gravitational mass of the Earth, then the angular frequency of oscillation of the pendulum
would decrease its magnitude. It is the gravitational force exerted by the galaxies on the pendulum which
controls its acceleration in the universal frame U .

22.3 Electrified Pendulum Oscillating over a Magnet

We now consider the electrified pendulum oscillating over a magnet from the point of view of relational
mechanics, figure 22.5.
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Figure 22.5: Electrified simple pendulum oscillating over a large magnet.

This situation was studied in Section 8.4 from the point of view of classical mechanics. The string has
a constant length ℓ, supporting a test body of gravitational mass mg and electric charge q. It suffers small
oscillations beginning from an angle θo ≪ 1 rad to the vertical direction z. We consider the pendulum
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oscillating at the terrestrial Equator, where there is no precession like that of a Foucault’s pendulum. We
neglect terrestrial magnetism compared with the magnetism of the magnet close to the pendulum.

The magnet will be modeled as an insulating spherical shell of radius R electrified with a total charge
Q uniformly spread over the surface S = 4πR2 of the shell. The shell and the charge spread over it rotate
relative to the terrestrial frame T , around the vertical z axis, with a constant angular velocity given by
~ΩST = ΩST ẑ. The pendulum is considered inside this spinning spherical shell, as represented in figure 22.6.

x

z

Q

mg

ℓ

Ω ST

Figure 22.6: Spherical shell of radius R and charge Q spinning relative to the terrestrial frame T with a
constant angular velocity ΩST around the vertical axis z. The electrified pendulum is oscillating inside this
shell.

There are four forces acting on the test body of gravitational mass mg and charge q: The downward weight
~Fg, the tension ~T along the stretched string, the inertial force ~Fi = −Φ∞mg~amT exerted gravitationally by the
set of galaxies and the force ~F exerted by the electrified spinning shell. According to Weber’s electrodynamics,
this force ~F exerted by the electrified spinning shell is given by equation (8.56). As the shell is spinning with
a constant angular velocity relative to the ground, d~ΩST /dt = ~0. The motion is specified by equation (21.2).
Writing the acceleration of the test body relative to the ground as ~akT = ~amT we are then led to:

~Fg + ~T + ~F + ~Fi = ~Fg + ~T +
µoqQ

12πR

[

~amT + ~ΩST × (~ΩST × ~r) + 2~vmT × ~ΩST

]

− Φ∞mg~amT = ~0 . (22.15)

Here ~r represents the position vector of the test body relative to the center of the shell and ~vmT its velocity
relative to the ground.

Supposing |(µoqQ)/(12πR)| ≪ mg, we can neglect the first term inside the square brackets of equation
(22.15) in comparison with the inertial force ~Fi. We are interested in calculating the precession of the plane
of oscillation of the pendulum relative to the ground. Therefore, we here suppose that the centrifugal term,
proportional to ~ΩST × (~ΩST ×~r), can also be neglected, as this term does not contribute to the precession of
the plane of oscillation of the pendulum. With these assumptions equation (22.15) simplifies to the following
form:

~Fg + ~T +
µoqQ

6πR
~vmT × ~ΩST − Φ∞mg~amT = ~0 . (22.16)

This equation has the same form as equations (8.38) and (8.58). It then leads to the same final result for
the angular velocity of precession of the plane of oscillation of the pendulum relative to the terrestrial frame
T , ΩpT , as given by equations (8.53) and (8.59), namely:

ΩpT = − µoqQ

12πΦ∞mgR
ΩST . (22.17)

From this equation we conclude that the angular velocity of precession of the plane of oscillation of the
pendulum relative to the ground, ΩpT , is proportional to the angular velocity of the spherical shell relative
to the ground, ΩST . The angular velocity ΩpT is also proportional to the amount of charge Q spread over
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the spherical shell. The influence of the galaxies appears in the term Φ∞ and also in the angular velocities,
as in the approximation being considered here we have ΩpT = ΩpU and ΩST = ΩSU . That is, the angular
velocities relative to the ground are essentially equal to the angular velocities relative to the universal frame
U of the set of galaxies.

According to equation (22.17), when we stop the rotation of the spherical shell relative to the ground,
ΩST → 0, the precession of the plane of oscillation of the pendulum relative to the ground also goes to zero,
ΩpT → 0. This angular velocity of precession ΩpT also goes to zero when the amount of charges spread over
the spherical shell goes to zero, that is, when Q → 0. These two suppositions, ΩST → 0 or Q → 0, are
equivalent to a removal or annihilation of the magnet in figure 22.5.

22.4 Foucault’s Pendulum

In this problem only the Coriolis’s force is relevant for the precession of the plane of oscillation of the pendu-
lum relative to the ground. The mathematical treatment of this situation in relational mechanics is analogous
to the treatment of newtonian mechanics, yielding similar formulas, but with another interpretation. The
main differences are the appearance of Φ∞mg replacing the inertial mass mi, and the appearance of the
relative rotation between the Earth and the set of distant galaxies, instead of the rotation of the Earth
relative to absolute space.

What should be emphasized here once more, is that relational mechanics offers a physical explanation
for the Coriolis’s force. This force is then seen as a real force of gravitational origin. It arises whenever there
is a relative rotation between the Earth and the set of distant galaxies. It is a force exerted gravitationally
by the set of galaxies, acting on the test body moving relative to the universal frame U .

Figure 22.7 presents the Earth centered at O and spinning around the North-South axis of the Earth,
relative to the universal frame U in which the galaxies are seen at rest, with a constant angular velocity
~ωEU = ωEU ẑ. The Earth spins once a day around its North-South axis, relative to the frame of distant
galaxies. The pendulum of fixed length ℓ is located at latitude α (that is, making an angle θ = π/2−α with
the North-South axis of the Earth). The weight of the small test body connected to the string is given by
−mggr̂, pointing towards the center of the Earth.
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Figure 22.7: Foucault’s pendulum in the universal frame U of distant galaxies. The Earth rotates in this
frame around its North-South axis with a constant angular velocity ~ωEU = ωEU ẑ.

We will consider this problem in the terrestrial frame T fixed in the ground, figure 22.8. In this terrestrial
frame the set of galaxies rotates once a day around the North-South axis of the Earth, moving with a constant
angular velocity ~ΩGT = −~ωEU = −ωEU ẑ.

In the terrestrial frame of reference T the equation of motion of relational mechanics is given by equation
(19.10), namely:
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Figure 22.8: Foucault’s pendulum in the terrestrial frame of reference T . The Earth is at rest, while the set
of galaxies rotates once a day around the North-South axis of the Earth with a constant angular velocity
~ΩGT = −~ωEU = −ωEU ẑ.

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk

[

~akT + ~ΩGT × (~ΩGT × ~rkT ) + 2~vkT × ~ΩGT + ~rkT × d~ΩGT

dt

]

= ~0 . (22.18)

In this equation ~rkT = ~rmT represents the position vector of the test body of gravitational mass mgk = mg

relative to the center of the Earth, moving with velocity ~vkT = ~vmT and acceleration ~akT = ~amT relative to
the terrestrial frame T .

As we are in the terrestrial frame of reference, all linear and angular velocities, and also all linear and
angular accelerations, must be considered relative to the surface of the Earth. In this problem we can consider
that the set of galaxies rotates with a constant angular velocity around the Earth, such that d~ΩGT /dt = ~0.
We are interested here only in the precession of the plane of oscillation of the pendulum relative to the
ground. The centrifugal force given by −Φ∞mgk

~ΩGT × (~ΩGT ×~rkT ) has no effect upon the precession of the
plane of oscillation of the pendulum relative to the ground. Therefore, we will neglect this force here. The
equation of motion for the test body of gravitational mg can then be written as:

N
∑

p=1

p 6=k

~Fpk − 2Φ∞mgk~vkT × ~ΩGT = Φ∞mgk~akT . (22.19)

We introduce another coordinate system (x′, y′, z′) also stationary relative to the ground. The origin
O′ of this new coordinate system is chosen at the lowest point of oscillation of the pendulum, that is, at the
position in which the mass mg remains at rest relative to the ground when the pendulum is not oscillating.
We consider the z′ pointing vertically upwards at that location, that is, orthogonal to the surface of the
Earth in each point, figure 22.8.

The local forces acting on the test mass mgk = mg are its weight ~Fg = −mggẑ
′ and the tension ~T of

the stretched string pointing along its length. The equation of motion of relational mechanics can then be
written as:

~Fg + ~T − 2Φ∞mg~vkT × ~ΩGT = Φ∞mg~amT . (22.20)

This equation is analogous to equation (8.38) describing the motion of an electrified pendulum oscillating
over a magnet. The differences are the appearance of the Coriolis’s force −2Φ∞mgk~vkT × ~ΩGT replacing the
magnetic force q~v × ~B, and the appearance of Φ∞mg replacing the inertial mass mi.

Suppose that initially the motion of the pendulum is along the x′z′ plane, as in figure 22.8. We consider
now the influence of all three components of ~ΩGT on the motion of the test body, namely, ~ΩGT = Ωx′

GT x̂
′ +

Ωy′

GT ŷ
′ +Ωz′

GT ẑ
′.
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It is easy to observe that a possible component of ~ΩGT along the direction of the y′ axis, Ωy′

GT , will
only change the tension in the string in order to keep its length having a constant value. This component
Ωy′

GT will not change the plane of oscillation of the pendulum relative to the ground. After all, the force

−2Φ∞mg~vmT ×
(

Ωy′

GT ŷ
′

)

will be in this x′z′ plane.

Also the component of ~ΩGT along the x′ axis, Ωx′

GT , will not change the plane of oscillation of the
pendulum relative to the ground. This fact can be concluded by the following argument. The x′ component
of the velocity of the test particle relative to the ground, vx

′

mT x̂
′, will not be influenced by this component,

as the vector product of these two components go to zero,
(

vx
′

mT x̂
′

)

×
(

Ωx′

GT x̂
′

)

= ~0. When the pendulum

is falling (with a component of the velocity towards the negative side of the z′ axis), the Coriolis’s force will
point towards the negative side of the y′ axis. On the other hand, when the pendulum is moving upwards
(with a component of the velocity towards the positive side of the z′ axis), the Coriolis’s force will point
towards the positive side of the y′ axis. These two directions of the force will alternate when the pendulum
is coming back to the initial point after half a period. This argument shows that the x′ component of
~ΩGT , Ωx′

GT x̂
′, will not make the plane of oscillation of the pendulum precess relative to the ground when we

consider the average effect during each half a period.
On the other hand, the z′ component of ~ΩGT , Ωz′

GT , causes a precession of the plane of oscillation of
the pendulum relative to the ground. During each half a period, while the pendulum moves down and up,
moving along the positive x′ direction, the pendulum will suffer a force along the positive y′ direction. That
is, during this first half period we have −2Φ∞mgk~vkT × ~ΩGT ≈ 2Φ∞mgkv

x′

kTΩ
z′

GT ŷ
′. During the second half

period, while the pendulum moves down and up, moving along the negative x′ direction, the force will point
along the negative y′ direction. And these opposite forces, acting during each half a period, clearly make
the plane of oscillation of the pendulum to precess relative the ground.

In this Section we are only interested in the precession of the plane of oscillation of the pendulum relative
to the ground. As the x′ and y′ components of ~ΩGT have no influence in this precession, we will neglect
these two components in the following calculation. That is, we will only take into account the component of
~ΩGT along the z′ axis, represented here by Ωz′

GT ẑ
′.

In the terrestrial frame the stars and galaxies rotate together around the North-South axis of the Earth.
The angular velocity of the set of galaxies relative to the Earth is represented by ~ΩGT = −ωEU ẑ, figure 22.8.
For a pendulum oscillating at latitude α (for instance, at Paris where α = 48o 51′ N), the z′ component of
~ΩGT is given by:

Ωz′

GT = ΩGT cos θ = ΩGT cos(90o − α) = ΩGT sinα . (22.21)

The solution of equation (22.20) is then analogous to the solution of equation (8.38), that is, equation
(8.47) with −2Φ∞mgΩ

z′

GT replacing qB, and with Φ∞mg replacing mi. Utilizing equation (22.21), the
angular velocity of precession of the plane of oscillation of Foucault’s pendulum relative to the ground, ΩpT ,
is then given by (according to relational mechanics):

ΩpT = −−2Φ∞mgΩ
z′

GT

2Φ∞mg
= Ωz′

GT = ΩGT sinα . (22.22)

This prediction coincides with the observed precession of the plane of oscillation of Foucault’s pendu-
lum. According to the calculations presented in Section 8.4, this result was obtained utilizing the following
approximation: 2Ωz′

GT ≪
√

g/ℓ. This approximation is easily justified for Foucault’s pendulum observ-
ing that in Foucault’s real experiment we had ℓ = 11 m, such that

√

g/ℓ ≈ 1 rad/s ≫ 2ΩGT sinα =
2× (7.3× 10−5 rad/s)× 0.75 = 10−4 rad/s.

In relational mechanics we can interpret this precession of the plane of oscillation of Foucault’s pendulum
relative to the ground as being analogous to the precession of the plane of oscillation of an electrified
pendulum oscillating over a magnet. In the case of Foucault, the set of galaxies rotating together around the
Earth exerts a real force of Coriolis −2Φ∞mg~vmT × ~ΩGT acting on the gravitational mass of the pendulum
which is moving relative to the ground with velocity ~vmT . It is analogous to the force q~v× ~B exerted by the
magnet and acting on a test charge moving relative to it. This Coriolis’s force has a gravitational origin. It
makes the plane of oscillation of Foucault’s pendulum to precess relative to the ground.

Therefore, Foucault’s pendulum can no longer be utilized as a proof of the real and absolute rotation of
the Earth. In relational mechanics the precession of the plane of oscillation of Foucault’s pendulum relative
to the ground can be explained in the universal frame U with the set of distant galaxies at rest exerting
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a gravitational force −Φ∞mg~amU acting on the test body which is moving relative to the universal frame
U , while the Earth rotates in this frame. This precession can also be explained in the terrestrial frame T
in which the Earth is at rest, while the set of galaxies rotates together around the Earth with an angular
velocity ~ΩGT . According to relational mechanics, this set of rotating galaxies will exert a gravitational force
−Φ∞mg[~amT + 2~vmT × ~ΩGT ] which will act on the test body which is moving relative to the ground with
velocity ~vmT . Both explanations are equally correct and both of them lead to the same precession of the
plane of oscillation of the pendulum relative to the ground.

It is then a matter of convenience or of convention to choose the Earth as being at rest, to choose the set
of distant galaxies as being at rest, or to choose any other arbitrary frame of reference in order to perform the
calculations. Any arbitrary frame of reference can be considered as being at rest. In all frames of reference
the calculations based on relational mechanics will yield the same precession of the plane of oscillation of
the pendulum relative to the ground. And this effect will always be due, according to relational mechanics,
to the relative rotation between the Earth and the set of distant galaxies. It does not matter if it is the
Earth which is supposed at rest while the set of galaxies is considered rotating around the Earth, or if it is
the set of distant galaxies which is considered at rest while the Earth is supposed to spin around its axis.
Whenever there is the same relative rotation between the Earth and the set of distant galaxies, relational
mechanics will predict the same precession of the Foucault’s pendulum relative to the ground. We can even
perform the calculations in a third frame of reference relative to which not only the Earth, but also the set
of galaxies, are rotating relative to this frame, provided these rotations have different values with a relative
period differing by 1 sidereal day.

And this precession will always be due to a real force of gravitational origin being exerted by the set of
distant galaxies and acting on the test body connected to the string of the pendulum. This is a very elegant
and deep result of relational mechanics. Up to now this result had not been implemented quantitatively in
any other formulation of mechanics.

We then acquire a new comprehension of Foucault’s pendulum. We present it here in the simplest case of
a pendulum oscillating at the North pole. We have concluded that the plane of oscillation of the pendulum
remains fixed relative to the reference frame U of distant galaxies, no matter the rotation of the Earth
relative to this frame, figure 22.9. In this figure the plane of the paper coincides with the universal frame
U and we are looking the Earth spinning below us, with the North pole below our feet. While the Earth
spins around its axis, relative to this frame U , with an angular velocity ωEU , the plane of oscillation of the
pendulum remains fixed relative to the set of galaxies.

N
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ω
EU

Figure 22.9: Plane of oscillation of Foucault’s pendulum remains fixed relative to the frame of distant
galaxies.

The same explanation for the behavior of the plane of oscillation of the pendulum can be given by an
observer fixed in the ground. According to relational mechanics, this person can say that the set of distant
galaxies rotating around the North pole, relative to the ground, with an angular velocity ~ΩGT , makes the
plane of oscillation of the pendulum rotate relative to the ground with an angular velocity ~ΩpT which is
equal to the angular velocity of the galaxies. That is, ~ΩpT = ~ΩGT , as illustrated in figure 22.10.

We now consider an hypothetical situation in which the Earth were not spinning relative to the stars
belonging to the Milky Way. If all external galaxies were annihilated, while the gravitational masses of



Ch. 22: Oscillatory Motions 427

N

Ω
GT

Ω
GT

Ω
GT

Ω
pT

Figure 22.10: Set of galaxies rotating around the North-South axis of the Earth once a day and making
the plane of oscillation of the pendulum to precess relative to the ground. The plane of oscillation of the
pendulum follows the motion of the galaxies around the Earth.

the pendulum, of the Earth and of the stars belonging to our galaxy remained the same, then the plane
of oscillation of the pendulum would remain fixed relative to the ground according to relational mechanics.
After all, the Coriolis’s force would no longer act on the pendulum. This consequence can be obtained from
equation (22.22). The right hand side of this equation is proportional to the angular velocity ΩGT of the
galaxies relative to the ground. By annihilating the galaxies, we make ΩGT → 0. This means that the left
hand side of equation (22.22) will also go to zero, that is, ΩpT → 0. Therefore, in this thought experiment
the plane of oscillation of the pendulum should no longer precess relative to the ground.

It should be kept in mind that in the calculations of this Section the force exerted by the Earth on the
test body of gravitational mass mg fixed in the string of the pendulum has been considered as being given
simply by ~Fg = mg ĝ = −mggẑ. As a matter of fact, according to relational mechanics this assumption is
only approximately valid. According to Weber’s gravitational force, equation (18.37), the Earth will exert a
force on the test body of mass mg oscillating relative to the ground which will also depend on the velocity
and acceleration of mg relative to the ground. As these force components which depend on the velocity and
acceleration of the test body are small compared with the component of Weber’s gravitational force which
do not depend on the velocity and acceleration of the test body, these small components can in general be
neglected without affecting significantly the final result.

On the other hand, in the case of the thought experiment in which the external galaxies were annihilated,
remaining only the pendulum, the Earth and the Milky Way, these small components could no longer be
neglected. The same can be said of the components of the force acting on the test body depending on its
velocity and acceleration relative to the stars belonging to the Milky Way. These components would need
to be taken into account in order to make the correct prediction of what would happen with the motion of
the pendulum in this thought experiment according to relational mechanics.

Consider another hypothetical situation. Suppose once more that the Earth were not spinning relative
to the stars belonging to the Milky Way. If we could stop the rotation of the set of galaxies relative to the
ground by making ΩGT → 0, then the plane of oscillation of Foucault’s pendulum would also stop to precess
relative to the ground, as can be seen from equation (22.22). That is, according to relational mechanics in
this thought experiment we would also have ΩpT → 0.

In the case of Foucault’s pendulum it is observed that the precession of the plane of oscillation of the
pendulum relative to the ground happens in the same sense as the rotation of the set of galaxies relative
to the ground, as the plane of oscillation of the pendulum rotates together with the galaxies relative to
the ground, figure 22.10. In Section 8.4 we considered an electrified pendulum oscillating inside a spinning
charged spherical shell. As shown in figure 8.16, in this case the plane of oscillation of the electrified pendulum
precesses in the opposite direction of the rotation of the charged shell when the pendulum and the shell are
electrified with charges of the same sign. This behavior of the plane of oscillation of the electrified pendulum
is exactly the opposite of what happens with the plane of oscillation of Foucault’s pendulum. These opposite
behaviors can be easily explained and understood remembering that electric charges of the same sign repel
one another, while gravitational masses attract one another.

But the main properties of the electrified pendulum oscillating inside a spinning electrified spherical shell,



428 Relational Mechanics and Implementation of Mach’s Principle with Weber’s Gravitational Force

as represented by equation (8.59), are the same as those of Foucault’s pendulum according to relational
mechanics. We discuss here two properties of the plane of oscillation of these pendulums, properties (I) and
(II), in order to illustrate this similar behavior. (I) If we stop the rotation of the electrified shell around the
electrified pendulum by making ΩS → 0, the precession of the electrified pendulum goes to zero. Likewise,
if it were possible to stop the rotation of the set of stars and galaxies around the Earth, then the plane of
oscillation of Foucault’s pendulum would also stop to precess relative to the ground. (II) If we discharge
the electrified shell by making Q → 0, the precession of the electrified pendulum goes to zero. Likewise,
by annihilating the set of galaxies we would cancel the precession of the plane of oscillation of Foucault’s
pendulum relative to the ground.



Chapter 23

Bodies in Uniform Circular Motion

23.1 Circular Orbit of a Planet in the Frame of the Fixed Stars

In this Section we consider two bodies orbiting around one another relative to the frame F of fixed stars, due
to their gravitational attraction. We consider these two bodies as being the Sun and the Earth, completing
one orbit relative to the stars with a period of one year. The algebraic expressions obtained here can also
be applied to the orbit of any planet around the Sun, to the orbit of a satellite of Jupiter around Jupiter, or
to the orbits of two arbitrary bodies 1 and 2 which are moving relative to the fixed stars.

The centripetal acceleration of the solar system around the center of our galaxy, relative to the background
of distant galaxies, is given approximately by agalaxy centripetal ≈ 10−10 m/s2. The typical centripetal
accelerations of the planets orbiting around the Sun, in the frame of the fixed stars, have the same order of
magnitude as the centripetal acceleration of the Earth orbiting around the Sun, that is, 10−2 or 10−3 m/s2.
As these accelerations are much greater than agalaxy centripetal, we can neglect the acceleration of the solar
system relative to the set of distant galaxies when considering the planetary orbits around the Sun. This
means that the set of distant galaxies can be considered without acceleration relative to the frame of fixed
stars. The reference frame F of fixed stars is then equivalent to the universal frame U of distant galaxies.
Therefore, ~akU = ~akF , where ~akU represents the acceleration of the test body of gravitational mass mgk

relative to the universal frame U , while ~akF represents the acceleration of the test body relative to frame F .
Therefore equation (17.77) can be written as:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU =

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akF = ~0 . (23.1)

This is the equation of motion of relational mechanics valid in the reference frame of fixed stars in this
approximation in which |~akF | ≫ 10−10 m/s2.

Figure 23.1 presents the situation in which two gravitational masses mg1 and mg2 describe circular orbits
around the center of gravitational mass between them. Galaxies have been drawn in order to represent the
background which determines these orbits. To simplify the drawings, the stars of our galaxy have been
drawn at rest in the universal frame U , although they might have a common constant linear velocity relative
to U without affecting the predictions to be discussed here.

The gravitational force between bodies 1 and 2 is assumed here as being given by Weber’s law with an
exponential decay, equation (17.18). We consider here the situation in which these two bodies are describing
circles relative to the fixed stars, keeping constant distances to the center of gravitational mass between
them. In this case ṙ12 = 0 and r̈12 = 0. The typical distance of a planet to the Sun has the order of
magnitude of one astronomical unit, that is, dES = 1.50 × 1011 m. The constant α appearing in equation
(17.18) has an approximate value of 10−27 m−1, equation (18.12). Therefore, 0 < rα ≈ 10−16 ≪ 1, such
that e−αr ≈ 1. In these conditions Weber’s gravitational force with exponential decay reduces to Newton’s
law of gravitation, equation (18.39).

We choose the origin of the coordinate system in the center of gravitational mass of these two bodies. As
we are considering only circular motions relative to the fixed stars, the accelerations of bodies 1 and 2 have
only their centripetal components, that is, ~a1F = −(v21F /r1)r̂1 and ~a2F = −(v22F /r2)r̂2. Here v1F represents
the tangential velocity of body 1 relative to the frame of fixed stars at a distance r1 = |~r1| to the center of

429
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Figure 23.1: Two gravitational masses orbiting around the common center of mass in the frame of fixed
stars.

gravitational mass, while r̂1 is the unit radial vector pointing towards body 1. And analogously for body 2.
We also have r̂1 = −r̂2 = r̂12 and ~F21 = − ~F12. Therefore, equations (18.39) and (23.1) yield:

−G
mg1mg2

(r1 + r2)2
r̂1 +Φ∞mg1

v21F
r1

r̂1 = ~0 , (23.2)

and

G
mg1mg2

(r1 + r2)2
r̂1 +Φ∞mg2

v22F
r2

r̂2 = ~0 . (23.3)

That is:

G
mg1mg2

(r1 + r2)2
= Φ∞mg1a1F = Φ∞mg1

v21F
r1

= Φ∞mg2a2F = Φ∞mg2
v22F
r2

. (23.4)

The velocities of bodies 1 and 2 in frame F are given by, respectively:

v1F =
Gmg2r1

Φ∞(r1 + r2)2
, (23.5)

and

v2F =
Gmg1r2

Φ∞(r1 + r2)2
. (23.6)

As we have mg1r1 = mg2r2, we obtain that both bodies orbit around one another, relative to the frame
of fixed stars, with the same angular velocity ω1F = ω2F ≡ ωF given by:

ω1F = ω2F = ωF =
v1F
r1

=
v2F
r2

=

√

Gmg1

Φ∞(r1 + r2)2r2
=

√

Gmg2

Φ∞(r1 + r2)2r1
. (23.7)

Let z be the axis normal to the plane of the orbit, passing through the center of gravitational mass of
the two bodies, with z = 0 at the plane of the orbit, and pointing according to the right hand rule following
the motion of the planets. Therefore this z axis points upwards in figure 23.4. The vector angular velocity
of the rotation of the planets is then given by ~ωmF = ωmF ẑ.

Utilizing mg1r1 = mg2r2 in equation (23.7), it is possible to write the distance between these two bodies
as follows:

r1 + r2 =

[

G(mg1 +mg2)

Φ∞ω2
mF

]1/3

. (23.8)
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According to equation (23.4), the centripetal acceleration of each planet relative to the frame of fixed
stars is given by:

a1F =
Gmg2

Φ∞(r1 + r2)2
, (23.9)

and

a2F =
Gmg1

Φ∞(r1 + r2)2
. (23.10)

23.1.1 Influence of the Galaxies in the Orbital Motion of a Planet Around the

Sun

Figure 23.2 (a) presents the velocities and accelerations of bodies 1 and 2 in the frame of reference F of the
fixed stars.
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Figure 23.2: (a) Velocities and accelerations of two gravitational masses orbiting around their center of mass
in the frame F of fixed stars. (b) From left to right: Forces of action and reaction between the galaxies
and body 1; forces of action and reaction between bodies 1 and 2; forces of action and reaction between the
galaxies and body 2.

Figure 23.2 (b) presents the forces acting on body 1, on body 2 and on the set of galaxies. The gravita-
tional force exerted by 2 on 1 is represented by F21, while F12 is the reaction force exerted by 1 on 2. The
gravitational force exerted by the set of galaxies on body 1 is represented by Fi1, while F1i represents the
reaction force exerted by 1 and acting on the set of galaxies. This force Fi1 exerted by the galaxies on body
1 is being called here inertial force or centrifugal force. The gravitational force exerted by the set of galaxies
on body 2 is represented by Fi2, while F2i represents the force exerted by 2 and acting on the set of galaxies.
This force Fi2 exerted by the galaxies on body 2 is being called here inertial force or centrifugal force.

It is the centrifugal force Fi1 acting on body 1 which balances the centripetal force exerted by 2 on 1.
This centrifugal force allows body 1 to describe a circle of constant radius r1 around the center O in the
frame F of the fixed stars. Likewise, it is the centrifugal force Fi2 acting on body 2 which balances the
centripetal force exerted by 1 on 2, making body 2 describe a circle of constant radius r2 around the center
O in the frame F of fixed stars.

It should be emphasized here the great conceptual difference arising in the treatment of this problem in
newtonian mechanics and in relational mechanics. In newtonian mechanics this is a problem of only two
bodies, namely 1 and 2. There is then the Sun and a planet, or Jupiter and one of its satellites, orbiting
in free space around the center of mass of these two bodies. In relational mechanics, on the other hand,
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this is a problem of many bodies interacting with one another, namely: bodies 1 and 2 interacting with one
another, body 1 interacting with the set of galaxies, and body 2 interacting with the set of galaxies. The
distant galaxies have a fundamental role in this problem according to relational mechanics, they cannot be
neglected. It is very important to keep in mind this conceptual difference between these two theories. The
galaxies are present in the universe and they exert a gravitational force on any body which is accelerated
relative to them, according to relational mechanics. Therefore, it is not possible to deal with a “problem
of only two bodies” in relational mechanics, as the stars and galaxies must be included in the formulation
of any real problem. The stars and galaxies can only be neglected when the test body is not accelerated
relative to the universal frame U .

As seen in Subsection 13.2.1, Berkeley correctly pointed out in Section 59 of his work De Motu the
impossibility of a circular motion if there were only two bodies in the universe:1

59. Then let two globes be conceived to exist and nothing corporeal besides them. Let forces
then be conceived to be applied in some way; whatever we may understand by the application
of forces, a circular motion of the two globes round a common centre cannot be conceived by
the imagination. Then let us suppose that the sky of the fixed stars is created; suddenly from
the conception of the approach of the globes to different parts of that sky the motion will be
conceived. That is to say that since motion is relative in its own nature, it could not be conceived
before the correlated bodies were given. Similarly no other relation can be conceived without
correlates.

That is, in order to conceive that two bodies 1 and 2 are describing a circular motion around a common
center, it is necessary the presence of other bodies around them, like the stars and galaxies. At a certain
instant body 1 would be approaching a certain star SA, while body 2 would be moving away from this
stars SA. At another instant body 1 would be moving away from this star SA, while body 2 would be
moving towards this star. And this motion of approach and retraction between body 1 and star SA would be
alternating with the passage of time, the same happening with the retraction and approach between body
2 and this same star SA. Relational mechanics agrees with this point of view presented by Berkeley. This
point of view is much more intuitive than the existence of a circular motion of two point bodies in which
the distance between them remains constant in time, while they move around one another relative to empty
space. This last assumption of two bodies moving around one another in empty space seems anti-intuitive
and absurd to us. After all, as two points define a straight segment, it is not possible to imagine this straight
line rotating around an axis perpendicular to this segment if there were nothing else in the universe, except
these two point bodies.

Moreover, beyond this question of how to conceive the circular motion of two bodies around a common
center, relational mechanics brings some dynamical consequences related to the presence of distant galaxies.
As seen in Subsection 13.1.2, Clarke had predicted that a planet orbiting around the Sun would loose the
centrifugal force arising from its circular motion if all matter around the Sun and planet were annihilated.
Clarke considered this consequence absurd. This consequence is implemented mathematically in relational
mechanics. This mathematical implementation was not done by Berkeley nor by Clarke.

The constant Φ∞ appearing in equation (23.7) is proportional to the average volume density ρgo of
gravitational mass in the universe, equation (18.29). Therefore, according to equation (23.7), if it were
possible to maintain constants the gravitational masses of bodies 1 and 2, maintaining also unchanged the
distances r1 and r2 of these two bodies to the center O of the circular orbits, then the angular velocity ωF

of these two bodies relative to distant galaxies would increase if it were possible to decrease the value of ρgo.
Likewise, from equation (23.8) we obtain that by decreasing ρgo (while mg1, mg2 and ωF remain unchanged),
the distance r1+r2 between 1 and 2 would increase. In particular, according to relational mechanics it would
not be possible to have any circular orbit if only these two bodies 1 and 2 did exist in the universe. The
centrifugal force acting on body 1, for instance, is given by ~Fi1 = Φ∞mg1ω

2
1F~r1. This centrifugal force

of gravitational origin goes to zero by annihilating all external matter around bodies 1 and 2 by making
ρgo → 0. That is, by annihilating the set of distant galaxies, the centrifugal force should disappear according
to relational mechanics.

1[Ber06] and [Ber92a].
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23.1.2 Forces in the Reference Frame which Rotates Together with the Planet

and Sun Relative to the Set of Distant Galaxies

Suppose now that we are in a reference frame R with its origin at the center of gravitational mass of the
two bodies 1 and 2. We also assume that this frame R rotates together with bodies 1 and 2 relative to the
frame F of fixed stars. Therefore, bodies 1 and 2 remain at rest in frame R, as indicated in figure 23.3 (a).
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Figure 23.3: (a) Reference frame R in which bodies 1 and 2 are at rest, while the stars and galaxies rotate
together around these two bodies. (b) From left to right: Forces of action and reaction between the galaxies
and body 1; forces of action and reaction between bodies 1 and 2; forces of action and reaction between the
galaxies and body 2.

In this new reference frame R the set of distant galaxies and the set of stars are seen rotating together as
a whole with an angular velocity ~ΩGR, figure 23.3 (a). If these two bodies are the Sun and the Earth, then
the set of galaxies completes a turn around them with a period of 1 year.

This angular velocity of the galaxies around bodies 1 and 2 in frame R is given by:

~ΩGR = −~ω1F = −~ω2F = −
√

Gmg1

Φ∞(r1 + r2)2r2
ẑ . (23.11)

That is, the galaxies rotate together in frame R with the same angular velocity that bodies 1 and 2 orbit
around one another in the frame of fixed stars, but in the opposite direction, as indicated in figures 23.2
(a) and 23.3 (a). That is, bodies 1 and 2 rotate anti-clockwise in frame F , figure 23.2 (a). This situation
is equivalent to a rotation of the same magnitude of the set of galaxies in frame R, but in the clockwise
direction, figure 23.3 (a).

The equation of motion for this case in relational mechanics is given by equation (19.10), namely:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk

[

~akR + ~ΩGR × (~ΩGR × ~rkR) + 2~vkR × ~ΩGR + ~rkR × d~ΩGR

dt

]

= ~0 . (23.12)

As in this frame R bodies 1 and 2 are at rest, ~vkR = ~0 and ~akR = ~0. Moreover, d~ΩGR/dt = ~0. Therefore
the equation of motion for bodies 1 and 2 can be written as, respectively:

G
mg1mg2

(r1 + r2)2
− Φ∞mg1Ω

2
GRr1 = 0 , (23.13)

and
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G
mg1mg2

(r1 + r2)2
− Φ∞mg2Ω

2
GRr2 = 0 . (23.14)

According to equation (23.13), the gravitational force exerted by 2 on 1 is balanced by a real gravitational
centrifugal force exerted by the set of galaxies and acting on body 1. Likewise, according to equation (23.14),
the gravitational force exerted by 1 on 2 is balanced by a real gravitational centrifugal force exerted by the
set of galaxies and acting on body 2. This balance of forces explains how bodies 1 and 2 can maintain a
constant distance to one another while remaining at rest in this frame R, despite their mutual gravitational
attraction. In newtonian mechanics this lack of motion of bodies 1 and 2 in frame R could only be explained
by the introduction of a “fictitious” centrifugal force which had no physical origin. In relational mechanics,
on the other hand, this centrifugal force is considered a real force. We have identified the bodies exerting
this force, namely, the set of distant galaxies. We have also identified the origin or nature of this force, that
is, it is a gravitational interaction which depends on the relative acceleration between the test body and the
set of distant galaxies.

Figure 23.3 (b) presents the forces acting on each body. These forces are identical to the forces appearing
in figure 23.2 (b).

If it were possible to maintain unchanged the gravitational masses of the bodies of the solar system,
while at the same time the average volume density ρgo of gravitational mass in the universe were doubled,
then relational mechanics predicts that the test bodies would behave as if they had doubled their present
newtonian inertial masses, as can be seen by comparing equations (17.39) up to (17.91).

23.2 Rotation of Two Globes Relative to the Galaxies

23.2.1 Rotation of Two Globes Connected by a Cord

We consider now the problem discussed by Newton of two globes rotating relative to the universal frame U
while connected by a cord, Section 9.3. The two globes have equal gravitational masses mg and are connected
by a cord of constant length ℓ = 2ρ, where ρ represents the distance of each globe to the center between
them. Let us assume that the two globes and also the set of distant galaxies are rotating around the z axis
of a reference frame R, with this z axis passing through the center O of the cord, being perpendicular to the
cord. We consider the general case in which each of the two globes rotates in the xy plane with a constant
angular velocity ~ωmR = ωmRẑ relative to frame R, while simultaneously the set of galaxies rotates together
in frame R with a constant angular velocity ~ΩGR = ΩGRẑ, figure 23.4. The angular velocity ωmR of each
globe relative to R may be different from the angular velocity ΩGR of the set of galaxies relative to frame R.

ωmR

mg
ρ 0

ωmR

mg
ρ

R

ΩGR

ΩGR

Figure 23.4: Two globes connected by a cord and rotating with an angular velocity ωmR relative to frame R,
while the set of galaxies rotates relative to this frame with an angular velocity ΩGR. These angular velocities
may be different from one another.

In this case the velocity of each globe relative to frame R is given by ~vmR = ~ωmR × ~ρ = (ωmR)ρϕ̂, where
~ρ = xx̂+ yŷ = ρρ̂ =

√

x2 + y2ρ̂ represents the position vector of each body relative to the center O and we
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are utilizing cylindrical coordinates (ρ, ϕ, z). The acceleration of each body relative to frame R is given by
its centripetal acceleration, namely, ~amR = −

(

ω2
mR

)

~ρ = −
(

ω2
mR

)

ρρ̂.

The forces acting on each globe are the tension ~T and the inertial force ~Fi due to the gravitational
interaction of each body with the set of galaxies. The tension ~T = −T ρ̂, with T = |~T |, is exerted by the
stretched cord, pointing from the body towards the center. According to equation (17.96), the equation of
motion for each globe in this situation can be written as:

−T ρ̂+Φ∞mg (ωmR − ΩGR)
2
ρρ̂ = ~0 . (23.15)

The magnitude of the tension in the cord can then be written as:

T = Φ∞mg (ωmR − ΩGR)
2
ρ . (23.16)

Several interesting aspects can be obtained from this equation. Let us compare it with equation (9.32)
giving the tension in the cord according to newtonian mechanics, namely:

T = miac = mi
v2t
ρ

= miw
2ρ . (23.17)

In relational mechanics the mass of the test body which appears in the equation of motion is the grav-
itational mass, while in newtonian mechanics it appears the inertial mass. The most important difference
between equations (23.16) and (23.17) is that in relational mechanics the tension T in the cord will exist
only when there is a relative rotation between the cord and the set of galaxies. After all, the tension is
proportional to the square of the relative angular rotation ωmR−ΩGR. For instance, if the two globes rotate
together with the set of galaxies relative to R, then the tension in the cord goes to zero, as ωmR = ΩGR,
although ωmR 6= 0. In newtonian mechanics, on the other hand, the tension in the cord would appear
whenever the globes were rotating relative to absolute space or relative to an inertial frame which had no
physical relation with the stars and galaxies.

We can illustrate these different interpretations and predictions of newtonian mechanics and relational
mechanics by considering two reference frames, A and B. In a certain frame A the cord and the globes are
rotating anti-clockwise once a second around the z axis, ωmA = 2π rad/s, while the set of galaxies is at rest,
ΩGA = 0, figure 23.5 (a). There is a tension TA acting on both extremities of the cord, figure 23.5 (b).
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Figure 23.5: (a) Two globes connected to a cord and rotating with an angular velocity ωmA relative to
a frame of reference A, while the set of galaxies is at rest in this frame. (b) Tensions TA acting at the
extremities of the cord according to relational mechanics.

In another reference frame B the cord and the globes are at rest, ωmB = 0, while the set of galaxies
completes a turn per second around the globes, rotating clockwise around the z axis, ΩGB = −2π rad/s,
figure 23.6 (a). There is a tension TB acting at the extremities of the cord.

As ωmA − ΩGA = ωmB − ΩGB = 2π rad/s, relational mechanics predicts the same tension in the cord
in both cases, that is, TA = TB. Newton, on the other hand, believed that TA would be different from TB.
In particular, he believed that TA would be different from zero, while TB would be zero, as discussed in
Subsection 9.3.3.
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Figure 23.6: (a) Two globes connected to a cord. These globes and the cord are at rest in this frame of
reference B, while the set of galaxies rotates around the center of the cord with an angular velocity ΩGB.
(b) Tension TB acting at the extremities of the cord according to relational mechanics.

According to Mach, there should be the same tension in these two situations, that is, TA = TB. However,
he did not deduce mathematically this equality of tensions with any theoretical model. Relational mechanics,
on the other hand, implements quantitatively Mach’s ideas utilizing a Weber’s law for gravitation. We have
then shown that in frames A and B there will be a real centrifugal force acting on the test body and being
due to the set of galaxies. This inertial force acts on both bodies, pointing radially away from the center.
These forces are transmitted to the extremities of the cord, generating its tension. That is, provided the
kinematic rotation between the globes and the set of galaxies is the same, the same dynamic consequences
will arise. In particular, no matter if the two globes are rotating with an angular velocity (ωmA)ẑ relative
to a frame of reference A while the set of stars and galaxies are at rest in this frame, or if the globes are at
rest relative to another frame B while the set of stars and galaxies rotate together in this frame B with an
angular velocity ΩGB = −(ωmA)ẑ, the same tension will appear in the cord in both cases, TA = TB. This
equality of tensions does not arise in Einstein’s general theory of relativity.2

In relational mechanics it is not possible to know or to specify with certainty which bodies are in fact
rotating. That is, it is not possible to know if the globes are really rotating while the galaxies are at rest, or
if the globes are at rest while the galaxies are rotating around them. However, from the measurable tension
in the cord it is possible to conclude that there is a relative rotation between the two globes and the set of
galaxies around them.

Let us consider once more the situation illustrated in figure 23.4. The centripetal accelerations of the
two globes and the centripetal accelerations of the galaxies in this frame of reference R are represented in
figure 23.7 (a). These centripetal accelerations arise due to the angular velocities presented in figure 23.4.
Figure 23.7 (b) presents the two forces acting on each globe, namely, the tension T exerted by the stretched
cord pulling each globe towards the other globe, and the inertial force Fi exerted gravitationally by the set
of galaxies and pointing away from the other globe. This figure also presents the force Fmi exerted by each
globe and acting on the set of galaxies. Although this force is represented as acting on a single galaxy, it
should be understood that this force is in fact distributed over all galaxies. Figure 23.7 (c) presents the forces
acting on the extremities of the cord. The inertial force Fi acting on each globe is transmitted to the cord,
stretching the cord. As the cord is stretched, it exerts an opposite force on each body, namely, the tension
T pulling each globe towards the other globe. Therefore, according to relational mechanics, the stretch of
the cord is due to the inertial force exerted by the set of galaxies and acting on each globe. As the globes
are connected to the cord, this inertial force is transmitted to the cord, stretching it.

The constant Φ∞ is proportional to the average volume density ρgo of gravitational mass in the universe,
equation (18.29). Therefore, according to equation (23.16), the tension in the cord goes to zero whenever
ρgo → 0. This effect did not happen in classical mechanics. However, this relation between the tension in
the cord and the average volume density of gravitational mass in the universe is a necessary consequence of
any theory implementing Mach’s principle.

2[Ghi91] and [Ghi92].
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Figure 23.7: (a) Centripetal accelerations ~amR of the two globes relative to frame R, together with the
centripetal acceleration ~AGR of the galaxies relative to R. These centripetal accelerations are related to the
circular motions described by the globes and by the galaxies relative to frame R, as indicated in figure 23.4.
(b) Forces Fi and T acting on each globe, together with the force Fmi exerted by each globe and acting on
the set of galaxies. (c) Forces Fi acting on the extremities of the cord, stretching it.

23.2.2 Two Globes Rotating while Connected by a Spring

The same situation discussed in Subsection 23.2.1 can also be analyzed replacing the cord of constant length
ℓ = 2ρ by a spring of elastic constant k and relaxed length ℓo = 2ρo. Once more we neglect the gravitational
mass of the spring compared with the gravitational mass mg of each body connected to it. The calculations
are the same as in Subsection 23.2.1, but now replacing the tension T in the cord by the tension T in the
spring given by T = k(ℓ− ℓo), where ℓ = 2ρ represents the length of the stretched spring. This tension T in
the spring is then given by:

T = k(ℓ− ℓo) = Φ∞mg (ωmR − ΩGR)
2
ρ . (23.18)

There is a difference of this case compared to the previous one in which the two globes were connected
by a string of constant length. Now the tension in the spring can be easily visualized or measured by the
variation of its length, as the tension T is proportional to ℓ − ℓo. According to equation (23.18), the spring
will only have a total length ℓ different from its relaxed length ℓo when there is a relative rotation between
the spring and the set of galaxies, as ℓ−ℓo is proportional to (ωmR − ΩGR)

2. Moreover, this change of length
ℓ − ℓo is also directly proportional to the average volume density of gravitational mass ρgo in the universe.
Therefore, ℓ → ℓo whenever ρgo → 0.

23.3 Newton’s Bucket Experiment

In Newton’s bucket experiment the condition represented by equation (18.67) is satisfied. Therefore, the
equation of motion of relational mechanics takes the simplified form given by equation (21.2), namely:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akT = ~0 . (23.19)

This equation is similar to Newton’s second law of motion replacing mik by Φ∞mgk, replacing also the
acceleration of the test body relative to an inertial frame by the acceleration of the test body relative to the
ground.

23.3.1 Bucket and Water at Rest Relative to the Ground

Consider the situation in which the water and the bucket are at rest relative to the ground, figure 23.8 (a).
To simplify the analysis we are assuming the Earth at rest relative to the universal frame U .
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Figure 23.8: (a) Bucket and water at rest relative to the ground, with a horizontal surface of the water. (b)
Coordinate system with its origin at the upper surface of the water, horizontal coordinate x and vertical
coordinate z. It is also represented a small volume dV inside the liquid. (c) Forces acting on an infinitesimal
element of gravitational mass dmg: Downward gravitational force dFg exerted by the Earth and upward
buoyant force dFb exerted by the surrounding liquid. In equilibrium these two forces balance one another.

The water is at rest relative to the ground, such that it has no velocity nor acceleration relative to the
Earth, ~vkT = ~0 and ~akT = ~0. Consider an infinitesimal element of liquid inside the bucket with volume dV
and gravitational mass dmg. The forces acting on it due to the anisotropic distribution of matter around it
are the downward gravitational weight d~Fg and the upward buoyant force d~Fb exerted by the surrounding
fluid. The equation of motion (23.19) for this stationary test element of fluid can then be written as:

d~Fg + d~Fb − Φ∞mgk~akT = d~Fg + d~Fb − ~0 = ~0 . (23.20)

Writing that d~Fg = −dmggẑ and d~Fb = − (∇p) dV due to the gradient of pressure p around the test
element, equation (23.20) yields:

−dmggẑ −
(

∂p

∂x
x̂+

∂p

∂y
ŷ +

∂p

∂z
ẑ

)

dV = ~0 . (23.21)

This equation yields ∂p/∂x = 0 and ∂p/∂y = 0. Therefore the pressure p does not depend on x nor on
y. It remains only the z dependence, in such a way that the partial derivative can be written as a total
derivative, yielding:

dp

dz
= −dmg

dV
g ≡ −ρgg , (23.22)

where the volume gravitational mass density of the fluid, dmg/dV , has been represented by ρg. Representing
the pressure at the free surface of the liquid by po = 1 atm = 760 mm Hg = 1× 105 N/m2, equation (23.22)
yields:

p(z) = po − ρggz . (23.23)

This equation indicates that the pressure changes linearly with the depth of the liquid. Equation (23.23)
indicates that the surfaces with p(z) = p1 = constant, are horizontal planes parallel to the fluid’s free surface
located at z = 0. In other words, the surface with pressure p1 is located at a height z1 given by:

z1 =
po − p1
ρgg

. (23.24)

This procedure completes the solution of the problem in relational mechanics.
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23.3.2 Bucket and Water Rotating Together Relative to the Ground

Consider now the situation in which the water is spinning around the axis of the bucket with a constant
angular velocity ~ωwT relative to the ground. The forces acting on each infinitesimal volume of water due
to anisotropic distributions of matter around the bucket are the downward force of weight (neglecting the
small horizontal components of the weberian gravitational force due to the motion of the water relative
to the ground) and the buoyant force due to the gradient of pressure around this infinitesimal element,
as discussed in Section 9.4. Once more it is interesting to utilize cylindrical coordinates (u, ϕ, z) =

(
√

x2 + y2, arctan(y/x), z). The z axis coincides with the axis of the bucket, with its origin at the lowest
point of the water, pointing vertically upwards, figure 23.9.
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Figure 23.9: (a) Bucket and water rotating together around the axis of the bucket, relative to the ground,
with a constant angular velocity ~ωwT = ωwT ẑ. (b) Forces acting on an infinitesimal element of the liquid with
gravitational mass dmg located at a horizontal distance u =

√

x2 + y2 from the axis of rotation, namely, the
downward gravitational force dFg exerted by the Earth, the buoyant force dFb exerted by the surrounding
fluid, and the inertial force dFi exerted gravitationally by the set of distant galaxies.

The equation of motion for an infinitesimal element of liquid of gravitational mass dmg and volume dV
is then given by:

d~Fg + d~Fb − Φ∞dmg~awT = ~0 , (23.25)

where ~awT represents the acceleration of this fluid element relative to the ground. In this situation in which
the liquid describes a horizontal circular trajectory around the vertical axis of the bucket, there will be only
a centripetal acceleration given by:

~awT = −v2wT

u
û = − (ωwT )

2
uû . (23.26)

Here ωwT represents the angular velocity of rotation of the liquid relative to the ground, while u =
√

x2 + y2

is the horizontal distance of this element of fluid to the z axis of rotation.
The equation of motion is then given by:

−dmggẑ + (∇p) dV +Φ∞dmg (ωwT )
2
uû = ~0 . (23.27)

The three forces acting on the element of fluid of gravitational mass dmg are represented in figure 23.9
(b).

Equation (23.27) is similar to the equation of motion (9.46) of newtonian mechanics with Φ∞dmg replac-
ing dmi and ωwT replacing ω. The solution of this problem has then the same form as the solution obtained
in Section 9.4. That is, a concave surface of water in the shape of a paraboloid of revolution. The solution
according to relational mechanics has the same behavior as the solution given by equation (9.42), namely:

z =
Φ∞ρg
ρg

ω2
wT

2g
u2 = Φ∞

ω2
wT

2g
u2 . (23.28)

The pressure p anywhere inside the fluid is given by a formula similar to equation (9.54), namely:

p(u, ϕ, z) =
Φ∞ρgω

2
wT

2
u2 − ρggz + po . (23.29)
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23.3.3 Analysis of this Problem in the Reference Frame which Rotates Together

with the Bucket and Water Relative to the Ground

Consider the same situation of Subsection 23.3.2, but now in the frame of reference R which rotates together
with the bucket relative to the ground. In this frame R the water is at rest, ~vwR = ~0 and ~awR = ~0. In this
frame R the Earth, the fixed stars and the set of distant galaxies rotate together around the z axis of the
bucket with a constant angular velocity ~ΩGR = −ΩGRẑ, figure 23.10 (a).
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Figure 23.10: (a) Frame R in which the bucket and water remain at rest, ~vwR = ~0 and ~awR = ~0. In this
frame R the Earth, the fixed stars and the set of galaxies rotate together around the axis of the bucket with
a constant angular velocity ~ΩGR = −ΩGRẑ. (b) Forces acting on an infinitesimal element of the liquid with
gravitational mass dmg located at a horizontal distance u =

√

x2 + y2 from the axis of rotation, namely, the
downward gravitational force dFg exerted by the Earth, the buoyant force dFb exerted by the surrounding
fluid, and the inertial force dFi exerted gravitationally by the set of distant galaxies.

The equation of motion for an infinitesimal test mass dmgk in relational mechanics takes the form of
equation (19.10). In this frame R the water is at rest, such that ~vwR = ~0 and ~awR = ~0. Moreover, the
angular velocity of the set of galaxies relative to frame R is essentially constant, such that d~ΩGR/dt = ~0.
Therefore, the equation of motion simplifies to:

N
∑

p=1

p 6=k

~Fpk − Φ∞dmgk
~ΩGR × (~ΩGR × ~rkR) = ~0 . (23.30)

Consider an infinitesimal element of volume dV with gravitational mass dmg inside the bucket. The
forces acting on this element of mass due to the local bodies around it are the downward gravitational force
d~Fg exerted by the Earth and the buoyant force d~Fb exerted by the surrounding liquid. These forces can be
written as d~Fg = −dmggẑ and d~Fb = − (∇p) dV due to the gradient of pressure inside the liquid. Equation
(23.30) can then be written as, with dmgk = dmg:

−dmggẑ − (∇p) dV − Φ∞dmg
~ΩGR × (~ΩGR × ~rkR) = ~0 . (23.31)

The position vector of an element of mass dmg inside the bucket can be written in the cylindrical
coordinates (u, ϕ, z) = (

√

x2 + y2, arctan(y/x), z) as follows: ~rkR = xx̂ + yŷ + zẑ = uû + zẑ. Utilizing
~ΩGR = −ΩGRẑ, the third term in the left hand side of equation (23.31) can be written as: −Φ∞dmg

~ΩGR ×
(~ΩGR × ~rkR) = Φ∞dmgΩ

2
GRuû. This equation can then be written as:

−dmggẑ − (∇p) dV +Φ∞dmgΩ
2
GRuû = ~0 . (23.32)

Equation (23.32) is similar to equation (23.27) with ΩGR replacing ωwT . The solution of equation (23.32)
is then given by equations (23.28) and (23.29) with ΩGR replacing ωwT . As ΩGR = ωwT , relational mechanics
predicts the same concavity of the water surface in both frames of reference, T and R.
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Relational mechanics predicts in frame R a real gravitational centrifugal force d~Fi = Φ∞dmgΩ
2
GRuû

acting on a test element dmg of the fluid. This force is exerted by the set of galaxies rotating together
around the axis of the bucket with an angular velocity ΩGR = −ΩGRẑ. We can say that this centrifugal force
presses the water against the sides of the bucket, making the water rise towards the sides of the bucket until it
acquires the parabolic shape given by equation (23.28). In equilibrium the downward weight d~Fg = −dmggẑ

and this centrifugal force d~Fi = Φ∞dmgΩ
2
GRuû are balanced by the buoyant force d~Fb = − (∇p) dV due

to the gradient of pressure inside the liquid. Although the water is at rest in this frame R, it assumes a
parabolic shape due to this real centrifugal inertial force d~Fi.

23.3.4 What Would Be the Shape of the Water If All Other Astronomical

Bodies Were Annihilated?

Equation (23.28) indicates that the concavity of the water surface disappears when ρgo → 0, as the constant
Φ∞ is proportional to the average volume density of gravitational mass in the universe, equation (18.29).
Therefore the free surface of the water would remain flat by annihilating the set of distant galaxies according
to relational mechanics.

As a matter of fact this prediction is only an approximation. Even in this thought experiment there
would still remain a small concavity of the water due to its rotation relative to the ground. However, this
effect has been neglected in the calculations presented in this Section as we did not consider the horizontal
forces acting on an element of water due to its rotation relative to the ground. These horizontal forces should
exist according to Weber’s gravitational law. Therefore, in the calculations of this Section we supposed that
the force exerted by the Earth on an element dmg of gravitational mass of the liquid as being given simply
by its downward weight d~Fg = −dmgẑ. In this approximation we conclude that all concavity of the water
surface disappears by annihilating the stars and galaxies around the Earth.

In newtonian mechanics, on the other hand, the concavity of the water in Newton’s bucket experiment
does not depend on ρgo. This means that the concavity of the water would remain unchanged even in this
hypothetical situation in which all other astronomical bodies around the Earth were annihilated.

23.3.5 What Would Be the Shape of the Water If it Were Possible to Rotate

the Set of Galaxies around the Axis of the Bucket?

It is very interesting to calculate with relational mechanics the concavity of the water in the following
hypothetical situation. Now the water and the set of galaxies are rotating relative to the ground around
the z axis of the bucket with constant angular velocities given by ~ωwT = (ωwT )ẑ and ~ΩGT = (ΩGT )ẑ,
respectively. These angular velocities ωwT = |~ωwT | and ΩGT = |~ΩGT | may be different from one another.
This thought experiment is illustrated in figure 23.11.
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Figure 23.11: (a) Water and set of galaxies rotating relative to the ground, around the axis of the bucket,
with constant angular velocities ωwT and ΩGT , respectively. These angular velocities may be different from
one another. (b) Same situation as seen from top to bottom, showing an element of water with mass dmg

describing a circular horizontal trajectory at a distance u from the bucket’s axis.

Consider an infinitesimal element of liquid with gravitational mass dmg and volume dV . Its equation
of motion is given by equation (17.96). There are three forces acting on it, namely, the gravitational force
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d~Fg exerted by the Earth, the buoyant force d~Fb exerted by the surrounding fluid and the inertial force
d~Fi exerted by the set of distant galaxies. Here we will neglect the small horizontal components of Weber’s
gravitational force which are due to the motion of the water relative to the ground when compared with its
vertical weight and with the inertial force exerted by the galaxies. Therefore the downward gravitational
force of the Earth can be written as d~Fg = dmg~g = −dmggẑ. The buoyant force due to the gradient of
pressure p can be written as d~Fb = −(∇p)dV . According to equation (17.96) the inertial force acting on an
element of gravitational mass describing a horizontal circle at a distance u =

√

x2 + y2 from the bucket’s
axis is given by d~Fi = Φ∞dmg(ωwT − ΩGT )

2uû. The equation of motion can be written as:

d~Fg + d~Fb +Φ∞dmg(ωwT − ΩGT )
2uû = ~0 . (23.33)

That is:

−dmggẑ −
(

∂p

∂u
û+

1

u

∂p

∂ϕ
ϕ̂+

∂p

∂z
ẑ

)

dV +Φ∞dmg(ωwT − ΩGT )
2uû = ~0 . (23.34)

This equation has the same form of equation (9.46) replacing dmi by Φ∞dmg and replacing ω by (ωwT −
ΩGT ). The solution for the pressure p anywhere inside the fluid is then similar to equation (9.54), namely:

p(u, ϕ, z) =
Φ∞ρg(ωwT − ΩGT )

2

2
u2 − ρggz + po . (23.35)

The equation describing the free surface of the liquid is similar to equation (9.42), namely:

z =
Φ∞ρg
ρg

(ωwT − ΩGT )
2

2g
u2 = Φ∞

(ωwT − ΩGT )
2

2g
u2 =

(ωwT − ΩGT )
2

2g
u2 . (23.36)

It is important to observe in this last equation that the parabolic concavity will only exist when there is a
relative rotation between the water and the set of galaxies, as this concavity is proportional to (ωwT −ΩGT )

2.
When there is a concavity of the liquid’s surface we can only conclude, according to relational mechanics,

that ωwT −ΩGT 6= 0. But it is not possible to discover only from this concavity if it is the water or the set of
galaxies which is rotating relative to the ground. The concavity will always be the same whenever the value
of ωwT −ΩGT remains the same, no matter if it is the water or the set of galaxies which is rotating relative
to the ground.

This discussion helps to illustrate the deep difference of relational mechanics when compared with new-
tonian mechanics and einsteinian mechanics. The effects just described would not take place in the theories
of Newton and Einstein.

When Mach was criticizing Newton’s absolute space, he mentioned the following:3 “Try to fix Newton’s
bucket and rotate the heaven of fixed stars and then prove the absence of centrifugal forces.” We have
implemented quantitatively Mach’s principle utilizing Weber’s law for gravitation. The only difference as
regards this quotation from Mach is that the usual centrifugal forces arise in relational mechanics when
there is a relative rotation between the test body and the set of distant galaxies. As was seen in Subsection
17.6.3, equation (17.54), the relative rotation between the test body and the heaven of fixed stars belonging
to our galaxy generates only a small centrifugal force which can be neglected, in the case of Newton’s bucket
experiment, when compared with the centrifugal force acting on the water and being due to the rotation of
the set of distant galaxies around the axis of the bucket.

Therefore, with relational mechanics we have deduced mathematically the following result:

Newton’s bucket has been fixed relative to the ground, the set of galaxies has been rotated relative
to the ground around the axis of the bucket, and we proved the presence of real gravitational
forces acting on the water and creating its parabolic shape.

In practice we cannot control the angular velocity of rotation of the set of galaxies, relative to the ground,
around the axis of the bucket. Therefore, we cannot test this theoretical prediction. However, we will see
in Subsection 24.5.8 that it is possible to propose a real experiment analogous to the effect which is being
considered here. This experiment might test this prediction of relational mechanics, provided there is enough
precision in order to measure the extremely small effect which should arise at the free surface of the water
by rotating relative to the ground, around the axis of the bucket, a material spherical shell surrounding a
bucket which remains stationary relative to the ground.

3[Mac60, p. 279].
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23.4 The Flattening of the Earth

23.4.1 Calculation of the Flattening in the Universal Frame of Reference

We consider now the diurnal rotation of the Earth relative to the universal frame U of the set of galaxies.
The Earth spins with an angular velocity ~ωEU around its North-South axis, figure 23.12 (a). The Earth has
a gravitational mass MgE and an average radius R. Let 2R> represent its diameter from East to West, while
2R< represents its diameter from the North pole to the South pole.
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Figure 23.12: (a) Flattening of the Earth due to its diurnal rotation in the frame U of the distant galaxies.
(b) Flattening of the Earth in the terrestrial frame T .

In this situation the condition represented by equation (18.73) is satisfied. In the universal frame U
in which the galaxies are at rest, the equation of motion of relational mechanics, equation (23.1), has the
same form as Newton’s second law of motion, equation (1.5). The changes which appear are the presence
of Φ∞mgk instead of mik, and the presence of ~akU = ~akF instead of ~ak, where ~akU is the acceleration of
the test gravitational mass mgk relative to the set of galaxies, ~akF is the acceleration of mgk relative to the
frame F of fixed stars, while ~ak of newtonian mechanics was the acceleration of the test body k relative to
an inertial frame of reference. Due to the similarity of these two equations, the calculations will be like those
of Subsection 10.2.2. The Earth is supposed to consist of an incompressible fluid. There are three forces
acting on an element of gravitational mass dmg of the Earth, namely, the gravitational force d~Fg exerted by
the remainder of the gravitational mass of the Earth, the buoyant force d~Fb = −(∇p)dV due to the gradient
of pressure at the location of dmg, and the inertial force d~Fi exerted gravitationally by the set of galaxies
when there is a relative acceleration between this set of galaxies and the element of mass dmg. The equation
of motion of relational mechanics is then given by:

d~Fg + d~Fb − Φ∞dmg~amF = ~0 . (23.37)

The gravitational force d~Fg acting on dmg is given by dmg~g, where ~g represents the gravitational force
per unit of gravitational mass. When there is an ellipsoidal distribution of matter the value of ~g is given by
equation (10.33). The gradient of pressure in spherical coordinates is given by equation (10.4). The position
vector of an element of gravitational mass in rectangular, spherical and cylindrical coordinates is given by
equation (10.7). Let r =

√

x2 + y2 + z2 be the distance of dmg to the origin of the coordinate system, that
is, up to the center of the Earth. Let u =

√

x2 + y2 = r sin θ represent the distance of dmg to the z axis of
rotation. Let û = r̂ sin θ + θ̂ cos θ be the unit vector in cylindrical coordinates, while r̂ and θ̂ are the unit
vectors in spherical coordinates.

The centripetal acceleration ~amF of the element of gravitational mass dmg relative to the frame F of
fixed stars is given by equation (10.8). In the universal frame U this acceleration is written as follows:

~amU = ~amF = ~ωEU × (~ωEU × ~r) = −ω2
EUuû = −ω2

EUr sin θ(r̂ sin θ + θ̂ cos θ) . (23.38)

Applying all these results in equation (23.37) and following the calculations of Subsection 10.2.2 the
flattening of the Earth is then given by an expression analogous to equation (10.43), namely:
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R>

R<
≈ 1 +

5Φ∞ω2
EUR

3

4GMgE
. (23.39)

Utilizing the measured values of ωEU , R, G and MgE we obtain an equation analogous to equation
(10.45), namely:

R>

R<
≈ 1 +

5Φ∞ω2
EUR

3

4GMgE
≈ 1.0043 . (23.40)

23.4.2 Calculation of the Flattening in the Terrestrial Frame of Reference

In the terrestrial frame of reference T and neglecting the annual translation of the Earth around the Sun, the
equation of motion for a particle of gravitational mass mg in relational mechanics takes the form of equation
(19.10). In this frame T the set of galaxies rotates once a day around the North-South axis of the Earth
with an angular velocity ~ΩGT = −~ωEU , figure 23.12 (b). The equation of motion takes the following form:

N
∑

p=1

~Fpm − Φ∞mg

[

~amT + ~ΩGT × (~ΩGT × ~rmT ) + 2~vmT × ~ΩGT + ~rmT × d~ΩGT

dt

]

= ~0 . (23.41)

As the Earth is at rest in its own frame, ~vmT = ~0 and ~amT = ~0. Considering also d~ΩGT /dt = ~0 this
equation simplifies to:

N
∑

p=1

~Fpm − Φ∞mg
~ΩGT × (~ΩGT × ~rmT ) = ~0 . (23.42)

Therefore, in the terrestrial frame there will arise a real centrifugal force −Φ∞mg
~ΩGT × (~ΩGT × ~rmT )

acting on the test body mg. This force has a gravitational origin, being due to the diurnal rotation of the
set of distant galaxies around the North-South axis of the Earth. This centrifugal force flattens the Earth
at the poles, figure 23.12 (b). By performing the calculations for this case, beginning with equation (23.42),
we obtain a solution analogous to equation (23.39), but now with ΩGT replacing ωEU , that is:

R>

R<
≈ 1 +

5Φ∞Ω2
GTR

3

4GMgE
≈ 1.0043 . (23.43)

23.4.3 What Would Be the Shape of the Earth If All Other Astronomical Bodies

Were Annihilated?

Equation (23.39) shows that the flattening of the Earth is proportional to the constant Φ∞ given by equation
(18.29). Utilizing that the volume density of gravitational mass of the Earth is given by ρgE = 3MgE/(4πR

3)
we obtain that R>/R< is proportional to the average volume density ρgo of gravitational mass in the universe.
That is:

R>

R<
≈ 1 +

5ξ

4

ρgo
ρgE

ω2
EU

c2α2
. (23.44)

In particular, when ρgo → 0, this equation yields R>/R< → 1. Therefore, according to relational
mechanics the Earth would have once more a spherical shape if it were possible to annihilate all other
astronomical bodies around it, figure 23.13. This prediction is compatible with Mach’s ideas. After all, if
the Earth were alone in the universe, it would not make sense to conceive that it could rotate relative to
anything. Therefore, all effects arising from the rotation of the Earth, like its flattening, must disappear
when we annihilate all other bodies in the universe.

As discussed in Subsection 13.1.2, Clarke and Carl Neumann concluded that a theory implementing
Leibniz’s relational ideas should lead to the consequence that the centrifugal forces acting on a spinning test
body should disappear if all other astronomical bodies were annihilated, such that the test body remained
alone in the universe. They considered this consequence absurd and intolerable. Ernst Mach also arrived
at the same conclusion. Mach, however, considered this consequence physically intuitive and reasonable,
instead of considering it absurd and intolerable. Relational mechanics implemented mathematically Mach’s
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Figure 23.13: (a) Flattening of the Earth due to its diurnal rotation relative to the galaxies. (b) The Earth
would be spherical by annihilating all other astronomical bodies.

principle. In particular, we showed that the inertial force acting on any test body depends on its interaction
with the other bodies in the universe which are distributed isotropically around the test body. By annihilating
these surrounding bodies, the inertial force goes to zero. Consequently, all effects due to the centrifugal force
disappear in relational mechanics by annihilating with all bodies which are around the test body.

Mach did not implement his ideas mathematically. This quantitative implementation is obtained with
relational mechanics. Equation (23.44), in particular, illustrates precisely the theoretical content of Mach’s
principle.

23.4.4 What Would Be the Shape of the Earth If it Were Possible to Rotate

the Set of Galaxies around the Terrestrial North-South Axis?

There is another interesting calculation which can be performed about the flattening of the Earth in an
hypothetical situation. Consider that the Earth is spinning with a constant angular velocity ~ωER = ωERẑ
around the z axis of a frame of reference R with its origin at the center of the Earth, while the set of galaxies
rotates together with a constant angular velocity ~ΩGR = ~ΩGRẑ in this frame of reference R, figure 23.14.
These two angular velocities, ωER and ΩGR, can be different from one another.

The equation of motion in this case is given by equation (17.96). There are three forces acting on an
element of gravitational mass dmgk = dmg and volume dV of the liquid Earth, namely, the centrifugal force
d~Fi, the weight d~Fg and the buoyant force d~Fb. The centrifugal force d~Fi = Φ∞dmgk(ωkR − ΩGR)

2ukûk

is due to the set of distant galaxies, with ωkR = ωER representing the angular velocity of dmg relative to
frame R. The weight d~Fg = dmgk~g is due to the remainder of the gravitational mass of the Earth. The
buoyant force d~Fb = −(∇p)dV is due to the gradient of pressure of the fluid around the test element. The
gravitational force per unit mass, ~g, is given by equation (10.33) for the situation of an ellipsoidal distribution
of matter. The gradient of pressure in spherical coordinates is given by equation (10.4).

The equation of motion of relational mechanics, equation (17.96), will be analogous to Newton’s second
law of motion, equation (10.2). However, instead of the inertial mass dmik of classical mechanics, it appears
the term Φ∞dmgk. Moreover, instead of the dynamical rotation of the Earth relative to absolute space given
by ωd of classical mechanics, it appears ωER − ΩGR. Therefore, the solution of the equation of motion in
relational mechanics will be similar to equation (10.43) with the appropriate replacements, namely:

R>

R<
≈ 1 +

5Φ∞(ωER − ΩGR)
2R3

4GMgE
. (23.45)

Utilizing that the density of gravitational mass of the Earth is given by ρgE = 3MgE/(4πR
3) and using

also equation (18.29), the flattening of the Earth in relational mechanics can be expressed as follows:

R>

R<
≈ 1 +

5ξ

4

ρgo
ρgE

(ωER − ΩGR)
2

c2α2
. (23.46)
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Figure 23.14: (a) Flattening of the Earth in an hypothetical situation in which the Earth and the set of
galaxies rotate with angular velocities ωER and ΩGR, respectively, around the North-South axis of the Earth,
relative to a frame of reference R. These two angular velocities may be different from one another. (b) Same
situation as seen from the North pole towards the South pole.

This relation is very interesting. We can compare it with equation (10.43) which was obtained with
newtonian mechanics as presented in a similar structure, namely:

R>

R<
≈ 1 +

15

16πG

ω2
d

ρE
. (23.47)

In relational mechanics the flattening is proportional to the ratio between the average volume density
of gravitational mass of the universe and the volume density of gravitational mass of the Earth, ρgo/ρgE .
In newtonian mechanics, on the other hand, the flattening depends only on the gravitational mass of the
Earth, being independent from the mean volume density of the gravitational mass of the set of galaxies. In
relational mechanics the flattening is proportional to the square of the relative rotation between the Earth
and the set of galaxies, (ωER − ΩGR)

2. In newtonian mechanics, on the other hand, the flattening depends
only on the square of the angular velocity of the Earth relative to absolute space, ω2

d. And this absolute
angular velocity ωd has no causal connection with the set of galaxies.

Equation (23.46) indicates that the Earth will be spherical whenever ωER = ΩGR, even when ωER 6= 0.
That is, the Earth should be spherical when there is no relative rotation between the Earth and the set of
galaxies. No absolute rotations appear in relational mechanics, only the relative rotation between the Earth
and the set of galaxies.

Equation (23.46) also shows that the flattening R>/R< does not depend on the absolute volume density of
gravitational mass of the Earth, as it is proportional to the ratio between two volume densities of gravitational
mass, namely, ρgo/ρgE . If we could increase or decrease both volume densities by the same factor (for
instance, doubling both of them), relational mechanics predicts that the ratio R>/R< will remain with the
same value. This equation is compatible with the principle of physical proportions.4

According to equation (23.46), the Earth should also acquire a spherical shape by annihilating all other
astronomical bodies around the Earth, that is, by making ρgo → 0. This conclusion represents a mathematical
implementation of Mach’s principle.

As seen in Subsection 10.2.3, Newton was the first to consider the dynamic consequences of this hypothet-
ical situation in which the Earth would be at rest relative to a frame of reference R, while the set of all other
astronomical bodies were rotating once a day around the North-South axis of the Earth. He concluded that
in this thought experiment the Earth would not be flattened. This conclusion is evident by the quotation
presented in Subsection 10.2.3 in which Newton said the following:5

4[Ass01], [Ass03a], [Ass04] and [Ass11b] with German translation in [Ass13a].
5[HH62, pp. 127-128], [New83, pp. 66-67] and [Ear89, p. 63].
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But who will imagine that the parts of the Earth endeavour to recede from its centre on account
of a force impressed only upon the heavens?

Mach also considered theoretically this possibility, as mentioned in Sections 14.6 and 14.7, being unaware
of Newton’s earlier discussion. Mach concluded that the flattening of the Earth should also happen in
this hypothetical situation, having the same value as the measure obtained in the real situation. This
conclusion is evident from Mach’s statement according to which6 “the principles of mechanics can, indeed,
be so conceived, that even for relative rotations centrifugal forces arise.” This machian conclusion is against
the points of view presented by Newton. Relational mechanics implemented mathematically this machian
hypothesis, as indicated by equation (23.46). According to this equation, the value of (R> − R<)/R<

will be given by 0.4% not only when ΩGR = 0 and ωER = 2π/Tday = 7.29 × 10−5 rad/s, but also when
ΩGR = −2π/Tday = −7.29× 10−5 rad/s and ωER = 0.

Moreover, the value of (R> − R<)/R< should increase if it were possible to increase the value of the
relative rotation between the Earth and the set of galaxies, that is, by increasing the value of ωER − ΩGR.
For instance, if it were possible to rotate the set of galaxies around the North-South axis of the Earth 5
times a day, the flattening of the Earth would be given by (R> − R<)/R< = 52 × 0.4% = 10%. Although
it is not possible to control the rotation of the set of galaxies around the Earth, we present in Subsection
24.5.7 a possible experimental test of these ideas.

The flattened figure of the Earth can no longer be utilized as proof of the Earth’s absolute and real
rotation. In relational mechanics this flattening of the Earth can be explained with the frame of distant
galaxies at rest in the universal frame U , exerting a gravitational force −Φ∞dmg~amU on any element of
gravitational mass dmg of the Earth, while the Earth rotates daily relative to this frame. This flattening
can also be explained in the terrestrial frame of reference with the Earth at rest, while the set of galaxies
rotates once a day around the North-South axis of the Earth. In the Earth’s frame of reference the set of
galaxies exerts a centrifugal gravitational force −Φ∞dmg

~ΩGT × (~ΩGT ×~rmT ) on any element of gravitational
mass dmg of the Earth. Both explanations are equally correct and yield the same flattening of the Earth.
It then becomes a matter of convenience or of convention to choose the Earth, the set of distant galaxies,
or any other body or system of reference as being at rest. All these frames of reference will yield the same
flattening of the Earth. This is an important and deep result of relational mechanics, which had not been
implemented mathematically by any other formulation of mechanics up to now.

6[Mac60, pp. 283-284].
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Chapter 24

Beyond Newton

In the previous Chapters we saw how we can obtain from relational mechanics the motion of bodies in several
situations, obtaining results which were similar to the study of these motions with newtonian mechanics.
Moreover, we were able to explain many puzzles of classical physics, such as the proportionality between
inertial mass and gravitational mass, the origin of centrifugal force, the origin of Coriolis’s force, etc.

In this Chapter we discuss some phenomena which are beyond the newtonian theory. These phenomena
come from the extra terms which appear in Weber’s force applied to gravitation, compared with Newton’s
inverse square law.

24.1 Precession of the Perihelion of the Planets in the Frame of

Fixed Stars

There are many works discussing mathematically the precession of the perihelion of a body orbiting around
another body, in an inertial frame of reference or in the universal frame of reference, utilizing Weber’s law
applied to electromagnetism and gravitation.1

We begin by discussing the problem of two bodies, 1 and 2, moving around one another, in the presence
of the set of distant galaxies. In the case of a planet orbiting around the Sun, the conditions specified by
equations (18.71) and (18.73) are satisfied, such that the equation of motion of body 1 in the frame F of the
fixed stars takes the form of equation (18.72), namely:

~F21 − Φ∞mg1~a1U = ~F21 − Φ∞mg1~a1F = ~0 . (24.1)

Here ~F21 represents the force exerted by 2 on 1, while ~a1F is the acceleration of body 1 relative to the
set of fixed stars. This acceleration ~a1F has essentially the same value of the acceleration of body 1 relative
to the universal frame U , ~a1U , namely, ~a1F = ~a1U .

The equation of motion for body 2 is given analogously by:

~F12 − Φ∞mg2~a2U = ~F12 − Φ∞mg2~a2F = ~0 . (24.2)

We consider here the Sun (represented by the index 2) interacting with a planed (represented by the
index 1). We can assume the planets to be material points, as their diameters are much smaller than their
distances to the Sun. In this problem, the Sun can also be considered to be a material point. As a matter
of fact, the force exerted by the Sun of radius RS on an external material point 1 is obtained integrating
equation (17.35). As we have shown before,2 the terms multiplying the second ξ in this equation are at least
6× 10−4 smaller than those multiplying the first ξ for the planetary system. Therefore, we can consider the
Sun as a material point in this problem.

The force exerted by the Sun 2 on a planet 1 according to Weber’s expression is then given by equation
(18.37):

1[See] with German translation in [See24], [Tis72], [Zol76, pp. xi-xii], [Zol83, pp. 126-128], [Ser], [Tis95], [Ger98], [Ger17],
[Sch25] (with commented Portuguese translation in [XA94] and with English translation in [Sch95]), [Nor65, p. 46], [Whi73,
pp. 207-208], [Eby77], [Ass89a], [CA91], [Ass94, Sections 7.1 and 7.5], [Ass98], [Ass99a] etc.

2[Ass89a].
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~F21 = −Gmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

= − ~F12 . (24.3)

From equations (24.1) up to (24.3), the equations of motion for bodies 1 and 2 take the following forms:

Φ∞mg1~a1F = − Gmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

, (24.4)

and

Φ∞mg1~a2F = + Gmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

. (24.5)

Adding these two equations yields the conservation of the total linear momentum of the system Sun-planet
relative to the frame of fixed stars, namely:

mg1~a1F +mg2~a2F =
d

dt
(mg1~v1F +mg2~v2F ) = ~0 . (24.6)

That is,

~v g
cmF ≡ mg1~v1F +mg2~v2F = constant in time . (24.7)

The center of gravitational mass of the Sun-planet system, ~r g
cmF ≡ (mg1~r1F + mg2~r2F )/(mg1 + mg2),

then moves with a constant linear velocity relative to the set of fixed stars.
We choose here a system of reference with origin O coinciding with the position vector of the center of

gravitational mass, such that ~r g
cmF = ~0 and ~v g

cmF = ~0, figure 24.1. To simplify the analysis we are considering
the set of galaxies at rest relative to frame F in this figure, although we might give to all the galaxies a
common constant velocity in frame F without affecting the calculations of this Section.
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Figure 24.1: (a) Bodies 1 and 2 moving around one another in the xy plane in the frame F of the fixed stars.
(b) This two-body system is equivalent to a single particle having a reduced gravitational mass mg moving
around the fixed mass mgt in frame F .

With this choice of the origin of the coordinate system we obtain:

~r2F = −mg1

mg2
~r1F , ~v2F = −mg1

mg2
~v1F , ~a2F = −mg1

mg2
~a1F . (24.8)

As seen in Section 18.4, there will be conservation of the total angular momentum ~Lt of the Sun-planet
system in the frame F of the fixed stars, due to the fact that Weber’s force between the Sun and the
planet is a central force pointing along the direction connecting the center of these two bodies. Moreover,
~r12 ≡ ~r1F − ~r2F and ~v12 ≡ ~v1F − ~v2F lie in a plane whose normal is parallel to the total angular momentum
vector ~Lt. We then choose a coordinate system centered on the center of gravitational mass of the system,
such that the z axis is parallel to ~Lt. In this frame of reference, the planet and the Sun will always move
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in the xy plane. We utilize plane polar coordinates (ρ, ϕ) defining also ~ρ ≡ ~ρ1F − ~ρ2F , ρ = |~ρ| = ρ1 + ρ2,
~vF ≡ ~v1F − ~v2F and ~aF ≡ ~a1F − ~a2F . Utilizing these definitions and making the difference between the
accelerations in equations (24.4) and (24.5) yields:

~aF = − G

Φ∞

mgt
ρ̂1
ρ2

[

1− ξ

c2

(

ρ̇2

2
− ρρ̈

)]

, (24.9)

where mgt ≡ mg1 +mg2 is the total gravitational mass of these two bodies.
This formula is equivalent to the equation of motion of a single particle of reduced gravitational mass mg

located at ~ρ = ρρ̂1, being attracted by a body of gravitational mass mgt which is at rest at the origin of the
coordinate system, figure 24.1 (b).

In terms of the polar coordinates, the acceleration can be written as:

~aF = (ρ̈− ρϕ̇2
1)ρ̂1 + (ρϕ̈1 + 2ρ̇ϕ̇1)ϕ̂1 . (24.10)

Utilizing equation (24.10), it is possible to separate equation (24.9) into two equations, one for the ϕ̂
tangential component and another for the ρ̂ radial component, namely:

ρϕ̈1 + 2ρ̇ϕ̇1 = 0 , (24.11)

and

ρ̈− ρϕ̇2
1 = − G

Φ∞

mgt

[

1

ρ2
+

ξ

c2

(

ρ̈

ρ
− ρ̇2

2ρ2

)]

. (24.12)

The first of these equations yields the conservation of angular momentum. This means that the quantity
H ≡ ρ2ϕ̇1 is a constant for all time.

Defining a magnitude u by u ≡ 1/ρ and utilizing a standard prescription, equation (24.12) can be put in
the following form:

d2u

dϕ2
1

+ u =
G

Φ∞

mgt

{

1

H2
− ξ

c2

[

1

2

(

du

dϕ1

)2

+ u
d2u

dϕ2
1

]}

. (24.13)

There is an exact solution of this equation in terms of elliptic functions.3 Here we solve this equation by
another procedure, iteratively.4 Observing that the second and third terms in the curly brackets are much
smaller than the first one, we seek a solution in the form u(ϕ1) = uo(ϕ1) + u1(ϕ1), with |uo| ≫ |u1|, and
where uo and u1 satisfy the following equations:

d2uo

dϕ2
1

+ uo =
G

Φ∞

mgt

H2
, (24.14)

and

d2u1

dϕ2
1

+ u1 = − G

Φ∞

mgt
ξ

c2

[

1

2

(

duo

dϕ1

)2

+ uo
d2uo

dϕ2
1

]

. (24.15)

The solution of equation (24.14) is the classical result given by:

uo(ϕ1) =
G

Φ∞

mgt

H2
+A cos(ϕ1 − ϕo) , (24.16)

where A and ϕo are constants depending on the initial conditions. Utilizing this solution for uo into equation
(24.15), the solution for u1 is found to be

u1(ϕ1) =

(

G

Φ∞

)2 m2
gtA

2H2

ξ

c2
(ϕ1 − ϕo) sin(ϕ1 − ϕo) +

G

Φ∞

mgtA
2

2

ξ

c2
sin2(ϕ1 − ϕo) . (24.17)

The turning points, at which the distance of the planet from the Sun is a maximum or a minimum, are
given by du/dϕ1 = 0. We can see from these equations that ϕ1 = ϕo is one solution. After one revolution,
the turning point will be near ϕo + 2π. Expanding du/dϕ1 around this value and equating to zero yields:

3[CA91] and [Ass94].
4[Ass89a].
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ϕ1 ≈ ϕo + 2π +

(

G

Φ∞

)2 πm2
gt

H2

ξ

c2
. (24.18)

The advance of the perihelion in one revolution is then given by

∆ϕ1 = π
ξ

c2

(

G

Φ∞

)2 m2
gt

H2
= π

ξ

c2
G

Φ∞

mgt

a(1 − ε2)
, (24.19)

where a is the semi-major axis and ε is the eccentricity of the orbit.
It is now imposed that

ξ = 6 . (24.20)

Utilizing equations (24.20) and (18.29), we arrive at a result which is well observed in the solar system,
namely:

∆ϕ1 =
6πGmgt

c2a(1− ε2)
. (24.21)

The algebraic expression for the advance of the perihelion of the planets given by equation (24.21) agrees
with the algebraic expression given by Einstein’s general theory of relativity.

Despite this coincidence, the orbit equation obtained in general relativity is given by:

d2u

dϕ2
1

+ u = G
M

H2
+G

3mgt

c2
u2 . (24.22)

Equation (24.13) is different from equation (24.22). Therefore, these two equations are not in general
equivalent to one another. At zeroth order both equations yield the ellipses, parabolas and hyperbolas of
newtonian theory. At first order both equations yield the same precession of the perihelion of the planets.
At the second order they differ from one another. At present, we cannot distinguish the second order terms
of these theories utilizing the data of the solar system. These second order terms in both theories are very
small. There is not yet a precise knowledge of the observational data which might allow a distinction of
these two predictions up to terms of second order.

In any event, before comparing these two equations in second order, it would be more important to review
the calculations of the precession of the perihelion of the planets utilizing these two theories, but taking into
account the perturbation due to other planets. As is well known, the newtonian theory explains most of
the observed precession of the perihelion of the planets taking into account the perturbations due to other
planets. But there remains a small observed residual value which the newtonian theory cannot explain. It is
this residual value which is explained in general relativity and in relational mechanics by equation (24.21). In
order to be coherent, it would be better to calculate the precession due to the perturbation of other planets
again, not with the newtonian inverse square force, but with general relativity and Weber’s force applied
to gravitation. We then see what residual values would remain with both theories (they may be different
from one another, or from the residual value given by the newtonian theory). After this calculation we can
compare the residual values which cannot be explained in both models considering only the influence of the
other planets, if they still exist, with equation (24.21). In other words, taking into account the effect due to
the Sun.

24.2 Anisotropy of the Effective Inertial Mass in Gravitation

We discuss here an important consequence of any model that seeks to implement Mach’s principle. We
concentrate our analysis on Weber’s law applied to gravitation. When we identify relational mechanics
with newtonian mechanics, it becomes possible to understand several aspects of classical physics which
traditionally had no explanation. Moreover, it becomes possible to offer a new interpretation to several
concepts introduced by Newton. For instance, in relational mechanics the concept of inertial mass does
not appear, as we only introduce the concept of gravitational mass. However, when we compare relational
mechanics with newtonian mechanics, it becomes possible to write the equation of motion having a form
similar to Newton’s second law of motion. As Newton’s second law of motion contains the concept of inertial
mass, by comparing the equations of motion in these two theories it becomes possible to introduce an effective
inertial mass in relational mechanics. With the comparison of these two theories it is also possible to conclude
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that the inertial force is a real force coming from the gravitational interaction of the test body with the set of
galaxies around the test body. One consequence of this fact can be expressed as follows: If the distribution of
matter around the test body is anisotropic, the effective inertial mass of the test body should be anisotropic
as well.

We illustrate here this effect of an effective anisotropic inertial mass of a test body. To this end we
consider two bodies orbiting around one another in the frame of fixed stars. In classical mechanics this was
a simple two-body problem, namely, the Sun and the planet. After all, we could describe the orbits of the
Sun and the planet moving relative to Newton’s absolute space, a space which had no relation to anything
material. In relational mechanics, on the other hand, this is a many-body problem, namely, the Sun, the
planet and the set of galaxies distributed around them.

Initially we consider the problem from the point of view of classical mechanics. There is a planet of
inertial mass mi1 and gravitational mass mg1 interacting with the Sun of inertial mass mi2 and gravitational
mass mg2. As mi2 ≫ mi1 and mg2 ≫ mg1, we can consider the Sun at rest relative to an inertial frame of
reference, while the planet orbits around the Sun. We consider the motion in the xy plane, utilizing polar
coordinates (ρ, ϕ) centered on the Sun, such that ρ =

√

x2 + y2 and tanϕ = y/x. The acceleration ~a1 of
the planet in this inertial frame of reference is given by:

~a1 = (ρ̈− ρϕ̇2)ρ̂+ (ρϕ̈+ 2ρ̇ϕ̇)ϕ̂ . (24.23)

The equation of motion for the planet in this inertial frame is given by:

−Gmg1mg2ρ̂

ρ2
= mi1~a1 = mi1

[

(ρ̈− ρϕ̇2)ρ̂+ (ρϕ̈+ 2ρ̇ϕ̇)ϕ̂
]

. (24.24)

The tangential component of this equation in the direction ϕ̂ can be written as:

ρϕ̈+ 2ρ̇ϕ̇ =
1

ρ

d

dt
(ρ2ϕ̇) = 0 . (24.25)

From equation (24.25) we conclude that the magnitude H ≡ ρ2ϕ̇ is constant in time. This fact can be
expressed by saying that the angular momentum of the planet around the Sun is conserved. This fact that
ρ2ϕ̇ is constant in time is equivalent to Kepler’s area law.

The radial component of equation (24.24) along the radial ρ̂ direction can be written as:

−Gmg1mg2

ρ2
= mi1ρ̈−mi1ρϕ̇

2 . (24.26)

We now present the same problem from the point of view of relational mechanics. In Section 24.1
we obtained the equation of motion for planet 1 of gravitational mass mg1 interacting with the Sun 2 of
gravitational mass mg2. In relational mechanics we must also include the gravitational interaction between
planet and the set of galaxies, and the gravitational interaction between the Sun and the set of galaxies. The
motion of the planet is described by equation (24.4). In the approximation in which mg2 ≫ mg1, we can
neglect the motion of the Sun compared with the motion of the planet in the frame of fixed stars. With the
motion in the xy plane centered on the Sun we obtain, in polar coordinates: r12 = ρ, ṙ12 = ρ̇, r̈12 = ρ̈ and
r̂12 = −ρρ̂, where ρ represents the distance between the planet and the Sun. The tangential component ϕ̂ of
equation (24.4) yields the conservation of angular momentum in the frame of fixed stars, equations (24.11) or
(24.25). The radial component of equation (24.4) is given by equation (24.12). Multiplying equation (24.12)
by mg1, utilizing the approximation mg2 ≫ mg1 and combining the terms proportional to ρ̈, yields:

− G

Φ∞

mg1mg2

ρ2

(

1− ξ

2

ρ̇2

c2

)

= mg1

(

1 +
Gmg2ξ

Φ∞ρc2

)

ρ̈−mg1ρϕ̇
2 . (24.27)

In order to compare equations (24.26) and (24.27) we utilize that Φ∞ = 1, equation (18.29). Moreover,
we define the concept of an “effective tangential inertial mass” by the following expression:

mtan
i1 ≡ mg1 . (24.28)

We also define the concept of an “effective radial inertial mass” by the following expression:

mrad
i1 ≡ mg1

(

1 +
Gmg2ξ

ρc2

)

. (24.29)
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Utilizing definitions (24.28) and (24.29), equation (24.27) can then be written as follows:

−Gmg1mg2

ρ2

(

1− ξ

2

ρ̇2

c2

)

= mrad
i1 ρ̈−mtan

i1 ρϕ̇2 . (24.30)

Equation (24.30) is analogous to equation (24.26), with the exception of the term in parenthesis on the
left hand side of equation (24.30). That is, the right hand sides of these two equations are analogous to
one another. However, there is an important difference between equations (24.26) and (24.30). In classical
mechanics, the inertial mass multiplying ρ̈ and the inertial mass multiplying ρϕ̇2 are equal to one another.
They are also equal to the gravitational mass of the planet, namely, mi1 = mg1. In relational mechanics
the effective inertial mass along the tangential direction is equal to the gravitational mass of the planet,
mtan

i1 ≡ mg1. The effective inertial mass along the radial direction, on the other hand, is greater than
the effective tangential inertial mass, being given by mrad

i1 ≡ mg1(1 + Gmg2ξ/ρc
2). In classical mechanics

the tangential and radial inertial masses are equal to one another. In relational mechanics, on the other
hand, the effective radial inertial mass is greater than the effective tangential inertial mass. The origin of
this difference is related to Weber’s gravitational force, which has a component depending on the relative
acceleration between the interacting bodies. In particular, due to the radial interaction between the Sun
and the planet, the planet will behave as having an effective inertial mass along the radial direction which is
larger that its effective inertial mass along the tangential direction. As seen in Section 24.1, the precession
of the perihelion of the planet is due exactly to this anisotropic effective inertial mass.

We may then consider the precession of the perihelion of the planets as another strong fact supporting
(although not proving) Mach’s principle. This effect also supports the concept of the anisotropy in the
effective inertial masses of bodies. The first scientist to arrive clearly at this conclusion seems to have been
Erwin Schrödinger.5 He calculated the precession of the perihelion of the planets utilizing a potential energy
analogous to Weber’s potential energy, instead of working with forces. It was shown in Subsection 17.6.2,
equation (17.44), that the energy of gravitational interaction between a planet and the set of distant galaxies
is given by a constant term plus Φ∞mg1v

2
1U/2, where mg1 is the gravitational mass of the planet and v1U

represents its velocity relative to the universal frame U . Utilizing polar coordinates in the plane of motion,
utilizing the approximation that the gravitational mass of the Sun is much greater than the gravitational
mass of the planet (mg2 ≫ mg1) and considering only the component of the velocity of the planet in the
frame F of the fixed stars, this velocity can be written as v21F = ρ̇2 + ρ2ϕ̇2. According to Weber’s law, the
energy of gravitational interaction between the planet and the Sun is given by equation (18.36). The law
for the conservation of energy in relational mechanics is given by equation (17.74). With the considerations
presented in this paragraph, the constant total energy of a planet interacting with the Sun and with the set
of distant galaxies can then be written as follows, with Φ∞ = 1:

−G
mg1mg2

ρ

(

1− ξ

2

ρ̇2

c2

)

+mg1
ρ̇2 + ρ2ϕ̇2

2
= constant in time . (24.31)

Utilizing equations (24.28) and (24.29), equation (24.31) can be written as:

−G
mg1mg2

ρ
+

mrad
i1

2
ρ̇2 +

mtan
i1

2
ρ2ϕ̇2 = constant in time , (24.32)

where the effective inertial masses mtan and mrad were defined in equations (24.28) and (24.29), respectively.
This is the law for the conservation of energy in relational mechanics.
The law for the conservation of energy in classical mechanics, on the other hand, is given by:

−G
mg1mg2

ρ
+

mi1

2
ρ̇2 +

mi1

2
ρ2ϕ̇2 = constant in time . (24.33)

Equations (24.32) and (24.33) are analogous to one another. But there is an important difference be-
tween these two equations. According to equation (24.33), the mass multiplying ρ̇2 is identical to the mass
multiplying ρ2ϕ̇2. According to equation (24.32), on the other hand, the effective radial inertial mass mrad

i1

multiplying ρ̇2 is greater than the effective tangential inertial mass mtan
i1 multiplying ρ2ϕ̇2, with these effec-

tive inertial masses defined by equations (24.28) and (24.29). This was the conclusion of Schrödinger when
he wrote:6

5[Sch25], [XA94] and [Sch95].
6[Sch25], [XA94] and [Sch95, p. 151].
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The presence of the Sun has, in addition to the gravitational attraction, also the effect that the
planet has a somewhat greater inertial mass ‘radially’ than ‘tangentially’.

The different effective inertial masses in the radial and tangential components yield the precession of the
perihelion of the planets in relational mechanics. The observed precession of the perihelion of the planets
can then be regarded as a strong argument in favor of the anisotropy of the effective inertial mass of bodies.
Schrödinger goes on to conclude that the inertial mass of a body should be greater in the galactic plane than
perpendicular to it7

A mass distribution like that established for the radiating stars would have to have the conse-
quence that bodies are subject to a greater inertial resistance in the galactic plane as at right
angles to it.

For a different approach on this topic see Eby’s work.8

We conclude here by calling attention to the work of the Nobel prize winner Maurice Allais and of other
writers quoted in his work. In optical experiments and in experiments performed with pendulums they
found anomalous effects which might be interpreted as an anisotropy in the inertial mass of a test particle
connected with the location of astronomical bodies (like the Sun, Moon, etc.) around the test body.9

24.3 Effective Inertial Mass in Electromagnetism

Relational mechanics is based on Weber’s law applied to gravitation. The main difference of relational
mechanics, when compared with newtonian mechanics and with Einstein’s general theory of relativity, is
related to the force exerted by a stationary spherical shell of radius R and gravitational mass Mg and acting
on a test body of gravitational mass mg which is moving inside the shell. In newtonian theory and also in
Einstein’s general theory of relativity the spherical shell exerts no net force on the test body, no matter the
position, velocity or acceleration of the test body relative to the shell, equations (1.11) and (16.4). According
to Weber’s law for gravitation, on the other hand, there will be a force different from zero exerted by the
stationary shell and acting on the internal test body, whenever the test body is accelerated relative to the
shell, equation (17.22).

This different behavior also happens in electromagnetism. Suppose there is a test particle electrified with
a charge q interacting with other bodies close to it. These other source bodies can include charges q1, ...,
qn, a magnet NS, a circuit C carrying an electric current I, etc. Let ~a be the acceleration of the test body
relative to the universal frame U due to these interactions of the test body, figure 24.2 (a). The test charge
might, for instance, be accelerated inside a capacitor, might describe a curved path as it is deflected by a
magnet, might oscillate around an equilibrium position, etc.

Suppose that we now surround the whole system by a spherical shell of radius R uniformly charged with
a total charge Q, figure 24.2 (b). The shell and the charges spread over its surface are supposed to remain
at rest in an inertial frame of reference, like the universal frame U . Let us suppose that this spherical shell
is made of an insulating material, in such a way that the charges spread over its surface are not affected by
the position nor by the motion of the charges and magnets inside the shell. Will there be any change in the
trajectory of the test charge by surrounding the system with this electrified spherical shell? What will be
the new acceleration of the test charge in the situation of figure 24.2 (b)?

The uniformly charged spherical shell of radius R and total charge Q creates no electric field and no
magnetic field inside it, ~E = ~0 and ~B = ~0. Therefore, according to Maxwell-Lorentz’s force, equation (3.15),
there will be no force exerted by the electrified shell on any internal test body. That is, according to classical
electromagnetism, the net force exerted by the electrified shell on the test body goes to zero, no matter
the position, velocity nor acceleration of the test charge relative to the shell. Therefore, there should be no
alteration in the trajectory of the test charge, no matter the radius R of the shell nor the value of its total
charge Q which is uniformly spread over its surface. If the test charge had an acceleration ~a in the situation
of figure 24.2 (a) due to its interaction with local bodies, then it should move with the same acceleration ~a in
the situation of figure 24.2 (b), no matter the value of Q. If the test charge were describing a circular orbit
of radius r with an angular velocity ω, or if it were vibrating with an angular frequency ω in the situation

7[Sch25], [XA94] and [Sch95, p. 153].
8[Eby97].
9[All97].
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Figure 24.2: (a) Test charge q moving relative to the universal frame U with an acceleration ~a due to its
interactions with local bodies. (b) What will be the new acceleration of the test body by surrounding the
whole system by a spherical shell of radius R uniformly charged with a total charge Q?

of figure 24.2 (a), then it should remain moving in the same orbit and with the same frequency in the case
of figure 24.2 (b).

According to Weber’s electrodynamics, on the other hand, the test charge should behave differently in
the cases of figures 24.2 (a) and (b).10

We first consider the situation of figure 24.2 (a). Let
∑N

p=1

p 6=k

~Fpk represent the sum of forces acting on

the test charge q due to its interaction with local bodies. The force exerted by the set of distant galaxies on
the test body of gravitational mass mgk is given by −Φ∞mgk~akU . According to the principle of dynamical
equilibrium given by equation (17.77), the equation of motion of the test charge is given by:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akU = ~0 . (24.34)

Here ~akU represents the acceleration of the test charge q in the situation of figure 24.2 (a) due to its interaction
with the local bodies and with the set of distant galaxies. The test charge behaves as having an effective
inertial mass given by:

ma
ik ≡ Φ∞mg . (24.35)

With this definition, equation (24.34) of relational mechanics can be expressed as Newton’s second law
of motion, equation (1.5), namely:

N
∑

p=1

p 6=k

~Fpk = ma
ik~akU . (24.36)

We now consider the situation of figure 24.2 (b) when the system has been surrounded by a spherical
shell of radius R uniformly charged with a total charge Q. The shell and the charges spread over its surface
are supposed to remain at rest in the universal frame U , no matter the position nor the motion of the bodies
inside it. According to Weber’s electrodynamics, the shell will exert a force ~FQq on the internal test body
whenever it is accelerated relative to the shell, equation (8.56). As the spherical shell is considered to be at
rest in the universal frame U , this force ~FQq assumes the simple form given by:

~FQq =
µoqQ

12πR
~akU . (24.37)

In the following calculation we neglect the gravitational force exerted by the gravitational mass Mg of the
shell acting on the gravitational mass mgk of the test body, when compared with the electric force given by

10[Ass89a], [Ass92a], [Ass93a] and [Ass94, Section 7.3].
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equation (24.37). Combining the force given by equation (24.37) with the principle of dynamical equilibrium,
equation (17.77), the equation of motion for the test body in the case of figure 24.2 (b) assumes the following
form:

N
∑

p=1

p 6=k

~Fpk +
µoqQ

12πR
~akU − Φ∞mgk~akU = ~0 . (24.38)

We define a new inertial mass given by:

mb
ik ≡ Φ∞mg −

µoqQ

12πR
. (24.39)

With this definition, the equation of motion (24.38) obtained in relational mechanics considering also
Weber’s force exerted by the electrified shell and acting on the accelerated internal test charge can be
expressed like Newton’s second law of motion, equation (1.5), namely:

N
∑

p=1

p 6=k

~Fpk = mb
ik~akU . (24.40)

In the situation of figure 24.2 (a) the test charge behaved as having an effective inertial mass given by
ma

ik = Φ∞mg. In the situation of figure 24.2 (b), on the other hand, the test charge will behave, according to
Weber’s electrodynamics and relational mechanics, as having an effective inertial mass mb

ik given by equation
(24.39). When q and Q have the same sign, Qq > 0, the effective inertial mass in the situation of figure
24.2 (b) will be smaller than the effective inertial mass in the case of figure 24.2 (a). This effect might be
indicated by a larger acceleration or by a larger frequency of oscillation of the test charge. When q and Q
have opposite signs, qQ < 0, the effective inertial mass in the case of figure 24.2 (b) will be greater than
the effective inertial mass of figure 24.2 (a). This effect might be indicated by a smaller acceleration or by
a smaller frequency of oscillation of the test charge. These effects are not predicted in Maxwell-Lorentz’s
electrodynamics.

Some experiments have been recently performed trying to test this effect, but the outcome of these
experiments still contradict one another.11

It was seen in Section 24.2 that the effective inertial mass of a test body will have different values in
different directions when there is an anisotropy in the distribution of gravitational mass around the test
body. This anisotropy in the effective inertial mass of bodies is observed in purely gravitational interactions
(precession of the perihelion of the planets). In electromagnetic interactions, this anisotropic behavior should
also happens. The self-inductance L of an electric circuit can be interpreted, according to Weber’s electro-
dynamics, as being proportional to the effective inertial mass of the conduction electrons.12 A conduction
electron should have an effective inertial mass many orders of magnitude greater than the inertial mass of
a free electron. This much greater effective inertial mass is due, according to Weber’s electrodynamics, to
the interaction of the conduction electron with the positive lattice of the conductor. The anisotropy in the
effective inertial mass explains the observed anisotropy in the self-inductance of a circuit when there is an
alternating current. Consider, for instance, a conducting cylindrical shell of radius r and length ℓ. The
self-inductance for axial currents flowing along the axis of the cylinder is different from the self-inductance
for azimuthal currents flowing circularly around the axis of the cylinder. Weber’s electrodynamics explains
this effect as being due to the anisotropic effective inertial masses of conduction electrons along the axial and
azimuthal directions. It is a known experimental fact that the self-inductance for the same cylindrical shell
is different for different directions of current flow. This effect can be deduced from Weber’s electrodynamics.
Therefore, it yields great support to the idea of an anisotropic effective inertial mass.

The effect should also appear in other electromagnetic situations. Suppose that a test charge is interacting
with anisotropic distributions of charge around it, which are fixed in the laboratory. According to Weber’s
electrodynamics, the test charge should behave as if it had an effective inertial mass which should depend
on the geometry of the problem, on the direction of motion of the test charge relative to the laboratory, and
on the electrostatic potential energy where it is located.13 Experimental tests of this fact, which does not
appear in Maxwell-Lorentz’s electrodynamics, have been proposed in other studies.14 We believe Weber’s

11[Mik99], [Mik01], [Mik03] and [JP04].
12[Ass97a] and [AH06].
13[Ass89b], [AC91], [Ass92b, Section 5.6], [Ass94, Section 7.2], [CA95b], [CA95a] and [Ass95b, Section 5.5].
14[Ass92a] and [Ass93a].
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electrodynamics will be vindicated by these experiments. In order to perform the test, it is important to keep
the anisotropic distributions of charge, which are acting on the test charge, fixed relative to one another and
also fixed relative to the laboratory, while the test charge is accelerated relative to them and also accelerated
relative to the laboratory. Therefore, the experiment cannot be performed by charging a Faraday cage and
accelerating test charges inside it. The reason for avoiding experiments with conducting cages is that in this
latter situation there are free charges in the metallic Faraday cage which will move when the test charge is
accelerated inside it, responding to the motion of the test charge. This motion of charges in the cage can
mask the effect to be observed (the possible change in the effective inertial mass of the test charge). To
perform the experiment it is important to charge a dielectric, which will keep the net charges fixed relative
to it, no matter the position nor the motion of the test charge inside the dielectric.

It would also be important to test the existence of a possible centrifugal electrical force. This force is
predicted by Weber’s electrodynamics, but is not predicted by Maxwell-Lorentz’s electrodynamics.15

24.4 Particles Moving with High Velocity in the Universal Frame

of Reference

There are some experimental indications suggesting that the correct expression for the kinetic energy of
bodies moving with velocity ~v in the universal frame of reference is given by mc2(1/

√

1− v2/c2 − 1) instead
of mv2/2. These indications come from experiments with high speed electrons in accelerators and also in
high energy collisions of charged particles. Following this clue, Schrödinger in his important paper of 1925,
and independently Wesley in 1990, proposed a modification of Weber’s potential energy for gravitation.16

What they proposed was a gravitational potential energy between two gravitational masses mg1 and mg2

given by

U12 = β
mg1mg2

r12
+ γ

mg1mg2

r12

1

(1− ṙ212/c
2)3/2

. (24.41)

Schrödinger proposed β = −3G and γ = 2G, while Wesley proposed β = −4G/3 and γ = G/3. When
ṙ12 = 0 we recover the newtonian potential energy. Expanding this expression up to second order in ṙ12/c
yields a potential energy for gravitation analogous to Weber’s.

The force exerted by 2 on 1 is obtained by ~F21 = −r̂12dU12/dr12 or by dU12/dt = −~v12 · ~F21. This yields:

~F21 = mg1mg2
r̂12
r212

[

β + γ

(

1− ṙ212
c2

− 3
r12r̈12
c2

)(

1− ṙ212
c2

)−5/2
]

. (24.42)

We now integrate both expressions for a test particle of gravitational mass mg1 interacting with the
isotropic distribution of matter around it (with the isotropic distribution of distant galaxies with a constant
volume density of gravitational mass ρgo). We perform the integration in the universal frame of reference
U , frame in which the set of distant galaxies is essentially at rest. That is, the set of galaxies has no linear
velocity, no linear acceleration and no rotation as a whole. The velocity and acceleration of mg1 relative to
this frame are given by, respectively: ~v1U and ~a1U . The result of the integration of equations (24.41) and
(24.42) with r12 going from 0 up to the Hubble distance Ro ≡ c/Ho is given by

Ui = 2π
mg1ρgoc

2

H2
o

(

β +
γ

√

1− v21U/c
2

)

, (24.43)

and

~Fi = −2πγ
ρgo
H2

o

[

mg1~a1U
√

1− v21U/c
2
+

mg1~v1U (~v1U · ~a1U )
c2(1− v21U/c

2)3/2

]

= −2πγ
ρgo
H2

o

d

dt

(

mg1~v1U
√

1− v21U/c
2

)

. (24.44)

If we wanted to integrate to infinity without obtaining infinite values for Ui and ~Fi, it would only be
necessary to include an exponential decay of the type e−αr12 in both terms on the right hand side of equation
(24.41), as was done with equation (17.17).

15[Ass92a], [FA03], [Ass94, Section 7.4: Centrifugal Electrical Force] and [AFC00].
16[Sch25], [XA94] and [Sch95], [Wes90] and [Ass94, Sectin 7.7].
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With the principle of dynamical equilibrium, equations (17.3) and (17.4), it is then possible to deduce
an expression analogous to Einstein’s relativistic kinetic energy, equation (24.43), and an equation of motion
analogous to the equation of motion of Einstein’s general theory of relativity, equation (24.44). But despite
the similarity in the form of the equations, there are many differences in both models. The first difference
is that results (24.43) and (24.44) of relational mechanics were obtained after a gravitational interaction of
the test body with the set of distant galaxies, while this is not the case in Einstein’s theory of relativity.
As a consequence, the masses which appear in equations (24.43) and (24.44) are gravitational masses, while
the Einsteinian masses are inertial masses in the newtonian sense, with inertia related to space and not to
distant matter. Moreover, the velocities and accelerations of the test body which appear in these equations
of relational mechanics are relative to the set of distant galaxies, that is, relative to the universal frame U ,
while in Einstein’s theory they are relative to an arbitrary inertial frame of reference.

Let us consider two bodies 1 and 2 interacting with one another. Each one of these bodies interacts also
with the set of distant galaxies. The principle of dynamical equilibrium applied to equations (24.42) and
(24.44) yields the equation of motion for body 1 in the universal frame of reference, namely:

mg1mg2
r̂12
r212

[

β + γ

(

1− ṙ212
c2

− 3
r12r̈12
c2

)(

1− ṙ212
c2

)−5/2
]

− 2πγ
ρgo
H2

o

[

mg1~a1U
√

1− v21U/c
2
+

mg1~v1U (~v1U · ~a1U )
c2(1− v21U/c

2)3/2

]

= ~0 . (24.45)

We now assume that bodies 1 and 2 are orbiting around one another in this frame U satisfying the
following conditions: ṙ12 = 0, r̈12 = 0 and v21U ≪ c2. In this case equation (24.45) reduces to:

(β + γ)H2
o

2πγρgo
mg1mg2

r̂12
r212

= mg1~a1U . (24.46)

We can now compare equation (24.46) with Newton’s second law of motion coupled with his universal law
of gravitation, equation (7.27). This comparison, combined with the equality of inertial and gravitational
masses in classical mechanics, equation (7.21), shows that we can recover newtonian mechanics only if the
following relation is exactly valid:

(β + γ)H2
o

2πγρgo
= −G . (24.47)

Utilizing the values of β and γ given by Schrödinger and Wesley, and the observational values of Ho, ρgo
and G, we find that this relation is approximately valid. We cannot say that this relation is exactly valid,
due to uncertainties in the observational values of Ho and ρgo. In any event, we see once more that with
β/γ ≈ −1 we obtain as a consequence of relational mechanics that H2

o/ρgo ≈ G, a result which is confirmed
by the observational values of these three magnitudes, namely, Ho, ρgo and G. It should be emphasized that
these three magnitudes are conceptually independent from one another in classical physics.

An important topic in relational mechanics deals with the interaction between matter and radiation:
deflection of light in a gravitational field and gravitational redshift. The first paper dealing with the bending
of light utilizing a Weber’s type law for gravitation has been given by Ragusa.17 In order to obtain the correct
bending of light and the correct precession of the perihelion of the planets he introduced two parameters,
one in front of ṙ2 and another in front of rr̈. However, although it worked correctly, this solution has
problems with the conservation of energy as has been pointed out by Bunchaft and Carneiro.18 But as
they say in the paper, if there are in the gravitational law terms of order higher than 1/c2, they would not
affect the calculations for the precession of the perihelion (low velocity phenomenon) but would affect the
calculation for the gravitational deflection of light. Once more we need further research in this direction
before drawing final conclusions. To our knowledge there are not yet publications with complete calculations
for the gravitational redshift performed with Weber’s law for gravitation and with generalizations of it to
high velocity particles (for velocities close to c or equal to c).

17[Rag92].
18[BC97].
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24.5 Experimental Tests of Relational Mechanics

24.5.1 Variation in the Free Fall Acceleration by Surrounding the Test Body

with a Spherical Shell

A first experimental test of relational mechanics has been pointed out in Subsection 18.7.1. This test is
illustrated in figure 24.3.

a = gmT

mg

(a)

a = ?mT

mg

Mg

(b)

Figure 24.3: (a) Free fall acceleration near the surface of the Earth. (b) What would be the acceleration of
free fall by surrounding the test body with a spherical shell at rest relative to the ground?

Suppose a test body of gravitational mass mg in free fall near the surface of the Earth (gravitational
mass MgE and radius RE). It falls with an acceleration amT = g = GMgE/R

2
E = 9.8 m/s2 relative to the

ground, figure 24.3 (a). Suppose that we now surround the test body with a spherical shell of gravitational
mass Mg and radius R. This spherical shell is supposed to remain at rest in the ground, figure 24.3 (b).
What will be the free fall acceleration of the test body in this case?

In Subsections 1.4.1 and 16.3.2 it was seen that in newtonian mechanics (N) and in Einstein’s general
theory of relativity (E), the stationary spherical shell does not exert any net force on any test body inside it,
no matter the position, velocity nor acceleration of the test body relative to the shell, equations (1.11) and
(16.4). Therefore, the free fall acceleration of the test body in the situation of figure 24.3 (b) should remain
the same as that of figure 24.3 (a), namely:

aNmT = aEmT =
Fg

mi
=

mg

mi
g = g =

GMgE

R2
E

= 9.8
m

s2
. (24.48)

In relational mechanics (RM), on the other hand, the free fall acceleration in the situation of figure 24.3
(b) should be smaller than the acceleration of figure 24.3 (a). The equation of motion for the test body is
given by equations (18.57) and (18.58). It is possible to consider ~amU = ~amT in these equations due to the
fact that in this problem approximations (18.67) and (21.1) are valid. The only force acting on the test body
due to anisotropic distributions of matter around the test body is given by the gravitational force of the
Earth. In the approximation considered here in which ṙ2/c2 ≪ 1 and |rr̈|/c2 ≪ 1, Weber’s force reduces to
Newton’s law of gravitation. Equation (18.58) can then be written as follows, with r̂ representing the unit
vector pointing from the center of the Earth to the test body:

−GMgEmg

R2
E

r̂ − Φ∞mg

(

1 +G
ξ

3c2
Mg

R

)

~amT = ~0 . (24.49)

Combining equations (24.49) and (18.29) we obtain that the free fall acceleration according to relational
mechanics in the situation of figure 24.3 (b) is given by:

aRM
mT =

g

1 +GξMg/3c2R
≈ g

(

1− GξMg

3c2R

)

. (24.50)

In the situation of figure 24.3 (a) the test body behaves as having an effective inertial mass mik given by
mik = Φ∞mg. When the test body is surrounded by an spherical shell of gravitational mass Mg as in figure
24.3 (b) it behaves, according to relational mechanics, as having a larger effective inertial mass mik given
by:
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mik ≡ Φ∞mgk

(

1 +
GξMg

3c2R

)

. (24.51)

We can estimate this increase in the effective inertial mass of the test body considering a spherical shell
with a radius R = 1 m and a gravitational mass Mg = 100 kg. From equation (24.50) with ξ = 6 we obtain
that the free fall acceleration would change by only 1 part in 1025. This extremely small value cannot be
detected in the laboratory. In any event, this effect is conceptually important as no change would happen
with the theories of Newton and Einstein, as they do not predict any influence exerted by a stationary
spherical shell acting on internal test bodies.

This effect might also be detected accelerating the test body by non gravitational forces. We might, for
instance, measure the acceleration of an electron in a particle accelerator. The experimental setup would
then be surrounded by a spherical shell of radius R and gravitational mass Mg. The electron would once
again have its acceleration measured in the particle accelerator. No change in the acceleration should happen
according to the theories of Newton and Einstein. According to relational mechanics, on the other hand, its
acceleration when surrounded by the spherical shell should be smaller than the acceleration when there is
no spherical shell around it. Its effective inertial mass should increase according to equation (24.51). This
effect might be detected with a linear translational acceleration and also with a centripetal acceleration in
the situation of circular orbits.

24.5.2 Variation in the Frequency of Oscillation of a Test Body Moving Inside

a Spherical Shell

In Subsection 24.5.1 we considered the free fall acceleration of a test moving moving at the surface of the
Earth in two situations, namely, (a) without a surrounding spherical shell and (b) surrounded by a spherical
shell. Instead of considering the free fall acceleration, we can also analyze the oscillation of a test body in
these two situations.

We consider here the oscillation of a test body of gravitational mass mg connected to a spring of elastic
constant k oscillating horizontally along the x axis, as indicated in figure 24.4 (a). The downward vertical
force exerted by the Earth is balanced by the upward vertical force exerted by the frictionless support.

k m g

Mg

k m g

(a) (b)

Figure 24.4: (a) Test body oscillating horizontally while connected to a spring. (b) The same situation with
the test body and the spring surrounded by a spherical shell.

According to Section 8.1, the frequency of oscillation of the test body according to newtonian mechanics
is given by equation (8.4). The same result is predicted by Einstein’s theory of relativity and by relational
mechanics.

We now surround the whole system by a spherical shell of radius R and gravitational mass Mg. The
spherical shell is supposed to remain at rest relative to the ground while the test body oscillates horizontally,
as in figure 24.4 (b). What will be the new frequency of oscillation of the test body?

According to newtonian mechanics (N) and also according to Einstein’s general theory of relativity (E),
the stationary spherical shell exerts no net force on any test body inside it, no matter the position nor the
motion of the test body relative to the shell, as was seen in Subsections 1.4.1 and 16.3.2. Therefore, the
frequency of oscillation of the situation of figure 24.4 (b) should be the same as that of figure 24.4 (a),
namely, equation (8.4) given by:
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ωN = ωE =

√

k

mi
. (24.52)

According to relational mechanics, on the other hand, the frequency of oscillation should be different
in these two configurations. The frequency of oscillation in the case of figure 24.4 (a) was calculated in
Section 22.1, being given by equation (22.3). In the case of figure 24.4 (b), on the other hand, there are
three forces acting on the test body: The elastic force ~Fe = −kxx̂ exerted by the spring, the inertial
force ~Fi = −Φ∞mg~amU = −Φ∞mg~amT exerted gravitationally by the set of distant galaxies, and the
gravitational force exerted by the spherical shell. This last force is given by equations (17.22) and (18.28),
namely, ~FMm = −GξmgMg~amU/(3Rc2) = −GξmgMg~amT /(3Rc2). Utilizing ~amT = ẍx̂ and the principle of
dynamical equilibrium given by equation (18.69), the equation of motion in this second configuration can be
written as follows:

−kx− GξmgMgẍ

3Rc2
− Φ∞mgẍ = 0 . (24.53)

Equation (24.53) is analogous to Newton’s second law of motion for this problem, equation (8.2), if we
utilize an effective inertial mass mik given by equation (24.51). In the situation of figure 24.4 (b) the new
frequency of oscillation according to relational mechanics (RM), instead of being given by equation (8.4), is
now given by the following expression:

ωRM =

√

k

mik
=

√

k

Φ∞mg[1 +GξMg/(3c2R)]
. (24.54)

Utilizing equation (18.29) and the relation GξMg/(3c
2R) ≪ 1 yields:

ωRM ≈
√

k

mg

(

1− GξMg

6c2R

)

. (24.55)

According to relational mechanics, the relative difference between the frequencies of oscillation of cases
(a) and (b) of figure 24.4 is then given by:

|ωRM
a − ωRM

b |
ωRM
a

=
GξMg

6c2R
. (24.56)

Utilizing a spherical shell of radius R = 1 m and gravitational mass Mg = 100 kg and utilizing also ξ = 6
we obtain that this relative difference between the frequencies of oscillation is of only 1 part in 1025. This
is a negligible value. In any event, this change in the frequency of oscillation is predicted only in relational
mechanics. No change should happen in newtonian mechanics and in Einstein’s general theory of relativity.
In these two last theories the test body should move with the same frequency of oscillation in situations (a)
and (b) of figure 24.4, namely, ωN

a = ωN
b = ωE

a = ωE
b .

Instead of considering a test body oscillating horizontally while connected by a spring, we might consider
the oscillation of a simple pendulum in a vertical plane at the terrestrial Equator. Once again we consider
two configurations, namely, with and without a stationary spherical shell around the pendulum, figure 24.5.
No change in its frequency of oscillation should happen according to Newton and Einstein’s theories by
surrounding the pendulum with a material spherical shell, that is, ωN

a = ωN
b = ωE

a = ωE
b . According to

relational mechanics, on the other hand, there will appear a difference in the frequencies of oscillation for
these two cases, namely, the same difference of frequencies given by equation (24.56).

Several other situations of mechanical oscillations might be considered in order to test these predictions
of relational mechanics.

24.5.3 Testing the Anisotropy in the Effective Inertial Mass of a Test Body

In Subsection 24.5.1 we considered the change in the effective inertial mass of a particle by placing a stationary
spherical shell around it. If we had surrounded the test body by an anisotropic distribution of matter (a
hollow cube or a hollow cylinder, for instance), then the effective inertial mass of the test particle would be
different in different directions. The next step, after testing the previous prediction of Subsection 24.5.1,
would be to check this new prediction of an effective anisotropic inertial mass.
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Figure 24.5: (a) Pendulum oscillating at the terrestrial Equator. (b) The same situation with the pendulum
surrounded by a spherical shell at rest relative to the ground.

It might also be possible to test this anisotropy in the effective inertial mass of test bodies by taking into
account existing anisotropies in the distribution of matter in the universe. As we have seen in Section 24.1,
the precession of the perihelion of the planets may be considered as being due to this effect. That is, the
effective inertial mass of a planet in the radial direction connecting it to the Sun would be different from the
effective inertial mass of the planet in the tangential or azimuthal direction of the orbit.

Likewise, if the test body is near the surface of the Earth, there is the anisotropy in the distribution
of local bodies around it due to the proximity of the Earth itself. The effective inertial mass of the test
body moving vertically should be different from the effective inertial mass of the same test body moving
horizontally relative to the Earth’s surface. By the same token, the effective inertial mass of a test body
being accelerated in the direction of the Moon, or of the Sun, or of the center of our galaxy, should be
different from the effective inertial mass of the same test body being accelerated in a plane orthogonal to
these directions. This effect can be estimated by looking at Weber’s force applied to gravitation, equation
(17.16). Accordingly, the force exerted by body 2 on body 1 is given by:

~F21 = −Gmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

. (24.57)

If the effective inertial mass of body 1 when moving in a plane orthogonal to the straight line connecting
it to body 2 is mit = mg1, then this equation shows that its effective inertial mass when accelerated in the
direction of body 2 will be given by the following order of magnitude: mir = mg1[1 + ξGmg2/r12c

2]. The
percentage change is then given by:

mir −mit

mit
≈ ξGmg2

r12c2
. (24.58)

In this analysis we will suppose ξ = 6. Taking mg2 = 3 × 1041 kg = as the mass of our galaxy and
r12 = 2.5× 1020 m = as the distance of the solar system to the center of our galaxy yields: 5× 10−6. There
should be a difference of 1 part in 106 comparing the effective inertial mass of a planet or any other body
accelerated in the direction of the center of our galaxy and accelerated normal to this direction. Taking
mg2 = 2×1030 kg = as the Sun’s mass and r12 = 1.5×1011 m = as our distance to the Sun yields: 2×10−7.
Taking mg2 = 7 × 1022 kg as the Moon’s mass and r12 = 3.8 × 108 m as our distance to the Moon yields:
8× 10−13.

Taking mg2 = 6.0 × 1024 kg = as the Earth’s mass and r12 = 6.4 × 106 m = as the Earth’s radius,
then equation (24.58) yields a percentage change given by: 5× 10−9. These calculations show that we could
observe this effect by performing experiments in which the test body moves vertically or horizontally relative
to the Earth’s surface. To this end, the precision should be of the order of 10−10. If we want to compare
the anisotropy in the effective inertial mass of a test body due to presence of our own galaxy, with the test
body being accelerated in the galactic plane or normal to this plane, the precision needs to be 10−7.

To estimate these effects, we are supposing an experiment involving only gravitational interactions.
Moreover, we are neglecting the influence of the term in ṙ212/c

2 appearing in equation (24.57). Maybe it will
not be possible to neglect this term in all experiments. Disregarding this term might mask the effect being
looked for. A careful analysis and calculation should be performed in each specific case before reaching any
general conclusion.

In an interesting paper published in 1958, Cocconi and Salpeter predicted these ideas by considering a
general implementation of Mach’s principle, not necessarily connected with Weber’s force.19 They did not

19[CS58].
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mention Weber’s force or Schrödinger’s work, but only Mach’s ideas. In any case, Weber’s force fits nicely in
their general approach. After all, they considered the possibility that the contribution to the inertia of a test
body of mass m resulting from its interaction with a mass M separated by a distance r had the following
properties: is proportional to M , falls as rν and depends on the angle θ between the acceleration of the test
body and the straight line connecting m with M . The component of Weber’s force which yields the inertial
force acting on a test body has these properties with ν = 1, as it is of the form −Gmg1Mg2r̂12r̈12/r12c

2, see
the last component of equation (24.57). Motivated by this paper, many experiments were devised to find this
anisotropy in the inertial mass of the bodies.20 They looked for anisotropies utilizing the Zeeman splitting
in an atom, the Mössbauer effect, nuclear magnetic resonance, etc. All of these experiments yielded a null
result.

How can we explain their negative findings in the context of relational mechanics? The first answer was
given by Dicke, who observed that according to Mach’s principle this effect must be there, but it should be
observed that this anisotropy of the effective inertial mass is universal, the same for all particles (including
photons and pions).21 Due to this universality of the anisotropy, it would be unobservable locally. The
second answer was given by Edwards, who observed that the effect of such an anisotropy on local measuring
instruments must be carefully considered before one can draw the conclusion that the anisotropy of the
inertial mass has been ruled out by these experiments.22 We agree with Dicke and Edwards that we must
be very careful in analyzing the negative findings of these experiments in the light of Mach’s principle. As
we have seen in Section 24.2, Schrödinger pointed out correctly that the precession of the perihelion of the
planets can be considered to be due to the anisotropy of the effective inertial mass of the planets. This
effect happened in a purely gravitational situation. The connection of gravitation with electromagnetism is
reasonable and plausible. It is possible that gravitation and inertia come from fourth and sixth order terms
in powers of ṙ/c in the electromagnetic potential energy.23 If this is the case, then the anisotropy in inertial
mass or in the inertial force may be the same as the anisotropy in electromagnetic forces, in such a way as
to rule out observation of the effect in complex experiments such as these. The same can be said of nuclear
forces, although the connection of these forces to gravitational and electromagnetic forces is not yet clear. It
should be reminded that, according to Weber’s planetary model of the atom, the nuclear forces would have
an electromagnetic origin, as discussed in Subsection 2.8.1. What should be kept in mind is that at least in
purely gravitational situations, the effect has been found, leading to the precession of the perihelion of the
planets. The same can be said in electromagnetic situations, as it has been shown that the self-induction of
a circuit is different depending on the direction of current flow.24 The self-induction of a circuit has been
shown to be a measure of the effective inertial mass of the conduction electrons, at least according to Weber’s
electrodynamics.

Let us illustrate this discussion with a simple example. We assume a situation in which equation (18.67)
is satisfied, so that the force exerted by the distant galaxies on a test body of gravitational mass mg can
be written as ~Fi = −Φ∞mg~amU = −Φ∞mg~amT . On a frictionless table we have the test body oscillating
horizontally, connected to a spring of elastic constant k, figure 24.6.

x̂k
mg

Figure 24.6: Oscillation of a body of mass mg aligned with the Sun.

The force exerted by the spring on mg is represented by −k~r = −kxx̂ = (ℓ − ℓo)x̂, where ~r = xx̂ is the
position vector of mg from the point of equilibrium of the spring. The gravitational force of the Earth is
balanced by the normal force exerted by the table, so that we will disregard it in this calculation. Here we
analyze the influence of the Sun (our body 2) on the anisotropy of the effective inertial mass of the test
particle (our body 1). In the situation of figure 24.6 we have the Sun aligned with the oscillation of the test
body along the x axis. According to Weber’s law, the force exerted by the Sun of gravitational mass Mg on
mg is given by equation (17.16). When the values of ṙ and r̈ are used in terms of ~r12, ~v12 and ~a12, this force
can be expressed as:

20[CS60], [She60], [Hug60], [Dre61], etc.
21[Dic61].
22[Edw74].
23[Ass92c] and [Ass95d].
24[Ass97a] and [AH06].
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~FMm = −GMgmg
r̂12
r212

{

1 +
ξ

c2

[

~v12 · ~v12 −
3

2
(r̂12 · ~v12)2 + ~r12 · ~a12

]}

. (24.59)

For any oscillation of the spring around the point of equilibrium we can consider r12 ≈ R = constant,
where R is the Earth-Sun distance. As the gravitational mass of the Sun is much greater than the gravita-
tional mass of the test body, we can disregard the motion of the Sun relative to the frame of fixed stars in
comparison with the motion of the test body in this frame of the fixed stars. With these approximations we
can then write: ~r2 = Rx̂, ~v2 = ~0 and ~a2 = ~0. Since the test body is oscillating along the x axis we can write:
~r1 = xx̂, ~v1 = ẋx̂, ~a1 = ẍx̂ and ~r12 ≈ −Rx̂. If the velocity terms are small, that is, if (ẋ/c)2 ≪ 1, then the
equation of motion for mg becomes:

GMgmg
x̂

R2

(

1− ξRẍ

c2

)

− kxx̂ − Φ∞mgẍx̂ = ~0 . (24.60)

The constant force GMgmg/R
2 does not change the angular frequency of oscillation and only changes

the point of equilibrium, so that we will not consider it here. With these approximations and with Φ∞ = 1
equation (24.60) becomes analogous to the equation of a newtonian harmonic oscillator given by kx+miẍ = 0,
provided we define an effective inertial mass of the test body in relational mechanics by the following
expression: mi ≡ mg(1+ξGMg/Rc2). The solution of the equation of motion (24.60) of relational mechanics
is a sinusoidal oscillation with an angular frequency ωa given by:

ωa =

√

k

mg(1 + ξGMg/Rc2)
. (24.61)

Let us now consider an oscillation of the test body along the x axis, but now with the Sun located along
the y axis, as in figure 24.7.

x̂k
mg

ŷ

Figure 24.7: Oscillation of a body of mass mg orthogonal to the Sun.

The difference from the previous situation is that now we should approximate ~r2 = Rŷ, ~r12 = xx̂−Rŷ ≈
−Rŷ and r̂12 = −ŷ, where we are disregarding terms of order x/R compared with unity, namely: x/R ≪ 1.
With the previous approximation the equation of motion in the x direction becomes kx+mgẍ = 0, yielding
a sinusoidal solution with an angular frequency of oscillation ωo given by:

ωo =

√

k

mg
. (24.62)

This example shows that the angular frequency of oscillation when the test body is aligned with the Sun
should be different from the case when the oscillation is orthogonal to the Sun.

Some critical remarks are in order. This simple example illustrates very clearly the effect of a component
of the force law which depends on the acceleration of the test body. The consequence is an anisotropy in
the effective inertial mass, which in this case would be seen by a frequency of oscillation depending on the
direction of vibration. But to arrive at this result, we had to consider several things simultaneously. First
of all the analysis should be performed including the velocity terms proportional to ṙ/c. In the present case
these terms might be neglected, observing that in equation (24.59) we are comparing terms of the order
ẋ2 with those of the order Rẍ. The solution of the equation of motion is essentially x = A sinωt, so that
ẋ = Aω cosωt and ẍ = −Aω2 sinωt. Therefore, ẋ2 ≈ A2ω2 ≪ Rẍ ≈ RAω2, as the Earth-Sun distance is
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much larger than the amplitude of oscillation. Despite this fact it should be kept in mind that Weber’s force
depends not only on the acceleration between bodies, but also on their velocities, and these terms may be
relevant in some experiments, especially those involving light.

Another factor was also considered simultaneously in this analysis: we supposed the elastic constant k to
have the same value, no matter the direction of the Sun. The unity of k is kg/s2, so that it may happen that
its value is also anisotropic. If the inertial mass of a test body is anisotropic, the same may be true of the
elastic constant of a spring, as embodied in it there is also something with the unit of mass, kg. The same
might also hold for electromagnetic and nuclear forces. If the anisotropies in these forces match those of the
anisotropy in the gravitational force acting on the test body, the effect being looked for would be masked.
Only experiments can decide the matter here, showing whether there is an anisotropy in the frequency of
oscillation. But these possibilities should be kept in mind.

24.5.4 Accelerating Linearly a Spherical Shell around a Body Connected to a

Horizontal Spring, around a Body Suspended by a String, or around a

Recipient Partially Filled with a Liquid

In Section 21.7, figure 21.21, we presented hypothetical situations illustrating some differences between
newtonian mechanics and relational mechanics if it were possible to accelerate the set of galaxies relative
to the ground. Nothing should happen in the bodies located at the Earth according to classical mechanics.
According to relational mechanics, on the other hand, several effects would be detected: compression or
stretching of springs, inclinations of pendulums to the vertical, inclination of the free surface of fluids to
the horizontal etc. These are thought experiments, as we have no control on the motion of the galaxies
relative to the ground. However, these situations suggest some experiments which might be performed in
the laboratory in order to distinguish these two theories. These experiments are illustrated in figure 24.8.

ℓo ℓo

ℓ

mg

Mg

mg mg

Figure 24.8: Test bodies at rest in the ground: Bodies connected to horizontal springs, a body suspended
by a string and a vessel partially filled with liquid. Around these bodies there is a spherical shell also at rest
in the ground.

There are several test bodies at rest inside a wagon, which is also at rest in the ground. There are two
bodies connected to horizontal springs having relaxed lengths ℓo. One extremity of each spring is connected
to the wagon, while the other extremity is connected to bodies of gravitational mass mg. There is a test
body of gravitational mass mg suspended by an ideal inextensible string of length ℓ. In equilibrium the
string remains vertical. There is also a recipient partially filled with a liquid. In equilibrium the free surface
of the fluid is horizontal. Around the wagon there is a spherical shell of gravitational mass Mg also at rest
in the ground.

What will happen with these test bodies if we accelerate only the spherical shell horizontally to the left
relative to the ground? We will represent this constant acceleration by ~AMT = −AMT x̂, where AMT =
| ~AMT |, with x̂ being the unit versor pointing horizontally from left to the right (for instance, pointing from
a cylinder to a house fixed in the ground).

In newtonian mechanics the accelerated spherical shell remains exerting no net force on internal bodies,
equation (1.20). Therefore, nothing should change inside the stationary wagon.
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Relational mechanics, on the other hand, predicts that the spherical shell Mg will exert a gravitational
force on the internal test bodies given by equations (17.30) and (18.28). Initially the test bodies are at rest
relative to the ground, that is, ~amT = ~0. The force exerted by the shell on a test body mg will point in the
same direction as the acceleration of the shell, that is, to the left:

~FMm =
GξmgMg

3Rc2
~AMT = −GξmgMg

3Rc2
AMT x̂ . (24.63)

This force towards the left side and acting on the test bodies will exert many effects inside the stationary
wagon: It will compress the left spring, it will stretch the right spring, it will incline the string to the left, and
it will force to the left the liquid inside the recipient, inclining the free surface of the fluid to the horizontal.
We will consider here only the new situation of equilibrium which will take place after the test bodies are
once more at rest relative to the ground, with ~vmT = ~0 and ~amT = ~0, but in which the spherical shell
maintains its constant horizontal acceleration ~AMT relative to the ground. In this situation the left spring
will be compressed having a length ℓ< smaller than ℓo, the right spring will be stretched having a length ℓ>
greater than ℓo, the string will be inclined at an angle θ to the vertical, while the free surface of the fluid
will be inclined at an angle θ to the horizontal, figure 24.9.

ℓ< ℓ>

AMT

Figure 24.9: Only the spherical shell remains accelerated to the left relative to the ground. Effect on the
internal test bodies according to relational mechanics.

The equation of motion of relational mechanics is given by equation (18.69) with ~akT = ~0. Moreover, in
the local forces

∑N
p=1

p 6=k

~Fpk it should be included the force exerted by the shell Mg acting on mg, as given by

equation (24.63). In the case of the left spring of elastic constant k, in this new equilibrium configuration
the gravitational force exerted by the spherical shell acting on the test body will be balanced by the elastic
force exerted by the compressed spring having a new length ℓ<, namely:

−k(ℓ< − ℓo)x̂− GξmgMg

3Rc2
AMT x̂ = ~0 . (24.64)

A similar equation will be valid for the right spring. In the new equilibrium configuration it will be
stretched, having a final length ℓ> greater than ℓo. The relative variation of length of these two springs will
be given by:

ℓo − ℓ<
ℓo

=
ℓ> − ℓo

ℓo
=

GξmgMg

3kℓoRc2
AMT . (24.65)

In order to estimate this effect, we suppose G = 6.67× 10−11 m3/(kgs2), ξ = 6, mg = 0.1 kg, Mg = 1 kg,
k = 10 N/m, ℓo = 0.1 m, R = 1 m, c = 3× 108 m/s and AMT = 1 m/s2. This yields:

ℓo − ℓ<
ℓo

=
ℓ> − ℓo

ℓo
≈ 10−28 . (24.66)

This effect is extremely small and cannot be detected in any feasible experiment. In any event, this
prediction is different from the prediction of classical mechanics. According to newtonian mechanics the
springs should not be compressed nor stretched in this new configuration: ℓ> = ℓ< = ℓo.

We now consider the situation of the test body of gravitational mass mg suspended by the inextensible
string, figure 24.10 (a). The forces acting on the test body when it is at rest relative to the ground, according
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to relational mechanics, are the downward weight ~Fg, the tension ~T pointing along the stretched string, and
the gravitational force ~FMm exerted by the accelerated spherical shell, figure 24.10 (b).

ℓ

AMT

q q
T

m g

(a) (b)

m g

Mg

FMm

Fg

Figure 24.10: (a) String inclined at an angle θ to the vertical when a spherical shell of mass Mg is accelerated
around it. (b) Forces acting on the gravitational mass mg suspended by the string.

In equilibrium the vector sum of these three forces goes to zero:

~Fg + ~T + ~FMm = −mggẑ + (T sin θx̂+ T cos θẑ)− GξmgMg

3Rc2
AMT x̂ = ~0 . (24.67)

By solving separately the components of this equation we obtain that the tension in the string is given
by:

T = |~T | = mg

√

(

GξMg

3Rc2

)2

A2
MT + g2 . (24.68)

Likewise, the tangent of the angle of inclination is given by:

tan θ =
GξMg

3Rc2
AMT

g
. (24.69)

With the previous numerical values of Mg, R and AMT it is possible to estimate the value of this tangent,
namely, tan θ ≈ 10−28. Once more this corresponds to an extremely small value.

By performing the calculations as those presented in Subsection 7.7.1, it is found that the tangent of
the angle of inclination of the free surface of the liquid relative to the horizontal is also given by equaiton
(24.69). Therefore, it will also have a very small value given by tan θ ≈ 10−28.

These effects are so small that they cannot be detected in any reasonable experiment. Therefore, it will not
be possible to decide with experiments like these if it will be newtonian mechanics or relational mechanics
which will be in disagreement with the experimental results. In any event, these are real experiments
which could be performed in the laboratory, in contrast with the hypothetical situations in which we would
accelerate the set of galaxies relative to the ground.

24.5.5 Precession of a Gyroscope Outside a Spinning Spherical Shell

Another experimental test was suggested by Eby in 1979.25 He considered the universal frame U of distant
matter and a spherical body spinning in this frame. Outside this spherical body he supposed a spinning
gyroscope. He utilized a nonrelativistic theory due to Barbour and Bertotti which satisfies Mach’s principle.26

It has a lagrangian containing only relative distances and relative velocities. It is somewhat similar to
the lagrangian of Weber’s law.27 Essentially, Eby calculated the precession of the gyroscope due to the
spinning central body utilizing a lagrangian energy applied to gravitation (without being aware of Weber’s
electrodynamics). He obtained geodetic and motional precessions having the same order of magnitude as
those predicted by general relativity utilizing the Lense-Thirring effect.28

25[Eby79].
26[Bar74] and [BB77].
27[Ass94, Section 3.5: Lagrangian and Hamiltonian Formulations of Weber’s Electrodynamics] and [Ass95b, Section 2.5:

Lagrangiana de Weber].
28[Sch60].
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An effect of this type has been measured recently with gravity probe B.29 The measured values of these
precessions were said to agree with the predictions of general relativity. However, it should be pointed out
that the precessions predicted in Eintein’s theory take place relative to an inertial frame. The observed
values of these precessions, on the other hand, were measured relative to the visible frame of fixed stars. A
stationary spherical shell does not affect the motion of internal test bodies moving relative to the shell not
only in newtonian mechanics, but also in Einstein’s general theory of relativity, as was seen in Subsections
1.4.1 and 16.3.2, equations (1.11) and (16.4). The sets of distant stars and galaxies around the solar system
can be considered as a series of stationary spherical shells around the solar system. There is no clear
connection between an inertial frame and distant matter in Einstein’s general theory of relativity. After all,
the stars and galaxies were not taken into account in the calculations presented by Schiff and other authors
working with Einstein’s theories.

Eby himself had already pointed out this aspect when presenting his predictions (our words in square
brackets):

It is conceptually satisfying that in these theories [i.e., relative distance machian theories like that
of Barbour and Bertotti] it is clear what the gyroscope is precessing with respect to, namely, the
distant matter. This is not the case in metric theories of gravity [like Einstein’s general theory
of relativity] since there is no distant matter explicitly included in the Schwarzschild metric or
its equivalent.

It would be important to check Eby mathematical analysis and to calculate similar effects with relational
mechanics based on Weber’s law for gravitation.

24.5.6 Exponential Decay in Gravitation

Another extremely important point to be tested directly is the existence of an exponential decay in grav-
itation. This exponential decay is not directly connected with relational mechanics or Mach’s principle.
However, as we have seen in Chapters 12 and 17, if we have an exponential decay in Newton’s potential
energy, it is reasonable to suspect that an analogous term should exist multiplying both terms of Weber’s
potential energy, see equation (17.17). Experiments to test Neumann’s exponential decay of the potential,
equation (12.6), have been performed since the last century, with some of them yielding positive results.30

We suggest especially the repetition of Q. Majorana’s many experiments related to this topic.31

24.5.7 Flattening of an Elastic Body at Rest Inside a Spinning Spherical Shell

Another experimental test is illustrated in figure 24.11. There are two equal globes of gravitational mass mg

connected by a spring of elastic constant k and relaxed length ℓo. The bodies and the spring are at rest on
a frictionless table, which is at rest relative to the ground. A spherical shell of radius R and gravitational
mass Mg is at rest around the system, figure 24.11 (a).

Only the spherical shell is then rotated relative to the ground, around the vertical z axis passing through
the center of the spring, with a constant angular velocity ~ΩMT = Ωẑ, where Ω = |~ΩMT |, figure 24.11 (b).
We neglect here possible air currents produced by this rotation of the shell. We wait until the globes and
the spring acquire a new equilibrium configuration in which they are at rest relative to the ground, while the
spherical shell remains spinning with the constant angular velocity around them. What will be the length ℓ
between the globes in the configuration of figure 24.11 (b)?

In newtonian mechanics the spinning spherical shell exerts no force on internal test bodies, equation
(1.21). Thereofore, there should be no change in the distance between the two globes, namely:

ℓ = ℓo . (24.70)

Relational mechanics, on the other hand, predicts that the spinning spherical shell will exert a force on
the internal test bodies given by equations (17.34) and (18.28). The elastic force acting on the right globe
when the spring has a stretched length ℓ is given by ~Fe = −k(ℓ− ℓo)x̂, where x̂ points from the left globe to
the right globe. There is also the force −Φ∞mgk~akT exerted by the set of distant galaxies and acting on the

29[Eve11].
30[Mar86] and [Ass92f].
31[Maj20], [Maj30], [Maj88a], [Maj88b] and [Dra88].
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Figure 24.11: (a) Two globes at rest on a frictionless table, connected by a spring of relaxed length ℓo. The
square represents the table, which is at rest relative to the ground. (b) What will be the distance ℓ between
the globes when the spherical shell around them spins with a constant angular velocity?

test body. The equation of motion of relational mechanics is given by equation (18.69). When this equation
is applied to the right body of figure 24.11 (b) we obtain:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akT

= −k(ℓ−ℓo)x̂−
ξ

3c2
GmgkMg

R

[

~akT +~ΩMT ×(~ΩMT ×~rkT ) +2~vkT × ~ΩMT + ~rkT × d~ΩMT

dt

]

−Φ∞mgk~akT = ~0 .

(24.71)
The spinning spherical shell exerts a centrifugal force ~Fc on the right globe connected to the spring given

by the second term between the square brackets of equation (24.71), namely:

~Fc ≡ − ξ

3c2
GmgkMg

R
~ΩMT × (~ΩMT × ~rkT ) = − ξ

3c2
GmgkMg

R
Ωẑ × (ΩMT ẑ × rkT x̂) =

ξ

3c2
GmgkMg

R
Ω2rkT x̂ ,

(24.72)
where rkT = ℓ/2 represents the distance of this globe to the center of the spring.

There will be a centrifugal force like this acting on the two globes. It will point to the left in the left
globe and it will point to the right in the right globe. These two centrifugal forces acting on the globes will
cause their separation, increasing the distance between them. The spring will then begin to stretch, exerting
an elastic force on these two globes opposing the centrifugal force exerted by the shell. We consider here
only the new situation of equilibrium in which the two globes and the spring are once again at rest relative
to the ground, while the spherical shell remains rotating around them with a constant angular velocity. The
centrifugal force exerted by the shell will be then balanced by the centripetal force exerted by the stretched
spring, figure 24.12 (a). That is, the centrifugal force due to the shell and acting on each test body is
transmitted to the spring, stretching it, figure 24.12 (b).

In this new configuration of equilibrium we have ~vkT = ~0, ~akT = ~0, ~ΩMT = constant and d~ΩMT /dt = ~0.
Therefore equation (24.71) assumes the simplified form given by:

−k(ℓ− ℓo) +
ξ

3c2
GmgkMg

R
Ω2 ℓ

2
= 0 . (24.73)

Utilizing equation (24.20) one obtains that the percentage change in the length of the spring according
to relational mechanics is given by:

ℓ− ℓo
ℓ

=
GmgkMgΩ

2

Rc2k
. (24.74)
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Figure 24.12: (a) Forces acting on each test body mg at rest relative to the ground, namely, the centrifugal
force Fc exerted by the shell of mass Mg spinning around the system and the elastic force Fe exerted by the
spring stretched to a length ℓ. (b) Forces acting on the extremities of the stretched spring and being exerted
by the bodies of mass mg.

We can estimate the order of magnitude of this effect supposing a spherical shell of radius R = 1 m,
gravitational mass Mg = 1 kg, spinning with an angular velocity Ω = 1 rad/s, with test bodies of mass
mgk = 0.1 kg connected to a spring of elastic constant k = 10 N/m. Equation (24.74) with G = 6.67 ×
10−11 m3/(kgs2) yields:

ℓ− ℓo
ℓ

≈ 10−29 . (24.75)

Obviously such a small effect cannot be detected in any reasonable experiment. However, conceptually
this is a relevant prediction of relational mechanics. Nothing of this should happen with classical mechanics,
as indicated by equation (24.70).

Another situation in which relational mechanics predicts an outcome different from that of classical
mechanics which could be tested experimentally is connected with the flattening of the Earth. As was seen
in Subsection 23.4.4, if it were possible to rotate quickly the set of galaxies around the terrestrial axis, then
we might be able to control the flattening of the Earth. Although it is not possible to control the angular
velocity of rotation of the set of galaxies around the Earth, it is possible to maintain an elastic sphere at
rest inside a rigid spherical shell. By rotating relative to the ground only the spherical shell around an axis
passing through the center of the elastic sphere, it might be possible to observe if it happens any flattening
in this elastic sphere.

This situation is illustrated in figure 24.13 (a). We suppose a drop of liquid which is maintained at rest
relative to the universal frame U of distant galaxies. The drop assumes a spherical shape due to surface
tension. Let r represent its radius. Instead of the drop we might also consider an elastic sphere or a rubber
elastic balloon. The drop is surrounded by a concentric rigid metallic spherical shell of radius R > r. The
spherical shell is also at rest in the universal frame U .

Consider now that we spin only the rigid metallic sphere relative to the frame of distant galaxies with
a constant angular velocity ~ΩMU = Ωẑ around a z axis passing through the center of the liquid drop. We
suppose the metallic shell to be very rigid, so that it can keep its spherical shape despite its rotation relative
to the frame of galaxies. We will consider only the new equilibrium configuration in which the drop is at rest
relative to the frame U , while the spherical shell remains spinning relative to U with this constant angular
velocity. What will be the shape of the drop in this new configuration of equilibrium?

In classical mechanics the spinning shell exerts no force on the internal test bodies, equation (1.21).
Therefore, the spinning shell will not affect the drop, which will remain spherical, namely, R> = R< = R.

Relational mechanics, on the other hand, predicts that the spherical shell will exert a net force on any
element of gravitational mass of the drop which is not along the axis of rotation, as given by equations
(17.34) and (18.28). In the new equilibrium configuration in which the drop remains at rest in the universal
frame U , the spinning spherical shell will exert a centrifugal force of gravitational origin on each element of
mass mgk located at a position vector ~rkU which is not along the axis of rotation. This centrifugal force ~Fc
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Figure 24.13: (a) Liquid drop of radius r surrounded by a rigid spherical shell of radius R > r. Both of them
are at rest in the universal frame U . (b) New shape of the drop according to relational mechanics when
only the rigid spherical shell rotates relative to U with a constant angular velocity around an axis passing
through the center of the drop.

is given by:

~Fc ≡ − ξ

3c2
GmgkMg

R
~ΩMU × (~ΩMU × ~rkU ) =

ξ

3c2
GmgkMg

R
Ω2

MUρkρ̂k . (24.76)

Here ~rkU = xkx̂ + ykŷ + zkẑ = ~ρk + zkẑ = ρkρ̂k + zkẑ, with ρk =
√

x2
k + y2k being the distance of mgk to

the z axis of rotation, while ρ̂k is the unit vector parallel to the xy plane and pointing from the z axis up to
mgk.

This centrifugal force will deform the drop, making it assume an ellipsoidal shape of larger radius R> in
the plane orthogonal to the axis of rotation and smaller radius R< along the axis of rotation, as indicated
in figure 24.13 (b). In equilibrium the centrifugal force exerted by the shell is balanced by internal elastic
forces acting on the deformed drop.

Although the predictions of classical mechanics and relational mechanics are different from one another,
the difficulty in testing this effect is related to its small order of magnitude. In the case of relational mechanics
the flattening of the drop can be estimated by the magnitude (R> −R<)/R>, which would be given by an
expression analogous to equation (24.74). By placing macroscopic values for the radius R and gravitational
mass Mg of the spherical shell we would obtain a negligible flattening of the drop, as that indicated by
equation (24.75). Therefore it would not be viable to perform an experiment like this, as it would not be
possible to measure such a negligible effect.

In any event, the main importance of this example is conceptual, in order to clarify the differences between
relational mechanics and newtonian mechanics.

24.5.8 Bucket and Water at Rest in the Ground, while a Surrounding Spherical

Shell Rotates Around the Axis of the Bucket

In Newton’s bucket experiment the surface of the water remains flat when the bucket and the water are at
rest relative to the ground. When the bucket and water are rotating together around the axis of the bucket,
relative to the ground, the surface of the water assumes a parabolic shape. Let us assume that when the
water is rotating once a second relative to the ground, the highest portion of the water reaches the border
of the bucket, in such a way that the liquid is almost spilling out of the bucket.

In Subsections 9.4.5 and 23.3.5 we considered an hypothetical situation illustrating the conceptual dif-
ference between relational mechanics and newtonian mechanics. Suppose that now, while the bucket and
water remain at rest relative to the ground, it were possible to rotate quickly only the set of galaxies relative
to the ground, around the axis of the bucket, in such a way that the galaxies rotated constantly once a
second around the bucket. What would be the shape of the water? According to newtonian mechanics,
the water would remain horizontal. According to relational mechanics, on the other hand, the water would
assume a parabolic shape. Moreover, as the relative rotation between the water and the set of galaxies in
this hypothetical situation has the same value of their relative rotation described in the previous paragraph,
the same effect should arise. That is, the water should assume a parabolic shape reaching the border of the
bucket, almost spilling out of it.
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This thought experiment cannot be performed, as we have no control over the rotation of the set of
galaxies around the Earth. But we can devise a real experiment which might be performed in the laboratory
which would be analogous to this hypothetical situation. This experiment is illustrated in figure 24.14. A
bucket partially filled with water is at rest in the ground. Around the bucket there is a spherical shell of
gravitational mass Mg also at rest in the ground. The surface of the water is flat, figure 24.14 (a).

Mg

WMT

(a) (b)

Mg

Figure 24.14: (a) Bucket, water and spherical shell of gravitational mass Mg at rest relative to the ground,
with a flat surface of the water. (b) We rotate only the spherical shell around the axis of the bucket with a
constant angular velocity ~ΩMT relative to the ground.

We now rotate only the spherical shell relative to the ground, around the z axis of the bucket, with a
constant angular velocity ~ΩMT = ΩMT ẑ. We neglect the effects of possible air currents which might exist
inside the shell (it is also possible to cover the bucket to avoid any influence of the air currents on the water).
We consider now the new equilibrium configuration in which the bucket and water remain at rest in the
ground, while the spherical shell remains spinning with this constant angular velocity relative to the ground.
What will be the shape of the water surface in this case?

According to newtonian mechanics, the spinning spherical shell will not exert any net force on all molecules
of water, equation (1.21). Therefore, the water should remain flat.

Relational mechanics, on the other hand, predicts that the spherical shell will exert a centrifugal force
d~Fc on any element of mass dmg and volume dV of the water which is not along the axis of rotation, as given
by equation (24.76). There will be then three forces acting on any element of mass, namely, this centrifugal
force d~Fc, the weight d~Fg exerted by the Earth, and the buoyant force d~Fb due to the gradient of pressure p
exerted by the fluid around the element of mass dmg, figure 24.15.

x

z

0

dFg

dFb

dFc

u

Figure 24.15: Forces acting on an element of the fluid with mass dmg: Weight dFg due to the Earth, buoyant
force dFb due to the gradient of pressure p around the element, and centrifugal force dFc exerted by the
spherical shell of gravitational mass Mg spinning around the bucket.

We consider the new configuration of equilibrium represented by figure 24.14 (b). Now the water is at
rest relative to the ground, ~vkT = ~0 and ~akT = ~0, while the spherical shell is spinning around the axis of
the bucket with a constant angular velocity relative to the ground. The equation of dynamic equilibrium is
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given by equations (17.3) or (18.69) with ~akU = ~akT = ~0:

N
∑

p=1

p 6=k

~Fpk − Φ∞mgk~akT = d~Fg + d~Fb + d~Fc − Φ∞mgk~0 = d~Fg + d~Fb + d~Fc = ~0 . (24.77)

We now apply in equation (24.77) the fact that d~Fg = dmg~g = −dmggẑ, d~Fb = −(∇p)dV and the
centrifugal force d~Fc given by equation (24.76). This yields:

−dmggẑ −
(

∂p

∂u
û+

1

u

∂p

∂ϕ
ϕ̂+

∂p

∂z
ẑ

)

dV +
ξ

3c2
GdmgMg

R
Ω2

MTuû = ~0 . (24.78)

In order to arrive at this result we utilized cylindrical coordinates (u, ϕ, z) = (
√

x2 + y2, arctan(y/x),
z), with u being the distance of the element of gravitational mass dmg until the z axis of rotation of the
spherical shell. After solving this equation by the procedure presented in Subsection 9.4.1, we obtain that
the pressure inside the fluid is given by:

p(u, ϕ, z) =
ξ

3c2
GMg

R

ρgΩ
2
MT

2
u2 − ρggz + po , (24.79)

where po is the atmospheric pressure and ρg = dmg/dV represents the volume density of gravitational mass
of the fluid. Utilizing in this equation that the pressure at the surface of the fluid is the atmospheric pressure,
p = po, we obtain the equation z(u) describing the shape of the free surface of water, namely:

z =
ξ

3c2
GMg

R

Ω2
MT

2g
u2 . (24.80)

Once more we obtain a parabolic surface in which the lowest point is given by (u, z) = (0, 0). If the
bucket has a radius u = r, the ratio z/r of the height of the water in its highest point to the radius of the
bucket is given by:

z

r
=

ξ

6

GMg

c2
Ω2

MT

g

r

R
. (24.81)

In order to estimate how much the water would rise in a real experiment, we can put ξ = 6, c = 3×108 m/s,
G = 6.67× 10−11 Nm2/kg2, Mg = 1 kg, R = 1 m, ΩMT = 1 rad/s, g = 9.8 m/s2 and r = 0.1 m, yielding:

z

r
≈ 10−29 . (24.82)

Therefore, we obtain a value so small as the value given by equation (24.75). Although it is not possible
to measure this negligible effect in any experiment which might be presently performed, this is an impor-
tant conceptual situation. It shows not only different predictions of newtonian mechanics and relational
mechanics, but it also indicates possibilities that might lead to some future experiments which one day will
distinguish clearly these two models.

Many other tests will appear in due course as more people begin working along these lines of research.



Chapter 25

History of Relational Mechanics

Now that we have presented relational mechanics and the main results we can obtain with it, let us put the
main steps leading to its discovery in perspective.

As discussed in Chapters 13 and 14, Leibniz, Berkeley and Mach clearly visualized the main qualitative
aspects of a relational mechanics. Yet none of them implemented it quantitatively. Here we present a brief
history of the mathematical implementation of relational mechanics.1

25.1 Gravitation

Although Newton had the first insights regarding gravitation in his Anni Mirabilis of 1666-67, the clear and
complete formulation of universal gravitation seems to have come only in the 1680’s, after a correspondence
with Hooke in 1679-1680.2 His force of gravitation appeared in print for the first time only with the
publication of the Principia in 1687.3 Nowadays we write it in the form

~F21 = −Gmg1mg2
r̂12
r212

. (25.1)

Hooke and others had the idea of a gravitational force varying as the inverse square of the distance
between the Sun and the planets. But it is remarkable how Newton arrived at the universality of this force
and the fact that it should be proportional to the product of the masses in the interacting bodies. To obtain
this latter result his third law of motion, the law of action and reaction, was essential. We saw this in
Sections 1.2 and 1.3, when we presented some quotations from Newton.

Newton defended the idea of absolute space which had no relation to anything material. He also defended
the idea of absolute time which flowed equably without relation to anything external, that is, without relation
to any motion of material bodies. Despite this fact, his force of gravitation is the first relational expression
for interactions which appeared in science. It depends only on the masses of the interacting bodies, on the
distance between them and is directed along the straight line connecting them.

The introduction of the scalar potential function in gravitation is due to Lagrange (1736-1813) in 1777
and to Laplace (1749-1827) in 1782. The gravitational potential energy can be expressed as:

U12 = −G
mg1mg2

r12
. (25.2)

Once more this expression is completely relational. To obtain the force exerted by 2 on 1 we utilize the
procedure ~F21 = −∇1U12.

The gravitational paradox which appears with Newton’s law of gravitation in an infinite universe was
discovered by H. Seeliger and C. Neumann in 1895-1896. Their solution was to introduce an exponential
decay in the gravitational force between material bodies and/or in the gravitational potential due to each
material point. Many other authors proposed the same idea for different reasons.

1[Ass94, Sections 7.5 to 7.7], [Ass98, Chapter 11], [Ass99a, Chapter 11] and [Ass13b, Chapter 24].
2[Coh80, Chapter 5] and [Coh81].
3[New34], [New52a], [New90], [New99], [New08b] and [New10b].
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25.2 Electromagnetism

Coulomb arrived at the force between point charges in 1785.4 The electrostatic force between two point
charges q1 and q2 can be expressed as follows:

~F21 =
q1q2
4πεo

r̂12
r212

. (25.3)

Coulomb also arrived5 an an expression relating the force between two magnetic poles qm1 and qm2 given
by:

~F21 =
µo

4π
qm1 qm2

r̂12
r212

. (25.4)

Equations (25.3) and (25.4) are completely relational, as they have the same structure of Newton’s force
of gravitation. That is, they depend on the distance r12 between the interacting bodies and point along the
straight line connecting them, r̂12.

It seems that Coulomb arrived at the force between point charges more by analogy with Newton’s law of
gravitation than by his doubtful measurements with the torsion balance.6 He performed only three exper-
iments of attraction and three of repulsion, but his results could not be reproduced when his experiments
were repeated recently. Moreover, he never tested the proportionality of the force on q1q2. In his measure-
ments of the force he changed the distance between the electrified bodies, but not the amount of charge in
each electrified body. Apparently he was never interested to test if the force was really proportional to the
product of the two charges. In principle the electric forces might behave like q1 + q2, or like (q1q2)

n with an
exponent n different from 1. Only experiments could have decided this, but he did not perform them. In any
event, in the end his proposed force law proved to be extremely successful in explaining many phenomena.
While Coulomb thought it was not necessary to prove that the electric force was proportional to the product
of two charges, or that the magnetic force was proportional to the product of two magnetic poles, Newton
made a very through analysis before concluding that the gravitational force should be proportional to the
product of two masses. This at least shows a great distinction between these two scientists.

By analogy with the gravitational potential proposed by Lagrange and Laplace, Poisson introduced the
scalar potential in electromagnetism in 1811-1813. The energy of interaction between two point charges or
between two magnetic poles is then given by, respectively:

U12 =
q1q2
4πεo

1

r12
, (25.5)

and

U12 =
µo

4π

qm1 qm2
r12

. (25.6)

In 1820 Oersted discovered experimentally the deflection of a magnetized needle by a current-carrying
wire. Fascinated by this fact, Ampère (1775-1836) performed a series of classical experiments in the period
between 1820 and 1826, arriving in 1822 at the following expression describing the force exerted by a current
element I2d~ℓ2 located at ~r2 acting on another current element I1d~ℓ1 located at ~r1:7

d2 ~F21 = −µo

4π
I1I2

r̂12
r212

[

2(d~ℓ1 · d~ℓ2)− 3(r̂12 · d~ℓ1)(r̂12 · d~ℓ2)
]

. (25.7)

Once more this force is completely relational. Even here the influence of Newton was very large, as
discussed in Section 2.6.

Ampère’s force is much more complex than Newton’s law of gravitation, equation (25.1), due to the
dependence on the angle between the current elements, and also on the angles between each current element
and the straight line connecting 1 and 2. To arrive at this expression Ampère assumed explicitly the
proportionality of the force on I1dℓ1I2dℓ2, and also supposed that it obeyed the law of action and reaction,
with the force acting along the line connecting the elements, r̂12. These two facts did not emerge from
his experiments. Ampère then proceeded to deduce from his experiments that this force should vary as

4[Cou85a], [Cou85b], [Pot84], [Cou35a] and [Gil71a].
5[Cou85b], [Pot84] and [Cou35b].
6[Hee92].
7[Amp22a], [Amp22b] and [Amp85].
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the inverse square of the distance and be proportional to 2(d~ℓ1 · d~ℓ2) − 3(r̂12 · d~ℓ1)(r̂12 · d~ℓ2). But as it
happened with Coulomb’s force, Ampère’s force has been shown to be extremely successful in explaining
many phenomena of electrodynamics.8

The first to test directly the fact that the force was proportional to I1I2 was Wilhelm Weber in 1846-1848.9

To this end he measured directly the forces between current carrying circuits with the electrodynamometer
he invented. Ampère never measured forces directly and utilized only null methods of equilibrium which did
not yield net forces.

As regards the energy of interaction between two current elements, there have been many proposals.
They can be summarized, following Helmholtz, by the expression:10

d2U12 =
µo

4π

I1I2
r12

[

1 + k

2
(d~ℓ1 · d~ℓ2) +

1− k

2
(r̂ · d~ℓ1)(r̂ · d~ℓ2)

]

. (25.8)

Here k is a dimensionless constant. Although Franz Ernst Neumann (1798-1895), the father of Carl
Neumann, worked only with closed circuits, we may say that his energy between current elements of 1845
would be given by this expression with k = 1. Weber’s electrodynamics11 yields k = −1. Maxwell’s
electrodynamics yields k = 0. More recently, Graneau12 proposed an expression like this equation with
k = 5. But no matter the value of k, these expressions are all relational energies.

Although most textbooks present Neumann’s expression as representing the energy of interaction between
two current elements in Maxwell’s theory, this is not the case. The energy of interaction according to
Maxwell should really13 be given by k = 0, and not by k = 1. This fact can be seen utilizing Darwin’s
lagrangian energy of 1920 which describes the interaction of two point charges q1 and q2 located at ~r1
and ~r2, moving with velocities ~v1 and ~v2, respectively, relative to an inertial frame. It is the lagrangian
of classical electromagnetism (Maxwell-Lorentz’s theory) involving relativistic corrections, time retardation
and radiation effects. It is correct up to second order in v/c, inclusive. It is given by:14

UD
12 = UD

21 =
q1q2
4πεo

1

r12

[

1− ~v1 · ~v2 + (~v1 · r̂12)(~v2 · r̂12)
2c2

]

. (25.9)

Let us suppose the current elements to be composed of positive and negative charges such that dq1− =
−dq1+ and dq2− = −dq2+. The energy to bring the elements from an infinite distance from one another to
the final separation r12 is given by

d2U12 = d2U2+,1+ + d2U2+,1− + d2U2−,1+ + d2U2−,1− . (25.10)

Utilizing the fact that I1d~ℓ1 ≡ dq1+~v1+ + dq1−~v1−, I2d~ℓ2 ≡ dq2+~v2+ + dq2−~v2−, the charge neutrality of
the elements and Darwin’s lagrangian, we then obtain equation (25.8) with k = 0.

Wilhelm Weber unified electrostatics with electrodynamics deducing the forces of Coulomb and Ampère
from a single expression in 1846. He could also deduce Faraday’s law of induction of 1831 from his expression.
As seen in Section 2.8, he proposed that the force exerted by point charge q2 on point charge q1 should be
given by:15

~F21 =
q1q2
4πεo

r̂12
r212

(

1− ṙ212
2c2

+
r12r̈12
c2

)

. (25.11)

The constance c is the ratio of electromagnetic and electrostatic units of charge. Its value was first
determined experimentally by Weber and Kohlrausch between 1854 and 1856.16

In 1848 Weber proposed an interaction energy from which this force might be deduced, namely:17

U12 =
q1q2
4πεo

1

r12

(

1− ṙ212
2c2

)

. (25.12)

8[Amp26], [Amp23], [Amp65b], [Cha09] and [AC11].
9[Web46] with English translation in [Web07], and [Web48] with English translation in [Web66].

10[Woo68], [Wis81], [Arc89], [Gra85] and [BA95].
11[Ass94, Section 4.6].
12[Gra85].
13[Woo68], [Wis81] and [Arc89].
14[Dar20], [Jac75, Section 12.7, pp. 593-595], [Ass94, Section 6.8] and [Ass95b, Section 1.6].
15[Web46] and [Web07].
16[Web55], [WK56], translated to English in [WK03] and translated to Portuguese in [WK08], [KW57] and [WK68].
17[Web48] and [Web66].
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Detailed discussions of Weber’s electrodynamics can be found in several works.18

It is important to observe that in order to arrive at equation (25.11) Weber began with electrostatics
(force (25.3) between charges at rest) and with Ampère’s force (25.7) between current elements. For this
reason he was being influenced by newtonian ideas, although indirectly, as Coulomb and Ampère had been
directly influenced by Newton’s law of gravitation.

Expressions (25.11) and (25.12) are once more completely relational. That is, they depend only on the
product of the two interacting charges, on the distance r12 between them, on their radial relative velocity
ṙ12, on their radial relative acceleration r̈12, with the force pointing along the straight line connecting them,
r̂12.

Despite this fact, equations (25.11) and (25.12) present major differences as regards Newton’s law of
gravitation due to the dependence on the velocity and acceleration of the charges. This was the first time in
physics that a force was proposed which depended on the velocity and acceleration between the interacting
bodies. Later on many other proposals appeared in electromagnetism describing the force between point
charges, such as those of Gauss (developed in 1835 but published only in 1877), Riemann (developed in 1858
but published only in 1867), Clausius in 1876 and Ritz in 1908.19 Beyond differences in form, there is a
tremendous distinction between Weber’s expression and all these other forces, namely, only Weber’s force is
completely relational, depending only on the distance, radial relative velocity and radial relative acceleration
between the point charges. It thus has the same value for all observers and frames of reference, as will be
shown in Appendix A. The other expressions, on the other hand, depend on the velocity and acceleration
of the charges relative to a medium like the ether, relative to the terrestrial laboratory (Ritz’s theory as
interpreted by O’Rahilly),20 relative to an abstract frame of reference, or they depend on the velocity and
acceleration of the charges relative to the observer.

The Maxwell-Lorentz’s force, equation (15.14), was developed by Maxwell between 1861 and 1873, being
also presented by Lorentz in 1895. It describes the force on a test charge due to electromagnetic fields
generated by other source charges. It could be written in the form of a force of interaction between point
charges due to the works of Lienard, Wiechert, Schwarzschild and Darwin. When this is done there also
appear velocities and accelerations between the charges and the ether (as thought by Lorentz) or between
the charges and inertial frames of reference or observers (interpretation introduced by Einstein). Once more
it is not the velocity and acceleration between point charges which are relevant, but their motion relative to
something external to them. This external frame may be the field, the ether, a system of reference, or the
observer.

Only Weber’s electrodynamics is completely relational. For this reason it is the only electromagnetic
theory compatible with the relational mechanics presented in this book. All the other formulations of
electromagnetism (as developed by Gauss, Riemann, Clausius, Ritz, Lorenz, Maxwell, Lorentz, Lienard,
Wiechert, Schwarzschild, Darwin etc.) are not compatible with relational mechanics.

In 1868 Carl Neumann arrived at the lagrangian energy describing Weber’s electrodynamics, namely:

S12 =
q1q2
4πεo

1

r12

(

1 +
ṙ212
2c2

)

. (25.13)

The lagrangian of a two body system might then be written as L ≡ T −S12, where T = m1v
2
1/2+m2v

2
2/2

is the kinetic energy of the system with the velocities determined relative to an inertial frame of reference
or relative to the universal frame U . Note the sign difference in front of ṙ12 when comparing U12 and S12 of
equations (25.12) and (25.13). The lagrangian energy S12 is also completely relational.

In 1872 Helmholtz (1821-1894) found that, according to Weber’s electrodynamics, the energy of a test
charge q interacting with a surrounding non-conducting spherical shell of radius R uniformly electrified with
a total charge Q is given by:21

UqQ =
qQ

4πεo

1

R

(

1− v2

6c2

)

. (25.14)

To arrive at this expression Helmholtz supposed a spherical shell at rest relative to an inertial frame of
reference, with the shell interacting with an internal point charge q located anywhere inside the shell and
moving with velocity ~v relative to the shell.

18[Ass90a], [Ass90b], [Ass91b], [Ass91a], [Ass92b], [Ass92g], [Ass92d], [AC93], [Ass94], [GA94], [Ass95b], [Ass95a], [Ass95e],
[Ass95c], [AB95], [AB96], [Fuk03] and [AW11].

19[Ass94, Apêndice B, Alternative Formulations of Electrodynamics] and [Ass95b, Apêndice C, Formulações Alternativas].
20[O’R65, pp. 158, 220-222, 259, 437, 632-633, 659 and 665].
21[Hel72a], [Hel72b] and [Hel82].
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An analogous expression obtained with a Weber’s law applied to gravitation is the key for the imple-
mentation of Mach’s principle, as we have seen in this book. It should be kept in mind that Mach’s ideas
on mechanics had been published since 1868.22 By analogy with Helmholtz’s calculations, applied now to a
weberian potential energy for gravitation, this energy of interaction turns out to be exactly the kinetic energy
of classical mechanics, considering the stars and distant galaxies as a system of spherical shells surrounding
the solar system. But Helmholtz always had a negative attitude towards Weber’s electrodynamics. Instead
of taking this result as a hint for explaining the inertia of bodies or the origin of kinetic energy, he proposed
this result as a failure of Weber’s electrodynamics. Maxwell presented Helmholtz’s criticisms of Weber’s
electrodynamics in his Treatise of 1873.23 Maxwell did not observe as well that Helmholtz’s result was the
key to unlock the mystery of inertia. The same can be said of all the readers of Maxwell’s book at the end
of last century and during the whole of the XXth century, who had available to them not only Helmholtz’s
result, but Mach’s books as well. We discussed this in detail in 1994 and will not go into details here.24 We
can say that Helmholtz, Maxwell and their readers lost a golden opportunity to create a relational mechanics
utilizing a result analogous to equation (25.14) applied to gravitation. Fortunately, Schrödinger and others
obtained similar results and were prepared to draw all the important consequences from them.

25.3 Weber’s Law Applied to Gravitation

Weber’s electrodynamics was extremely successful in explaining electrostatics (through Coulomb’s force)
and electrodynamic phenomena (Ampère’s force between current elements, Faraday’s law of induction, the
telegraphy equation describing the propagation of electromagnetic signals with light velocity along conducting
wires, etc.). Due to this great success some writers tried to apply an analogous expression to gravitation. The
pendulum swung back: after the great influence of Newton’s gravitational force on Coulomb and Ampère it
was gravitation’s turn to be influenced by electromagnetism.

The idea is that the force exerted by the gravitational mass mg2 on mg1 should be given by

~F21 = −Gmg1mg2
r̂12
r212

(

1− ξṙ212
2c2

+
ξr12r̈12

c2

)

. (25.15)

The energy of interaction would then be given by:

U12 = −G
mg1mg2

r12

(

1− ξṙ212
2c2

)

. (25.16)

The gravitational lagrangian energy is accordingly:

S12 = −G
mg1mg2

r12

(

1 +
ξṙ212
2c2

)

. (25.17)

The first to propose that the gravitational force might also depend on the velocity and acceleration
between the interacting masses was Weber himself in his original work of 1846 in which he proposed his force
law for electromagnetism:25

Assuming the correctness of the results which we achieved, a case would arise here, in which
the force, with which two masses act upon one another, would depend, not simply upon the
magnitude of the masses and their distance from one another, but also on their relative velocity
and relative acceleration. [...]

He mentioned this suggestion in several other works.26

Beyond Weber, the first to propose a Weber’s law for gravitation seems to have been G. Holzmüller
in 1870.27 Then in 1872 Tisserand studied Weber’s force applied to gravitation and its application to the
precession of the perihelion of the planets.28 The two-body problem in Weber’s electrodynamics had been

22[Mac68], [Mac11b] and [Mac81b].
23[Max54, Volume 2, Chapter 23], with a commented Portuguese translation in [Ass92h].
24[Ass94, Section 7.3: Charged Spherical Shell].
25[Web46, p. 149 of Weber’s Werke] and [Web07, p. 92].
26[Web55, p. 595 of Weber’s Werke], [KW57, p. 652 of Weber’s Werke], [Web82] and [Web94a, pp. 481-488 of Weber’s

Werke] with English translation in [Web08, pp. 4-15]. See also [Woo81] and [Wis81].
27[Nor65, p. 46] and [Jam00, p. 153].
28[Tis72].
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solved by Seegers in 1864 in terms of elliptic functions.29 But Tisserand solved the problem iteratively, more
or less as outlined in Section 24.1 of this book.

Other people also worked with Weber’s law for gravitation applying it to the problem of the precession
of the perihelion of the planets: Paul Gerber in 1898 and 1917, Erwin Schrödinger in 1925, Eby in 1977
and ourselves in 1989.30 Curiously, none of these authors were aware of Weber’s electrodynamics, with the
exception of our work. Each one of them arrived at equations (25.16) or (25.17) on his own. Gerber was
dealing with ideas of retarded time and worked in the lagrangian formulation. Schrödinger was trying to
implement Mach’s principle with a relational theory. Eby was following the works of Barbour and Bertotti
on Mach’s principle and also worked with the lagrangian formulation.

Poincaré discussed Tisserand’s work on Weber’s law applied to gravitation in 1906-1907.31 Gerber’s
works were criticized by Seeliger, who was aware of Weber’s electrodynamics.32

For references to other writers who have applied Weber’s law to gravitation in the second half of the
XXth century, see Assis.33

With the exception of Schrödinger, Eby and ourselves, the other authors we have quoted who applied
Weber’s law to gravitation were not concerned with Mach’s principle.

25.4 Relational Mechanics

Mach suggested that the inertia of a body should be connected with distant matter and especially with the
fixed stars (in his time the external galaxies were not yet known). He did not discuss or emphasize the
proportionality of the inertial mass with the gravitational mass. He did not say that inertia should be due
to a gravitational interaction with distant masses. He did not propose any specific force law to implement
his ideas quantitatively (for instance, showing mathematically that the set of stars spinning together relative
to a frame of reference R around an axis should generate centrifugal forces on bodies at rest in this frame
R which were not located along this axis of rotation). However, his book The Science of Mechanics was
extremely influential as regards physics, much more than Leibniz’s or Berkeley’s writings. It was published
in 1883, and from that time onwards people began trying to implement his intuitive ideas, which were very
appealing.

The first to propose a Weber’s law for gravitation in order to implement Mach’s principle seems to have
been Immanuel Friedlaender (1871-1948) in 1896. This suggestion appeared in a footnote on page 17 of the
book he published with his brother, Benedict Friedlaender (1866-1908). Each part of this book was written
by one of them. Immanuel Friedlaender began speaking about the centrifugal force (tendency to depart from
the axis of rotation) which appears when we spin an object relative to the Earth. He said that it should
be possible to revert this force. That is, the centrifugal force should appear if it were possible to rotate the
Earth and the distant universe in the opposite sense relative to the test body. He believed that newtonian
mechanics was incomplete as it did not supply this equivalence. Then comes the part which concerns us
here:34

[...] it seems to me that the correct form of the law of inertia will only then have been found
when relative inertia as an effect of masses on each other and gravitation, which is also an
effect of masses on each other, have been derived on the basis of a unified law.35 The challenge
to theoreticians and calculators to attempt this will only be crowned with success when the
invertibility of centrifugal force has been successfully demonstrated. Berlin, New Year 1896.

This was only a suggestion and they did not develop it further. Despite this fact it was important
in at least two respects: (I) They were the first to suggest in print that inertia is due to a gravitational
interaction. (II) Moreover, they proposed Weber’s law as the kind of interaction to work with. The inversion
of the centrifugal force, that is, the dynamical equivalence of kinematically equivalent situations, has been
completely implemented in relational mechanics as presented in this book.

29[See] with German translation in [See24], see also [Nor65, p. 46].
30[Ger98], [Ger17], [Sch25], [XA94], [Sch95], [Eby77] and [Ass89a].
31[Poi53, pp. 125 and 201-203].
32[See17a] and [See17b].
33[Ass94, Section 7.5] and [Ass13b, Section 24.3].
34[FF96] with English translation in [FF95] and [FF07].
35[Note by Immanuel Friedlaender:] In this connection it is greatly to be desired that the question of whether Weber’s law is

to be applied to gravitation and also the question of the propagation velocity of gravitation should be resolved. For the second
issue, one could use an instrument that makes it possible to measure statically the diurnal variation of the Earth’s gravity as a
function of the position of heavenly bodies.
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In 1900 Alois Höfler (1853-1922) also suggested an application of Weber’s law for gravitation in order to
implement Mach’s principle.36 Once more, this suggestion was not developed.

In 1904 W. Hofmann proposed to replace the kinetic energy mv2/2 by a two body interaction like
L = kMmf(r)v2, where k is a constant, f(r) some function of the distance between the bodies of masses
M and m, and v is the relative speed between M and m.37 The usual result mv2/2 would be recovered
after integrating L over all masses of the universe. Hofmann did not complete the implementation of his
qualitative idea. His work is important because he is considering an interaction of Weber’s type, see equation
(25.16), in order to arrive at the kinetic energy, although he did not specify the function f(r). However, he
did not seem to be aware of Weber’s electrodynamics.

Although Einstein was greatly influenced by Mach’s book on mechanics, he did not try to employ a
relational expression for the energy of interaction between gravitational masses, nor for the force exerted by
a gravitational mass on another mass. He never mentioned Weber’s force or potential energy. All those who
were influenced by Einstein’s line of reasoning remained very far from relational mechanics. For this reason
we do not consider them here.

After the Friedlaender brothers, Höfler and Hofmann, another important person who attempted to im-
plement Mach’s principle utilizing relational magnitudes was the engineer Hans Reissner (1874-1967) in 1914
and 1915. Without being aware of Weber’s work he arrived independently at a potential energy very similar
to Weber’s potential applied to gravitation.38 In the article of 1914 he worked with a classical gravitational
potential energy plus a term of the type m1m2f(r)ṙ

2, particularized for f(r) = constant. In 1915 he sub-
stituted this term for the weberian term m1m2ṙ

2/r. Unfortunately, from 1916 onwards he began to develop
Einstein’s ideas on general relativity and no longer worked with relational magnitudes.39

Erwin Schrödinger (1887-1961) wrote a very important paper in 1925 where he arrived at the main results
of relational mechanics.40

In this paper Schrödinger said that he wished to implement Mach’s ideas. He mentioned the fact that
Einstein’s general theory of relativity did not implement these ideas and for this reason he would try a
different approach. Taking the form of the kinetic energy mv2/2 as a guiding idea, he proposed heuristically
a modified form of the newtonian potential energy, namely:

U = −Gm1m2

r

(

1− γṙ2
)

. (25.18)

To arrive at this expression he explicitly emphasized the aspect that any interaction energy should
depend only on the distance and relative velocities between the interacting particles in order to follow
Mach’s approach. That is, absolute velocities should not appear in the interaction energies, only the relative
velocities between the interacting gravitational masses should by included in these energies. Curiously
enough, he never mentioned Weber’s name or Weber’s law, although Schrödinger was a German speaker like
Weber. He integrated this energy of interaction for a spherical shell of mass M and radius R interacting
with an internal point mass m located near its center and moving relative to the shell with velocity v. He
obtained the following approximate result for this interaction energy:

U = −G
mM

R

(

1− γv2

3

)

. (25.19)

He did not know this, but his approximate result was exact and valid anywhere inside the shell and not
only near its center, as had been known since Helmholtz in 1872 (working with charges instead of masses
but the consequence is the same).41 Schrödinger also did not quote this paper by Helmholtz, nor Maxwell’s
discussion of this calculation,42 and apparently never became aware of these earlier calculations.

Schrödinger identified the result given by equation (25.19) with the kinetic energy of the test body
(considering the spherical shell as representing the distant stars and other masses around the test body).
Therefore he arrived at the main results of relational mechanics, namely: proportionality of the inertial mass
with the gravitational mass, he concluded that the best inertial frame is the frame of distant masses etc.
He then considered the orbit of a planet around the Sun taking into account not only their interaction, but
also the gravitational interaction of each one of these bodies with the distant matter in the cosmos. In this

36[Hof00, Note on p. 126], [Nor95, pp. 21 and 41] and [BP95, pp. 21, 24, 34-35, 40-41, 46, 53 and 164].
37His work is discussed in [Nor95], with a partial English translation in [Hof95].
38[Rei14] with English translation in [Rei95b], and [Rei15] with partial English translation in [Rei95a].
39[Rei16] and [Nor95, p. 33].
40[Sch25], [XA94] and [Sch95].
41[Hel72a], [Hel72b] and [Hel82].
42[Max54, Volume 2, Chapter 23], with a commented Portuguese translation in [Ass92h].
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way he arrived at the precession of the perihelion of the planets. As we have seen in Section 24.1, others
had arrived at this result before, but Schrödinger did not quote anyone. To get the einsteinian relativistic
result for the precession of the perihelion, which was known to agree with the observed values, Schrödinger
obtained γ = 3/c2.

He then integrated the result of equation (25.19) over the whole world. To this end he supposed an
average volume density of gravitational mass ρgo, replaced the gravitational mass M by 4πR2ρgodR, and
integrated equation (25.19) with the radius of the shell going from zero up to a supposed radius RU of the
universe. After this integration he obtained the following result, with γ = 3/c2:

U = −
∫ RU

0

Gm(4πR2ρgodR)

R

(

1− v2

c2

)

= −2πGρgoR
2
Um+

mv2

2

(

4πGρgoR
2
U

c2

)

. (25.20)

In this energy of interaction of the test body with the material universe around it, there is a constant term
−2πGρgoR

2
Um and the kinetic term mv2(4πGρgoR

2
U )/(2c

2). This last term can coincide with the classical
kinetic energy mv2/2 provided the following relation is satisfied:

G =
c2

4πρgoR2
U

. (25.21)

He observed that taking RU and ρgo as the radius and density of our galaxy would yield a value for G with
an order of magnitude 1011 times smaller than what is observed. His conclusion was then that the inertia
of bodies in the solar system should be due mainly to matter farther away from our galaxy. For equation
(25.21) to be valid with G = 6.67 × 10−11 Nm2/kg2, then RU needed to be much greater than all other
astronomical distances known at his time. It is curious to observe that the existence of external galaxies had
just been confirmed by E. Hubble in 1924. Until then, many thought the whole universe was only our own
galaxy. Hubble’s law of redshifts appeared only in 1929. A relation similar to equation (25.21) relating G,
RU , c and ρgo was rediscovered independently by several authors along the XXth century, beginning from
different cosmological conceptions.43

Utilizing equation (25.21) into equation (25.20) yields:

U = −mc2

2
+

mv2

2
. (25.22)

Schrödinger then concluded that the negative potential due to all masses in the universe should be equal
to half the square of light velocity in vacuum, as can be seen from the first term on the right hand side of
equation (25.22).

Schrödinger then went a step further. He took the classical kinetic energy mv2/2 as being only an
approximation valid for velocities which are small when compared with light velocity. He supposed the
kinetic energy given by mc2(1/

√

1− v2/c2− 1) as an empirical relation valid for low and high velocities. To
deduce this new kinetic energy, he modified Weber’s potential energy which he had utilized, assuming now
the following expression:

U = −G
mg1mg2

r

[

3− 2

(1− ṙ2/c2)3/2

]

. (25.23)

This equation reduces to Weber’s expression up to second order in ṙ/c. After integrating this expression
for the distant masses analogously to the prior procedure, Schrödinger obtained an expression like the
relativistic kinetic energy. That is, he obtained equation (24.43) with β = −3G and γ = 2G. He also
observed that this energy (25.23) might be deduced from a lagrangian energy L given by:

L = G
mg1mg2

r

(

2
√

1− ṙ2/c2
− 4
√

1− ṙ2/c2 + 3

)

. (25.24)

After the usual integration, this expression yields a lagrangian analogous to the relativistic lagrangian
for a point particle, namely:

L = −mc2
√

1− v2

c2
. (25.25)

43[Sch25] with commented Portuguese translation in [XA94] and with English translation in [Sch95], [Dir38], [Sci53], [Bro55]
and [Bro82, p. 57], [Dic59], [Fre71, Chapter 12: Inertial Forces and Noninertial Frames], [Edw74], [Eby77], [Ass89a], [Ass98,
Sections 8.3 and 11.4], [Ass99a, Sections 8.5 and 11.4], [Unz10], [UJ13] and [Gin11].
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Once more, the mass m which appears in Schrödinger’s deduction is the gravitational mass of the test
body. Moreover, the velocity v in this expression represents the velocity of the test body relative to the
frame of distant matter, that is, relative to the frame in which the distant matter is at rest.

Recently Wesley published a similar work for a relational energy valid also for high velocities, when ṙ ≈ c,
without being aware of Schrödinger’s paper.44

To our knowledge, Schrödinger did no more work along these lines after this paper, nor had he published
anything previously on this subject. This was one of his last papers before the famous works on quantum
mechanics, where he developed Schrödinger’s equation and the wave approach to quantum mechanics. The
enormous success of these papers on quantum mechanics may explain why he did not return to his work on
Mach’s principle.

A second reason may have to do with Reissner. In his article of 1925 Schrödinger claimed that he arrived
at equation (25.18) “heuristically.” The word heuristic refers to experience-based techniques for problem
solving, typically by trial and error. He did not quote Weber, Tisserand, Reissner, nor any other author.
Now, if indeed he did achieve this equation heuristically, he should have arrived at this expression all by
himself. Let us quote the relevant passage, our emphasis:45

One must therefore see if it is possible in the case of the kinetic energy, just as hitherto for the
potential energy, to assign it, not to mass points individually, but instead also represent it as
an energy of interaction of any two mass points and let it depend only on the separation and
the rate of change of the separation of the two points. In order to select an expression from the
copious possibilities, we use heuristically the following analogy requirements:

1. The kinetic energy as an interaction energy shall depend on the masses and the separation of
the two points in the same manner as does the Newtonian potential.

2. It shall be proportional to the square of the rate of change of the separation.

For the total interaction energy of two mass points with the masses µ and µ′ with separation r
we then obtain the expression

W = γ
µµ′ṙ2

r
− µµ′

r
.

The masses are here measured in a unit such that the gravitational constant has the value 1. The
constant γ, which for the moment is undetermined, has the dimensions of a reciprocal velocity.
Since it should be universal, one will expect that, apart from a numerical factor, this will be the
velocity of light, or that γ will be reduced to a numerical factor when the light second is chosen
as the unit of time. We shall have cause later to set this numerical factor equal to 3.

As a matter of fact, this is not the whole history of how Schrödinger arrived at this relation. The
collected works of Schrödinger have been published recently. At the end of the reprint of this article there
is a typewritten note, signed by Schrödinger, where he expressed apologies for Reissner for plagiarizing his
ideas, unconsciously.46 Schrödinger said in this note that he knew his first paper of 1914 but was not certain
as regards the second one of 1915. He considered Reissner’s papers very interesting and expected that his
own work would also have some interest for presenting a different approach of the subject. Perhaps the fact
that he utilized Reissner’s ideas, without quoting him, and the constraint he may have felt to admit this
publicly, influenced him not to deal with this subject further (others may have perceived the similarities
between their works).

In any event it is a great irony that Weber’s law for electromagnetism had been published some 70
years before Reissner (80 years before Schrödinger). An application of Weber’s law to gravitation dates
back at least to the 1870’s, some 40 years before Reissner. Weber published in German, like Reissner and
Schrödinger. Weber’s work was discussed by Maxwell and many others. It is amazing that Reissner and
Schrödinger did not know about this work and that even after their publications in 1915 and 1925 no one
called their attention to Weber’s earlier works.

There is a possible third reason why Schrödinger stopped working with a Weber’s law in order to imple-
ment Mach’s principle: he turned to Einstein’s general theory of relativity, as had happened with Reissner.

44[Wes90].
45[Sch25] and [XA94].
46[Sch84, p. 192] with Portuguese translation in [XA97].
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Schrödinger, for instance, worked later with a unified theory based on Einstein’s works.47 He even published
a book on the expanding universe, based on Einstein’s general theory of relativity.48

This paper by Schrödinger of 1925 was not followed or developed by other workers either. It was forgotten
for the next 60 years, until it was reprinted in 1984. We found only one reference to it in another place,
in a paper of 1987.49 Another quotation can be found in Mehra’s book.50 Only in 1993 did it begin to be
rediscovered by other people. Julian Barbour told us about this paper in July 1993, and he himself was
informed about this paper by Domenico Giulini, who found it in Schrödinger’s collected works.51 This article
was then discussed at a conference on Mach’s principle which happened in Tübbingen, Germany, in 1993.52

Recently it was translated to Portuguese and English.53 Further applications of this approach can be found
elsewhere.54

Since 1993 it can be said that Schrödinger’s paper came out of oblivion. This paper by Schrödinger is
extremely important and several relevant results of relational mechanics are contained in this paper. It is
amazing that Schrödinger had not followed this approach, and that others had not perceived the importance
of this work and how far went its consequences. If this work had been fully explored, relational mechanics
might had been accepted as a developed theory already in 1925.

Although many important results of relational mechanics are contained in Schrödinger’s paper, he did
not show that a rotating spherical shell generates inside itself centrifugal and Coriolis forces. He also did
not discuss in greater detail the proportionality between inertial and gravitational masses. Moreover, as
he worked only with energies, he did not deduce a force law analogous to the newtonian −m~a, nor did he
discuss how to do this deduction. He also did not know that the energy of interaction of a test particle inside
a spherical shell was valid anywhere inside the shell, and not only close to its center.

After Schrödinger, we are not aware of any relational theory that tried to implement Mach’s principle for
the next fifty years. Although there have been alternatives to general relativity, they were usually modeled
on Einstein’s approach and so maintained most non-machian aspects of his theories of relativity (absolute
quantities, inertia due to acceleration relative to empty space, frame dependent forces, etc.). For this reason
we do not consider them here.

An exception which must be mentioned is the work of Burniston Brown.55 He did not follow general
relativity but an analogy with the electromagnetic forces. Unfortunately the force expression he employed
for gravitation was not exactly relational, as is the case with Weber’s law. Despite this fact he arrived at
several machian consequences with his model.

In 1974 Edwards was led by analogies between electromagnetism and gravitation to work with relational
magnitudes such as ṙ, etc.56 He was not aware of Schrödinger’s approach. He mentioned that his “approach
employs some of the basic ideas of Weber’s and Riemann’s electromagnetic theories.” He drew attention to
an interesting possible explanation of the origin of binding forces within fundamental particles and within
nuclei utilizing the fact that Weber’s force applied to electromagnetism depends on the acceleration between
the charges. This means that the effective inertial mass of a charged particle depends on its electrostatic
potential energy, so that this effective inertial mass can become negative under certain conditions. As a
consequence of this negative mass effect, charges of the same sign might attract one another when these
conditions were satisfied. As we have seen in Section 25.2, Helmholtz had arrived at these ideas of an
effective inertial mass depending on the electrostatic potential energy 100 years before.57 Edwards published
nothing else along these lines of implementing Mach’s principle from a Weber’s force applied to gravitation.
Although Edwards was not aware of this fact, Weber himself proposed a planetary model of the atom, prior
to the works of Rutherford and Bohr, in which the nucleus composed of positive charges was held stable by
purely electromagnetic forces, as discussed in Subsection 2.8.1. Weber’s ideas were discussed in detail in a
book about Weber’s planetary model of the atom.58

At the same time Barbour, and later Barbour and Bertotti, worked with relational quantities, intrinsic

47[Hit87].
48[Sch57].
49[Meh87, see especially p. 1157].
50[MR87, pp. 372-373 and 459].
51Private communication by Julian Barbour and [BP95, p. 51].
52[BP95].
53[XA94] and [Sch95].
54[Ass94, Section 7.7], [CA95b], [CA96], [CA97], [AC99], [AP01] and [Bun01].
55[Bro55] and [Bro82].
56[Edw74].
57[Ass94].
58[AW11].
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derivatives and with the relative configuration space of the universe.59 They now follow Einstein’s approach
closely.

Eby followed Barbour’s ideas and worked with a lagrangian energy like equation (25.17) applied to
gravitation.60 He calculated the precession of the perihelion of the planets with this lagrangian and also
implemented Mach’s principle. Once more, he was not aware of Weber’s electrodynamics, nor was he aware
of Schrödinger’s paper. In a following work, Eby considered the precession of a gyroscope with his model.61

Recently he published another paper on Mach’s principle.62

Our own work on relational mechanics and Weber’s law applied to electromagnetism and gravitation was
developed during 1988 and is being published in several places.63

To our knowledge we were the first to obtain equations (17.34) and (17.68) in 1989.64 In other words,
we were the first to implement quantitatively Mach’s idea that rotating the set of distant astronomical
bodies around a test body generates in this test body a real centrifugal force and a real Coriolis’s force.
It seems to us that no one had deduced this key result before. We were also the first to deduce equation
(17.32) with ~Ω 6= ~0. Helmholtz and Schrödinger obtained it before us when ~Ω = ~0. We were also the first
to deduce65 equations (17.33) and (17.35). We were also the first to introduce66 the exponential decay in
Weber’s potential energy, equations (17.17) and (17.18).

The principle of dynamical equilibrium, third postulate of relational mechanics, was presented in Section
17.1, equation (17.3). Sciama seems to have been the first to state a particular form of this assumption. Let
us quote his main postulate:67

[...] in the rest-frame of any body the total gravitational field at the body arising from all the
other matter in the universe is zero.

The first limitation of his formulation was that he assumed it to be valid only for gravitational interactions,
while we applied it to all kinds of interaction. But much more serious than this limitation, was the fact
that he restricted the validity of his postulate only to the rest frame of the test body which experiences
the interaction, while we have supposed it to be valid in all frames of reference. The reason for his limited
supposition is very simple. He utilized as his force law an expression similar to Maxwell-Lorentz’s force
law, equation (15.14), applied to gravitation, which is certainly not relational. Moreover, as is well known,
Maxwell-Lorentz’s force depends on the position and velocity of the test body, but not on its acceleration.
When the test body was accelerated relative to the frame of distant galaxies, Sciama was able to show,
in the frame A of the test body (frame always fixed with it) that the distant galaxies would exert a force
on the test body of gravitational mass mg given by mg

~AGA, where ~AGA was the acceleration of the set of
distant galaxies relative to the test body. But in the frame U of the distant galaxies, there was no force
exerted by the set of all galaxies and acting on the accelerated test body in Sciama’s calculation! That is,
if you are in the universal frame of reference (fixed relative to the set of distant galaxies) and calculate the
gravitational force exerted by these galaxies and acting on the test body which is accelerated relative to
them, this yields a zero value with Sciama’s expression for the gravitational force (analogous to Maxwell-
Lorentz’s electromagnetic force), no matter the acceleration of the test body relative to the frame of distant
galaxies. This null result is due to the fact that Maxwell-Lorentz’s force is not relational, yielding different
results in different frames of reference. This null result is also due to the fact that Lorentz-Maxwell’s force
depends on the acceleration of the source body (body generating the forces or generating the fields), but
does not depend on the acceleration of the test body (body feeling the forces or reacting to the presence of
the fields).68 Therefore, Sciama could not implement Mach’s principle in its full generality. First of all, he
did not work with relational magnitudes. Nor could he deduce Newton’s second law of motion in the frame
of distant matter, where it is known to be valid.

The first presentation of the principle of dynamical equilibrium it its full generality, in which all important
consequences were deduced from it, was given only in our paper of 1989.69

59[Bar74], [BB77] and [BB82].
60[Eby77].
61[Eby79].
62[Eby97].
63[Ass89a], [Ass92f], [Ass92c], [Ass93b], [Ass93c], [Ass94, Sections 7.5 to 7.7], [AG95], [Ass95f], [Ass95d], [AG96] and [Ass13b].
64[Ass89a].
65[Ass89a], [Ass92f] and [Ass94, Chapter 7].
66[Ass92f].
67[Sci53].
68[Ass92b, Section 5.3], [Ass92a], [Ass93a], [Ass94, Sections 6.4 and 7.3] and [Ass95b, Section 5.2].
69[Ass89a].
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We hope that from now on many other people will get involved with relational mechanics, developing its
properties and consequences. It is for this reason that this book has been written, in such a way as to allow
others to participate actively in the history of this fascinating subject.



Chapter 26

Conclusion

We believe strongly in the relational mechanics as presented in this book. We have written it to show this
formulation in its full generality, so that others can see the power of this approach. In this way others can
develop this theory based on their own researches.

Peter and Neal Graneau are some of those scientists who grasped all aspects of relational mechanics.1

Some other people we can mention are Wesley, Zylbersztajn, Phipps, Gualavalverde and Warkulwiz.2

We believe that the three postulates of relational mechanics will not need to be modified. The ideas
and intuitive concepts related to these postulates are clear and plausible. On the other hand, experimental
findings may modify Weber’s law applied to gravitation and electromagnetism. For instance, it may be found
necessary to introduce terms which depend on d3r12/dt

3, d4r12/dt4, etc. Other powers of the derivatives
of the distance r = r12 between the interacting bodies may also appear in the force law, like: ṙ, (ṙ)3, (ṙ)4,
..., (r̈)2, (r̈)3, ..., (d3r/dt3)m, ... (dnr/dtn)m, ... A possible exponential decay in gravitation (and maybe in
electromagnetism) needs to be confirmed experimentally.

But the main lines of approaching future problems have already been laid down: no absolute space
and time; no velocity nor acceleration of the test body relative to empty space should have any relevance;
only relational magnitudes should be involved (such as r̂12, r12, ṙ12, r̈12, ...); all forces should come from
interactions between material bodies; for point particles the force should be directed along the line joining
them and should obey the principle of action and reaction; etc.

Isaac Newton created the best possible mechanics of his time. He understood clearly the difference
between inertial mass and weight. He knew Galileo’s result on the equality of the acceleration of freely
falling bodies and performed a very accurate experiment with pendulums which showed that the inertial
mass of a body was proportional to its weight to one part in a thousand. Although he could not explain this
proportionality, he was a giant to see the importance of this fact and to perform such a precise experiment.
He introduced the universal law of gravitation according to which the force between two bodies varies as the
inverse square of their distance, being also proportional to the product of their masses. This force acts along
the straight line connecting the interacting masses, satisfying the principle of action and reaction. Moreover,
he proved two key theorems, namely: (I) a spherical shell attracts an external material particle as if the
shell were concentrated at its center. (II) Moreover, this spherical shell exerts no net force on any internal
particle, no matter the position of the particle relative to the shell. These two theorems, obtained based on
his gravitational force, are valid no matter what the motion of the test body relative to empty space nor its
motion relative to the shell. They are also valid no matter the motion of the shell relative to empty space
nor relative to the test body. He performed the bucket experiment and observed that the concavity of the
spinning water was not due to its rotation relative to the bucket. Due to his two theorems stated above,
he believed the concavity of the spinning water could not be due to its rotation relative to the Earth, nor
to its rotation relative to the fixed stars. He had no other alternative to explain this experiment except to
conclude the concavity of the spinning water was due to its rotation relative to absolute space, which had
no connections with any matter. That is, the concavity would be due to the rotation of the water relative
to empty space.

It was only 160 years later that Wilhelm Weber proposed an electromagnetic force depending on the
distance between the point charges, on their relative radial velocity and on their relative radial acceleration.

1[Gra90d], [Gra90a], [Gra90c], [Gra90e], [Gra90b] and [GG93, Chapter 3: The Riddle of Inertia].
2[Wes90], [Wes91, Chapter 6], [Zyl94], [ZA99], [AZ01], [Phi96], [Phi13], [GV97], [GV98], [GV99a], [GV99b], [AGV00], [GV01],

[GVM01], [AGV02], [AGV03], [GV04], [GVAB05] and [War13, Chapter 5: The Logic of Relational Physics].
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He also proposed a potential energy depending on the distance and radial relative velocity between the
charges. These were the first force and energy in physics depending on velocity and acceleration between
the interacting bodies. Weber’s formulation is the only theory of electrodynamics ever proposed depending
only on relational magnitudes between the interacting bodies. For this reason Weber’s force and energy
always have the same value in all frames of reference, even for non-inertial frames (in the newtonian sense
of the word), as discussed in Appendix A. Weber’s force complies with the principle of action and reaction.
Moreover, it is directed along the straight line connecting the charges. It follows the principles of conservation
of linear momentum, conservation of angular momentum and conservation of energy. When there is no
motion between the charges, we deduce from it the electrostatic force between stationary charges and Gauss’s
law of electrostatics. With Weber’s force we also deduce Ampère’s force between current elements. From
this last expression we deduce the law of non-existence of magnetic monopoles and the magnetic circuital
law. With his expression Weber also deduced Faraday’s law of induction. Weber and Kirchhoff deduced,
before Maxwell, the telegraphy equation describing the propagation of electromagnetic perturbations along
wires at light velocity. They worked independently from one another, but both of them based on Weber’s
electrodynamics. Weber was also the first to measure the electromagnetic magnitude 1/

√
µoεo, finding the

same value as light velocity in vacuum. This was one of the first quantitative indications showing a connection
between optics and electromagnetism.3

With a Weber’s potential energy for gravitation and applying it for the interaction of a test particle and
the set of galaxies, we obtain an energy analogous to the classical kinetic energy. By identifying these two
expressions, we obtain that the kinetic energy can be understood as another energy of interaction, as it
already happened with all other known kinds of energy (elastic, gravitational, electromagnetic, etc.). That
is, the kinetic energy can then be interpreted as a gravitational energy describing the interaction between
the test body and the set of distant galaxies, whenever there is a relative translational velocity between the
test body and the set of galaxies.

By integrating Weber’s force applied to gravitation, it is possible to show that the set of distant galaxies
exerts a gravitational force acting on any test body accelerated relative to the set of galaxies. This force is
proportional to the gravitational mass of the test body and to its acceleration relative to the set of galaxies.
This result, together with the principle of dynamical equilibrium, yields equations of motion similar to
Newton’s first and second laws of motion. This result could at long last explain the proportionality between
inertial mass and weight (or the proportionality between the inertial mass mi and the gravitational mass
mg). We could also explain the fact that the frame of distant galaxies is an excellent inertial frame. That is,
we have been able to explain the coincidence of newtonian mechanics that the set of galaxies does not rotate
as a whole relative to absolute space, nor relative to any inertial frame of reference. In other words, we have
explained why the kinematic rotation of the Earth is identical to its dynamic rotation, ~ωk = ~ωd. We have
deduced a relation connecting local or microscopic magnitudes (the universal constant G of gravitation)
with cosmological or macroscopic magnitudes (Hubble’s constant Ho and the average volume density of
gravitational mass ρgo in the universe). This relation had been known for a long time with no convincing
explanation of its origin.

We have found a complete equivalence between ptolemaic and copernican world systems. It is then equally
valid to say that the Earth is spinning once a day relative to the stationary set of distant galaxies, or that the
Earth is at rest while the set of distant galaxies is rotating once a day as a whole relative to the Earth. Both
world views are now equivalent not only kinematically or visually, but also dynamically (yielding the same
flattening of the Earth at the poles, the same precession of the plane of oscillation of Foucault’s pendulum
relative to the ground, etc.) We have deduced the fact that all inertial forces of newtonian mechanics, like
the centrifugal or Coriolis forces, are real forces acting on the test body and being exerted by the set of
galaxies. These forces have a gravitational origin and appear when there is a relative rotation between the
test body and the set of galaxies. This property explained the flattening of the Earth as being due to the
relative rotation between the Earth and the set of galaxies. This property also justifies the fact that the
plane of oscillation of Foucault’s pendulum at the North or South poles remains at rest relative to the set
of galaxies, while the Earth is spinning relative to the galaxies. In the terrestrial frame of reference, on
the other hand, the Coriolis’s force exerted gravitationally by the set of galaxies and acting on the mass
connected to the pendulum rotates the plane of oscillation of the pendulum, relative to the ground. This
Coriolis’s force causes a precession in the plane of oscillation of the pendulum, making it rotate together
with the set of galaxies around the North-South axis of the Earth.

Relational mechanics also explained the concavity of the surface of the water in Newton’s bucket experi-
ment as being due to the rotation of the water relative to the set of distant astronomical bodies, as had been

3For a detailed discussion of these topics see [Ass92b], [Ass94] and [Ass95b].
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suggested by Mach. It is this relative rotation between the water and the set of distant galaxies which creates
the concavity of the surface of water. The concavity should take place not only by spinning the water around
the axis of the bucket relative to the ground, while the set of galaxies remains without rotation relative to
the ground, but also if it were possible to rotate quickly the set of galaxies around the axis of the bucket,
while the water remained at rest in the ground. Moreover, the concavity is now considered to depend on the
average volume density of gravitational mass in the universe. Therefore, if it were possible to decrease this
density of gravitational mass in the universe, the concavity of the water surface should also decrease, even if
the water maintained the same relative rotation with respect to the set of distant galaxies.

We have reached a clear and satisfactory understanding of the key facts of classical mechanics. From
now on the best alternative is to follow the new path this relational approach opens up. It is the path to a
new world!
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Appendix A

Relational Magnitudes

A.1 Examples of Relational and Nonrelational Magnitudes

In Section 2.8 we considered two particles 1 and 2 located at the position vectors ~r1 and ~r2 relative to
the origin O of a frame of reference S, figure A.1 (a). In general they will be moving relative to S with
velocities and accelerations given by, respectively: ~v1 = d~r1/dt, ~v2 = d~r2/dt, ~a1 = d~v1/dt = d2~r1/dt

2 and
~a2 = d~v2/dt = d2~r2/dt

2.

z z

y y

x x

0 0
r2 r2

v2

a2

2
2

1
1

S S

r1 r1

v1

a1

r

r^

(a) (b)

Figure A.1: (a) Particles 1 and 2 located at ~r1 and ~r2 in relation to the origin O of a frame of reference
S and moving relative to this frame. (b) There is a distance r between the particles and the unit vector r̂
points from 2 to 1.

The magnitudes ~r12 ≡ ~r ≡ ~r1 − ~r2, r12 ≡ r ≡ |~r12|, r̂12 ≡ r̂ ≡ ~r12/|~r12|, ṙ12 ≡ ṙ ≡ dr12/dt and
r̈12 ≡ r̈ ≡ dṙ12/dt = d2r12/dt

2 were also introduced in Section 2.8. The vector ~r12 ≡ ~r points from particle
2 to particle 1, the same happening with the unit vector r̂12 ≡ r̂, while r12 ≡ r is the distance between the
particles, figure A.1 (b). The scalar magnitudes ṙ12 ≡ ṙ and r̈12 ≡ r̈ are the radial relative velocity and
radial relative acceleration between particles 1 and 2, respectively. The magnitudes ~r12, r12, r̂12, ṙ12 and
r̈12 are being called relational magnitudes in this book. They are intrinsic to this system of particles. They
have the same values for all frames of reference, even for frames which are non-inertial from the newtonian
point of view. They have the same values for all observers, even for observers which are non-inertial from
the point of view of classical mechanics.

There are some other magnitudes which are not relational, so that they can have simultaneously different
values for different observers or for different frames of reference: ~r1, ~r2, ~v1, ~v2, ~a1, ~a2, ~v12 ≡ ~v1 − ~v2,
~a12 ≡ ~a1 − ~a2, |~v12| =

√
~v12 · ~v12, |~a12| ≡

√
~a12 · ~a12, r̂12 · ~a12 and ~r12 · ~a12. We can illustrate that these

magnitudes are not relational by considering a particular example.1

Consider a frame of reference S in which particles 1 and 2 remain always at rest, with particle 1 located
at the origin O of S, while particle 2 is located along the x axis at a distance ρ from the origin, with ρ > 0,
figure A.2.

In this case we have

1[Ass92b, Section 2.4, exercise 2.2], [Ass94, Section 3.2: Weber’s Force] and [Ass95b, Section 2.6, exercise 2].
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y

1 2 xr

S

Figure A.2: Particles 1 and 2 at rest relative to a frame of reference S.

~r1 = ~0 ,
~r2 = ρx̂ ,

~v1 = ~0 ,

~v2 = ~0 ,

~a1 = ~0 ,

~a2 = ~0 .
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(A.1)

Therefore we have the following results:

~r12 ≡ ~r1 − ~r2 = −ρx̂ ,
r12 ≡ |~r12| = ρ ,
r̂12 = −x̂ ,
ṙ12 = dr12/dt = r̂12 · (~v1 − ~v2) = 0 ,
r̈12 = dṙ12/dt = d2r12/dt

2 =
[

~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12
]

/r = 0 .























(A.2)

We also have:

~v12 ≡ ~v1 − ~v2 = ~0 ,

~a12 ≡ ~a1 − ~a2 = ~0 ,
|~v12| = 0 ,
|~a12| = 0 ,
r̂12 · ~a12 = 0 ,
~r12 · ~a12 = 0 .


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


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(A.3)

Consider now the same system of two particles from the point of view of another frame of reference S′

with its origin O′ always coinciding with the origin O of S. Suppose, in particular, that S′ rotates relative
to S around the z axis of S with a constant anti-clockwise angular velocity ~ω = |~ω|ẑ ≡ ωẑ. We will assume
that the x′, y′ and z′ axes of S′ coincide with the x, y and z axes of S at the initial time t = 0, figure A.3.

y

1 2

y’

x’

x

ω

q = ωt

ω

r

Figure A.3: Particles 1 and 2 at rest relative to frame S. The frame S′ rotates around the z axis with a
constant angular velocity ω.

The relations between the unit vectors x̂, ŷ and ẑ along the x, y and z axes of frame S and the corre-
sponding unit vectors x̂′, ŷ′ and ẑ′ along the x′, y′ and z′ axes of frame S′, at a time t, are given by:

x̂ = x̂′ cosωt− ŷ′ sinωt ,
ŷ = x̂′ sinωt+ ŷ′ cosωt ,
ẑ = ẑ′ .







(A.4)

and
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x̂′ = x̂ cosωt+ ŷ sinωt ,
ŷ′ = −x̂ sinωt+ ŷ cosωt ,
ẑ′ = ẑ .







(A.5)

Figure A.4 (a) presents the situation of figure A.3 from the point of view of the frame of reference S′.
Particle 1 remains at rest in S′, while particle 2 moves relative to frame S′ clockwise with a constant angular
velocity ω around the z′ axis.

1 1

2 2

y’ y’

x’ x’q = ωt

ω

r

S’ S’

v2’

a 2’
r2’

(a) (b)

Figure A.4: (a) Particle 1 at rest and particle 2 moving clockwise around the z′ axis of frame S′ with a
constant angular velocity ω. (b) Velocity ~v2

′ and acceleration ~a2
′ of particle 2 relative to frame S′.

According to figure A.4, the position vectors, velocities and accelerations of particles 1 and 2 relative to
frame S′ are given by:

~r1
′ = ~0 ,

~r2
′ = ρ (x̂′ cosωt− ŷ′ sinωt) ,

~v1
′ = ~0 ,

~v2
′ = −ρω (x̂′ sinωt+ ŷ′ cosωt) ,

~a1
′ = ~0 ,

~a2
′ = −ρω2 (x̂′ cosωt− ŷ′ sinωt) .
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(A.6)

Utilizing that ~ω = |~ω|ẑ ≡ ωẑ and using also equations (A.1), (A.4) and (A.6), we obtain the following
results:

~r1
′ = ~r1 = ~0 ,

~r2
′ = ρ (x̂′ cosωt− ŷ′ sinωt) = ρx̂ = ~r2 ,

~v1
′ = ~v1 = ~0 ,

~v2
′ = −ρω (x̂′ sinωt+ ŷ′ cosωt) = −~ω × ~r2 ,

~a1
′ = ~a1 = ~0 ,

~a2
′ = −ρω2 (x̂′ cosωt− ŷ′ sinωt) = ~ω × (~ω × ~r2) .
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(A.7)

Utilizing equations (A.4) and (A.6) we then obtain:

~r12
′ ≡ ~r1

′ − ~r2
′ = −~r2 ′ = −ρ (x̂′ cosωt− ŷ′ sinωt) = −ρx̂ ,

r′12 ≡ |~r12 ′| = ρ ,
r̂12

′ ≡ ~r12
′/r′12 = − (x̂′ cosωt− ŷ′ sinωt) = −x̂ ,

ṙ′12 ≡ dr′12/dt = r̂12
′ · (~v1 ′ − ~v2

′) = ρω (x̂′ cosωt− ŷ′ sinωt) · (x̂′ sinωt+ ŷ′ cosωt) = 0 ,

r̈′12 ≡ dṙ′12/dt = d2r′12/dt
2 =

[

(~v1
′ − ~v2

′) · (~v1 ′ − ~v2
′)− [r̂12

′ · (~v1 ′ − ~v2
′)]

2
+ ~r12

′ · (~a1 ′ − ~a2
′)
]

/r12 = 0 .
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(A.8)
We also have:
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~v12
′ ≡ ~v1

′ − ~v2
′ = ρω (x̂′ sinωt+ ŷ′ cosωt) ,

~a12
′ ≡ ~a1

′ − ~a2
′ = ρω2 (x̂′ cosωt− ŷ′ sinωt) ,

|~v12 ′| = ρω ,
|~a12 ′| = ρω2 ,
r̂12

′ · ~a12 ′ = −ρω2 ,
~r12

′ · ~a12 ′ = −ρ2ω2 .































(A.9)

Comparing equation (A.1) with equation (A.6) and comparing also equation (A.3) with equation (A.9)
yields the following results:

~v2
′ 6= ~v2 ,

~a2
′ 6= ~a2 ,

~v12
′ 6= ~v12 ,

|~v12 ′| 6= |~v12| ,
~a12

′ 6= ~a12 ,
|~a12 ′| 6= |~a12| ,
r̂12

′ · ~a12 ′ 6= r̂12 · ~a12 ,
~r12

′ · ~a12 ′ 6= ~r12 · ~a12 .
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(A.10)

That is, the values of all these magnitudes in frame S′ are different from the values of the same magnitudes
in frame S. This simple example shows that these magnitudes are not relational.

On the other hand, comparing equations (A.2) and (A.8), we obtain the following results:

~r12
′ = ~r12 ,

r′12 = r12 ,
r̂12

′ = r̂12 ,
ṙ′12 = ṙ12 ,
r̈′12 = r̈12 .
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(A.11)

That is, these magnitudes have exactly the same values in frames S′ and S. These are the real relational
magnitudes.

A.2 Proof that ~r12, r12, r̂12, ṙ12 and r̈12 are Relational Magnitudes

We now proof that ~r12, r12, r̂12, ṙ12 and r̈12 have the same values in all frames of reference.2 We suppose two
arbitrary frames of reference S and S′ whose origins of coordinates are O and O′, respectively. We suppose
that at time t the origin O′ is located by a vector ~R with respect to O, moving relative to O with a velocity
~V = d~R/dt and with a translational acceleration ~A = d~V /dt = d2 ~R/dt2, figure A.5 (a). Suppose, moreover,
that S′ is rotating, relative to S, with an angular velocity ~ω around an axis passing through O′, figure A.5
(b). If ~A 6= ~0 or ~ω 6= ~0, then at least one of these frames will be obviously noninertial from the point of view
of classical mechanics. We will show that even in this general case the magnitudes ~r12, r12, r̂12, ṙ12 and r̈12
will have the same values in these two frames of reference.

Let ~rj be the position vector of a particle j of mass mj relative to the origin O of frame S, moving with
velocity ~vj = d~rj/dt and acceleration ~aj = d~vj/dt = d2~rj/dt

2 relative to frame S, figure A.5. The same
magnitudes for particle j relative to frame S′ are given by: ~rj

′, ~vj ′ and ~aj
′. The relations between these

six magnitudes are given by:3

~rj = ~rj
′ + ~R ,

~vj = ~vj
′ + ~ω × ~rj

′ + ~V ,

~aj = ~aj
′ + ~ω × (~ω × ~rj

′) + 2~ω × ~vj
′ + (d~ω/dt)× ~rj

′ + ~A .







(A.12)

The opposite relations can be written as:

2[Ass94, Section 3.2: Weber’s Force] and [Ass95b, Section 2.6, exercise 8].
3[Sym71, Chapter 7].



Ch. A: Relational Magnitudes 497

z

z’

y

y’

m

x

x’

0

0’

S

S’R

r

r’

Figure A.5: Frames of reference S and S′ with the origins separated by a vector ~R and moving relative to
one another with velocity ~V and acceleration ~A. Frame S′ rotates relative to S with an angular velocity ~ω
around an axis passing through O′.

~rj
′ = ~rj − ~R ,

~vj
′ = ~vj − ~ω ×

(

~rj − ~R
)

− ~V ,

~aj
′ = ~aj − ~ω ×

[

~ω ×
(

~rj − ~R
)]

− 2~ω ×
[

~vj − ~ω ×
(

~rj − ~R
)

− ~V
]

− (d~ω/dt)×
(

~rj − ~R
)

− ~A .
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(A.13)
Situation of figure A.3 is a particular case of equations (A.12) and (A.13) with ~R = ~0, ~V = ~0, ~A = ~0,

~ω = ωẑ and d~ω/dt = ~0. In this particular case equation (A.13) with j representing particles 1 or 2 reduces
to equation (A.7).

We now assume that j can represent particle 1 or particle 2 which are interacting with one another, as in
figure A.1. Frame S′ is moving and rotating relative to frame S in the general situation represented by figure
A.5. Therefore, using equation (A.12) and the definitions of the magnitudes ~r12, r12 and r̂12 we obtain:

~r12 = ~r1 − ~r2 = (~r1
′ + ~R)− (~r2

′ + ~R) = ~r1
′ − ~r2

′ = ~r12
′ . (A.14)

Moreover:

r12 = |~r12| = |~r12 ′| = r12
′ , (A.15)

and

r̂12 =
~r12
r12

=
~r12

′

r12 ′
= r̂12

′ . (A.16)

Equations (A.14), (A.15) and (A.16) indicate that ~r12, r12 and r̂12 are relational magnitudes, as they
have the same values in frames S′ and S, as we wanted to prove.

Likewise, from equation (A.12) and the definition of ~v12 ≡ ~v1 − ~v2 it is easy to show that:

~v12 = ~v1−~v2 = (~v1
′+~ω×~r1

′+~V )−(~v2
′+~ω×~r2

′+~V ) = (~v1
′−~v2

′)+~ω×(~r1
′−~r2

′) = ~v12
′+~ω×~r12

′ . (A.17)

Utilizing equations (A.16) and (A.17) into equation (2.29) yield:

ṙ12 =
dr12
dt

= r̂12 · ~v12 = r̂12
′ · (~v12 ′ + ~ω × ~r12

′) = r̂12
′ · ~v12 ′ =

dr12
′

dt
= ṙ12

′ . (A.18)

From equation (A.17) we see that when ~ω×~r12
′ 6= ~0, we will have ~v12 6= ~v12

′ and |~v12| 6= |~v12 ′|. Therefore
~v12 and |~v12| are not relational magnitudes.
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However, even in this case we can see from equation (A.18) that in the general case ṙ12 = ṙ12
′. This

calculation shows that ṙ12 is also a relational magnitude, as it has always the same value in frames S and
S′.

From equation (A.12) we also show that:

~a12 = ~a1 − ~a2 =
[

~a1
′ + ~ω × (~ω × ~r1

′) + 2~ω × ~v1
′ + (d~ω/dt)× ~r1

′ + ~A
]

−
[

~a2
′ + ~ω × (~ω × ~r2

′) + 2~ω × ~v2
′ + (d~ω/dt)× ~r2

′ + ~A
]

= ~a12
′ + ~ω × (~ω × ~r12

′) + 2~ω × ~v12
′ +

d~ω

dt
× ~r12

′ . (A.19)

Likewise, from equations (A.14) and (A.19) we obtain:

~r12 · ~a12 = ~r12
′ ·
[

~a12
′ + ~ω × (~ω × ~r12

′) + 2~ω × ~v12
′ +

d~ω

dt
× ~r12

′

]

. (A.20)

In general we also have:

~ω × (~ω × ~r12
′) = ~ω (~ω · ~r12 ′)− ~r12

′ (~ω · ~ω) . (A.21)

Combining equations (A.20) and (A.21) yield:

~r12 · ~a12 = ~r12
′ · ~a12 ′ + (~ω · ~r12 ′)

2 − (~r12
′ · ~r12 ′) (~ω · ~ω) + 2~r12

′ · (~ω × ~v12
′) . (A.22)

From equations (2.30), (A.17) and (A.18) we obtain:

r̈12 =
d2r12
dt2

=
1

r12

[

~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12
]

=
1

r12 ′

[

(~v12
′ + ~ω × ~r12

′) · (~v12 ′ + ~ω × ~r12
′)− (r̂12

′ · ~v12 ′)
2

+ ~r12
′ · ~a12 ′ + (~ω · ~r12 ′)

2 − (~r12
′ · ~r12 ′) (~ω · ~ω) + 2~r12

′ · (~ω × ~v12
′)
]

. (A.23)

We have the following relations:

2~v12
′ · (~ω × ~r12

′) = −2~r12
′ · (~ω × ~v12

′) , (A.24)

and

(~ω × ~r12
′) · (~ω × ~r12

′) = (~r12
′ · ~r12 ′) (~ω · ~ω)− (~ω · ~r12 ′)

2
. (A.25)

Utilizing equations (A.24) and (A.25) into equation (A.23) yields:

r̈12 =
1

r12 ′

[

~v12
′ · ~v12 ′ − (r̂12

′ · ~v12 ′)
2
+ ~r12

′ · ~a12 ′

]

=
d2r12

′

dt2
= r̈12

′ . (A.26)

Equation (A.19) shows that ~a12 may be different from ~a12
′. Likewise, equation (A.22) shows that ~r12 ·~a12

may be different from ~r12
′ ·~a12 ′. Therefore, also r̂12 ·~a12 may be different from r̂12

′ ·~a12 ′. This fact indicates
that ~a12, ~r12 ·~a12 and r̂12 ·~a12 are not relational magnitudes, as their values can be different in frames S and
S′.

But even in these cases equation (A.26) shows that we will always have r̈12 = r̈12
′, which proves that r̈12

is a also relational magnitude.
The relational magnitudes which always have the same values in all frames of reference and for all

observers are: ~r12, r̂12, r12, ṙ12 and r̈12. These are the magnitudes appearing in Weber’s force and potential
energy applied to electromagnetism and gravitation. These are the magnitudes appearing in relational
mechanics.



Appendix B

Spherical Shell Interacting with a

Particle According to Weber’s Law

In this Appendix it is shown how to calculate the energy of a particle of gravitational mass mg interacting
with a spherical shell of gravitational mass Mg utilizing Weber’s potential energy. It will also be calculated
Weber’s force exerted by this spherical shell on the particle. These are the most important calculations
of relational mechanics. With these calculations it becomes clear the main distinction between the laws of
Newton and Weber.

Consider two point particles of gravitational masses mg1 and mg2 located at the position vectors ~r1 and
~r2 relative to the origin O of an arbitrary coordinate system S, respectively, figure B.1. The velocities and
accelerations of these particles relative to frame S are given by, respectively: ~v1 = d~r1/dt, ~a1 = d~v1/dt =
d2~r1/dt

2, ~v2 = d~r2/dt and ~a2 = d~v2/dt = d2~r2/dt
2.
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0
r2

v2

a2

mg2

S

r1

v1

a1

mg1

Figure B.1: Position vectors ~r1 and ~r2 of particles 1 and 2 relative to the origin O of a frame of reference S,
moving with velocities ~v1 and ~v2 and accelerations ~a1 and ~a2, respectively, relative to frame S.

The energy U12 of particle 1 interacting with 2, according to Weber’s law, is given by equation (17.15),
namely:

U12 = −Hg
mg1mg2

r12

(

1− ξ
ṙ212
2c2

)

= −Hg
mg1mg2

r12

[

1− ξ
(r̂12 · ~v12)2

2c2

]

. (B.1)

The force ~F21 exerted by 2 on 1 is given by equation (17.16), namely:

~F21 = −Hgmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)]

= −Hgmg1mg2
r̂12
r212

{

1 +
ξ

c2

[

~v12 · ~v12 −
3

2
(r̂12 · ~v12)2 + ~r12 · ~a12

]}

. (B.2)
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We assume that Hg, c and ξ are fundamental constants in these equations, remembering that ξ is
dimensionless. The magnitudes c, r12, r̂12, ṙ12 ≡ dr12/dt and r̈12 ≡ dṙ12/dt = d2r12/dt

2 were defined in
equations (2.23) up to (2.30). The vector ~r12 = ~r1 − ~r2 points from particle 2 to particle 1, the same
happening with the unit vector r̂12 = ~r12/r12.

The calculations presented in the next Sections can also be easily adapted for the weberian interaction
of an electrified point particle interacting with a uniformly charged spherical shell by making the following
replacements in equations (B.1) and (B.2): Heq1q2 instead of Hgmg1mg2, and 1/c2 instead of ξ/c2.

B.1 Force Exerted by a Stationary Spherical Shell

The goal of this Section is to calculate the energy of a particle with gravitational mass mg1 ≡ mg interacting
with a spherical shell of gravitational mass Mg and radius R. The force exerted by the shell on the particle
will also be calculated. Initially we suppose the spherical shell at rest in a frame of reference U , with the
center of the shell coinciding with the origin O of the coordinate system, figure B.2. The position vector
of the point particle relative to the center of the shell will be represented by ~r1 ≡ ~rmU . The velocity and
acceleration of the particle relative to frame U will be represented by, respectively, ~v1 ≡ ~vmU = d~rmU/dt
and ~a1 ≡ ~amU = d~vmU/dt = d2~rmU/dt

2.

z

y

x

Mg

R

0

rmU
vmU

amU

mg

U

Figure B.2: Spherical shell at rest in frame U interacting with a particle moving relative to the shell.

In order to obtain the energy of interaction between mg and the shell, and also the force exerted by
the shell on the particle, we need to replace in equations (B.1) and (B.2) the mass mg2 by an infinitesimal
element of mass dmg2. Then we can integrate these expressions over the whole spherical shell. To this end
we utilize spherical coordinates (r, θ, ϕ) with the polar angle θ going from 0 to π rad and with the azimuthal
angle ϕ going from 0 to 2π rad, figure B.3.

x

x

0

r
y

y

z

z

j

q

Figure B.3: Spherical coordinates (r, θ, ϕ).

The rectangular coordinates (x, y, z) are connected to the spherical coordinates by the following relations:
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x = r sin θ cosϕ ,
y = r sin θ sinϕ ,
z = r cos θ ,







(B.3)

and

r =
√

x2 + y2 + z2 ,
θ = arccos z√

x2+y2+z2
,

ϕ = arctan y
x .











(B.4)

The relations between the unit vectors in these two coordinate systems are given by:

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ ,

θ̂ = cos θ cosϕx̂ + cos θ sinϕŷ − sin θẑ ,
ϕ̂ = − sinϕx̂ + cosϕŷ .







(B.5)

The position vector ~r of a material point relative to the center of the shell, its velocity ~v and acceleration
~a relative to frame U , in the rectangular and spherical coordinate systems, are given by, respectively:

~r = xx̂ + yŷ + zẑ = rr̂ ,

~v = d~r/dt = ẋx̂+ ẏŷ + żẑ = ṙr̂ + rθ̇θ̂ + rϕ̇ sin θϕ̂ ,
~a = d~v/dt = d2~r/dt2 = ẍx̂+ ÿŷ + z̈ẑ

= (r̈ − rθ̇2 − rϕ̇2 sin2 θ)r̂ + (rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ)θ̂

+ (rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ϕ̇ cos θ)ϕ̂ .























(B.6)

An infinitesimal element of area of the spherical shell of radius R can be written as dA2 = R2 sin θ2dθ2dϕ2.
We assume a total mass Mg uniformly distributed over the shell with a surface density of mass σg2 ≡
Mg/(4πR

2). Therefore, an infinitesimal element of mass of the shell of gravitational mass dmg2 can be
written as follows:

dmg2 = σg2dA2 = σg2R
2 sin θ2dθ2dϕ2 = Mg

sin θ2dθ2dϕ2

4π
. (B.7)

In this frame of reference U in which the spherical shell is at rest we have that all infinitesimal elements
of mass dmg2 of the shell are also at rest, so that: ~v2 = ~0 and ~a2 = ~0. Therefore, the relevant magnitudes
which are necessary in order to calculate the energy of mg interacting with the shell are given by:

~r12 = ~r1 − ~r2 = (x1 −R sin θ2 cosϕ2)x̂+ (y1 −R sin θ2 sinϕ2)ŷ + (z1 − R cos θ2)ẑ . (B.8)

r12 = |~r12| =
√

r21 +R2 − 2r1R[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)] , (B.9)

r̂12 =
~r12
r12

=
(x1 −R sin θ2 cosϕ2)x̂+ (y1 −R sin θ2 sinϕ2)ŷ + (z1 −R cos θ2)ẑ
√

r21 +R2 − 2r1R[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]
, (B.10)

~v12 = ~v1 − ~v2 = ~v1 ≡ ~vmU = ẋ1x̂+ ẏ1ŷ + ż1ẑ , (B.11)

and

~a12 = ~a1 − ~a2 = ~a1 ≡ ~amU = ẍ1x̂+ ÿ1ŷ + z̈1ẑ . (B.12)

According to equation (B.1), the energy UMm of mg interacting gravitationally with the shell is then
given by:

UMm = −Hgmg1

∫ π

θ2=0

∫ 2π

ϕ2=0

dmg2

r12

[

1− ξ
(r̂12 · ~v1)2

2c2

]

. (B.13)

In order to solve this double integral we utilize equation (B.7) together with equations (B.8) up to (B.12):

UMm = −Hgmg1Mg

4π

∫ π

θ2=0

∫ 2π

ϕ2=0

sin θ2dθ2dϕ2
√

r21 +R2 − 2r1R[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]
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×







1− ξ

2c2

[

(x1 −R sin θ2 cosϕ2)ẋ1 + (y1 −R sin θ2 sinϕ2)ẏ1 + (z1 −R cos θ2)ż1
√

r21 +R2 − 2r1R[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]

]2






. (B.14)

By performing these integrations we obtain the following results:

UMm(rmU < R) = −HgmgMg

R

(

1− ξ

6

~vmU · ~vmU

c2

)

, (B.15)

and

UMm(rmU > R) = −HgmgMg

rmU

[

1− ξ(r̂mU · ~vmU )
2

2c2
− ξ

6

R2

r2mU

~vmU · ~vmU − 3(r̂mU · ~vmU )
2

c2

]

. (B.16)

The newtonian gravitational potential energy can be recovered from equations (B.15) and (B.16) by
making ξ/c2 → 0.

There are several possibilities to perform these integrations beginning with equation (B.14) in order to
arrive at equations (B.15) and (B.16). Some of them are presented here.

The simplest way to arrive at equation (B.15) is to consider the particular situation in which the test
particle mg is passing through the origin, figure B.4 (a). In this case r1 = rmU = 0 and the integrals can be
easily performed. In principle this result would be valid only in this particular case in which r1 = rmU = 0.
In any event, this simple calculation illustrates how to arrive at equation (B.15).
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Figure B.4: (a) Particle passing through the center of the shell. (b) Particle passing through the z axis.

We can then consider a more general case in which the particle is outside the origin, such that r1 6= 0. In
this case it is possible to arrive at equations (B.15) and (B.16) by integrating equation (B.14) considering a
coordinate system such that the test particle is passing through the z axis, that is, with ~r1 = z1ẑ, figure B.4
(b). Initially it can be considered the situation in which the test particle is at rest relative to frame U , ~v1 = ~0.
In this particular configuration the integrals are very simple, as θ1 = 0. To integrate the variable θ2 we can
utilize the following substitution: cos θ2 ≡ u, du = − sin θ2dθ2, sin

2 θ2 = 1− u2 and
∫ π

θ2=0
=
∫

−1

u=1
. It is then

possible to generalize this result by solving these integrals in the case in which ~r1 = z1ẑ, but now supposing
that the test particle is moving along the xz plane relative to frame U , that is, with ~v1 = ẋ1x̂+ ż1ẑ.

Finally this last result can be generalized by supposing that the test particle has an arbitrary position
relative to the origin, ~r1 = x1x̂+ y1ŷ + z1ẑ, moving with an arbitrary velocity relative to frame U , namely,
~v1 = ẋ1x̂+ ẏ1ŷ + ż1ẑ.

It is possible to test the result given by equation (B.15) by performing the integration of equation (B.14)
supposing rmU ≪ R. The denominator can then be expanded, for instance, up to the third power of rmU/R.
It is then easy to perform the integrations in θ2 and ϕ2.
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Another procedure to obtain equations (B.15) and (B.16) from equation (B.14) utilizes spherical har-
monics.1 The idea here is to expand r12 and r312 in spherical harmonics. The double integration in θ2 and ϕ2

can then be carried out utilizing the orthonormality conditions of the spherical harmonics. This procedure is
somewhat tedious but works quite well. It can be applied not only when rmU < R, but also when rmU > R.

By utilizing these procedures it is possible to calculate the gravitational force ~Fstationary shell exerted by
the spherical shell and acting on the test particle moving relative to the shell. According to equation (B.2),
the force exerted by the spherical shell of gravitational mass Mg and acting on the test particle mg is given
by the following double integral:

~Fstationary shell = −Hgmg1

∫ π

θ2=0

∫ 2π

ϕ2=0

dmg2
r̂12
r212

{

1 +
ξ

c2

[

~v12 · ~v12 −
3

2
(r̂12 · ~v12)2 + ~r12 · ~a12

]}

. (B.17)

In order to solve these integrals we utilize equation (B.7) together with equations (B.8) up to (B.12),
namely:

~Fstationary shell = −Hgmg1Mg

4π

∫ π

θ2=0

∫ 2π

ϕ2=0

(x1 −R sin θ2 cosϕ2)x̂+ (y1 −R sin θ2 sinϕ2)ŷ + (z1 −R cos θ2)ẑ

{r21 +R2 − 2r1R[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]}3/2

×







1 +
ξ

c2



~v1 · ~v1 −
3

2

(

(x1 −R sin θ2 cosϕ2)ẋ1 + (y1 −R sin θ2 sinϕ2)ẏ1 + (z1 −R cos θ2)ż1
√

r21 +R2 − 2r1R[cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]

)2

+ [(x1 −R sin θ2 cosϕ2)ẍ1 + (y1 −R sin θ2 sinϕ2)ÿ1 + (z1 −R cos θ2)z̈1]

]}

sin θ2dθ2dϕ2 . (B.18)

By performing these integrations we obtain the following results:

~Fstationary shell(rmU < R) = −HgξmgMg

3Rc2
~amU , (B.19)

and

~Fstationary shell(rmU > R) = −HgmgMg

r2mU

{[

1+
ξ

c2

(

~vmU · ~vmU − 3

2
(r̂mU · ~vmU )

2 + ~rmU · ~amU

)

]

r̂mU

+
ξ

c2
R2

r2mU

[

rmU

3
~amU − (r̂mU ·~vmU )~vmU−

~vmU · ~vmU

2
r̂mU +

5

2
(r̂mU ·~vmU )

2r̂mU − (~rmU ·~amU )r̂mU

]}

. (B.20)

By action and reaction, the test particle exerts an equal and opposite force on the shell given by equations
(B.19) and (B.20) with an overall change of sign.

The gravitational newtonian force exerted by the stationary shell on the test particle can be recovered
from these equations by making ξ/c2 → 0.

The main difference between the newtonian force of gravitation and Weber’s force appears in equation
(B.19). Weber’s force is different from zero whenever the test particle is accelerated relative to the shell.
Newton’s force, on the other hand, is always zero, no matter the acceleration of the particle relative to the
shell. Newton himself was the first to obtain the result that the shell exerts no net force on any internal
test particle, as was seen in Subsection 1.4.1. Weber’s force given by equation (B.19) has always the same
value for all particles having the same acceleration relative to the shell, no matter the position of the internal
test particle relative to the center of the shell. This result is the fundamental basis of relational mechanics.
Equation (B.19) is essential for the mathematical implementation of Mach’s principle.

In order to arrive at equations (B.19) and (B.20) we can utilize the same procedures employed to obtain
the energy of interaction between the particle and the shell.

For instance, the simplest way of obtaining equation (B.19) is to consider the particular situation in
which the test particle mg is passing through the origin of the shell, figure B.4 (a). In this case r1 = rmU = 0

1[Jac75, Sections 3.5 and 3.6], [Jac83] and [Jac99].
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and the integrals are easily performed. In principle the result of this simple integration will be valid only in
this particular configuration in which the test particle is passing through the origin. In any event, this is a
very simple way of obtaining equation (B.19).

We can then consider the more general case in which the test particle is not at the center of the shell, that
is, when r1 6= 0. In this case we can obtain equations (B.19) and (B.20) from equation (B.18) considering a
frame of reference in which the test particle is passing through the z axis, that is, with ~r1 = z1ẑ, figure B.4
(b). Initially we consider the case when the test particle is at rest, ~v1 = ~0 and ~a1 = ~0. The integrals are then
very simple to perform, as θ1 = 0. To integrate in the variable angle θ2 we utilize the change of variables
given by cos θ2 ≡ u, du = − sin θ2dθ2, sin

2 θ2 = 1− u2 and
∫ π

θ2=0
=
∫

−1

u=1
. Following this first calculation, we

generalize this result by solving the same integrations in the case in which ~r1 = z1ẑ, but now supposing that
the test particle is moving along the xz plane, that is, with ~v1 = ẋ1x̂+ ż1ẑ and ~a1 = ẍ1x̂+ z̈1ẑ.

This last result can finally be generalized supposing the test particle having an arbitrary position relative
to the shell, ~r1 = x1x̂+ y1ŷ+ z1ẑ, moving with arbitrary velocity and acceleration relative to frame U , that
is, with ~v1 = ẋ1x̂+ ẏ1ŷ + ż1ẑ and ~a1 = ẍ1x̂+ ÿ1ŷ + z̈1ẑ.

Equation (B.19) can be tested by performing the approximate integration of equation (B.18) supposing
rmU ≪ R. The denominator can then be expanded, for instance, up to the third power of rmU/R. The
integrations can then be easily performed in θ2 and ϕ2.

Another procedure of obtaining equations (B.19) and (B.20) from equation (B.18) utilizes spherical
harmonics.2 The idea here is to expand r312 and r512 in spherical harmonics. The double integration in θ2
and ϕ2 can then be obtained utilizing the orthonormality conditions satisfied by the spherical harmonics.
This procedure is tedious but works quite well. It can be applied not only when rmU < R, but also when
rmU > R.

B.2 Force Exerted by a Linearly Accelerated Spherical Shell

We now consider a reference frame A in which the test particle of gravitational mass mg1 ≡ mg has a
position vector relative to the origin O of frame A given by ~r1 ≡ ~rmA, moving relative to frame A with
velocity ~v1 ≡ ~vmA and acceleration ~a1 ≡ ~amA, respectively. We consider here that at a certain moment t
the center of the spherical shell of gravitational mass Mg and radius R is passing through the origin O of
frame A. Moreover, we assume that at this instant t the shell as a whole is moving relative to frame A with
a linear velocity ~VMA = V x

MAx̂+ V y
MAŷ + V z

MAẑ and a linear acceleration ~AMA = Ax
MAx̂+Ay

MAŷ +Az
MAẑ,

figure B.5.
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Figure B.5: Spherical shell linearly accelerated relative to a frame A and interacting with a test particle
moving relative to frame A.

The energy of mg interacting with the shell and the gravitational force exerted by the shell on the test
particle can be obtained by the integration of equations (B.1) and (B.2) utilizing the procedures adopted in

2[Jac75, Sections 3.5 and 3.6], [Jac83] and [Jac99].
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Section B.1. The main difference relative to this earlier Section is that now the velocity and acceleration of
an infinitesimal element of gravitational mass dmg2 of the spherical shell are given by, respectively:

~v2 = ẋ2x̂+ ẏ2ŷ + ż2ẑ = V x
MAx̂+ V y

MAŷ + V z
MAẑ , (B.21)

and

~a2 = ẍ2x̂+ ÿ2ŷ + z̈2ẑ = Ax
MAx̂+Ay

MAŷ +Az
MAẑ . (B.22)

After the integration the energy of gravitational interaction between the test particle mg and the shell
Mg is given by:

UMm(rmA < R) = −HgmgMg

R

[

1− ξ

6

(~vmA − ~VMA) · (~vmA − ~VMA)

c2

]

, (B.23)

and

UMm(rmA > R) = −HgmgMg

rmA

{

1− ξ[r̂mA · (~vmA − ~VMA)]
2

2c2

− ξ

6

R2

r2mA

(~vmA − ~VMA) · (~vmA − ~VMA)− 3(r̂mA · (~vmA − ~VMA))
2

c2

}

. (B.24)

The force exerted by the accelerated shell and acting on the test particle mg is given by:

~Faccelerated shell(rmA < R) = −HgξmgMg

3Rc2
(~amA − ~AMA) , (B.25)

and

~Faccelerated shell(rmA > R) = −HgmgMg

r2mA

{[

1+
ξ

c2

(

(~vmA − ~VMA) · (~vmA − ~VMA)−
3

2
(r̂mA · (~vmA − ~VMA))

2

+ ~rmA · (~amA − ~AMA)

)]

r̂mA +
ξ

c2
R2

r2mA

[

rmA

3
(~amA − ~AMA)− (r̂mA · (~vmA − ~VMA))(~vmA − ~VMA)

− (~vmA − ~VMA) · (~vmA − ~VMA)

2
r̂mA +

5

2
(r̂mA · (~vmA − ~VMA))

2r̂mA − (~rmA · (~amA − ~AMA))r̂mA

]}

. (B.26)

In order to arrive at these results we can utilize techniques of integration analogous to those presented in
Section B.1. Another possibility is to utilize the fact that the magnitudes which appear in Weber’s energy
and force are totally relational, as this energy and force depend only on r12, ṙ12 and r̈12. This relational
aspect of Weber’s law means that the only thing which matters in the calculation of these energy and force
are the relative distances, radial velocities and radial accelerations between the interacting bodies. That is,
the observer or the frame of reference are not relevant in order to obtain the final value of the energy and
force. Therefore, in order to arrive at equations (B.23) up to (B.26) it is possible to utilize equations (B.15)
up to (B.20) by performing appropriate changes in the velocities and accelerations appearing in these last
expressions.

By action and reaction, the particle mg exerts on the shell forces equal and opposite those forces given
by equations (B.25) and (B.26).

B.3 Force Exerted by a Spinning Spherical Shell

We now consider a frame of reference R in which the test particle of gravitational mass mg1 ≡ mg has a
position vector relative to the origin O of frame R given by ~r1 ≡ ~rmR, moving relative to frame R with
velocity ~v1 ≡ ~vmR and acceleration ~a1 ≡ ~amR, respectively. We consider that the center of the spherical
shell of gravitational mass Mg and radius R coincides with the origin O of frame R. Moreover, we assume
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Figure B.6: Spherical shell spinning with an angular velocity ~ΩMR in frame R around an axis passing through
the center of the shell and interacting with a test particle mg moving relative to frame R.

that the spherical shell is spinning with an angular velocity ~ΩMR(t) in this frame R around an axis passing
through the center of the shell, as represented in figure B.6.

The energy of gravitational interaction between mg and the shell, together with the gravitational force
exerted by the shell on mg, can be obtained from the integration of equations (B.1) and (B.2) utilizing the
procedures adopted in Section B.1. The main difference is that now the position vector ~r2 of an infinitesimal
element of mass dmg2 of the spherical shell in frame R, relative to the center O of the shell, and its velocity
~v2 and acceleration ~a2 relative to frame R, are given by, respectively:

~r2 = R sin θ2 cosϕ2x̂+R sin θ2 sinϕ2ŷ +R cos θ2ẑ . (B.27)

~v2 = ~ΩMR × ~r2 , (B.28)

and

~a2 =
d~v2
dt

= ~ΩMR × (~ΩMR × ~r2) +
d~ΩMR

dt
× ~r2 . (B.29)

The integration of equation (B.1) can be performed as in Section B.1. The gravitational energy of
interaction between mg and the shell is then given by:

UMm(rmR < R) = −HgmgMg

R

[

1− ξ

6

(~vmR − ~ΩMR × ~rmR) · (~vmR − ~ΩMR × ~rmR)

c2

]

, (B.30)

and

UMm(rmR > R) = −HgmgMg

rmR

{

1− ξ[r̂mR · (~vmR − ~ΩMR × ~rmR)]
2

2c2

− ξ

6

R2

r2mR

(~vmR − ~ΩMR × ~rmR) · (~vmR − ~ΩMR × ~rmR)−3[r̂mR · (~vmR − ~ΩMR × ~rmR)]
2

c2

}

. (B.31)

Equation (B.2) can also be integrated utilizing the procedures presented in Section B.1. The force exerted
by the spinning shell and acting on the test particle mg is found to be given by:

~Fspinning shell(rmR < R) = − ξ

3c2
HgmgMg

R

[

~amR + ~ΩMR × (~ΩMR ×~rmR) +2~vmR × ~ΩMR + ~rmR × d~ΩMR

dt

]

,

(B.32)
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and

~Fspinning shell(rmR > R) = −HgmgMg

r2mR

{[

1 +
ξ

c2

(

~vmR · ~vmR − 3

2
(r̂mR · ~vmR)

2 + ~rmR · ~amR

)]

r̂mR

+
ξ

c2
R2

r2mR

[rmR

3
~amR − (r̂mR · ~vmR)~vmR − ~vmR · ~vmR

2
r̂mR +

5

2
(r̂mR · ~vmR)

2r̂mR − (~rmR · ~amR)r̂mR

+ (r̂mR · ~vmR)(~ΩMR × ~rmR) +
2

3
rmR(~vmR × ~ΩMR) +

rmR

3
(~ΩMR · ~rmR)~ΩMR +

r2mRΩ
2
MR

6
r̂mR

− (~rmR · ~ΩMR)
2

2
r̂mR + [~rmR · (~ΩMR × ~vmR)]r̂mR +

rmR

3

(

~rmR × d~ΩMR

dt

)]}

. (B.33)

In classical mechanics the terms with ξ/c2 would not appear.
In order to obtain these equations, the integrations can be performed as outlined in Section B.1. There

is a particular configuration which simplifies the calculations, namely, when ~Ω = Ωẑ. The calculations can
be performed in this particular configuration, being afterwards generalized by considering a general angular
velocity of the shell around an arbitrary axis passing through the center of the shell.

Another possibility to obtain these integrations is to utilize the fact that the magnitudes appearing in
Weber’s force are totally relational, as they depend only on r12, ṙ12 and r̈12. This relational property means
that the only magnitudes which matter in order to obtain the energy and force between the spherial shell and
the test particle are the relative distances, radial velocities and radial accelerations between the interacting
bodies. Therefore, the observer and the frame of reference are not relevant as regards the final result of
the energy of the test particle interacting with the spherical shell. Likewise, the observer and the frame of
reference are not relevant as regards the force exerted by the spherical shell and acting on the test particle.
This means that we can arrive at equations (B.30) up to (B.33) utilizing equations (B.15) up to (B.20) and
performing an appropriate change in the velocities and accelerations appearing in these last equations.

By action and reaction, the particle mg exerts on the spherical shell forces equal and opposite those forces
given by equations (B.32) and (B.33).

Suppose that the spherical shell were spinning with an angular velocity ~ΩMR(t) in frame R around an
axis passing through the center of the shell. But now let us suppose that the center of the shell were localized
at a position vector ~RoR relative to the origin O of frame R. Suppose, moreover, that the center of the shell
were moving in frame R with velocity ~VoR and acceleration ~AoR, respectively. By integrating equations (B.1)
and (B.2) in this configuration we would obtain equations (B.30) up to (B.33), but now with ~rmR − ~RoR,
|~rmR − ~RoR|, r̂mo ≡ (~rmR − ~RoR)/|~rmR − ~RoR|, ~vmR − ~VoR and ~amR − ~AoR instead of ~rmR, rmR, r̂mR, ~vmR

and ~amR, respectively.
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Appendix C

Spherical Shell Interacting with a

Particle According to Weber’s Law with

Exponential Decay

C.1 Force Exerted by a Stationary Spherical Shell

The goal of this Section is to calculate the gravitational energy UMm of the particle with gravitational mass
mg1 ≡ mg interacting with a spherical shell of gravitational mass Mg and radius R. We will also calculate
the force ~FMm exerted by the shell acting on the test particle. But now, in contrast to what was made in
Appendix B, we will assume a Weber’s law with exponential decay acting between any pair of particles, as
given by equations (17.17) and (17.18), namely:

U12 = −Hg
mg1mg2

r12

(

1− ξ
ṙ212
2c2

)

e−αr12 , (C.1)

and

~F21 = −Hgmg1mg2
r̂12
r212

[

1− ξ

c2

(

ṙ212
2

− r12r̈12

)

+ αr12

(

1− ξ

2

ṙ212
c2

)]

e−αr12 . (C.2)

Initially we will assume that the spherical shell is at rest in a frame of reference U , with its center
coinciding with the origin O of frame U . In this case in which we are considering an exponential decay, we
will only be interested in this book in the situation in which the test particle is passing through the center
of the shell, such that ~r1 ≡ ~rmU = ~0. The velocity and acceleration of this test particle mg in frame U can
be considering as having arbitrary values, that is, with ~v1 ≡ ~vmU = d~rmU/dt and ~a1 ≡ ~amU = d~vmU/dt =
d2~rmU/dt

2, figure B.4 (a).
As was done in Appendix B, Section B.1, we utilize spherical coordinates, figure B.3. The magnitudes

which interest us here in equations (C.1) and (C.2) are given by, with ~r1 = ~0, ~v2 = ~0 and ~a2 = ~0:

~r12 = ~r1 − ~r2 = −~r2 = −R sin θ2 cosϕ2x̂−R sin θ2 sinϕ2ŷ −R cos θ2ẑ , (C.3)

r12 = |~r12| = |~r2| = R , (C.4)

r̂12 =
~r12
r12

= −~r2
R

= − sin θ2 cosϕ2x̂− sin θ2 sinϕ2ŷ − cos θ2ẑ , (C.5)

~v12 = ~v1 − ~v2 = ~v1 ≡ ~vmU = ẋ1x̂+ ẏ1ŷ + ż1ẑ , (C.6)

and

~a12 = ~a1 − ~a2 = ~a1 ≡ ~amU = ẍ1x̂+ ÿ1ŷ + z̈1ẑ . (C.7)
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The magnitudes ṙ12 and r̈12 are given by equations (2.29) and (2.30). Utilizing these results into equations
(C.3) up to (C.7) yields the following results:

ṙ12 = r̂12 · ~v12 = −ẋ1 sin θ2 cosϕ2 − ẏ1 sin θ2 sinϕ2 − ż1 cos θ2 , (C.8)

and

r̈12 =
~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12

r12
=

ẋ2
1 + ẏ21 + ż21 − (ẋ1 sin θ2 cosϕ2 + ẏ1 sin θ2 sinϕ2 + ż1 cos θ2)

2

R

− ẍ1 sin θ2 cosϕ2 − ÿ1 sin θ2 sinϕ2 − z̈1 cos θ2 . (C.9)

We now replace mg2 by an infinitesimal element of mass dmg2 given by equation (B.7). Utilizing equation
(C.4) and integrating equations (C.1) and (C.2) over the whole surface of the spherical shell yields the
following expressions:

UMm = −Hg
mg1Mge

−αR

4πR

∫ π

θ2=0

∫ 2π

ϕ2=0

(

1− ξ
ṙ212
2c2

)

sin θ2dθ2dϕ2 , (C.10)

and

~FMm = −Hgmg1Mge
−αR

4πR2

∫ π

θ2=0

∫ 2π

ϕ2=0

r̂12

[

1− ξ

c2

(

ṙ212
2

−Rr̈12

)

+ αR

(

1− ξ

2

ṙ212
c2

)]

sin θ2dθ2dϕ2 . (C.11)

Finally, by utilizing equations (C.8) and (C.9) we can perform these double integrations obtaining the
following results:

UMm = −HgmgMge
−αR

R

(

1− ξ

6

~vmU · ~vmU

c2

)

, (C.12)

and

~Fstationary shell = −HgξmgMge
−αR

3Rc2
~amU . (C.13)

By action and reaction, the particle mg exerts on the spherical shell a force equal and opposite the
expression given by equation (C.13).

C.2 Force Exerted by a Linearly Accelerated Spherical Shell

In this case the only situation which matters to us in this book when there is an exponential decay in the
energy and force of interaction between two particles is the configuration in which the test particle is passing
through the origin of the spherical shell. We now consider the particle of gravitational mass mg1 ≡ mg

interacting with the spherical shell of gravitational mass Mg and radius R when the particle is passing
through the center of the shell, which coincides with the origin O of frame of reference A at the instant t in
which we perform the calculations. That is, the case which interests us here is the configuration in which
the position vector of the particle mg relative to the origin O of this frame A is given by ~r1 ≡ ~rmA = ~0,
while the particle has velocity ~v1 ≡ ~vmA and acceleration ~a1 ≡ ~amA in frame A, while the spherical shell is
moving as a whole in this frame A with a linear velocity ~VMA and acceleration ~AMA, figure C.1.

The magnitudes which appear in equations (C.1) and (C.2) are totally relational. Therefore, after inte-
grating these expressions over the surface of the shell, we obtain equations (C.12) and (C.13) but now with
~vmA − ~VMA replacing ~vmU , while ~amA − ~AMA replaces ~amU . That is, the final results are given by:

UMm = −HgmgMge
−αR

R

[

1− ξ

6

(~vmA − ~VMA) · (~vmA − ~VMA)

c2

]

, (C.14)

and

~Faccelerated shell = −HgξmgMge
−αR

3Rc2
(~amA − ~AMA) . (C.15)
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Figure C.1: Accelerated spherical shell moving in a frame of reference A and interacting with a test particle
passing through the center of the shell and moving relative to the shell.

Weber’s law with exponential decay also satisfies the principle of action and reaction. Therefore, the
force exerted by the particle mg1 on the spherical shell is given by equation (C.15) with an overall change of
sign.

Equations (C.14) and (C.15) mean that also with a Weber’s law with exponential decay the only magni-
tudes which matter as regards the energy and force of interaction are the relative velocity between the particle
and the shell, ~vmA − ~VMA, and the relative acceleration between the particle and the shell, ~amA − ~AMA.

C.3 Force Exerted by a Spinning Spherical Shell

We now consider a frame of reference R in which the test particle of gravitational mass mg1 ≡ mg has a
position vector relative to the origin O of frame R given by ~r1 ≡ ~rmR, moving relative to frame R with
velocity ~v1 ≡ ~vmR and acceleration ~a1 ≡ ~amR, respectively. We also consider that the center of the spherical
shell of gravitational mass Mg and radius R coincides with the origin O of frame R. Moreover, we suppose
that the spherical shell is spinning relative to frame R with an angular velocity ~ΩMR(t) around an axis
passing through the center of the shell, figure B.6.

In this case the only situation which interests us in this book when there is an exponential decay in the
energy and force of interaction between two particles is the configuration in which the test particle is very
close to the center of the spherical shell, that is, when r1 ≡ rmR ≪ R.

The energy of gravitational interaction between mg and the shell, together with the gravitational force
exerted by the shell on mg, can be obtained by the integration of equations (C.1) and (C.2) over the surface
of the shell utilizing the procedures adopted in Section B.1. The only difference is that now the position
vector of an infinitesimal element of mass dmg2 of the spherical shell, relative to the origin O of frame R, is
given by equation (B.27). Likewise, the velocity and acceleration of dmg2 relative to frame R are given by
equations (B.28) and (B.29), respectively. Therefore we obtain the following results:

~r12 = ~r1 − ~r2 = (x1 −R sin θ2 cosϕ2)x̂+ (y1 −R sin θ2 sinϕ2)ŷ + (z1 − R cos θ2)ẑ . (C.16)

r12 = |~r12| ≈ R , (C.17)

r̂12 =
~r12
r12

≈ (x1 −R sin θ2 cosϕ2)x̂+ (y1 −R sin θ2 sinϕ2)ŷ + (z1 −R cos θ2)ẑ

R
, (C.18)

~v12 = ~v1 − ~v2 = ~v1 − ~ΩMR × ~r2 , (C.19)

and
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~a12 = ~a1 − ~a2 = ~a1 − ~ΩMR × (~ΩMR × ~r2)−
d~ΩMR

dt
× ~r2 . (C.20)

After integrating equation (C.1) over the surface of the shell, as was done in Section B.1, we obtain that
the energy of interaction between the particle mg and the shell is given by:

UMm(rmR ≪ R) = −HgmgMg

R

[

1− ξ

6

(~vmR − ~ΩMR × ~rmR) · (~vmR − ~ΩMR × ~rmR)

c2

]

e−αR . (C.21)

Likewise, after integrating equation (C.2) over the surface of the shell, as was done in Section B.1, we
obtain that the force exerted by the shell on the test particle mg is given by:

~Fspinning shell(rmR ≪ R) = − ξ

3c2
HgmgMg

R

[

~amR + ~ΩMR × (~ΩMR × ~rmR)

+ 2~vmR × ~ΩMR + ~rmR × d~ΩMR

dt

]

e−αR . (C.22)

In classical mechanics the terms with ξ/c2 would not appear.
To obtain equations (C.21) and (C.22) the integrations can be performed as indicated in Section B.1.

There is a particular case which simplifies the calculations, namely, when ~Ω = Ωẑ.
Another possibility of arriving at equations (C.21) and (C.22) is to utilize the fact that the magnitudes

appearing in Weber’s energy and force are totally relational, as they depend only on r12, ṙ12 and r̈12. That
is, the only magnitudes which matter in these calculations are the relative distances, radial velocities and
radial accelerations between the interacting bodies. Therefore, the observer and the frame of reference are not
relevant as regards the energy of interaction between the test particle and the spherical shell. Likewise, the
observer and the frame of reference are not relevant as regards the force exerted by the spherical shell on the
test particle. Therefore, in order to arrive at equations (C.21) and (C.22) it is possible to utilize equations
(C.12) and (C.13) by performing an appropriate change in the velocities and accelerations which appear in
these last equations.

By action and reaction, the particle exerts a force on the spherical shell which is equal and opposite the
expression given by equation (C.22).

Suppose that the spherical shell were spinning with an angular velocity ~ΩMR(t) relative to a frame of
reference R around an axis passing through the center of the shell. But now let us suppose that the center
of the spherical shell were located at a position vector ~RoR relative to the origin O of frame R. Suppose,
moreover, that the center of the shell were moving with velocity ~VoR and acceleration ~AoR relative to frame
R. After integrating equations (B.1) and (B.2) over the surface of the shell we would obtain equations (B.30)
up to (B.33), but now with ~rmR − ~RoR, |~rmR − ~RoR|, r̂mo ≡ (~rmR − ~RoR)/|~rmR − ~RoR|, ~vmR − ~VoR and
~amR − ~AoR replacing ~rmR, rmR, r̂mR, ~vmR and ~amR, respectively.
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I thank Dayane Bancoff and Fabio Menezes de Souza Lima for some of these corrections.

- On page 20, the 8th line of Section 1.7 should read:
constant velocity. That is, whenever

∑N
p=1

p 6=k

~Fpk = ~0, it can be concluded from equation (1.5) that:

- On page 34, equation (2.15) should read:

~F21 =
3µo

4πr5

[

(~m1 · ~r)~m2 + (~m2 · ~r)~m1 + (~m1 · ~m2)~r −
5(~m1 · ~r)(~m2 · ~r)~r

r2

]

= − ~F12 , (2.15)

- On page 39, the first line of the paragraph before equation (2.23) should read:
The constant c which appears in equation (2.22) is the ratio of electromagnetic and electrostatic units of

- On page 151, equation (9.55) should read:

z1
z2

=
ρi1/ρg1
ρi2/ρg2

(

ω1

ω2

)2

. (9.55)

- On page 364, the fourth line below equation (18.66) should read:
of distant galaxies, has the value agalaxy centripetal ≈ 1.6 × 10−10 m/s2, equation (4.44) and figure 4.5.

The

- On page 477, the first line below equation (25.11) should read:
The constant c is the ratio of electromagnetic and electrostatic units of charge. Its value was first

- On page 500, the 7th line should read:
replacements in equations (B.1) and (B.2): Heq1q2 instead of −Hgmg1mg2, and 1/c2 instead of ξ/c2.
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