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Preface

This book presents Relational Mechanics, a new mechanics which implements
the ideas of Leibniz, Berkeley, Mach and many others. Relational mechan-
ics is based only on relative quantities, such as the distance between material
bodies, their relative radial velocity and relative radial acceleration. In this
new mechanics the absolute concepts of space, time and motion do not appear.
The same can be said of inertia, inertial mass and inertial frames of reference.
When we compare relational mechanics with Newtonian mechanics, we will gain
a new and clear understanding of these old concepts. Relational mechanics is
a quantitative implementation of Mach’s ideas utilizing a Weber’s force law for
gravitation. Many people have contributed to its development, including Erwin
Schrödinger.

This is the first time such a book has been written, bringing together all the
features and characteristics of this new world view. This allows it to be seen in
its proper light, and a comparison with old worldviews is easily accomplished.

Considerable emphasis is placed on Galileo’s free fall experiment and on
Newton’s bucket experiment. These are some of the simplest experiments ever
performed in physics. Despite this fact, no other experiment has had such
far-reaching consequences for the foundations of classical mechanics. An ex-
planation of these two experiments without utilizing the concepts of absolute
space and inertia is one of the major accomplishments of relational mechanics.

In order to show all the power of relational mechanics and put it in perspec-
tive, we first present Newtonian mechanics and Einstein’s theories of relativity.
We address the criticisms of Newton’s theory made by Leibniz, Berkeley and
Mach. Then we present relational mechanics and show how it solves all these
problems quantitatively with a clarity and simplicity unsurpassed by any other
model. We also discuss the history of relational mechanics in detail, emphasiz-
ing the achievements and limitations of all major works along these lines. In
addition, we present several notions which are beyond the scope of Newtonian
theory, such as the precession of the perihelion of the planets, the anisotropy
of an effective inertial mass, the adequate mechanics for high velocity particles,
etc. Experimental tests of relational mechanics are also outlined.

9
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This book is intended for physicists, mathematicians, engineers, historians
and philosophers of science. It is also addressed to teachers of physics at uni-
versity or high school levels and to their students. After all, those who have
taught and learned Newtonian mechanics know the difficulties and subtleties of
its basic concepts (inertial frame of reference, fictitious centrifugal force, inertial
and gravitational masses, etc.) Above all, it is intended for young unprejudiced
people who have an interest in the fundamental questions of mechanics: Is
there an absolute motion of any body relative to space or only relative motion
between material bodies? Can we prove experimentally that a body is acceler-
ated relative to space or only relative to other bodies? What is the meaning
of inertia? Why do two bodies of different weight, form and chemical composi-
tions fall with the same acceleration in vacuum on the earth’s surface? When
Newton rotated the bucket and saw the water rising towards the sides of the
bucket, what was responsible for this effect? Was it due to the rotation of the
water relative to some material body? What flattens the earth at the poles in
its diurnal rotation? Is it the rotation of the earth relative to something? Is
the earth really rotating and translating? We show that the answer to these
questions with relational mechanics is much simpler and more philosophically
sound and appealing than in Einstein’s theories of relativity.

Nowadays the majority of physicists accept Einstein’s theories as correct.
We show this is untenable and present an alternative theory which is much
clearer and more reasonable than the previous ones. We know that these are
strong statements, but we are sure that anyone with a basic understanding
of physics will accept this fact after reading this book with impartiality and
without prejudice. With an understanding of relational mechanics, we enter a
new world, viewing the same phenomena with different eyes and from a new
perspective. It is a change of paradigm [1]. This new formulation will help put
physics on new rational foundations, moving it away from the mystifications of
this century.

We hope physicists, engineers, mathematicians and philosophers will adopt
this book in their courses of mechanics, mathematical methods of physics and
history of science, recommending it to their students. We believe the better
way to create critical minds and to motivate the students is to present to them
different approaches for the solution of the same problems, how the concepts
have been growing and changing throughout history and how great scientists
viewed equivalent subjects from different perspectives.

A Portuguese version of this book was published under the title Mecânica
Relacional, [2].

In this book we utilize the International System of Units. When we define
any physical concept we utilize “≡” as a symbol of definition. We utilize symbols
with a double subscript with three different meanings. Examples: ~Fji is the
force exerted by particle j on particle i, ~a12 = ~a1 − ~a2 is the acceleration of
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particle 1 minus the acceleration of particle 2, and ~vmS is the velocity of particle
m relative to the frame of reference S. In the text we clarify which meaning we
are employing in each place.



12 CONTENTS



Part I

Old World

13





Chapter 1

Newtonian Mechanics

1.1 Introduction

The branch of knowledge which deals with the equilibrium and motion of masses
is called mechanics. For the last three hundred years the mechanics taught in
schools and universities has been based on the work of Isaac Newton (1642-
1727). His main book is called Mathematical Principles of Natural Philosophy,
usually known by its first Latin name, Principia, [3]. Originally published in
1687, it is based on the concepts of space, time, velocity, acceleration, weight,
mass, force, etc. In the next section we present Newton’s own formulation of
mechanics.

Since long before Newton, there has always been a great debate between
philosophers and scientists regarding the distinction between absolute and rel-
ative motion. In other words, motion of a body relative to empty space and
relative to other bodies. For a clear discussion of this whole subject with many
quotations from the original see the authoritative book by Julian Barbour, Ab-
solute or Relative Motion? [4]. In our book we consider only Newton and others
following him. The reasons for this are the impressive success of his mechanics
and the new standard he introduced in this whole discussion with his dynamical
arguments, as distinguished from kinematical arguments, in favour of absolute
motion. In particular, we can cite his famous bucket experiment. This is one
of the main subjects of this work.

1.2 Newtonian Mechanics

The Principia begins with eight definitions, [3]. The first definition is “quantity
of matter,” which nowadays we call the inertial mass of a body. Newton defined

15



16 CHAPTER 1. NEWTONIAN MECHANICS

it as product of the density and volume occupied by the body:

Definition I: The quantity of matter is the measure of the same,
arising from its density and bulk conjointly.

Thus air of a double density, in a double space, is quadruple in
quantity; in a triple space, sextuple in quantity. The same thing
is to be understood of snow, and fine dust or powders, that are
condensed by compression or liquefaction, and of all bodies that are
by any causes whatever differently condensed. I have no regard in
this place to a medium, if any such there is, that freely pervades
the interstices between the parts of bodies. It is this quantity that
I mean hereafter everywhere under the name of body or mass. And
the same is known by the weight of each body, for it is proportional
to the weight, as I have found by experiments on pendulums, very
accurately made, which shall be shown hereafter.

Designating the quantity of matter (the inertial mass) of a body mi, its
density ρ and its volume V we would have:

mi ≡ ρV . (1.1)

Later on we will present Mach’s criticism of this definition. We will also
discuss in detail the proportionality between the mass and weight of bodies, as
well as Newton’s experiments on this matter. For the moment it is important
to stress that with this proportionality Newton found a precise operational way
of determining the mass of any body, as he needed only to weight it.

Then Newton defines the quantity of motion as the quantity of matter times
the velocity of the body:

Definition II: The quantity of motion is the measure of the same,
arising from the velocity and quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts;
and therefore in a body double in quantity, with equal velocity, the
motion is double; with twice the velocity, it is quadruple.

Denoting the vectorial velocity ~v and the quantity of motion ~p we have:

~p ≡ mi~v .

Newton goes on to define the inertia of a body:
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Definition III: The vis insita, or innate force of matter, is a power
of resisting, by which every body, as much as in it lies, continues
in its present state, whether it be of rest, or of moving uniformly
forwards in a right line.

This force is always proportional to the body whose force it is and
differs nothing from the inactivity of the mass, but in our manner
of conceiving it. A body, from the inert nature of matter, is not
without difficulty put out of its state of rest or motion. Upon which
account, this vis insita may, by a most significant name, be called
inertia (vis inertiae) or force of inactivity. (...)

His fourth definition is “impressed force,” namely: An impressed force is an
action exerted upon a body, in order to change its state, either of rest, or of
uniform motion in a right line.

Then follow definitions of centripetal force, of the absolute quantity of a
centripetal force, of the accelerative quantity of a centripetal force and the
motive quantity of a centripetal force.

After these 8 definitions there is a Scholium with the definitions of absolute
time, absolute space and absolute motion. It is worthwhile quoting its main
parts:

Hitherto I have laid down the definitions of such words as are less
known, and explained the sense in which I would have them to be
understood in the following discourse. I do not define time, space,
place, and motion, as being well known to all. Only I must observe,
that the common people conceive those quantities under no other
notions but from the relation they bear to sensible objects. And
thence arise certain prejudices, for the removing of which it will be
convenient to distinguish them into absolute and relative, true and
apparent, mathematical and common.

I. Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external, and by
another name is called duration: relative, apparent, and common
time, is some sensible and external (whether accurate or unequable)
measure of duration by the means of motion, which is commonly
used instead of true time; such as an hour, a day, a month, a year.

II. Absolute space, in its own nature, without relation to anything
external, remains always similar and immovable. Relative space is
some movable dimension or measure of the absolute spaces; which
our senses determine by its position to bodies; and which is com-
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monly taken for immovable space; such is the dimension of a sub-
terraneous, an aerial, or celestial space, determined by its position
in respect of the earth. Absolute and relative space are the same
in figure and magnitude; but they do not remain always numeri-
cally the same. For if the earth, for instance, moves, a space of our
air, which relatively and in respect of the earth remains always the
same, will at one time be one part of the absolute space into which
the air passes; at another time it will be another part of the same,
and so, absolutely understood, it will be continually changed.

III. Place is a part of space which a body takes up, and is according
to the space, either absolute or relative. (...)

IV. Absolute motion is the translation of a body from one absolute
place into another; and relative motion, the translation from one
relative place into another. (...)

Then come his three “Axioms, or Laws of Motion” and six corollaries,
namely:

Law I: Every body continues in its state of rest, or of uniform motion
in a right line, unless it is compelled to change that state by forces
impressed upon it.

Law II: The change of motion is proportional to the motive force
impressed; and is made in the direction of the right line in which
that force is impressed.

Law III: To every action there is always opposed an equal reaction:
or, the mutual actions of two bodies upon each other are always
equal, and directed to contrary parts.

Corollary I: A body, acted on by two forces simultaneously, will
describe the diagonal of a parallelogram in the same time as it would
describe the sides by those forces separately.

(...)

Corollary V: The motions of bodies included in a given space are
the same among themselves, whether that space is at rest, or moves
uniformly forwards in a right line without any circular motion.

(...)

His first law is usually called the law of inertia.
His second law of motion might be written as:

~F =
d~p

dt
=

d

dt
(mi~v) . (1.2)
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Here we have used ~F for the resultant force acting on the body. If the inertial
mass mi is a constant, then this law can be cast in the simple and well-known
form

~F = mi~a , (1.3)

where ~a = d~v/dt is the acceleration of the body.
His third law is called the law of action and reaction. Denoting the force

exerted by a body A on another body B by ~FAB , and the force exerted by B
on A by ~FBA, the third law states that:

~FAB = −~FBA .

Whenever Newton utilized the third law, the forces between two bodies were
always directed along the straight line joining them, as in the law of gravitation.

His first corollary is called the law of the parallelogram of forces.
His fifth corollary introduces the concept of inertial frames (frames which

are at rest or which move with a constant velocity relative to absolute space).
In Section XII of Book I of the Principia, Newton proved two extremely

important theorems related to the force exerted by a spherical shell on internal
and external points, supposing forces which fall off as the inverse square of
the distance (as is the case with Newton’s gravitational law and Coulomb’s
electrostatic force):

Section XII: The attractive forces of spherical bodies.

Proposition 70. Theorem 30: If to every point of a spherical surface
there tend equal centripetal forces decreasing as the square of the
distances from these points, I say, that a corpuscle placed within
that surface will not be attracted by those forces any way.

If the body is anywhere inside the shell (not only on its center), it will not
experience any resultant force from the shell as a whole.

Proposition 71. Theorem 31: The same things supposed as above, I
say, that a corpuscle placed without the spherical surface is attracted
towards the centre of the sphere with a force inversely proportional
to the square of its distance from that centre.

This means that a body outside the shell is attracted as if the shell were
concentrated at its center.

In the third book of the Principia Newton presented his law of gravitation.
This can be stated as follows: every particle of matter attracts every other
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particle with a force varying directly as the product of their gravitational masses
and inversely as the square of the distance between them.

Nowhere in the Principia Newton did express the gravitational law in this
form. But we can find statements similar to these in the following passages of
the Principia: Book I, Props. 72 to 75 and Prop. 76, especially Corollaries I
to IV; Book III, Props. 7 and 8; and in the General Scholium at the end of
Book III. For instance, in Book I, Prop. 76, Cors. I to IV we read, referring
to spheres with an isotropic distribution of matter, densities such as ρ1(r) and
ρ2(r), in which every point attracts with a force which falls off as the square of
the distance:

Cor. I. Hence if many spheres of this kind, similar in all respects,
attract each other, the accelerative attractions of each to each, at
any equal distances of the centres, will be as the attracting spheres.

Cor. II. And at any unequal distances, as the attracting spheres
divided by the squares of the distances between the centres.

Cor. III. The motive attractions, or the weights of the spheres
towards one another, will be at equal distances of the centres con-
jointly as the attracting and attracted spheres; that is, as the prod-
ucts arising from multiplying the spheres into each other.

Cor. IV. And at unequal distances directly as those products and
inversely as the squares of the distances between the centres.

Proposition 7 of Book III states:

That there is a power of gravity pertaining to all bodies, proportional
to the several quantities of matter which they contain.

That all planets gravitate one towards another, we have proved be-
fore; as well as that the force of gravity towards every one of them,
considered apart, is inversely as the square of the distance of places
from the centre of the planet. And thence (by Prop. 69, Book I,
and its Corollaries) it follows that the gravity tending towards all
the planets is proportional to the matter which they contain.

Moreover, since all the parts of any planet A gravitate towards any
other planet B; and the gravity of every part is to the gravity of the
whole as the matter of the part to the matter of the whole; and (by
Law III) to every action corresponds an equal reaction; therefore
the planet B will, on the other hand, gravitate towards all the parts
of the planet A; and its gravity towards any one part will be to the
gravity towards the whole as the matter of the part to the matter
of the whole. Q. E. D.
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This last paragraph is very important. It shows the key role played by
Newton’s action and reaction law in the derivation of the fact that the force of
gravity is proportional to the product of the masses of the two bodies (and not,
for instance, proportional to the sum of the two masses, or to their product
squared).

In the General Scholium at the end of the book we read:

Hitherto we have explained the phenomena of the heavens and of
our sea by the power of gravity, but we have not yet assigned the
cause of this power. This is certain, that it must proceed from a
cause that penetrates to the very centres of the sun and planets,
without suffering the least diminution of its force; that operates
not according to the quantity of the surfaces of the particles upon
which it acts (as mechanical causes used to do), but according to
the quantity of the solid matter which they contain, and propagates
its virtue on all sides to immense distances, decreasing always as
the inverse square of the distances.

In the System of the World written by Newton we can also see the impor-
tance of the law of action and reaction for the derivation of the fact that the
gravitational force is proportional to the product of the masses. Here we quote
Section 20 of the Principia, [3, p. 568], just after the Section where Newton
discussed his pendulum experiments which showed the proportionality between
weight and inertial mass:

Since the action of the centripetal force upon the bodies attracted
is, at equal distances, proportional to the quantities of matter in
those bodies, reason requires that it should be also proportional to
the quantity of matter in the body attracting.

For all action is mutual, and (by the third Law of Motion) makes the
bodies approach one to the other, and therefore must be the same in
both bodies. It is true that we may consider one body as attracting,
another as attracted; but this distinction is more mathematical than
natural. The attraction resides really in each body towards the
other, and is therefore of the same kind in both.

Algebraically his law of gravitation might be written as:

~F21 = −G
mg1mg2

r2
r̂ . (1.4)

In this equation ~F21 is the force exerted by the material particle 2 on the
material particle 1, G is a constant of proportionality, mg1 and mg2 are the
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gravitational masses of particles 1 and 2, r is their distance and r̂ is the unit
vector pointing from 2 to 1.

Here we are calling the masses which appear in Eq. (1.4) “gravitational
masses,” to distinguish them from the “inertial masses” which appear in New-
ton’s second law of motion, Eqs. (1.2) and (1.3). They might also be called
“gravitational charges,” by analogy with the electrical charges which appear in
Coulomb’s force, to be discussed later on. The electrical charges generate and
experience electrical forces, while gravitational masses generate and experience
gravitational forces. In this respect and observing the form of the force laws of
universal gravitation and of Coulomb, the gravitational masses have a greater
resemblance to electrical charges than inertial masses. Later on we discuss this
in greater detail.

Utilizing Newton’s law of gravitation, Eq. (1.4), and his theorems stated
above, we find that a spherically symmetrical body will attract an external
body as if all the gravitational mass of the spherical body were concentrated at
its center. In the case of the earth, neglecting the small effects due to its form
being not exactly spherical, this yields:

~F = −G
Mgtmg

r2
r̂ ,

where Mgt is the gravitational mass of the earth and r̂ points radially outwards.
This force is usually called the weight of the body, and is represented by ~P :

~P = mg~g , (1.5)

where

~g = −GMgt

r2
r̂ .

Here ~g is called the gravitational field of the earth. It is the downward acceler-
ation of freely falling bodies, as we will see.

If we are close to the surface of the earth, then r ≈ Rt, where Rt is the earth’s
radius. Near the surface of the earth the measured value of this acceleration is
found to be: g = |~g| ≈ GMgt/R2

t ≈ 9.8 m/s2.
By performing experiments with pendulums, Newton established that the

gravitational and inertial masses are proportional or equal to one another. He
expressed this as a proportionality between matter (mi) and weight (mg|~g|) in
Proposition 6 of Book III in the Principia:

That all bodies gravitate towards every planet; and that the weights
of bodies towards any one planet, at equal distances from the centre
of the planet, are proportional to the quantities of matter which
they severally contain.
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Newton’s Propositions 70 and 71 given above are presented nowadays as
follows: We have a spherical shell of gravitational mass Mg and radius R cen-
tered on O, as in Figure 1.1. An element of mass dmg2 located at ~r2 in this
spherical shell is given by dmg2 = σg2da2 = σg2R

2dΩ2 = σg2R
2 sin θ2dθ2dϕ2,

where σg2 = Mg/4πR2 is the uniform surface mass density, dΩ2 is the element
of spherical angle, θ2 and ϕ2 are the usual angles of spherical coordinates, θ2

ranging from 0 to π and ϕ2 from 0 to 2π.

Figure 1.1: Spherical shell of mass Mg interacting with a mass point of mass
mg1.

The gravitational force exerted by this element of mass on the test particle
mg1 located at ~r1 is given by Eq. (1.4), namely:

d~F21 = −G
mg1dmg2

r2
12

r̂12 ,

where ~r12 = ~r1 − ~r2, r12 = |~r12| and r̂12 = ~r12/r12. Integrating this equation
yields the following results, with r1 = |~r1|:

~F =
{
−GMgmg1r̂1/r2

1 , if r1 > R
0 , if r1 < R .

}
(1.6)

If the test particle is outside the spherical shell it will be attracted as if the
whole shell were concentrated at its center. If the test particle is anywhere
inside the shell it will not experience any net gravitational force.

Nowadays, these theorems are easily proved utilizing Gauss’s theorem. The
force exerted by several masses on mg located at ~r may be written as: ~F = mg~g,
where ~g is the gravitational field at ~r due to the other masses. Gauss’s theorem
applied to the gravitational field states that the flux of ~g over a closed surface
S is given by −4πGMg

int, where Mg
int is the gravitational mass internal to S:
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∫
©
∫

S

~g · d~a = −4πGMg
int . (1.7)

Gauss’s theorem is valid for any radial field which falls as 1/r2, as is the case
for Newton’s law. Let us calculate the gravitational field of a spherical shell of
gravitational mass Mg and radius R centered on the origin O of a coordinate
system. For reasons of symmetry, the gravitational field due to this spherical
shell can only be radial, namely: ~g = g(r)r̂. We now consider a spherical surface
S centered on O and with a radius r > R. The element of area of this spherical
surface is d~a = r2dΩr̂, where dΩ = sin θdθdϕ is the element of spherical angle.
Utilizing Gauss’s theorem we obtain:

g4πr2 = −4πGMg ,

so that: ~g(r > R) = −GMg r̂/r2.
If we had integrated over a surface S such that r < R than Mg

int = 0, so
that we would arrive at: ~g(r < R) = 0. With these results we recover Eq. (1.6).

Newton was completely aware of the cosmological implications of his 70th
proposition, theorem 30 (the gravitational force on a test body anywhere inside
a spherical shell is zero). The main implication is that we can essentially ne-
glect the gravitational influence of the fixed stars on planetary motions and in
experiments conducted on the earth, as the stars are randomly scattered in all
directions in the sky (neglecting the concentration of stars in the Milky Way).
He expressed this clearly in the second corollary of Proposion 14, Theorem 14
(The aphelions and nodes of the orbits of the planets are fixed), of Book III of
the Principia:

Cor. I. The fixed stars are immovable, seeing they keep the same
position to the aphelion and nodes of the planets.

Cor. II. And since these stars are liable to no sensible parallax from
the annual motion of the earth, they can have no force, because of
their immense distance, to produce any sensible effect in our sys-
tem. Not to mention that the fixed stars, everywhere promiscuously
dispersed in the heavens, by their contrary attractions destroy their
mutual actions, by Prop. 70, Book I.

Newton discussed the distance of the fixed stars to the solar system at
greater length in Section 57 of the System of the World, [3, pp. 596-7].

It is usually stated in textbooks that the gravitational constant G was mea-
sured by H. Cavendish (1731-1810) in 1798 with his torsion balance experiment.
As a matter of fact, neither Newton nor Cavendish wrote the force law with G,
as is given in Eq. (1.4), and they never mentioned the gravitational constant
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G. Cavendish’s paper is called “Experiments to determine the density of the
earth,” [5]. What he found is that the mean density of the earth is (5.448±0.033)
times greater than the density of water (Cavendish gave 5.48, due to an error
in calculation corrected by A. S. Mackenzie, who reprinted Cavendish’s work
in 1899. See [5], Gravitation, Heat and X-Rays, pp. 100-101 and 143). For a
discussion of his work see [6].

The claim that he measured G deserves an explanation. Considering the
earth to be exactly spherical, the force it exerts on a material particle of
gravitational mass mg near its surface utilizing Eq. (1.4) is given by P =
GMgtmg/R2

t = mgg. The quantity of matter of the earth is given by its in-
ertial mass Mit = ρt × Vt = ρt × 4πR3

t /3, where ρt is its mean density, Vt its
volume and Rt its radius. Newton found experimentally that the quantity of
matter is proportional to the weight. Here we utilize this fact with a constant
of proportionality equal to one, namely: Mit = Mgt = Mt. We then obtain
G = 3g/4πRtρt. The gravitational field of the earth g near its surface has the
same value as the acceleration of free fall. In the MKSA system of units we
have: g ≈ 9.8 m/s2 and Rt = 6.4× 106 m. With Cavendish’s measurement we
get ρt = 5.448 × 103 kg/m3 and Mt = 6 × 1024 kg, where we have used the
fact that the density of water is given by ρwater = 1 g/cm3 = 103 kg/m3. This
value of ρt in the previous expression for G yields: G = 6.7× 10−8 cm3/gs2 =
6.7 × 10−11 m3/kgs2. The value given by modern tables is G = 6.67 × 10−11

m3/kg s2, which shows that Cavendish’s measurement of the mean density of
the earth is quite accurate.

We can then see that the value of G depends not only on the system of units
but also on the choice of the constant of proportionality between the inertial
and gravitational masses. If we had chosen Mit = αMgt, where the constant
α could even have dimensions, then the value and dimensions of G would need
to change to: G = α2 × (6.67× 10−11 m3/kgs2). But this would not affect the
results and predictions of any experiments. It is only a matter of convention to
choose α = 1 and this yields the usual value of G.

It should be remarked that Newton had a very good idea of the mean density
of the earth 100 years before Cavendish. For instance, in Proposition 10 of Book
III of the Principia he wrote:

But that our globe of earth is of greater density than it would be
if the whole consisted of water only, I thus make out. If the whole
consisted of water only, whatever was of less density than water,
because of its less specific gravity, would emerge and float above.
And upon this account, if a globe of terrestrial matter, covered
on all sides with water, was less dense than water, it would emerge
somewhere; and, the subsiding water falling back, would be gathered
to the opposite side. And such is the condition of our earth, which
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in a great measure is covered with seas. The earth, if it was not
for its greater density, would emerge from the seas, and, according
to its degree of levity, would be raised more or less above their
surface, the water of the seas flowing backwards to the opposite
side. By the same argument, the spots of the sun, which float upon
the lucid matter thereof, are lighter than that matter; and, however
the planets have been formed while they were yet in fluid masses,
all the heavier matter subsided to the centre. Since, therefore, the
common matter of our earth on the surface thereof is about twice
as heavy as water, and a little lower, in mines, is found about three,
or four, or even five times heavier, it is probable that the quantity
of the whole matter of the earth may be five or six times greater
than if it consisted all of water; especially since I have before shown
that the earth is about four times more dense than Jupiter. (...)

Newton estimated 5ρwater < ρt < 6ρwater and Cavendish found 100 years
later ρt = 5.5ρwater!

1.3 Energy

Newton based his mechanics in the concepts of force and acceleration. There
is another formulation based on the idea of energy. This formulation is due
originally to Huygens and Leibniz, although it has been later on incorporated
in newtonian mechanics. The basic concept is that of kinetic energy T . If we
are in an inertial frame S and a particle of inertial mass mi moves in this frame
with a velocity ~v then its kinetic energy is defined by

T ≡ miv
2

2
= mi

~v · ~v
2

.

This kinetic energy is an energy of pure motion in classical mechanics. It is
not related to any kind of interaction (gravitational, electric, magnetic, elastic,
etc.) As such, it depends on the frame of reference, because the same body at
the same time may have different velocities relative to different inertial frames,
so that its kinetic energy relative to each one of these frames may have a different
value.

The other kinds of energy are based on how the particle interacts with
other bodies. For instance, the gravitational potential energy Ug between two
gravitational masses mg1 and mg2 separated by a distance r is given by

Ug = −G
mg1mg2

r
.
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If the body mg1 is outside the earth at a distance r1 from its center we
can integrate this equation, replacing mg2 by dmg2 and assuming an isotropic
matter distribution, to obtain

U = −G
mg1Mg

r1
,

where Mg is the gravitational mass of the earth.
If the body is near the earth of radius Rt, at a distance h from its surface,

r1 = Rt + h, with h� Rt, this reduces to

U = −G
mg1Mg

Rt + h
≈ mg1gh− Gmg1Mg

Rt
,

where g = GMg/R2
t ≈ 9.8 m/s2 is the gravitational field of the earth at its sur-

face. Besides the constant term −Gmg1Mg/Rt this shows that the gravitational
potential energy near the earth’s surface is given by mg1gh.

The analogous electrostatic potential energy Ue between two point charges
q1 and q2 separated by a distance r is given by

Ue =
1

4πεo

q1q2

r
,

where εo = 8.85× 10−12 C2 s2/kg m3 is the vacuum permittivity.
The potential elastic energy Uk of a mass interacting with a spring of elastic

constant k is given by

Uk =
kx2

2
,

where x is the displacement of the body from the equilibrium position (x =
`−`o, with ` being the stretched length of the spring and `o its relaxed length).

We relate the concepts of force and energy by the equation

~F = −∇U . (1.8)

This is especially useful when the potential energy and the force depend only
on the positions of the bodies.

When we utilize the formulation of mechanics based only on the concept of
energy, we utilize the theorem for the conservation of energy instead of Newton’s
three laws of motion. This law simply states that the total energy of the system
(sum of the kinetic and potential energies) is a constant in time for conservative
systems.

In this work we focus more on the Newtonian formulation based on forces.



28 CHAPTER 1. NEWTONIAN MECHANICS



Chapter 2

Applications of Newtonian
Mechanics

Here we discuss several well-known applications of Newtonian mechanics. Later
on we present Mach’s criticisms of classical mechanics utilizing these examples.
Lastly we present these examples from the point of view of relational mechanics
to illustrate the different approach it makes possible.

In Newton’s second law of motion, Eqs. (1.2) and (1.3), there appear a
velocity and an acceleration (assuming a constant inertial mass). These veloc-
ities and accelerations are to be understood as referred to absolute space, and
measured by absolute time. According to the fifth corollary we may also refer
motion to any frame of reference which moves relative to absolute space with a
constant velocity. Nowadays we call these frames of reference “inertial frames.”
In what follows, we assume that we are describing the motion of bodies in one
inertial frame. Later on we will discuss this concept in more detail.

Here we consider only situations in which the inertial mass is a constant. In
these cases Newton’s second law of motion takes the form

~F = mi~a . (2.1)

Bodies with negligible dimensions compared with the distances involved in
the problems are called particles. Usually we can neglect its internal properties
and represent them by material points. A particle will be characterized by
its mass, and for its localization we will utilize three coordinates describing
its position: x, y, z. We are interested here in the motion of particles in
paradigmatic situations.

29
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2.1 Uniform Rectilinear Motion

If we have a particle which is free from external forces, or if the resultant force
acting on this particle is zero, then the particle will move with a constant
velocity ~v according to the first law of motion:

~v =
d~r

dt
= constant ,

~r = ~ro + ~vt .

Here ~r(t) is the position vector of the body relative to an inertial system
of reference, ~ro the initial position of the particle and t the time. The velocity
~v is the velocity of the test body relative to an inertial frame of reference, or
relative to Newton’s absolute space.

The direction and magnitute of the velocity will be constant in time. This
can only make sense if we know how to say when a particle is free from external
forces (if we know in which conditions this happens). We also need to find an
inertial system of reference without utilizing Newton’s first law of motion (to
avoid vicious circles). None of this is in any way simple or trivial.

2.2 Constant Force

We can easily integrate Eq. (2.1) when the force is a contant, yielding:

~a =
d~v

dt
=

~F

mi
= constant ,

~v = ~vo + ~at ,

~r = ~ro + ~vot +
~at2

2
.

Here ~vo is the initial velocity.

2.2.1 Free Fall

As the first example of a constant applied force we have the free fall of a body
near the surface of the earth, neglecting air resistance, Figure 2.1.

The only force acting on the test body is the gravitational attraction of the
earth, namely, its weight ~P = mg~g. With Eq. (2.1) we get:



2.2. CONSTANT FORCE 31

Figure 2.1: Free fall of a body of mass m.

~a =
mg

mi
~g .

The value of ~g depends only on the earth and on the location of the test
body, but does not depend of mi or mg. The gravitational field ~g does not
depend on the inertial or gravitational mass of the test body.

It is a fact of experience that all bodies fall in vacuum with the same ac-
celeration near the surface of the earth. This fact cannot be derived from any
of Newton’s laws or mathematical theorems. This result is valid no matter
what the weight, form or chemical composition of the bodies. If we have bod-
ies 1 and 2 falling in vacuum at the same location near the earth’s surface,
we know from experience that ~a1 = ~a2 = ~g, Figure 2.2. This means that
mg2/mi2 = mg1/mi1 = constant.

The first to arrive at this conclusion was Galileo (1564-1642) when working
with bodies falling on inclined planes. Some of the main results obtained by
Galileo in mechanics date from the period 1600 to 1610. From these experiments
(bodies falling on inclined planes with negligible resistance, or falling freely in
vacuum) we obtain for all bodies:

mi

mg
= constant = α . (2.2)

When we say that these two masses (inertial and gravitational) are equal
(α = 1), we are specifying G = 6.67 × 10−11 m3/kg s2. If we said that these
two masses were proportional to one another, mi = αmg (where α might be
a constant different from one and could even have dimensions), all the results
would remain valid provided we had put G = α2 × (6.67 × 10−11 m3/kgs2)
instead of G = 6.67 × 10−11 m3/kgs2 in Newton’s law of gravitation. To see
this we need only write the acceleration of free fall as:
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Figure 2.2: Two different bodies fall to the ground with the same acceleration
in vacuum.

a =
P

mi
=

GMgtmg

R2
t mi

.

With Eq. (2.2) and Mit = ρtVt = ρt4πR3
t /3 (from Newton’s first definition) we

get:

G

α2
=

3a

4πRtρt
.

Putting the observed values of a = 9.8 m/s2, Rt = 6.4×106 m and ρt = 5.5×103

kg/m3 (from Cavendish’s experiment) yields:

G = α2 × (6.7× 10−11 m3/kgs2) .

The experiments of free fall only say that these two masses are proportional
to one another and not that they are equal. As the choice of α has no influence
in the predictions of experiments, it is simpler to say that they are equal to one
another, choosing by convention α = 1. From now on we will take this choice
of α:

mi = mg . (2.3)

The fact that in vacuum all bodies fall with the same acceleration was ex-
pressed as follows by Newton in the Principia: “It has been, now for a long
time, observed by others, that all sorts of heavy bodies (allowance being made
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for the inequality of retardation which they suffer from a small power of resis-
tance in the air) descend to the earth from equal heights in equal times; and that
equality of times we may distinguish to a great accuracy, by the help of pendu-
lums” (Book III, Proposition 6). In the Opticks he expressed it as follows: “(...)
The open air in which we breathe is eight or nine hundred times lighter than
water, and by consequence eight or nine hundred times rarer, and accordingly
its resistance is less than that of water in the same proportion, or thereabouts,
as I have found by experiments made with pendulums. And in thinner air the
resistance is still less, and at length, by rarefying the air, becomes insensible.
For small feathers falling in the open air meet with great resistance, but in a
tall glass well emptied of air, they fall as fast as lead or gold, as I have seen
tried several times” [7] (Book III, Query 28, p. 366).

2.2.2 Charge Moving Inside an Ideal Capacitor

We now present another example of a constant force. In 1784-5 Augustin
Coulomb (1738-1806) obtained the law of force between two point charges q1

and q2. In modern vectorial notation and in the International System of Units
the force exerted by q2 on q1 is given by:

~F21 =
q1q2

4πεo

r̂

r2
. (2.4)

In this equation εo = 8.85× 10−12 C2 s2/kg m3 is the vacuum permittivity,
r is the distance between the charges and r̂ is the unit vector pointing from q2

to q1.
This force is very similar to Newton’s law of gravitation, as it is directed

along the straight line connecting the bodies, follows the law of action and
reaction and falls as the inverse square of the distance. Moreover, it depends
on the product of two charges, as in Newton’s law it depends on the product
of two masses. It would appear that Coulomb was led to this expression more
by analogy with Newton’s law of gravitation than by the results of his doubtful
experiments [8]. The similarity between Coulomb’s force (2.4) and Newton’s
law of gravity, Eq. (1.4), shows that the gravitational masses have the same role
as the electrical charges: both generate and experience some kind of interaction
with equivalent bodies, whether electrical or gravitational. The form of the
interaction is essentially the same.

An ideal capacitor is represented in Figure 2.3. Two large square plates
are separated by a distance d � `, where ` is the length of any plate. The
plates situated at z = zo and z = −zo are uniformly charged with charges Q
and −Q, respectively. In each plate we have a constant charge density given
by σ = Q/`2 and −σ, respectively. If we integrate the force exerted by the
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capacitor on an internal test charged particle utilizing Coulomb’s force and
neglecting edge effects we obtain the well known result:

~F = −q
σẑ

εo
= q ~E . (2.5)

Here ẑ is the unit vector pointing from the negative to the positive plate
and ~E = −σẑ/εo is the electric field generated by the capacitor in the region
between the plates. Outside the capacitor there are no electric or magnetic
fields.

Figure 2.3: Ideal capacitor generating a uniform electric field between its plates.

In Weber’s electrodynamics there will be a component of the force exerted
by the capacitor on the test charge q moving inside it which depends on the
velocity of q relative to the plates ([9], [10], [11, Section 5.6], [12, Sections
6.7 and 7.2], [13, Section 5.5], [14] and [15]). But supposing v2/c2 � 1, as
we can consider in this experiment, Eq. (2.5) will also be valid in Weber’s
electrodynamics.

In classical electrodynamics (Maxwell’s equations plus Lorentz’s force) this
is the total force exerted by the capacitor on the internal test charge, regardless
of the velocity or acceleration of q relative to the plates, assuming fixed charges
over the plates of the capacitor. This can be obtained by assuming a capacitor
made of dielectric charged plates (with a vacuum between the plates) which do
not allow a free motion of charges over its surface. Accordingly, the capacitor
generates a constant electric field only between the plates, and no magnetic
field.

Equating Eq. (2.5) with (2.1) yields:
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~a =
q

mi

~E .

The electric field depends only on the surface density of charge over the
plates of the capacitor, and is independent of q or mi. It is analogous to the
gravitational field near the surface of the earth in our previous example. The
difference now is that in the same electric field we can have bodies experiencing
different accelerations. For instance, a proton (p) undergoes double the accel-
eration of an alpha (α) particle (nucleus of the helium atom, with two protons
and two neutrons) if both are accelerated by the same capacitor: ~ap = 2~aα, as
in Figure 2.4. This is due to the fact that the charge of an alpha particle is
twice that of a proton, while its mass is four times that of the proton due to the
two neutrons and two protons it contains. This does not happen in free fall, as
all bodies, regardless of their weight, chemical composition, etc., fall with the
same acceleration in vacuum near the surface of the earth.

Figure 2.4: A proton and an alpha particle being accelerated inside a capacitor.

This is an extremely important fact. Comparing these two examples (see
Figures 2.2 and 2.4) we can see that the inertial mass of a body is proportional
to its gravitational mass, but not to its electrical charge. This fact suggests
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that the inertia of a body is related to its weight or gravitational property, but
not to its electrical properties. Later on we will come back to this point.

2.2.3 Accelerated Train

The third example discussed here is an accelerated train moving along a straight
line. From top of one of the wagons there is a small body suspended by a string,
as in Figure 2.5.

Figure 2.5: Accelerated train with a small body suspended by a string.

Here we analyse the equilibrium situation in which the body is at rest relative
to the accelerated train. In other words, we analyse the situation when both of
them have the same constant acceleration relative to the earth or to an inertial
frame of reference. There are two forces acting on the body: the gravitational
force of the earth (the weight ~P = mg~g), and the force exerted by the string
due to its tension, ~T . The equation of motion is

~P + ~T = mi~a .

Utilizing the angle θ of Figure 2.5:

P = T cos θ , (2.6)

T sin θ = mia . (2.7)

From these expressions and from P = mgg we obtain:

tan θ =
mi

mg

a

g
. (2.8)
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From the experimental fact that θ is the same for all bodies independent of
their weight, chemical composition etc. we obtain once more that mi = mg or
that the inertia of the body is proportional to its weight.

2.3 Oscillatory Motions

In this section we deal with forces which depend on position and which generate
oscillatory motion.

2.3.1 Spring

The first example to be discussed here is that of a mass fastened to a spring
which is connected to the earth, Figure 2.6. The weight of the test body is
balanced by the normal force exerted by a frictionless table. The only remaining
force is the horizontal force exerted by the spring.

Figure 2.6: Spring on a frictionless table.

The force exerted by the spring on the body of inertial mass mi is given by

~F = −kxx̂ , (2.9)

where k is the elastic constant, x is the displacement of the body from the
equilibrium position (x = `− `o, with ` being the extended length of the spring
and `o its relaxed length) and x̂ the unit vector along the length of the spring.

Equating this with Eq. (2.1) with ~a = (d2x/dt2)x̂ = ẍx̂ yields the one-
dimensional equation of motion:
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miẍ + kx = 0 . (2.10)

This equation can be easily solved:

x(t) = A sin(ωt + θo) ,

where

ω =
√

k

mi
. (2.11)

The constant A is the amplitude of oscillation, θo is the initial phase and ω the
frequency of oscillation. The constants A and θo may be related to the constant
total energy E of the body and the initial position xo by:

E = T + U =
miẋ

2

2
+

kx2

2
=

kA2

2
,

xo = A sin θo .

2.3.2 Simple Pendulum

The second and most important example to be discussed here is a simple pen-
dulum, Figure 2.7. A small body of typical dimension d oscillates in a vertical
plane fastened to a string of constant length ` such that d� `.

Figure 2.7: Simple pendulum of length `.

Neglecting air resistance, there are two forces acting on the pendulum, its
weight ~P = mg~g = −mggẑ and the tension in the string, ~T . The equation of



2.3. OSCILLATORY MOTIONS 39

motion is simply ~P + ~T = mi~a. Utilizing the angle represented in this Figure,
the fact that the length of the string is a constant and a polar coordinate system
(with s = `θ, vθ = `θ̇ and aθ = `θ̈ instead of x, ẋ and ẍ) yields

T − P cos θ = m
v2

`
= m`θ̇2 ,

−P sin θ = miaθ = mi`θ̈ .

If we consider only small oscillations of the pendulum (θ � π/2) then sin θ ≈
θ, and this last equation reduces to:

miθ̈ + mg
g

`
θ = 0 .

This equation has the same form as Eq. (2.10). Its solution is

θ = A cos(ωt + B) , (2.12)

with

ω =
√

mg

mi

g

`
. (2.13)

The constant A is the amplitude of oscillation for θ, B is the initial phase
and ω the frequency of oscillation.

We now compare the frequencies of oscillation ω for the spring and for the
simple pendulum, Eqs. (2.11) and (2.13). The periods of oscillation are given
simply by T = 2π/ω. The most striking difference is that while in the spring
the frequency of oscillation depends only on mi but not on mg, in the pendulum
the frequency of oscillation depends on the ratio mg/mi. Now suppose we have
a test body of inertial mass mi and gravitational mass mg. If it is oscillating
horizontally fastened to a spring of elastic constant k, its frequency of oscillation
is given by ω1 =

√
k/mi. If we connect two of these bodies to the same spring,

the new frequency of oscillation is given by ω2 =
√

k/2mi = ω1/
√

2, as in
Figure 2.8.

On the other hand, if the first body were connected to a string of constant
length ` and oscillating like a pendulum, its frequency of oscillation would be
given by: ω1 =

√
mgg/mi`. Connecting two of these bodies to the same string,

the new frequency of oscillation is given by ω2 =
√

2mgg/2mi` = ω1, as in
Figure 2.9.

The same happens whatever the chemical composition of the test particle.
In simple pendulums of the same length ` and at the same location on the
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Figure 2.8: Two different masses attached to the same spring.

Figure 2.9: Two different masses attached to the same pendulum.

earth (same g), all bodies oscillate with the same frequency, regardless of their
weight or chemical constitution, when air resistance is neglected. This is an
experimental fact which cannot be derived from Newton’s laws of motion (from
Newton’s laws we cannot derive that mi = mg nor that mi/mg = constant).
Only experience can tell us that the frequency of oscillation of a simple pendu-
lum in vacuum does not depend on the weight or chemical constitution of the
bodies, while the frequency of oscillation on an horizontal spring is inversely
proportional to the square root of the mass of the body.

This experimental fact shows that we can cancel the masses in Eq. (2.13),
writing the frequency of oscillation ω of the pendulum and its period T as:

ω =
√

g

`
=

2π

T
.

In section 2.2.2 we saw that the inertial mass of a body is proportional to the
gravitational mass or weight of the body, but is not proportional to its charge
or electrical properties. Here we see that the inertial mass of a body is not
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proportional to any elastic property of the body or of the surrounding medium
(the spring in this case). Analogously, it can be shown that the inertial mass (or
inertia) of a body is not related to the magnetic, nuclear, or any other property
of the body or of the surrounding medium. Newton expressed this in Corollary
V, Proposition 6 of Book III of the Principia, our words in square brackets:
“The power of gravity is of a different nature from the power of magnetism; for
the magnetic attraction is not as the matter attracted [the magnetic force is
not proportional to the inertial mass of the attracted body]. Some bodies are
attracted more by the magnet; others less; most bodies not at all. The power
of magnetism in one and the same body may be increased and diminished; and
is sometimes far stronger, for the quantity of matter, than the power of gravity;
and in receding from the magnet decreases not as the square but almost as the
cube of the distance, as nearly as I could judge from some rude observations.”

The inertial mass is only proportional to the weight or gravitational mass of
the body. Why does nature behave like this? There is no answer in Newtonian
mechanics. We might imagine that a piece of gold could fall in vacuum with a
larger acceleration than a piece of iron or silver of the same weight, but this is
not the case. We might further imagine that a heavier lump of gold could fall in
vacuum with a larger acceleration than a lighter lump of gold, or than another
piece of gold with a different shape. Once more, this is not what happens. If
any of these things did happen, all results of Newtonian mechanics might be
kept, provided we did not cancel mi with mg. We would then conclude that
mi would depend on the chemical composition of the body, or on its form, or
that it is not linearly proportional to mg, or ..., depending on what were found
experimentally.

Although this striking proportionality between inertia and weight does not
prove anything, it is highly suggestive. It indicates that the inertia of a body
(its resistance to acceleration) may have a gravitational origin. Later on, we
show that this is indeed the case.

For the moment we present here Newton’s own careful experiments with
pendulums performed in order to arrive at this proportionality of inertia and
weight (or proportionality between the quantity of matter mi and mg, as we
would say today). In the first definition of the Principia, quantity of matter,
Eq. (1.1), Newton wrote: “It is this quantity that I mean hereafter everywhere
under the name of body or mass. And the same is known by the weight of
each body, for it is proportional to the weight, as I have found by experiments
on pendulums, very accurately made, which shall be shown hereafter.” These
experiments are contained in the previously mentioned Proposition 6, Theorem
6 of Book III of the Principia:

That all bodies gravitate towards every planet; and that the weights
of bodies towards any one planet, at equal distances from the centre
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of the planet, are proportional to the quantities of matter which they
severally contain.

It has been, now for a long time, observed by others, that all sorts of
heavy bodies (allowance being made for the inequality of retardation
which they suffer from a small power of resistance in the air) descend
to the earth from equal heights in equal times; and that equality
of times we may distinguish to a great accuracy, by the help of
pendulums. I tried experiments with gold, silver, lead, glass, sand,
common salt, wood, water, and wheat. I provided two wooden
boxes, round and equal: I filled the one with wood, and suspended
an equal weight of gold (as exactly as I could) in the centre of
oscillation of the other. The boxes, hanging by equal threads of
11 feet, made a couple of pendulums perfectly equal in weight and
figure, and equally receiving the resistance of the air. And, placing
the one by the other, I observed them to play together forwards and
backwards, for a long time, with equal vibrations. And therefore
the quantity of matter in the gold (by Cor. I and VI, Prop. XXIV,
Book II) was to the quantity of matter in the wood as the action of
the motive force (or vis motrix) upon all the gold to the action of
the same upon all the wood; that is, as the weight of the one to the
weight of the other: and the like happened in the other bodies. By
these experiments, in bodies of the same weight, I could manifestly
have discovered a difference of matter less than the thousandth part
of the whole, had any such been. (...)

From this experiment Newton found that mi = mg within one part in a
thousand:

mi −mg

mi
= ±10−3 .

With Eötvos’s experiments at the turn of the century the precision of this
relation improved to one part in 108. Nowadays it is known as one part in 1012.
For references, see [16].

2.3.3 Electrically Charged Pendulum

We now discuss the motion of a simple pendulum of length ` and inertial mass
mi performing small oscillations due to the gravitational attraction of the earth.
Once more we suppose the earth to be a good inertial frame for this problem.
The difference as regards subsection 2.3.2 is the following: Beyond its gravita-
tional mass mg, we suppose the pendulum to have an electrical charge q and to
be in the presence of a permanent magnet, as in Figure 2.10.
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Figure 2.10: Charged simple pendulum oscillating near a magnet.

In this case the forces acting on the simple pendulum will be the gravita-
tional force of the earth (the weight P ), the tension T in the string and the
magnetic force due to the magnet. In classical electromagnetism this force is
represented by ~Fm = q~v × ~B, where ~v is the velocity of the charge q relative
to an inertial frame of reference (the earth or the laboratory in this case) and
~B is the magnetic field generated by the magnet. In Weber’s electrodynamics
the force exerted by the magnet on the charge has essentially the same value,
although we don’t necessarily need to speak of the magnetic field, and the ve-
locity ~v will be the velocity of the charge relative to the magnet ([9], [17], [18],
[19] and [12, Sections 6.7, 7.3 and 7.4]). As we are supposing the magnet to
be at rest relative to the earth (assumed to be a good inertial frame in this
experiment), there will not be any fundamental difference between the expres-
sions for the magnetic force according to Weber’s electrodynamics and classical
electromagnetism. We then have a uniform gravitational field ~g = −gẑ pointing
downwards and a magnetic field ~B = Bẑ pointing vertically upwards. To sim-
plify the analysis we will assume a uniform magnetic field (constant magnitude
in space and time). The equation of motion takes the form

~P + ~T + q~v × ~B = mi~a . (2.14)

We now suppose small oscillations (θ � π/2) and that the pendulum is
released from rest (vo = 0) from the initial position so = −|θo|` ≈ xo with
initial motion along the xz plane. With these conditions we find from (2.12)
that in the absence of a magnetic field the velocity of the pendulum along the
x axis is given approximately by

vx ≈ vθ = `θ̇ = |θo|ω` sinωt . (2.15)
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Here we put the initial phase equal to zero due to the initial conditions
that the pendulum was released at rest from the initial angle θo. Moreover, we
utilized vx ≈ vθ because for small oscillations the motion is practically along
the horizontal x axis. If there were no magnetic field, the pendulum would
remain oscillating along the xz plane of our inertial frame of reference.

Supposing now the presence of the magnetic field, the motion of the pendu-
lum will no longer remain along the same plane. With an initial velocity along
the x axis, the vertical magnetic field will exert a force along the y axis given
by

q~v × ~B = qvxx̂×Bẑ = −qvxBŷ . (2.16)

This force will modify the motion of the pendulum as indicated in Figure
2.11. In this Figure we are observing the projection of the motion of the pen-
dulum in the yz plane as if we were on top of the pendulum. Assuming an
initial motion along the positive x direction, vx > 0, and a positive charge,
q > 0, the magnet will deviate the motion of the pendulum in the direction
y < 0. On the other hand, when the same pendulum is returning (vx < 0) the
magnet deviates it in the direction y > 0. This creates a clockwise rotation of
the plane of oscillation of the pendulum with an angular velocity Ω (looking
at the pendulum from above, supposing q > 0 and a magnetic field pointing
vertically upwards).

Figure 2.11: Rotation of the plane of oscillation of a charged pendulum due to
a magnet.

We now calculate Ω assuming a weak magnetic field, namely, qB/miω � 1.
This is analogous to having the greatest velocity in the x direction much larger



2.3. OSCILLATORY MOTIONS 45

than the greatest velocity in the y direction, or to saying that the velocity in the
x direction is essentially unaffected by the magnet. From Eqs. (2.14), (2.15)
and (2.16) the equation of motion in the y direction is given by (observing that
~P = −mggẑ and that the tension ~T is in the xz plane):

−qvxB = −q|θo|`ω sinωt = miay . (2.17)

This equation can be easily integrated twice utilizing that vy(t = 0) = 0
and y(t = 0) = 0, yielding:

y =
qB|θo|`

mi

(
sinωt

ω
− t

)
. (2.18)

The value of Ω can be obtained from Figure 2.12.

Figure 2.12: Geometry for calculating the precession of the plane of oscillation
of a charged pendulum.

In half a period, 4t = π/ω, the pendulum has moved from xo = −|θo|` to
x = |θo|`, such that 4x = 2|θo|`. On the other hand it has moved from yo = 0
to y(π/ω) = −qB|θo|`π/miω, such that 4y = −qB|θo|`π/miω. The value of Ω
is then given by

Ω =
4y/4x

4t
= − qB

2mi
. (2.19)

The negative value of Ω indicates a rotation in the clockwise direction when
the pendulum is seen from above. To arrive at this result we neglected friction,
and assumed uniform gravitational and magnetic fields, and that qB/miω � 1.
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We conclude that the magnet causes a precession of the plane of oscillation
of the charged pendulum oscillating in an inertial frame due to the action of a
uniform gravitational force.

2.4 Uniform Circular Motion

In this section we discuss three situations of uniform circular motion which were
analysed by Newton: A planet orbiting around the sun, two globes connected
by a string and the spinning bucket.

We first consider a single body under the influence of a central force ~F ,
shown in Figure 2.13.

Figure 2.13: Uniform circular motion under a central force.

We consider a central force always directed toward the origin O of an inertial
coordinate system S: ~F = −F ρ̂, where F = |~F | and ρ̂ is a unit vector point-
ing radially from O. With a polar coordinate system to describe the position,
velocity and acceleration of a particle we have, respectively:

~r = ρρ̂ ,

~v =
d~r

dt
= ρ̇ρ̂ + ρϕ̇ϕ̂ ,

~a =
d~v

dt
=

d2~r

dt2
= (ρ̈− ρϕ̇2)ρ̂ + (ρϕ̈ + 2ρ̇ϕ̇)ϕ̂ ,

where ρ = |~r|.
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With Eq. (2.1), and a constant ρ (uniform circular motion) we obtain:

F = miac = miρϕ̇2 , (2.20)

ϕ̇ = constant .

We represent the centripetal acceleration ac arising from the motion in the
ϕ direction by:

ac = ρϕ̇2 =
v2

t

ρ
,

where

vt = ρϕ̇ .

Huygens (1629-1695) and Newton were the first to obtain this value for
the acceleration of a body orbiting with a constant velocity around a center.
Huygens calculated the centrifugal force (a name created by him, meaning a ten-
dency to depart from the center), arriving at his result in 1659. His manuscript
on this topic was only published posthumously in 1703. However, in his book
Horologium Oscillatorum, of 1673, he presented the main properties of the cen-
trifugal force, but did not supply the proofs of how he arrived at these results.
In any event he was the first to publish the correct value of this acceleration.
Newton calculated the centripetal force (a name he framed later on in order to
oppose to Huygens centrifugal force) between 1664 and 1666, without knowing
Huygens’s results. In the Principia, of 1687, he made great use of this result.
See [4, Sections 9.7-9.8 and 10.5-10.6].

It should be observed that this central force changes only the direction
of motion, leaving the magnitude of the tangential velocity constant: |~vt| =
constant.

2.4.1 Circular Orbit of a Planet

The first situation analysed here is a planet orbiting around the sun due to
their mutual gravitational attraction. We consider the gravitational mass of
the planet, mgp, much smaller than the gravitational mass of the sun, mgs, so
that we can neglect the motion of the sun, see Figure 2.14. Although the orbit
of the planets is in general elliptical, we consider here only the particular case
of circular orbits in which the distances of the planets to the sun are constants
in time.

From Eqs. (2.20) and (1.4) we obtain:
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Figure 2.14: Planet orbiting around the sun.

F = G
mgsmgp

r2
= mipacp = mip

v2
tp

r
.

From Eq. (2.3):

acp =
v2

tp

r
=

Gmgs

r2
.

The centripetal acceleration and the orbital velocity do not depend on the mass
of the planet, but only on the mass of the sun.

How does the planet maintain a constant distance to the sun (or the moon
to the earth, for instance) despite the gravitational attraction between them?
According to Newton it is because the planet has an acceleration relative to
absolute space (we might say relative to an inertial frame of reference). If the
planet and the sun were initially both at rest relative to an inertial frame,
they would attract and approach one another due to this attraction. What
keeps the planet at a constant distance from the sun despite their gravitational
attraction is the centripetal acceleration of the planet in absolute space (its
tangential motion relative to the sun).
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2.4.2 Two Globes

We now consider two globes connected to one another by a string and spinning
relative to an inertial system with a constant angular velocity ω = ϕ̇ = vt/ρ
around the center of mass O, Figure 2.15.

Figure 2.15: Two spinning globes connected by a string.

The only force exerted on each globe is due to the tension in the string. We
call this tension T . By applying Eq. (2.20) to globe 1 we obtain:

T = mi1ac1 = mi1
v2

t1

ρ1
= mi1w

2ρ1 , (2.21)

For the second body we have, analogously:

T = mi2ac2 = mi2
v2

t2

ρ2
= mi2w

2ρ2 . (2.22)

The faster the rotation of the globes (i.e. the larger ω) the larger will be
the tension in the string supporting the rotation. If instead of a string we had
a spring of elastic constant k, the tension might be measured by T = k(`− `o),
where ` is the stretched length of the spring (` = ρ1+ρ2, see Figure 2.15) and `o

its relaxed length. By measuring `, given k and `o, we could know the tension.
Knowing mi1, ω and ρ1 we can also obtain the tension T applying Eq. (2.21).

Newton discussed this problem of the two globes as a possible way of dis-
tinguishing the relative from absolute motion (or, more specifically, the relative
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rotation from the absolute rotation). By this experiment we could know if
the globes were really rotating or not rotating relative to absolute space (or
relative to an inertial frame). His discussion appears in the Scholium in the
beginning of Book I of the Principia, following the first 8 definitions and before
the three axioms or laws of motion. Here we present the entire discussion, with
our emphasis:

It is indeed a matter of great difficulty to discover, and effectually
to distinguish, the true motions of particular bodies from the ap-
parent; because the parts of that immovable space, in which those
motions are performed, do by no means come under the observa-
tion of our senses. Yet the thing is not altogether desperate; for
we have some arguments to guide us, partly from the apparent mo-
tions, which are the differences of the true motions; partly from the
forces, which are the causes and effects of the true motions. For
instance, if two globes, kept at a given distance one from the other
by means of a cord that connects them, were revolved about their
common centre of gravity, we might, from the tension of the cord,
discover the endeavor of the globes to recede from the axis of their
motion, and from thence we might compute the quantity of their
circular motions. And then if any equal forces should be impressed
at once on the alternate faces of the globes to augment or diminish
their circular motions, from the increase or decrease of the tension
of the cord, we might infer the increment or decrement of their mo-
tions; and thence would be found on what faces those forces ought
to be impressed, that the motions of the globes might be most aug-
mented; that is, we might discover their hindmost faces, or those
which, in the circular motion, do follow. But the faces which follow
being known, and consequently the opposite ones that precede, we
should likewise know the determination of their motions. And thus
we might find both the quantity and determination of this circular
motion, even in an immense vacuum, where there was nothing exter-
nal or sensible with which the globes could be compared. But now,
if in that space some remote bodies were placed that kept always a
given position to one another, as the fixed stars do in our regions, we
could not indeed determine from the relative translation of the globes
among those bodies, whether the motion did belong to the globes or
to the bodies. But if we observed the cord, and found that its tension
was that very tension which the motions of the globes required, we
might conclude the motion to be in the globes, and the bodies to be
at rest; and then, lastly, from the translation of the globes among
the bodies, we should find the determination of their motions. But
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how we are to obtain the true motions from their causes, effects, and
apparent differences, and the converse, shall be explained more at
large in the following treatise. For to this end was that I composed
it.

Suppose the fixed stars to be at rest relative to absolute space. Spinning
the globes with an angular velocity ω relative to absolute space (or relative to
the fixed stars in this case) would, according to Newton, generate a tension in
the string. This might be visualized by an increase in the length of a spring
replacing the cord. Now suppose the same kinematical situation as above,
namely, the globes rotating relative to the fixed stars with a constant angular
velocity ~ω. But if in this second case the globes were at rest relative to absolute
space and the fixed stars were revolving as a whole with an angular velocity
−~ω relative to absolute space, then, according to Newton in this passage, there
would be no tension in the cord (or the spring would not be streched or under
tension). In this way we might distinguish the true or absolute rotation of the
globes (relative to absolute space) from the apparent or relative rotation of the
globes (relative to the fixed stars). Observing if there is or not a tension in
the cord we might know if the globes were spinning or not relative to absolute
space (or relative to an inertial frame of reference), although in both cases there
would be the same relative or kinematical rotation of the globes relative to all
other matter (the fixed stars here). Later on we will discuss this experiment
further.

2.4.3 Newton’s Bucket Experiment

We now analyse Newton’s bucket experiment. This is one of the simplest and
most important of all experiments performed by Newton. It is described just
before the two-globes experiment presented above, in the Scholium following
the eight definitions in the beginning of Book I of the Principia, before the
presentation of the axioms or laws of motion (our emphasis):

The effects which distinguish absolute from relative motion are, the
forces of receding from the axis of circular motion. For there are
no such forces in a circular motion purely relative, but in a true
and absolute circular motion, they are greater or less, according to
the quantity of motion. If a vessel, hung by a long cord, is so often
turned about that the cord is strongly twisted, then filled with water,
and held at rest together with the water; thereupon, by the sudden
action of another force, it is whirled about the contrary way, and
while the cord is untwisting itself, the vessel continues for some time
in this motion; the surface of the water will at first be plain, as before
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the vessel began to move; but after that, the vessel, by gradually
communicating its motion to the water, will make it begin sensibly
to revolve, and recede by little and little from the middle, and ascend
to the sides of the vessel, forming itself into a concave figure (as I
have experienced), and the swifter the motion becomes, the higher
will the water rise, till at last, performing its revolutions in the same
times with the vessel, it becomes relatively at rest in it. This ascent
of the water shows its endeavor to recede from the axis of its motion;
and the true and absolute circular motion of the water, which is
here directly contrary to the relative, becomes known, and may be
measured by this endeavor. At first, when the relative motion of the
water in the vessel was greatest, it produced no endeavor to recede
from the axis; the water showed no tendency to the circunference,
nor any ascent towards the sides of the vessel, but remained of a
plain surface, and therefore its true circular motion had not yet
begun. But afterwards, when the relative motion of the water had
decreased, the ascent thereof towards the sides of the vessel proved
its endeavor to recede from the axis; and this endeavor showed the
real circular motion of the water continually increasing, till it had
acquired its greatest quantity, when the water rested relatively to
the vessel. And therefore this endeavor does not depend upon any
translation of the water in respect of the ambient bodies, nor can
true circular motion be defined by such translation. There is only
one real circular motion of any one revolving body, corresponding
to only one power of endeavoring to recede from its axis of motion,
as its proper and adequate effect; but relative motions, in one and
the same body, are innumerable, according to the various relations
it bears to external bodies, and, like other relations, are altogether
destitute of any real effect, any otherwise than they may perhaps
partake of that one only true motion. (...)

Let us obtain the form of the surface and the pressure anywhere within the
spinning bucket. We consider the water to be an ideal homogeneous incom-
pressible fluid of density ρ = 1 g/cm3.

In the first situation the bucket and water are at rest relative to an inertial
system, shown in Figure 2.16.

Then the surface of the water is flat and the pressure within the liquid
increases as a function of the depth h according to p(h) = po + ρgh, where
po = 1 atm = 760 mm Hg = 1× 105 N/m2 is the normal atmospheric pressure
and g ≈ 9.8 m/s2 is the gravitational field of the earth. From this expression
we may obtain Archimedes’ (287-212 b. C.) rule: The upward force exerted
by the water on any immersed body of volume V is given by the weight of the
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fluid displaced (in modern terms this is given by ρgV ). See On Floating Bodies
in [20] and [21, pp. 538-560, especially Propositions 6 and 7]. This force does
not depend on the mass of the body, but only on its immersed volume and the
density of the surrounding liquid (or on the weight of the displaced fluid).

Now consider the bucket and water spinning together at a constant angular
velocity ω relative to an inertial frame of reference (we may consider the earth
as a good inertial system in this case). The water forms a concave figure, as
represented in Figure 2.17.

Figure 2.16: Bucket and water at rest relative to the earth.

Figure 2.17: Bucket and water spinning together relative to the earth (Newton’s
bucket experiment).

The simplest way to obtain the form of the surface is to consider a frame
of reference centered on the lower part of the spinning liquid with the z axis
pointing vertically upwards, as in Figure 2.18.

Let us consider a small volume of liquid dmi = ρdV just below the surface.
It is acted upon by the downward force of gravity, dP = dmgg, and by a force
normal to the surface of the liquid due to the gradient of pressure, dE. As this
portion of liquid moves in a circle centered on the z axis, there is no net vertical
force. There is only a centripetal force pointing towards the z axis changing
its direction of motion, but not the magnitude of the tangential velocity. From
Figure 2.18 we obtain in this case (x being the distance of dmi to the z axis):

dE cos α = dP = dmgg , (2.23)
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Figure 2.18: Geometry to calculate the form of the water surface when spinning.

dE sinα = dmiac = dmi
v2

t

x
= dmiω

2x . (2.24)

From these two equations and utilizing the fact that dmi = dmg we have

tanα =
ω2

g
x . (2.25)

Utilizing tanα = dz/dx, where dz/dx is the inclination of the curve at each
point, and the fact that we want the equation of the curve which contains the
origin x = z = 0 yields

z =
ω2

2g
x2 . (2.26)

The curve is a paraboloid of revolution. The greater the value of ω, the larger
the concavity of the surface.

We can also calculate the pressure anywhere within the liquid by similar
reasoning, with Figure 2.19. The equation of motion of a small quantity of
water dmi is d~P + d ~E = dmi~a, where d ~E is the force due to the gradient of
pressure.

For the element of mass represented in Figure 2.19:

d ~E = −(∇p)dV = −
(

∂p

∂x
x̂ +

∂p

∂z
ẑ

)
dV .
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Figure 2.19: Forces in a volume element of water within the spinning bucket.

Utilizing the fact that there is only a centripetal acceleration yields ~a =
−(v2/x)x̂ = −ω2xx̂. With d~P = −dmggẑ and dmi = dmg we obtain

∂p

∂z
= −ρg ,

∂p

∂x
= ρω2x .

Integration of the first of these equations yields: p = −ρgz + f1(x), where
f1(x) is an arbitrary function of x. Integration of the second equation yields:
p = ρω2x2/2 + f2(z), where f2(z) is another arbitrary function of z. Equating
these two solutions and utilizing the fact that p(x = 0, z = 0) = po yields the
final solution (valid within the water):

p(x, z) =
ρω2

2
x2 − ρgz + po .

All over the surface of the liquid we have p(x, z) = po. Substituting this
in the previous result once more yields the equation of the concave surface,
namely, z = ω2x2/2g. This completes the solution of this problem in classical
mechanics.
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The importance of this experiment to Newton lies in the distinction it allows
between absolute and relative rotation. According to Newton the surface will
be concave only when the water is spinning relative to absolute space. This
means that to him the ω which appears in Eq. (2.26) is the angular rotation of
the water relative to absolute space and not the angular rotation of the water
relative to any “ambient bodies.” It is not the rotation of the water relative to
the bucket, nor relative to the earth, nor even its rotation relative to the distant
universe, such as the fixed stars. Remember that to Newton the absolute space
has no relation to anything external, so that it is not related to the earth nor
to the fixed stars.

We will now show that Newton had no other alternative at that time than
to arrive at this conclusion. As the angular rotation of the bucket in Newton’s
experiment is much larger than the diurnal rotation of the earth or the annual
rotation of the solar system, we may consider the earth to be without accelera-
tion relative to the frame of fixed stars, and as a good inertial system during this
experiment. In the first situation the bucket and the water are essentially at
rest relative to the earth, so that they have at most a constant velocity relative
to the fixed stars. The surface of the water is flat and there are no problems
in deriving this conclusion. We now consider the second situation in which the
bucket and the water are spinning together relative to the earth (and so rela-
tive to the fixed stars) with a constant angular velocity ~ωbe = ~ωwe ≡ ~ω = ωẑ.
Here the z axis points vertically upwards from that location (ẑ = r̂, where r̂
points radially outwards from the earth’s center), ~ωbe is the angular velocity of
the bucket relative to the earth and ~ωwe is the angular velocity of the water
relative to the earth. In this case the surface of the water is concave, rising
towards the sides of the bucket. The key questions which need to be answered
are: Why is the surface of water flat in the first situation and concave in the
second? What is responsible for this different behaviour? The rotation of the
water relative to what?

Let us analyse this from the Newtonian point of view. There are three main
natural suspects for this concavity of the water: The rotation of the water
relative to the bucket, relative to the earth, or relative to the fixed stars. That
the bucket is not responsible for the different behaviour of the water can be
immediately grasped by observing that there is no relative motion between the
water and the bucket in both situations emphasized above. This means that
whatever the force exerted by the bucket on each molecule of water in the first
situation, it will remain the same in the second situation, as the bucket remains
at rest relative to the water.

The second suspect is the rotation of the water relative to the earth. After
all, in the first situation the water was at rest relative to the earth and its
surface was flat, but when it was rotating relative to the earth in the second
situation, its surface became concave. Thus, this relative rotation between
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the water and the earth might be responsible for the concavity of the water.
Newton maintained that this is not the case (“And therefore this endeavor [to
recede from the axis of circular motion] does not depend upon any translation
of the water in respect of the ambient bodies, nor can true circular motion
be defined by such translation”). We show here that Newton was consistent
and correct in this conclusion when using his own law of gravitation. In the
first situation, the only relevant force exerted by the earth on each molecule
of water is of gravitational origin. As we saw in chapter 1, utilizing Eq. (1.4)
and Newton’s Theorem 31 we obtain that the earth attracts any molecule of
water as if the earth were concentrated at its center, Eqs. (1.6) and (1.5):
~P = mg~g = −mggẑ. In the second situation, the water is rotating relative to
the earth, but the force exerted by the earth on each molecule of water is still
given simply by ~P = −mggẑ pointing vertically downwards. This is due to
the fact that Newton’s law of gravitation (1.4) does not depend on the velocity
or acceleration between the interacting bodies. This means that in Newtonian
mechanics, the earth cannot be responsible for the concavity of the surface of
the water. Whether the water is at rest or spinning relative to the earth, it will
experience the same gravitational force due to the earth, the weight ~P pointing
downwards, without any tangential component of the force perpendicular to
the z direction and depending on the velocity or acceleration of the water.

The third suspect is the set of fixed stars. In the first situation the water
is essentially at rest or moving with a constant linear velocity relative to them
and its surface is flat. In the second situation it is spinning relative to them
and its surface is concave. This relative rotation might be responsible for the
concavity of the water. But in Newtonian mechanics this is not the case either.
The only relevant interaction of the water with the fixed stars is of gravitational
origin. Let us analyse the influence of the stars in the first situation. As we saw
in chapter 1, utilizing Eq. (1.4) and Newton’s Theorem 30, we find that the
net force exerted by all the fixed stars on any molecule of water is essentially
zero, assuming that the fixed stars are distributed more or less at random in
the sky and neglecting the small anisotropies in their distribution. This is the
reason why the fixed stars are seldom mentioned in Newtonian mechanics. This
will remain valid not only when the water is at rest relative to the fixed stars,
but also when it is rotating relative to them. Once more, this is due to the
fact that Newton’s law of gravitation (1.4) does not depend on the velocity
or acceleration between the bodies. Thus, his result (1.6) will remain valid no
matter what the velocity or acceleration of body 1 relative to the spherical shell.

As we have seen, Newton was aware that we can neglect the gravitational
influence of the set of all fixed stars in most situations. Recall what he wrote in
the Principia: “(...) the fixed stars, everywhere promiscuously dispersed in the
heavens, by their contrary attractions destroy their mutual actions, by Prop.
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70, Book I.” The conclusion is then that the relative rotation between the water
and the fixed stars is not responsible for the concavity of the water either. Even
introducing the external galaxies (which were not known by Newton) does not
help, as they are known to be distributed more or less uniformly in the sky. So
the same conclusion Newton reached for the fixed stars (that they exert no net
force on other bodies) applies to the distant galaxies.

An important consequence of this fact is that even if the fixed stars and
distant galaxies disappeared (were literally annihilated from the universe) or
doubled in number and mass, the concavity of the water would not change in
this experiment (according to Newtonian mechanics).

Since the effect of the concavity of the water is real and can be measured
(the water can even pour out of the bucket), Newton had no other choice than
to point out another cause for it, namely, the rotation of the water relative
to absolute space. This was his only alternative, assuming the validity of his
universal law of gravitation, which he proposed in the same book where he
presented the bucket experiment. Moreover, this Newtonian absolute space
cannot have any relation with the mass or quantitity of matter of the water, of
the bucket, of the earth, of the fixed stars, the distant galaxies nor any other
material body, as all these other possible influences have been eliminated.

A quantitative explanation of this key experiment without introducing ab-
solute space is one of the main accomplishments of relational mechanics as
developed in this book.



Chapter 3

Non-inertial Frames of
Reference

We now discuss some of the examples of the previous chapter in non-inertial
frames of reference S’. As we have seen, Newton’s second law of motion is valid
only in absolute space or in frames of reference which move with a constant
translational velocity relative to it, by his fifth corollary. These are called iner-
tial frames of reference which we represented by S. When the frame of reference
is accelerated relative to an inertial frame, difficulties with the application of
Newton’s laws of motion arise. To overcome these difficulties it is necessary to
introduce so-called fictitious forces. We analyse these situations here.

3.1 Constant Force

3.1.1 Free Fall

The first situation is the case of free fall. Suppose we are falling to the earth
in vacuum. We will consider the earth an inertial frame of reference S. This
means that our frame of reference S’ is falling freely towards the earth with
a constant acceleration, so that it is non-inertial. If we try to apply Newton’s
laws to study our own motion, we would write F = mia

′ in order to find out our
own acceleration a′ in our frame of reference S’. The only force acting on us is
the gravitational attraction of the earth, so that, F = mgg. We would conclude
that a′ = g ≈ 9.8 m/s2 - which is wrong. After all we are at rest relative to
ourselves, and the correct result we should have arrived at was a′ = 0, Figure
3.1. In other words, we see ourselves at rest while the earth approaches us with
an acceleration ~ae = gẑ, where ẑ points vertically upwards, from the earth to

59
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us.

Figure 3.1: A person studying his own fall to the earth. The person is at rest
relative to himself, while the earth moves towards him with an acceleration
aE = g = 9.8 m/s2.

To arrive at the correct result we need to apply Newton’s second law in the
form

~F −mi~ao = mi~a
′ , (3.1)

where ~ao is our acceleration relative to absolute space or relative to an inertial
frame of reference, and ~a′ is the acceleration of mi relative to S’. In this case ~ao =
~g = −gẑ (supposing the earth to be an inertial frame of reference, neglecting
thus the small effects due to the non-inertial character of the earth’s rotation).
Utilizing this and the fact that ~F = mg~g, we would find that our acceleration
relative to ourselves is given by (as always with mi = mg): ~a′ = 0. This is the
correct answer in our own frame of reference.

The force −mi~ao is called a fictitious force. The reason for this name is that
all other forces which appear in ~F of Eq. (3.1) have a physical origin due to the
interaction of the test body with other bodies, such as a gravitational interaction
between the test body and the earth or the sun, an elastic interaction with a
spring, an electric or magnetic interaction with another charge or magnet, a
force of friction due to its interaction with a resistive medium, etc. On the
other hand, the force −mi~ao in classical mechanics has no physical origin. It is
not due to an interaction of the test body with any other body. It only appears
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in non-inertial frames of reference which are accelerated relative to absolute
space. At least this is the usual interpretation in Newtonian mechanics. Later
on we will see that this need not be the case.

Despite its fictitious character, this force −mi~ao is essential in non-inertial
frames of reference in order to arrive at the correct results applying Newton’s
laws of motion.

3.1.2 Accelerated Train

The second example analysed here is an accelerated train. Once more we sup-
pose the earth to be an inertial frame of reference as a good approximation here.
In the previous chapter we analysed the motion and inclination of a pendulum
in the frame of reference fixed to the earth. We now analyse the same problem
in a frame of reference fixed in the accelerated wagon, as for instance, for a
passenger who is inside the train, Figure 3.2. In this case the bob of mass m is
at rest relative to the train and passenger, while the earth is accelerated to the
left with an acceleration ~ae = −aex̂.

Figure 3.2: Passenger in an accelerated train. The mass m is at rest relative to
him, while the earth moves to the left with an acceleration ~ae = −|~ae|x̂.

If the passenger applied Newton’s second law to the bob of mass m in the
form of Eq. (1.3) in the situation which he were observing, he would arrive at
the same conclusion as Eqs. (2.6), (2.7) and (2.8), namely:

a′ = g
mg

mi
tan θ 6= 0 .

But obviously this is the wrong answer in the frame of reference of the train.
After all the pendulum is not moving relative to the train or to the passenger
in the equilibrium situation being analysed here, so that the passenger should
arrive at a′ = 0. He can only obtain this with Eq. (3.1). He needs to introduce
the fictitious force −mi~ao in order to arrive at the correct result. In this case
~ao = aex̂. This fictitious force balances the gravitational force exerted by the
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earth and the force exerted by the string, in order to cancel the motion of the
pendulum relative to the passenger and keep it in an inclined position relative to
the vertical, as represented in Figure 3.2. Then he would arrive at the situation
described in Figure 3.3:

~P + ~T −mi~ao = mi~a
′ ,

so that ~a′ = 0.

Figure 3.3: Forces in the passenger’s frame of reference.

In this frame of reference the vertical component of the tension in the string
balances the weight of the body, while −mi~ao balances the horizontal compo-
nent of the tension in the string, yielding zero motion of the bob relative to the
train.

Once more in Newtonian mechanics there is no physical origin for this force
−mi~ao, but it is essential to utilize it in the train’s frame of reference to arrive
at correct results.

3.2 Uniform Circular Motion

We now analyse some problems of the previous chapter in the frame of reference
of the rotating bodies.

3.2.1 Circular Orbit of a Planet

We begin with the planet orbiting around the sun. Once more we consider here
only the particular case of circular orbits. In the inertial frame of reference
S considered previously, with the sun much more massive than the planet,
the sun was considered essentially at rest and the planet was orbiting around
the sun. Application of Eq. (1.3) yielded a centripetal acceleration given by
acp = Gms/r2.

We now analyse this problem in the non-inertial frame of reference S’ in
which the sun and the planet are at rest. In other words, in a frame of reference
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S’ centered on the sun but that rotates together with the planet relative to S.
In this frame we should find that the planet would not be accelerated, namely:
a′ = 0. But this is not the case if we apply Newton’s second law of motion in
the form of Eq. (1.3). In this new frame of reference, how can we explain the
fact that the planet is at rest while subject to the gravitational attraction of
the sun? How can the planet keep an essentially constant distance to the sun?
To arrive at the correct result, i.e. that there is no acceleration of the planet in
this frame of reference, and to explain why the distance between the planet and
the sun is essentially constant, we need to introduce another fictitious force. In
this case this fictitious force has a special name, centrifugal force, and is given
by:

~Fc = −mi~ω × (~ω × ~r) , (3.2)

where ~r is the position vector of the test body relative to the origin of the
non-inertial system of reference and ~ω is the vector angular velocity of the non-
inertial system of reference relative to absolute space, or relative to any inertial
frame of reference. In the previous chapter we considered the inertial frame of
reference S centered on the sun. In this frame S the planet orbitated around
the sun with an angular frequency ω. The non-inertial frame of reference S’
considered here is also centered on the sun, but it rotates relative to S with the
same angular frequency as the planet’s orbit, shown in Figure 3.4.

Figure 3.4: Frame S’ rotating together with the planet relative to S.

If the planet were the earth, the period of rotation of S’ relative to S would
be T = 2π/ω = 365 days. If the non-inertial frame of reference S’ is rotating
relative to the inertial frame S around the vertical z axis, ~ω = ωẑ. Then
~ω × (~ω × ~r) = −ω2ρρ̂, where ρ is the distance of the test body to the axis of
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rotation and ρ̂ is the unit vector pointing from the axis of rotation to the body, in
a plane orthogonal to the axis of rotation (in polar coordinates: ~r = ρρ̂+zẑ). In
this case the centrifugal force is given simply by ~Fc = miω

2ρρ̂. This shows that
this fictitious force, which appears only in the non-inertial frame of reference S’
but not in S, is directed away from the center. This is the reason for the name
“centrifugal,” the case represented by Figure 3.5.

Figure 3.5: centrifugal force in the frame S’.

In this rotating non-inertial frame of reference Newton’s second law of mo-
tion should be written as (in order to predict correct results):

~F + ~Fc = mi~a
′ , (3.3)

where ~F is the resultant force due to all other bodies acting on mi, ~Fc is given
by Eq. (3.2) and ~a′ is the acceleration of mi relative to this non-inertial frame
of reference.

In the problem of the planet we have the situation of Figure 3.6.
Utilizing the fact that ~a′ = 0 in this frame of reference gives the centrifugal

force, namely

~Fc = G
mgsmgp

r2
r̂ = −mip~ω × (~ω × ~r) .
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Figure 3.6: Planet “orbiting” around the sun, as seen in S’.

This yields: ω =
√

Gmgs/r3. Alternatively we might use the fact that
ω =

√
Gmgs/r3 to find that ~a′ = 0 in the frame of reference S’ in which the

planet and the sun are at rest.
Once more there is no physical origin for this centrifugal force, while the

gravitational force in this case is due to the attraction between the sun and the
planet.

3.2.2 Two Globes

We now briefly discuss the experiment with two globes described by Newton.
In a frame of reference S’ which rotates with the globes and centered on the
center of mass of the system, we have the situation depicted in Figure 3.7.

Figure 3.7: Two globes in the frame S’.

In this frame there is no motion of the globes despite the tension T in the
string. The centripetal force due to this tension is balanced by a centrifugal
force given by miω

2ρ, Figure 3.8: Fc1 = m1ω
2ρ1 = T and Fc2 = m2ω

2ρ2 = T .
There are two interpretations of this equilibrium: Either we say that the

tension is balanced by the centrifugal force, which does not let the globes ap-
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Figure 3.8: Tension balanced by centrifugal force in the frame S’.

proach one another, or we say that the centrifugal force generates the tension
in the string.

We might easily apply the same analysis to the previous problem of the
sun and the planet, generalizing it to take into account the motion of the sun,
and replacing the tension T in this example by the gravitational attraction
Gmg1mg2/r2. In this more real situation, the sun and the planet would be
orbiting around the center of mass relative to an inertial frame of reference. In
a non-inertial frame of reference centered on the center of mass and in which
both bodies are at rest, the gravitational attraction would be balanced by the
centrifugal force.

3.2.3 Newton’s Bucket Experiment

We now consider the bucket experiment. We will concentrate on the situation
in which the bucket and water rotate together with a constant ω relative to an
inertial frame of reference S. In a frame of reference S’ which rotates with the
bucket there is no motion of the water, so that Eq. (3.3) reduces to (with Eq.
(3.2) and ~ω = ωẑ):

−(∇p)dV − dmggẑ + dmiω
2ρρ̂ = dmi~a

′ = 0 .

This yields the same result obtained previously, remembering that dmi = dmg

and that here we are utilizing ρρ̂ instead of xx̂ to represent the distance to the
axis of rotation.

What is important to stress here and in the previous examples of the circu-
lar orbit of the planets and of the two globes, is that this centrifugal force has
no physical origin in Newtonian mechanics. It appears in non-inertial frames
of reference, and in this sense we might say that they are real (balancing the
gravitational attraction of the sun, creating a tension in the string, pushing the
water towards the sides of the bucket, etc.) On the other hand, unlike real
forces such as the gravitational attraction exerted by the sun or by the earth,
the electric force exerted by charges, the magnetic force exerted by magnets or
current-carrying wires, or the elastic force exerted by a streched spring or ten-
sioned cord, we cannot locate the material body responsible for the centrifugal
force or for the ficitious forces in general. Let us analyse this in the case of the
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bucket experiment (a similar analysis can be carried out for all other examples
discussed here).

We consider the situation in which the bucket and the water are rotating
together relative to the earth and the fixed stars with a constant angular velocity
around the vertical axis. We analyse the problem in the non-inertial frame of
reference of the bucket, so that in this frame the surface of the water is concave,
although the water is at rest. Is the bucket responsible for this concavity? No,
after all the bucket is at rest relative to the water. Is the earth responsible
for this concavity? In other words, is the rotation of the earth relative to the
water, to the bucket and to this frame responsible for the centrifugal force?
Once more the answer in Newtonian mechanics is no. As we saw in chapter 1,
the gravitational force exerted by a spherical shell on material particles outside
it points towards the center of the shell. As Newton’s law of gravitation does not
depend on the velocity or acceleration between the bodies, this will remain valid
when the spherical shell is spinning. This means that according to Newtonian
theory even when the earth is spinning relative to a material point or to a frame
of reference, it will exert only the usual downward force of gravity, without any
tangential force orthogonal to the radial direction. Are the fixed stars and
external galaxies responsible for this concavity? In other words, is the rotation
of the fixed stars (or of the external galaxies) relative to the water, to the
bucket and to this non-inertial frame of reference responsible for the centrifugal
force? The answer is no once more, due to Newton’s 30th Theorem stated
above, and to result (1.6). In other words, spherically symmetric distributions of
matter do not exert any net gravitational forces on any internal point particles,
regardless of the rotation or motion of these spherical distributions relative to
the internal particle or to any frame of reference. This means that in Newtonian
mechanics the fixed stars and distant galaxies might disappear without having
any influence on the concavity of the water.

As we will see, relational mechanics will give a different answer here.

3.3 Rotation of the Earth

There are two main ways of determining the rotation of the earth. The first
is kinematical or visual and the second, dynamical. We discuss the problem of
the earth’s rotation in this section.

3.3.1 Kinematical Rotation of the Earth

The simplest way to know that the earth rotates relative to something is by
the observation of the astronomical bodies. Standing on the ground we do not
observe the rotation of the earth directly; after all, we are essentially at rest



68 CHAPTER 3. NON-INERTIAL FRAMES OF REFERENCE

relative to it. But looking at the sun we see that it moves around the earth
with a period of one day. There are two obvious interpretations for this fact:
The earth is at rest (as in the Ptolemaic system) and the sun translates around
the earth; or the sun is at rest and it is the earth that spins around its axis (as
in the Copernican system). Both interpretations are represented in Figure 3.9,
considering the reference represented by the paper to be the rest frame.

Figure 3.9: Relative rotation between the earth and the sun in the Ptolemaic
(P) and Copernican (C) world views.

We can add to the motions of the earth and sun a common motion (a trans-
lation or rotation relative to absolute space, for instance) without altering their
relative motion. What is important to realise here is that from the observed
relative rotation between earth and sun we cannot determine which one of them
is really moving relative to absolute space. The only thing observed and mea-
sured in this case is their relative motion. In this regard the Ptolemaic and
Copernican systems are equally reasonable and compatible with the observa-
tions. It is a matter of taste to choose one or the other, considering only the
relative rotation between the earth and the sun.

Another kinematical rotation of the earth is rotation relative to the fixed
stars (relative to the stars which belong to our galaxy, the Milky Way). Al-
though the moon, the sun, the planets and comets move relative to the back-
ground of stars, there is essentially no motion of one star relative to the others.
The sky seen today with its constellations is essentially the same sky seen by
the ancient Greeks or Egyptians. Although the set of stars rotate relative to
the earth, they essentially do not move relative to one another and for this
reason they are usually called fixed stars. Although the stellar parallax had
been predicted by Aristarchus of Samos around 200 B.C., the first observation
of this parallax (motion or change of position of one star relative to the others)
was only obtained without doubt by F. W. Bessel in 1838. If we take a picture
of the night sky with a long exposure we observe in the Northern hemisphere
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that all the stars rotate approximately around the north pole star, typically
with a period of one day.

Once more, we may say that the real rotation belongs to the stars or to the
spinning earth. We cannot decide between these two interpretations based only
on these observations. It may be simpler to describe motions and planetary
orbits in the frame of reference fixed with the stars than in the earth’s frame
of reference, but both of them are equally reasonable.

With a period of rotation of one day we get ωk = 2π/T = 7 × 10−5 rad/s,
where ωk is the kinematical rotation of the earth. The direction of this kinemat-
ical rotation is approximately the direction of the north pole star. In this way
we have a complete description of the kinematical rotation, i.e., the rotation of
the earth relative to the fixed stars.

To simplify the analysis we are not distinguishing here the solar day to the
sidereal day (time for the fixed stars to give a complete turn around the earth).
We are putting both of them as 24 hours. As a matter of fact, while the sidereal
day is essentially constant (when compared, for instance, with a mechanical or
atomic clock), the solar day varies according to the month of the year. This was
known to the Ancients, and Ptolemy (100-170 A.D.), for instance, presented the
so called “equation of time” describing the variation of the solar day compared
with the sidereal one. The mean solar day (obtained by an average taken over
the year of the duration of the solar days) has by definition 24 hours, while the
measured sidereal day has 23 hours, 56 minutes and 4 seconds. In a year the
sun turns essentially 365 times around the earth, while the fixed stars turn 366
times. Another difference between these two motions is that while the stars rise
at the same place relative to the earth’s horizon all year long, the same does
not happen with the sun, which rises at different locations at different epochs
of the year. For a discussion of these points and further references, see [22,
pp. 9-10 and 266-268] and [4, Sections 3.15 and 11.6]. Newton mentions the
equation of time in the Scholium at the end of his definitions:

Absolute time, in astronomy, is distinguished from relative, by the
equation or correction of the apparent time. For the natural days
are truly unequal, though they are commonly considered as equal,
and used for a measure of time; astronomers correct this inequality
that they may measure the celestial motions by a more accurate
time. It may be, that there is no such thing as an equable motion,
whereby time may be accurately measured. All motions may be
accelerated and retarded, but the flowing of absolute time is not
liable to any change. The duration of perseverance of the existence
of things remains the same, whether the motions are swift or slow,
or none at all: and therefore this duration ought to be distinguished
from what are only sensible measures thereof; and from which we
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deduce it, by means of the astronomical equation. The necessity of
this equation, for determining the times of a phenomenon, is evinced
as well from the experiments of the pendulum clock, as by eclipses
of the satellites of Jupiter.

In Proposition XVII, Theorem XV, Book III of the Principia he says: “That
the diurnal motions of the planets are uniform, and that the libration of the
moon arises from its diurnal motion. The Proposition is proved from the first
Law of Motion, and Cor. XXII, Prop. LXVI, Book I. Jupiter, with respect to
the fixed stars, revolves in 9h 56m; Mars in 24h 39m; Venus in about 23h; the
earth in 23h 56m; the sun in 25 1/2d, and the moon in 27d 7h 43m. These things
appear by the Phenomena. (...)” In Section [35] of his System of the World
he says: “The planets rotate around their own axes uniformly with respect to
the stars; these motions are well adapted for the measurement of time.” The
importance of this statement is that Newton is presenting an operational way of
measuring absolute time. The curious fact is that this measurement has to do
with the diurnal rotation of the planets relative to the fixed stars, while in his
definition of absolute time there should be no relation with anything external.
For a general discussion of the time concept in physics see [23], [24] and [25].

Nowadays we have two other kinematical rotations of the earth. The first
is the rotation of the earth relative to the background of distant galaxies. The
reality of external galaxies was established by Hubble in 1924 when he deter-
mined that the nebulae are stellar systems outside the Milky Way (after find-
ing Cepheid variables in the nebulae). We can then determine kinematically
our translational and rotational velocities relative to the isotropic frame of the
galaxies. This is the frame relative to which the galaxies have no translational
or rotational velocity as a whole, in which the galaxies are essentially at rest
relative to one another and to this frame, apart from peculiar velocities. Our
angular rotational velocity relative to this frame is essentially the same as that
relative to the fixed stars.

The second modern kinematical rotation of the earth is its rotation relative
to the cosmic background radiation (CBR) discovered by Penzias and Wilson
in 1965, [26]. This radiation has a blackbody spectrum with a characteristic
temperature of 2.7 K. Although it is highly isotropic, there is a dipole anisotropy
due to our velocity relative to this radiation. This motion generates Doppler
shifts which are detected and measured. In this way we can, at least in principle,
determine our translational and rotational velocities relative to the frame in
which this radiation is isotropic.

We have indicated four different kinematical rotations of the earth. They
have to do with a relative motion between the earth and external bodies or
external radiation. We cannot determine by any of these means which body
is really rotating, the earth or the external ones. Up to now we can adopt
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any point of view without problems, namely: the earth is at rest (relative
to Newton’s absolute space, for instance) and these bodies rotate around the
earth, or these bodies are at rest and the earth spins around its axis (relative
to Newton’s absolute space, for instance).

In the next sections we will see how to distinguish these two points of view
dynamically.

3.3.2 The Figure of the Earth

The simplest way to know that the earth is a non-inertial frame of reference
is to observe its ellipsoidal form: the earth is flattened at the poles. Newton
discussed this in Props. XVIII and XIX of Book III of the Principia:

Proposition XVIII. Theorem XVI

That the axes of the planets are less than the diameters drawn per-
pendicular to the axes.

The equal gravitation of the parts on all sides would give a spherical
figure to the planets, if it was not for their diurnal revolution in a
circle. By that circular motion it comes to pass that the parts
receding from the axis endeavor to ascend about the equator; and
therefore if the matter is in a fluid state, by its ascent towards
the equator it will enlarge the diameters there, and by its descent
towards the poles it will shorten the axis. So the diameter of Jupiter
(by the concurring observations of astronomers) is found shorter
between pole and pole than from east to west. And, by the same
argument, if our earth was not higher about the equator than at the
poles, the seas would subside about the poles, and, rising towards
the equator, would lay all things there under water.

Proposition XIX. Problem III

To find the proportion of the axis of a planet to the diameters per-
pendicular thereto.

(...); and therefore the diameter of the earth at the equator is to its
diameter from pole to pole as 230 to 229. (...)

This theoretical prediction of Newton (until that time there was no measure-
ment of this quantity) is quite accurate compared with modern experimental
determinations [3, pp. 427 and 664, note 41].
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The reason for this flattening of the earth at the poles is explained in New-
tonian mechanics due to the rotation of the earth relative to absolute space or
to an inertial frame of reference. The earth and all frames of reference which
are at rest relative to it are non-inertial. For this reason we need to introduce in
the earth’s frame a centrifugal force −ω2

dρρ̂ in order to apply Newton’s laws of
motion and get correct results. Here ωd is the dynamical rotation of the earth
relative to absolute space or to any inertial frame of reference. In principle it
has no relation to ωk discussed previously. In the earth’s frame of reference it
is this centrifugal force responsible for the flattening of the earth. In an iner-
tial frame of reference the flattening of the earth is explained by its dynamical
rotation relative to this inertial frame of reference. According to Newtonian
mechanics even if the stars and distant galaxies disappeared or did not exist,
the earth would still be flattened at the poles due to its rotation relative to ab-
solute space. As we will see, relational mechanics will give a different prediction
in this case.

We present here some quantitative results for this case. We will assume the
earth to be composed only of water with a constant density α at any point in its
interior. We will assume that the earth spins with a constant angular velocity
~ωd = ωdẑ relative to an inertial frame of reference, where we have chosen the z
axis along the axis of rotation to simplify the analysis. The equation of motion
in this inertial frame for an element of mass dm of the water occupying an
infinitesimal volume dV (dm = αdV ) is given by

dm~g − (∇p)dV = dm~a . (3.4)

In this equation ~g is the gravitational field at the point where dm is located
and −(∇p)dV is the force on dm due to the gradient of pressure p. These are
the only forces acting on dm. We will solve this equation utilizing spherical
coordinates (r, θ, ϕ) with an origin at the center of the earth. As the only
motion of dm is a circular orbit around the z axis, its acceleration is only
centripetal, given by ~a = ~ωd×(~ωd×~r) = −ω2

dρρ̂ = −ω2
dρ(r̂ sin θ+ θ̂ cos θ), where

ρ is the distance of dm to the axis z (and not to the origin, as this distance is
given by r, being the relation between the two ρ = r sin θ). Moreover, r̂, θ̂ and
ρ̂ are the unit vectors along the directions r and θ (spherical coordinates), and
ρ (cylindrical coordinate), respectively. The pressure gradient can be expressed
in cylindrical or spherical coordinates, without difficulty. To solve this equation
we need an expression for the gravitational potential. As a first approximation
we utilize the gravitational field of a spherically symmetrical, homogeneous
distribution of matter: a total mass M = 4πR3α/3 distributed uniformly over
a sphere of radius R (later on we will improve on this approximation). Utilizing
Eqs. (1.6) or (1.7) it is easy to show that the gravitational field at a point ~r in
the interior of this sphere is given by ~g = −4παGr/3 = −GMrr̂/R3. Solving
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the equation above, as was done in the case of a spinning bucket, yields the
pressure anywhere in the fluid as given by

p = −GMαr2

2R3
+

αω2
dr2 sin2 θ

2
+

GMα

2R
+ Po , (3.5)

where Po is the atmospheric pressure at the North pole (r = R and θ = 0). The
surfaces of constant pressure are ellipsoids of revolution. Taking p = Po at the
equator (θ = π/2) yields the largest distance of the water to the origin (R>).
That is (supposing ω2

dR3/2GM � 1 as is the case for the diurnal rotation of
the earth):

R>

R
≈ 1 +

ω2
dR3

2GM
≈ 1.0017 . (3.6)

To arrive at this number we put ωd = 7.3 × 10−5 s−1 (one day period), R =
6.36× 106 m, G = 6.67× 10−11 Nm2/kg2 and M = 6× 1024 kg.

This value is approximately half of what is observed by performing mea-
surements over the earth. The problem with this calculation is that due to its
rotation, a fluid earth modifies its form. In other words, it does not remain
spherical but becomes approximately ellipsoidal. Therefore, the gravitational
field inside and outside the rotating earth is that given by an ellipsoid. This
field can be obtained utilizing the results of exercises 6.17 and 6.21 of [27]. We
will not present here all calculations but only the results we obtained following
this procedure.

Consider then an ellipsoid centered on the origin of the coordinate system
with semi-axes a, b and c along the axes x, y and z of the coordinate system,
respectively, such that a = b = R> and c = R< = R>(1 − η), with η � 1.
We will suppose once more a constant density of matter α at all points of the
ellipsoid. If M is the total mass of the ellipsoid and R its average radius we
have: M = 4πR3α/3 = 4πR2

>R<α/3.
The gravitational potential energy U between two point masses m1 and m2

separated by a distance r is given by U = −Gm1m2/r = miΦ(~r1), where Φ(~r1)
is the gravitational field at the point where m1 is located, ~r1, due to m2 located
at ~r2. Analogously, we can calculate the gravitational potential at any point in
space due to the mass of the ellipsoid. The gravitational potential Φ which we
found inside the ellipsoid is given by (up to first order in η):

Φ = −GM

2R3
(3R2 − r2)− GM

R3

ηr2

5
(1− 3 cos2 θ) . (3.7)

The potential outside the ellipsoid is given by (once more up to first order
in η):
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Φ = −GM

r

[
1 +

ηR2

5r2
(1− 3 cos2 θ)

]
. (3.8)

The potential energy dU of a mass element dm interacting with this ellipsoid
is given by dU = dmΦ. The force exerted by the ellipsoid on dm is given by
d~F = −∇(dU) = −dm∇Φ = dm~g. Applying this in the results above yields the
gravitational field inside the ellipsoid as given by (once more up to first order
in η):

~g = −GMr

R3

{[
1− 2

5
η(1− 3 cos2 θ)

]
r̂ − 6

5
η sin θ cos θθ̂

}
. (3.9)

From this equation we see that the force inside the ellipsoid, for each fixed
θ, grows linearly with the distance. This fact was known by Newton (Principia,
Book I, Prop. 91, Prob. 45, Cor. III).

Outside the ellipsoid we have:

~g = −GM

r2

{[
1 +

3
5

R2

r2
η(1− 3 cos2 θ)

]
r̂ − 6

5
R2

r2
η sin θ cos θθ̂

}
. (3.10)

The gravitational field at the surface of the ellipsoid is given by

~g = −GM

R2

(
1 +

3
5
η + η

cos2 θ

5

)
. (3.11)

From this relation we find that the force on a point on the surface of the
ellipsoid at the pole (r = R<, θ = 0) to the force on a point at the surface of
the ellipsoid at the equator (r = R>, θ = π/2) is given by

Fpole

Fequator
≈ 1 +

η

5
. (3.12)

Up to now we have supposed the ellipsoid to be at rest relative to an inertial
frame of reference.

At this point we will return to the problem of a spinning earth. We can then
apply Eq. (3.9) to Eq. (3.4). In this case η still needs to be determined. But
from the analysis of the previous case of an spinning spherical shell, we expect
η to be of the order of ω2

dR3/GM . With (3.9) in (3.4) we obtain the following
expression of the pressure p at any point inside the fluid ellipsoidal spinning
earth:

p = −GαMr2

2R3

(
1 +

4
5
η

)
+
(

ω2
d

2
+

3
5
η
GM

R3

)
αr2 sin2 θ + C , (3.13)
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where C is a constant.
Equating the pressure at r = R<, θ = 0 with the pressure at r = R>, θ =

π/2, utilizing η � 1, ω2
dR3/GM � 1 and the fact that η is of the same order

of magnitude as ω2
dR3/GM yields η = 5ω2

dR3/4GM and:

R>

R<
≈ 1 + η ≈ 1 +

5ω2
dR3

4GM
≈ 1.0043 . (3.14)

This is essentially the value given by Newton, R>/R< ≈ 230/229 ≈ 1.0044.
There are two important things to observe here. The first is that to obtain

this result we utilized together the rotation of the earth and the gravitational
field of an ellipsoid (the previous result (3.6) did not yield a precise value, since
we assumed the gravitational field of a sphere). The second point is that the
ωd which appears in Eq. (3.14) is the dynamical rotation of the earth relative
to absolute space or to an inertial frame of reference. In principle this ωd has
nothing to do with the kinematical rotation of the earth relative to the fixed
stars discussed above, ωk. But to arrive at the correct value for the flattening
of the earth as observed by the measurements (R>/R< ≈ 1.004) it is necessary
to have ωd ≈ 7.3×10−5 s−1. In other words, ωd needs to be equal to ωk, or the
dynamical rotation of the earth needs to have the same value as its kinematical
rotation relative to the fixed stars! This should not be a coincidence; the
problem is to find the connection between these two facts.

3.3.3 Foucault’s Pendulum

The most striking demonstration of the rotation of the earth was obtained in
1851 by Foucault (1819-1868). The original French paper can be found in [28],
while the English translation can be found in [29]. The importance of this
experiment is that it can be performed in a closed room, so that we obtain the
rotation of the earth without looking at the sky.

It is simply a long pendulum which oscillates to and fro many times with
a long period. The pendulum is not charged and the only forces acting on
it are the gravitational attraction of the earth and the tension in the string.
Foucault initially utilized a pendulum with a length of 2 meters and a sphere
of 5 kg oscillating harmonically. Later on he utilized another pendulum with a
suspension cord of 11 meters. Although he does not mention it in the paper,
soon afterward he performed his experiment at the dome of the Pantheon, with
a cord of 65 meters ([29, see the footnote on page 352 by E. Fr. Jr.]). The period
of an oscillating simple pendulum of length ` is given by T = 2π

√
`/g, where

g ≈ 9.8 m/s2. Suppose the pendulum initially at rest relative to the earth,
and released from an initial angle θo. Neglecting the effects of wind we might
expect the pendulum to always oscillate in the same plane formed by the vertical
direction of the weight and the direction of tension along the string. But this



76 CHAPTER 3. NON-INERTIAL FRAMES OF REFERENCE

is not what happens. The plane of oscillation changes slowly with time relative
to the earth’s surface, with an angular velocity Ω. In Newtonian mechanics
this is explained by means of another fictitious force, the Coriolis force given
by −2mi~ωd × ~v, where ~ωd is the angular rotation of the earth relative to an
inertial system of reference (the centrifugal force does not change the plane of
oscillation, so that we do not consider it here to simplify the analysis). Coriolis
(1792-1843) discovered this force while doing his doctoral work under Poisson,
as related in [30].

The simplest way to understand this behaviour is to consider a pendulum
oscillating at the North pole. The pendulum will keep its plane of oscillation
fixed relative to an inertial frame of reference (or relative to space, as it is usually
termed). As the earth turns beneath it, the plane of oscillation relative to the
earth changes with an angular velocity ~Ω = −~ωd = −ωdẑ, because the earth
is rotating relative to the inertial system with an angular velocity ~ωd = ωdẑ.
At the equator, Foucault’s pendulum does not precess because here ~ωd × ~v is
either zero (when ~v = ±vẑ) or points vertically along the length of the string
(when there is a velocity component perpendicular to ẑ and r̂). In general the
precession of the pendulum relative to the earth is given by Ω = −ωd cos θ,
where θ is the angle between the radial direction r̂ (the direction in which the
pendulum hangs at rest without oscillation) and the earth’s axis of rotation
~ωd/ωd = ẑ, shown in Figure 3.10.

We derive this result here utilizing some approximations which are valid for
the problem. Accordingly, we neglect air resistance and the centrifugal force.
The equation of motion in the earth’s frame of reference is then given by:

~T + mg~g − 2mi~ωd × ~v = mi~a .

Here ~T is the tension in the string. The novelty compared with the equation of
motion of a simple pendulum in an inertial frame of reference is the introduction
of the Coriolis force −2mi~ωd × ~v, where ~ωd is the dynamical angular rotation
of the earth relative to absolute space or to an inertial frame of reference.

We choose a new coordinate system (x′, y′, z′) with its origin O’ directly
below the point of support, at the point of equilibrium of the pendulum bob,
with the z′-axis pointing vertically upwards: ẑ′ = r̂. The x′-axis is chosen such
that the pendulum would oscillate completely in the x′z′ plane if it were not
the Coriolis force, shown in Figure 3.11.

In this frame of reference we have ~ωd = ωd sin θx̂′ + ωd cos θẑ′. The angle
of oscillation of the pendulum with the vertical from the point of support is
called β. For β � π/2 we can utilize the approximation of small amplitude of
oscillation so that the equation of motion yields the approximate solution (not
taking into account for the moment the Coriolis force): β = βo cos ωot, where
ωo =

√
g/` is the natural frequency of oscillation of the pendulum and βo
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Figure 3.10: Foucault’s pendulum.

the angle of release of the pendulum from rest. As we have small amplitudes of
oscillation, the motion of the pendulum is essentially horizontal with x′ = `β, so
that ~v ≈ −ẋ′x̂′ = `βoωo sinωotx̂

′. The only force component in the y′ direction
is given by the Coriolis force −2mi~ωd×~v. With the previous values for ~ωd and
~v we find that the equation of motion in the y′ direction takes the form:

ÿ′ = −2(ωd cos θ)`βoωo sinωot .

Integrating this equation twice and utiling the fact that ẏ′(t = 0) = 0 and
y′(t = 0) = 0 yields:

y′ = 2ωd cos θ`βo

(
sinωot

ωo
− t

)
.

Between half a period (t = 0 and t = π/ωo) the bob moved in the y′ direction
an amount of4y′ = −2ωd cos θ`βoπ/ωo. During this time the bob moved in the
x′ direction an amount of 4x′ = 2`βo, Figure 3.12. This means that the plane
of oscillation of the pendulum moved by an angle of 4y/4x = −ωd cos θπ/ωo.
The angular rotation Ω of the plane of oscillation is this amount divided by the
time interval of 4t = π/ωo − 0 = π/ωo, so that:

Ω = −ωd cos θ . (3.15)
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Figure 3.11: Forces in Foucault’s pendulum.

Foucault did not present the calculations, but arrived at this result, stating
that the angular rotation of the plane of oscillation is equal to the angular
rotation of the earth multiplied by the sine of the latitude, [28] and [29]. At
Paris, where Foucault performed his experiments, we have a latitude given by
α = 48o51′. As the angle of latitude is given by α = π/2− θ, we get Foucault’s
result:

Ω = −ωd cos(π/2− α) = ωd sinα . (3.16)

It is curious to note Foucault’s description of his experiment. Sometimes
he speaks of the rotation of the earth relative to space and other times relative
to the fixed stars (heavenly sphere). He does not distinguish these two rota-
tions or these two concepts (dynamical rotation relative to absolute space and
kinematical rotation relative to the celestial bodies). For instance, he begins
by stating that his experiment showing the rotation of the plane of oscillation
“gives a sensible proof of the diurnal motion of the terrestrial globe.” To justify
this interpretation of the experimental result he imagines a pendulum placed
exactly at the North pole oscillating to and fro in a fixed plane, while the earth
rotates below the pendulum. He then says (our emphasis), [29]:

Thus a movement of oscillation is excited in an arc of a circle whose
plane is clearly determined, to which the inertia of the mass gives
an invariable position in space. If then these oscillations continue
for a certain time, the motion of the earth, which does not cease
turning from west to east, will become sensible by contrast with the
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Figure 3.12: Rotation of the plane of oscillation of Foucault’s pendulum.

immobility of the plane of oscillation, whose trace upon the ground
will appear to have a motion conformable to the apparent motion of
the heavenly spheres; and if the oscillations could be continued for
twenty-four hours, the trace of their plane would have executed in
that time a complete revolution about the vertical projection of the
point of suspension.

When describing his real experiments, he states: “In less than a minute, the
exact coincidence of the two points ceases to be reproduced, the oscillating point
being displaced constantly towards the left of the observer; which indicates that
the direction of the plane of oscillation takes place in the same direction as the
horizontal component of the apparent motion of the celestial sphere.”

It must be stressed that the ωd which appears in Eqs. (3.15) and (3.16) is
the dynamical rotation of the earth relative to absolute space or to any inertial
frame of reference. Experimentally it is found that this ωd has the same value
(in direction and order of magnitude) as the kinematical rotation of the earth
relative to the fixed stars, ωd = ωk. But there is no explanation of this fact in
Newtonian mechanics.

The mathematical analysis leading to Eq. (2.19), Ω = −qB/2mi, was anal-
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ogous to the mathematical derivation leading to Eq. (3.15), Ω = −ωd cos θ.
The difference is that in the first case we were in an inertial frame of reference
and the precession of the plane of oscillation of the charged pendulum was due
to its interaction with the magnet. On the other hand, in Foucault’s pendulum
we have an electrically neutral pendulum and we do not find the material agent
(analogous to the magnet in the first case) responsible for the precession of the
plane of oscillation. The Coriolis force −2mi~ωd ×~v is called a “fictitious” force
because it only appears in non-inertial frames of reference which are rotating
relative to absolute space. Conversely, the magnetic force q~v× ~B is due to a real
interaction between the charge q and the source of ~B (a magnet, a solenoid, a
spinning charged spherical shell, etc.) In the earth’s frame of reference we see
the set of stars and galaxies rotating around us with a period of one day rela-
tive to the North-South direction (around the North pole star). In Newtonian
mechanics this set of spherical shells (stars and galaxies) rotating around the
earth does not generate any net force on the pendulum, whether it is at rest
or moving relative to the earth. It might be thought that this set of spherical
shells composed of stars and galaxies would, when rotating around the earth,
generate some kind of “gravitational magnetic” field ~Bg which might explain
the Coriolis force by a gravitational interaction analogous to the magnetic force.
In other words, by an expression like mg~v × ~Bg. However, even if this is the
case, it cannot be due to Newton’s law of universal gravitation. As we have
seen, a spherical shell does not exert any force inside itself, whether the shell is
at rest or rotating, no matter what the postion, velocity and acceleration of the
internal test body. We will see that there is something analogous to mg~v × ~Bg

in Einstein’s general theory of relativity, but that it does not have exactly the
same value as the Coriolis force. On the other hand, in relational mechanics this
term will appear (due to the rotation of the distant matter) with the precise
value of the Coriolis force. This will allow us to show that the Coriolis force is a
real force due to an interaction between the test body and the rotating universe
around it, contrary to what happens in Newtonian mechanics.

Max Born discussed several examples of bodies in rotation and the dynami-
cal effects which appear. He presented the fundamental conclusion of Newtonian
mechanics in simple and clear terms [31, p. 84]. In particular he emphasized
that the centrifugal force of classical mechanics is universal and cannot be due
to interactions between bodies, since it is due to rotation relative to absolute
space.

3.3.4 Comparison of the Kinematical and Dynamical Ro-
tations

Here we analyse these two rotations of the earth. The kinematical rotation is a
relative rotation between the earth and surrounding bodies, such as the sun, the
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fixed stars, the distant galaxies or the CBR. The period of rotation is essentially
one day (ωk ≈ 7 × 10−5 rad/s) and the direction is north-south (pointing
towards the north pole star in the northern hemisphere). This kinematical
rotation may be equally well attributed in classical mechanics to two opposite
causes: the rotation of the external world while the earth remains at rest; or a
spinning of the earth around its axis while the external world does not rotate.
Kinematically, we cannot distinguish between these two situations.

A completely different rotation of the earth is obtained by its flattened figure
or by Foucault’s pendulum. The rotation obtained dynamically by these means
is a rotation of the earth relative to an inertial frame of reference. According
to Newtonian mechanics, these dynamical effects (deformation of the spherical
form of the earth or rotation of the plane of oscillation of the pendulum) can
only be explained by a rotation of the earth relative to absolute space or to an
inertial frame of reference. These effects would not appear if the earth were
at rest relative to absolute space or to an inertial frame of reference, while
the surrounding bodies (fixed stars and distant galaxies) were rotating in the
opposite direction relative to this inertial frame. The kinematical rotation would
be the same in this case, but the dynamical effects would not appear. As we
will see, Mach had a different point of view, namely, that if the kinematical
situation is the same, the dynamical effects must also be the same. Relational
mechanics implements this quantitatively.

In classical mechanics it is a great coincidence that these two rotations hap-
pen to be the same. In other words, the rotation determined by looking at
the stars kinematically is the same as the dynamical rotation determined in a
closed room by Foucault’s pendulum. There is no explanation for this remark-
able fact in Newtonian mechanics. In the same way, there is no explanation
for the equality mi = mg. Classically, we can only say that nature happens to
behave this way, but a closer understanding is not supplied. The inertial mass
of a body did not need to be connected to its gravitational mass. It could have
been a completely independent property of the body without any relation to
mg, or it could depend on a chemical or nuclear property of the body without
being in conflict with any law of classical mechanics. It only happens that ex-
perimentally the inertia is found to be proportional to the weight. A similar
situation happens with the equality between the kinematical and dynamical
rotations of the earth. The fact that the kinematical and dynamical rotations
of the earth are the same indicates that the universe as a whole does not rotate
relative to absolute space or relative to any inertial system of reference. The
earth spins around its axis with a period T of one day (T = 8.640× 104 s), or
with an angular frequency of ω = 2π/T = 7 × 10−5 rad/s. The earth orbits
around the sun with a period of one year (T = 3.156×107 s), or an angular fre-
quency of ω = 2× 10−7 rad/s. The planetary system orbits around our galaxy
with a period of 2.5 × 108 years, (T = 8 × 1015 s), or an angular frequency of
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ω ≈ 8 × 10−16 rad/s. Most astronomical bodies in the universe rotate, except
the universe as a whole. Why does the universe as a whole not rotate relative
to absolute space? There is no explanation for this fact in classical mechanics.
This is a fact of observation, but nothing in classical mechanics obliges nature to
behave like this. The laws of mechanics would remain the same if the universe
as a whole were rotating relative to absolute space. We would only need to take
this into account when performing calculations (this would cause a flattening
in the distribution of galaxies, similar to the essentially plane form of the solar
system or of our galaxy due to their rotation).

These two coincidences of classical mechanics (mi = mg and ~ωk = ~ωd) form
the main empirical foundations for Mach’s principle.

3.4 General fictitious Force

In an inertial frame S we can write Newton’s second law of motion as

m
d2~r

dt2
= ~F ,

where ~r is the position vector of the particle m relative to the center O of S.
Suppose now we have a non-inertial frame of reference S’ which is located

by a vector ~h with respect to S (~r = ~r′ +~h, where ~r′ is the position vector of m
relative to the origin O’ of S’), moving relative to it with translational velocity
d~h/dt and translational acceleration d2~h/dt2. Suppose, moreover, that the axes
x′, y′, z′ rotate relative to the axes x, y, z of S with an angular velocity ~ω.
In this frame S’ taking into account the complete “fictitious forces” Newton’s
second law of motion should be written as ([27], Chapter 7):

m
d2~r ′

dt2
= ~F −m~ω × (~ω × ~r ′)

− 2m~ω × d~r ′

dt
−m

d~ω

dt
× ~r ′ −m

d2~h

dt2
. (3.17)

The second term on the right is called the centrifugal force, the third term
is called the Coriolis force, the fourth and fifth terms have no special names.
They are all “fictitious forces” in Newtonian mechanics, and appear only in
non-inertial frames of reference. Although their effects are real in these non-
inertial frames (flattening of the earth, concave form of the water in Newton’s
bucket experiment, Foucault’s pendulum, ...), we cannot find a physical origin
for these forces. That is, we cannot find the body responsible for them and the
possible nature of this interaction (if gravitational, electric, magnetic, elastic,
nuclear, etc.) Certainly in classical mechanics these fictitious forces are not
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caused by the fixed stars or by the external galaxies. The reason is that even if
the stars or galaxies disappeared or doubled in number and mass, the fictitious
forces would still be there with the same values in any non-inertial frame of
reference. Hence the name “fictitious” forces.



84 CHAPTER 3. NON-INERTIAL FRAMES OF REFERENCE



Chapter 4

Gravitational Paradox

In this chapter we discuss the gravitational paradox. References can be found
at: [32], Chapter 2 (Cosmological Difficulties with the Newtonian Theory of
Gravitation), pp. 16-23; [33], pp. 194-195; [34], Chapter 8 (The Gravitational
Paradox of an Infinite Universe), pp. 189-212; [35]; [36]; [12], Chapter 7, Sec-
tions 203-222.

4.1 Newton and the Infinite Universe

The cosmological conceptions of Isaac Newton have been clearly analysed by
E. Harrison in an interesting paper [37]. Harrison’s work shows that during
his early years (1660’s), Newton believed that space extended infinitely in all
directions and was eternal in duration. The material world, on the other hand,
was of a finite extent. It occupied a finite volume of space and was surrounded
by an infinite space devoid of matter.

After his complete formulation of universal gravitation, Newton became
aware that the fixed stars might attract one another due to their gravitational
interaction. In the General Scholium at the end of the Principia Newton wrote:
“This most beautiful system of the sun, planets, and comets, could only proceed
from the counsel and dominion of an intelligent and powerful Being. And if the
fixed stars are the centres of other like systems, these, being formed by the like
wise counsel, must be all subject to the dominion of One; especially since the
light of the fixed stars is of the same nature with the light of the sun, and from
every system light passes into all the other systems: and lest the systems of
the fixed stars should, by their gravity, fall on each other, he hath placed those
systems at immense distances from one another.” However, putting the fixed
stars very far away from one another does not avoid another problem: if the
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universe existed for an infinite amount of time, then a finite amount of matter
occupying a finite volume would eventually collapse to its center due to the
gravitational attraction of the inner matter.

In correspondence exchanged with the theologian Richard Bentley in 1692-
93, Newton perceived this fact and changed his cosmological views. He aban-
doned the idea of a finite material universe surrounded by an infinte void, and
defended the idea of an infinite material world spread out in infinite space. This
can be seen in his first letter to Bentley [38, p. 281].

With an infinite amount of matter distributed more or less homogeneously
over the whole of an infinite space, there would be approximately the same
amount of matter in all directions. In this way there would be no center of the
world to where the matter would collapse. Two hundred years later, however, a
paradoxical situation was identified with this cosmological system. This is the
subject of the next sections.

4.2 The Force Paradox

There is a simple but profound paradox which appears with Newton’s law of
gravitation in an infinite universe which contains an infinite amount of matter.
The simplest way to present the paradox is the following: Suppose a boundless
universe with an homogeneous distribution of matter. We represent its constant
density of gravitational mass by ρ. To simplify the analysis we deal here with
a continuous mass distribution extending uniformly to infinity in all directions.
We now calculate the gravitational force exerted by this infinite universe on a
test particle with gravitational mass m located at a point P , as in Figure 4.1.

Figure 4.1: Infinite and homogeneous universe with a constant mass density ρ.

If we calculate the force with our coordinate system centered on P, all the
universe will be equivalent to a series of spherical shells centered on P. From
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Eq. (1.6) we learn that there will be no net force acting on m. This might be
expected by symmetry.

Now let us calculate the force on m utilizing a coordinate system centered
on another point Q, as in Figure 4.2.

Figure 4.2: Force on m calculated from Q.

In order to calculate the net force we divide the universe into two parts
centered on Q. The first one is the sphere of radius RQP centered on Q and
passing through P. The mass of this sphere is M = ρ4πR3

QP /3. It attracts the
material point m with a force given by GMm/R2

QP = 4πGρmRQP /3 pointing
from P to Q. The second part is the remainder of the universe. This remainder
is composed of a series of external shells centered on Q containing the internal
test particle m. By Eq. (1.6) this second part exerts no force on m. This means
that the net force exerted on m by the whole universe calculated in this way is
proportional to the distance RQP and points from P to Q.

Following a similar procedure but utilizing a coordinate system centered on
another point R, as in Figure 4.3, we would find that the net force exerted
by the whole universe on m is proportional to the distance between P and R,
pointing from P to R: F = 4πGρmRRP /3.

This means that depending on how we perform the calculation we obtain a
different result. This is certainly unsatisfactory.

However, the problem is not with the mathematics. For instance, if we were
calculating the force exerted by a finite distribution of mass on a test particle m
utilizing Newton’s law of gravitation, the result would be the same no matter
how we calculated the result or where we centered the coordinate system. We
assume, for instance, the finite body with constant density ρ of Figure 4.4. It
is surrounded by an infinite void space. If we calculate the net gravitational
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Figure 4.3: Force on m calculated from R.

force exerted by this body on one of its particles of mass m (or ρdV , where dV
is the infinitesimal volume of the particle) located at T, we always obtain the
same result pointing from T to S. We can perform the calculations placing the
coordinate system centered on S, on T, on U, on V or on any other point, and
the final result will always be the same: a force of the same magnitude pointing
from T to S.

Another way of presenting the paradox is to consider the force on mg located
at P calculated from an origin at Q, shown in Figure 4.2. As we have seen, the
net force on mg points from P to Q and is proportional to the distance PQ.
This means that the net force on a material particle located on P becomes
infinite if it is located at an infinite distance from Q.

This is called the gravitational paradox. It was discovered by Seeliger and
Carl Neumann at the end of last century (1894-96).

4.3 The Paradox based on Potential

Instead of calculating the force, we could just as well calculate the gravitational
potential or the gravitational potential energy.
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Figure 4.4: Finite body attracting one of its particles.

The gravitational potential at a point ~ro due to N gravitational masses mgj

located at ~rj is given by:

Φ(~ro) = −
N∑

j=1

G
mgj

roj
,

where roj ≡ |~ro − ~rj |. The gravitational energy of a material particle mgo

located at ~ro interacting with these N masses is given by U = mgoΦ.
We now calculate the gravitational potential at a point ~ro = roẑ due to a

spherical distribution of mass of radius R > ro, thickness dR and mass dMg =
4πR2dRρg (ρg being the uniform volumetric density of mass of the shell) with
the previous expression. Substituting the sum by a surface integral over the
shell and mgj by d3Mg = ρgR

2dRdϕ sin θdθ yields the well-known result

dΦ(ro < R) = −GρgR
2dR

∫ 2π

ϕ=0

∫ π

θ=0

sin θdθdϕ√
R2 + r2

o − 2Rro cos θ

= − GdMg

R
= −4πGρgRdR .

The contribution of the shell is proportional to the radius of the shell. This
means that if we integrate this from R = 0 to infinity we obtain an infinite
result. This was obtained by Seeliger and Neumann. The same can be said of
the gravitational energy of a point particle interacting with this infinite homo-
geneous universe, i.e., it becomes infinite. The force on the test particle should
be obtained by minus the gradient of this potential energy, but this becomes
indefinite.

There is another way to present the paradox. The equation satisfied by the
gravitational potential in the presence of matter is known as Poisson’s equation:
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∇2Φ = 4πGρg .

This is easily obtained observing that ∇2(1/r) = −4πδ(~r), where δ(~r) is Dirac’s
delta function. Utilizing Φ = −Gmg/r and the fact that mgδ(~r) = ρg(~r) yields
this equation.

If we have a homogeneous universe with a constant density of mass we should
expect a constant Φ. But supposing Φ to be a finite constant yields ρg = 0 from
this equation, which is against the initial supposition of a constant and finite
density different from zero. There is no solution of Poisson’s equation with a
constant Φ and a constant ρg different from zero.

4.4 Solutions of the Paradox

There are three main ways of solving the paradox: (I) The universe has a finite
amount of mass. (II) Newton’s law of gravitation should be modified. (III)
There are two kinds of mass in the universe, positive and negative.

(I) In the first solution we maintain Newton’s law of gravitation and the
constituents of the universe as usually known. We only require a finite amount
of matter in order to avoid the paradox. For instance, if the universe has a
total finite mass M uniformly distributed around a center P of radius R, with
a constant mass density ρ = M/(4πR3/3) the net gravitational force exerted
on a test particle m located at r < R is given simply by Gm(4ρπr3/3)/r2 =
4πGρmr/3 pointing from m to P, no matter how we perform the calculation.
We can center the coordinate system on P, on m or at any other point, and the
final result will be the same.

However, this solution creates other problems. As we have seen, Newton
abandoned this cosmological model of the universe because it leads to a col-
lapsing situation. The external matter tends to concentrate on the center due
to the gravitational attraction of the inner matter. To avoid this problem we
would need to suppose the universe to be rotating relative to absolute space (the
planetary system does not collapse into the sun due to its rotation, so that the
centripetal gravitational force of the sun is balanced by mi~a, or by a centrifugal
force in a frame of reference rotating with the planets). But we saw previously
that the universe as a whole does not rotate relative to absolute space (the
best inertial frame we have is the frame in which the distant galaxies are seen
without rotation). This means that this proposed solution would be refuted by
observations. We would then need to postulate some kind of repulsive force as
yet unknown to avoid the gravitational collapse of the finite universe.

(II) The second solution was proposed by Seeliger and C. Neumann in 1895-
96. Essentially, they proposed that the gravitational potential Φ = −Gm/r



4.4. SOLUTIONS OF THE PARADOX 91

should be replaced by −Gme−αr/r, where α has dimensions of length−1 and
gives the typical range of interaction (the order of magnitude up to where grav-
itation is really effective). It should be stressed that Seeliger and Neumann
proposed this potential 50 years before Yukawa suggested a similar law de-
scribing nuclear interactions. If we have two interacting bodies mg1 and mg2

separated by a distance r12 their gravitational potential energy would be given
by

U = −G
mg1mg2

r12
e−αr12 .

From this point on, we present our own calculations. Utilizing the fact that
~F = −∇U we can obtain the force exerted by mg2 on mg1, assuming α to be a
constant:

~F = −G
mg1mg2

r2
12

r̂12(1 + αr12)e−αr12 . (4.1)

We now integrate this equation, assuming a universe with constant mass
density ρ2. The test particle of gravitational mass mg1 is located on the z-axis
at a distance d1 from the origin of the coordinate system at O, ~r1 = d1ẑ. We
consider an element of mass dmg2 located at ~r2 = r2r̂2. Once more we divide
the universe in two parts centered at O: The first part is at r2 > d1 while the
second is at r2 < d1, shown in Figure 4.5.

We now integrate the gravitational force exerted by a spherical shell of radius
r2 on mg1 utilizing spherical coordinates, with ϕ2 going from zero to 2π and θ2

going from zero to π. With r2 > d1 we get:

d~F =
2πGmg1ρ2r2e

−αr2dr2ẑ

d2
1α

[
(1 + αd1)e−αd1 − (1− αd1)eαd1

]
.

This is different from zero if d1 6= 0. This means that a spherical shell will
exert a net force on an internal test particle according to Seeliger-Neumann’s
potential if it is not at the center. There is a striking difference between this
result and the Newtonian case, which yields zero no matter the position of the
internal test particle.

In the limit in which αd1 � 1 we recover the Newtonian result where a
spherical shell exerts no force on a test particle localized anywhere inside the
shell.

Integrating this result from r2 = d1 to infinity yields:

~F = − 2πGmg1ρ2(1 + αd1)ẑ
d2
1α

3

[
(1− αd1)− (1 + αd1)e−2αd1

]
. (4.2)
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Figure 4.5: Coordinate system to calculate the force on mg1.

We now calculate the force on mg1 due to the second part r2 < d1. We first
calculate the force of a spherical shell attracting an external particle. Integrat-
ing Eq. (4.1) in ϕ2 going from zero to 2π and in θ2 going from zero to π yields,
with r2 < d1:

d~F =
2πGmg1ρ2(1 + αd1)e−αd1r2dr2ẑ

d2
1α

(
e−αr2 − eαr2

)
.

In the limit in which αr2 � 1 and αd1 � 1, we recover the Newtonian result
that a spherical shell attracts an external point as if it were concentrated at its
center, namely:

d~F = −4πr2
2dr2ρ2Gmg1ẑ

d2
1

.

Integrating the previous result in r2 going from zero to d1 yields:

~F =
2πGmg1ρ2(1 + αd1)ẑ

d2
1α

3

[
(1− αd1)− (1 + αd1)e−2αd1

]
. (4.3)

This result is valid for α 6= 0 and cannot be applied for α = 0.
Adding Eqs. (4.2) and (4.3) yields zero as the resultant force acting on mg1

due to the whole universe. The same result is obtained choosing any other
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point as the origin of the coordinate system. This shows that the paradox is
solved with the Seeliger-Neumann potential energy, even keeping an infinite and
homogeneous universe.

We now analyse this solution of the paradox as regards the potential. The
equation satisfied by a potential Φ = −Gmge

−αr/r due to a point mass mg is
given by:

∇2Φ− α2Φ = 4πGρg .

There is now a solution for this equation with a constant and finite ρg

yielding a constant and finite Φ = −4πGρg/α2. With the known values of G,
ρg and utilizing α = Ho/c (Ho is Hubble’s constant) yields a potential close to
−c2.

Another way of obtaining this result is directly integrating the potential
due to a spherical shell of radius r. To this end we replace mg by d3mg =
ρ sin θdθr2drdϕ and calculate the potential at the origin. Integrating:

Φ = −Gρg

∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0

(r2 sin θdrdθdϕ)
e−αr

r
= −4πGρg

α2
.

The same result is obtained calculating the potential at any other point ~ro

different from the origin.
This shows the solution of the gravitational paradox based on the potential.
(III) The third way of solving the gravitational paradox is to suppose the

existence of negative gravitational masses. The first to propose this idea of
a negative gravitational mass seems to have been Föppl in 1897 [39, p. 234].
He proposed this based on electromagnetic analogies, and was not concerned
with the gravitational paradox. Calling the ordinary mass positive, we would
have the following rule: positive mass attracts positive mass but repels negative
mass, while negative mass attracts negative mass and repels positive mass. This
would be the opposite of what happens with electrical charges. This being the
case, we could have a universe with an equal amount of positive and negative
masses, in which Newton’s law of gravitation would be obeyed and in which
the gravitational paradox would not appear, even with an infinite amount of
positive mass. Now there is a solution of the equations in which both masses
are equally distributed everywhere, so that the net gravitational force on any
body is zero on the average. The gravitational potential energy would also be
zero everywhere on the average. There exists a solution of Poisson’s equation
with a constant Φ and a zero ρg.

We can understand this third solution more easily observing that there is
no electrical paradox analogous to the gravitational paradox. The reason is
that usually we consider the universe as a whole to be electrically neutral. In
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other words, apart from local anisotropies, the negative charge in one region is
compensated by a corresponding positive charge somewhere else. This means
that on average there is no electrostatic force on any charge due to all the
charges in the universe. The same would be true for gravitation, provided there
is negative gravitational mass.

The gravitational paradox is very simple to state and understand. It is
amazing that with a situation so simple we can arrive at such a far-reaching
conclusion, namely: We cannot have a universe with an infinite amount of
ordinary matter in which Newton’s law of gravitation is obeyed. At least one
of these components must be modified: The infinite amount of matter in the
universe, Newton’s law of gravitation, or the nature of the constituents in the
cosmos (if we have negative masses).

Our own preferred cosmological model is a universe that is boundless and
infinite in space, which has always existed without any creation, and with an
infinite amount of matter in all directions. In this model the universe extends
in all directions without end, with an infinite amount of matter on the whole,
but with a finite matter density on average. The simplest universe model along
these lines is an homogeneous distribution of mass in the large scale with a finite
matter density. This means that it has no preferred center, so that any point
can be arbitrarily chosen as its center. We could also perform the calculations
beginning from any point. For this reason we do not adopt the first solution
of the gravitational paradox. We prefer the second and third solutions. In this
book we explore quantitatively only the second solution.

4.5 Absorption of Gravity

There have been other reasons for people to propose an exponential decay in
the gravitational potential of a point mass, in the gravitational potential en-
ergy between two point masses, or in the gravitational force. These ideas are
not directly related to the gravitational paradox, but sometimes the proposed
modification is along the same lines. We have reviewed this situation elsewhere
([35], [36] and [12, Sections 7.5 to 7.7]); all the references and further discussion
can be found in these studies. In each paragraph below we discuss a different
kind of idea leading to an exponential decay for gravitation.

Light flowing from a source is absorbed by an intervening medium, so that
its power falls as e−λr/r2. Those who suppose that gravitation propagates from
a source like light (in the form of gravitational waves or in the form of particles
like gravitons) are led to propose an exponential decay of gravitation.

When we interpose a dielectric between two point charges, this medium be-
comes affected by the charges and becomes electrically polarized. The effect of
this polarization is to change the net force on each of the charges, as compared
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with the situation in which there was no medium interposed between them. In
this case we don’t need to speak of a propagation of the electric force, and the
situation can be described by a simultaneous many-body interaction. Never-
theless, if we assume an analogy between electromagnetism and gravitation, we
might expect some influence of the intervening medium for the net gravitational
force on any material body. We may once more need to introduce an exponen-
tial decay for gravitation, although in this case there is nothing propagating
at a finite speed. The only thing which happens here is that an action at a
distance between many bodies may have this behaviour.

Astronomical observations, such as the flat rotation curves of spiral galaxies,
also led people to propose modifications in Newton’s law of gravitation or to
postulate the existence of dark matter. Discussions of these topics can be found
elsewhere ([40] and [41]). The problem of the flat rotation curves of galaxies
can be understood in a simple way. Let us suppose a gravitational interaction
between a large body of mass M and a small body of mass m�M describing
a circular orbit around M in an inertial frame of reference. With Newton’s
law of universal gravitation, his second law of motion and the expression for
the centripetal acceleration we get: GMm/r2 = ma = mv2/r = mω2r. Here
r is the distance between the bodies, v is the tangential velocity of m, a is its
centripetal acceleration and ω = v/r is the angular velocity of m around M .
From this expression we obtain v =

√
GM/r and ω =

√
GM/r3. With a larger

r we have a smaller velocity v. This prediction is perfectly corroborated in the
case of the planetary system, with M the sun and m any one of the planets.
These relations of v and ω as a function of r are another form of Kepler’s third
law in the case of a circular orbit (the square of the period of revolution is
proportional to the cube of the radius): T 2 = (2π/ω)2 = 4π2r3/GM = Kr3.
On the other hand, this relation is not valid for galaxies. Let m be a star be-
longing to a galaxy and far from its center, and M the mass of the nucleus of
the galaxy (determined from its visible or bright part). Observations indicate
that in most galaxies the tangential velocity v becomes approximately constant
as r increases, instead of falling as 1/

√
r (as would be expected according to

Newtonian mechanics). To solve this problem there are two main approaches.
One is to suppose the existence of dark matter not yet observed in any wave-
length, that could interact gravitationaly with the stars. From the observed flat
rotation curves the distribution of this supposed dark matter can be estimated,
assuming the validity of Newton’s laws. Another approach is to suppose that all
existing matter has already been detected and then try to find a modification
in Newtonian mechanics in order to explain the flat rotation curves. Usually
the modification should be relevant for distances of the order of 1020 m, which
is the typical size of a galaxy. We can try to modify either Newton’s second
law of motion mia or the gravitational force GMm/r2. In this last case some
trials have been made with relative success based on an exponential decay for
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gravitation [42], [43] and [44]. The main problem with this approach is how to
derive simultaneously the flat rotation curves of galaxies and Tully-Fisher’s law
(luminosity proportional to the square of the tangential velocity of a galaxy).
An alternative model has been developed elsewhere ([45] and [46]). Although it
does not deal with absorption of gravity nor with its exponential decay, it leads
to effects involving an exponential decay which has some mathematical analo-
gies with what is being discussed here. Further research is necessary before we
can draw a final explanation for the flat rotation curves of galaxies.

Some terrestrial experiments have been made to detect modifications in
Newton’s law of gravitation. Some of these have met with positive results, as
those of Majorana in the beginning of this century. For this reason they should
be repeated (see [47], [48], [49], [50] and [51]).

We have already discussed this problem in the references cited above, and
will not analyse the subject further here. What should be stressed is that
Newton’s law of gravitation or any other expression may be approximately
valid in some conditions, although it may be necessary to modify it due to
observations of astronomical bodies or terrestrial laboratory experiments. It is
important to be open-minded in this regard.

For further discussions and references on all these topics can be found else-
where ([16] and [52]).



Chapter 5

Leibniz and Berkeley

Before we present Mach’s criticisms of Newtonian mechanics we discuss the
points of view of G. W. Leibniz and of the Bishop G. Berkeley as regards
absolute and relative motion. These philosophers anticipated many points of
view later advocated by Mach.

5.1 Leibniz and Relative Motion

Leibniz (1646-1716) was introduced to the modern sciences of his time by C.
Huygens (1629-1695). They were in close contact during Leibniz’s stay in Paris
during 1672-1676. Huygens may have influenced him as regards the concepts
of space and time, and the significance of centrifugal force. A detailed study
of Huygens reactions to Newtonian mechanics can be found elsewhere ([33, pp.
119-126] and [53]).

Leibniz never accepted Newton’s concepts of absolute space and time. He
maintained that space and time depend on things, with space being the order
of coexistent phenomena and time the order of successive phenomena. There
is a very interesting correspondence (in the years 1715-1716) between Leibniz
and S. Clarke (1675-1729), a disciple of Newton. Leibniz wrote in French and
Clarke in English. This correspondence illuminates this whole issue and can be
found in English [54].

In the fourth paragraph of his third letter to Clarke, Leibniz wrote:

4. As for my opinion, I have said more than once, that I hold space
to be something merely relative, as time is; that I hold it to be an
order of coexistences, as time is an order of successions. For space
denotes, in terms of possibility, an order of things which exist at the
same time, considered as existing together; without enquiring into
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their manner of existing. And when many things are seen together,
one perceives that order of things among themselves.

Leibniz defends the idea that all motion is relative. He nevertheless admits
that it may be more practical or convenient to say that some large collections
of bodies which remain at rest relative to one another (like the fixed stars) are
at rest, while one body moves relative to them, than to say the opposite. But
this is more a matter of convention than of physical reality. This can be seen in
a text written in 1689 entitled On Copernicanism and the Relativity of Motion
[55, pp. 90-92 and 130-131].

In this text he considers that the hybrid geocentric astronomical system
of Tycho Brahe may be “more appropriate for a given purpose” than the he-
liocentric system of Copernicus, while the Copernican system may be more
appropriate for another purpose than the Tychonic one. He goes on to say that
the Ptolemaic geocentric system is the truest in spherical astronomy (that is,
more intelligible), while the Copernican account is most appropriate (i.e., the
most intelligible) for explaining the theory of the planets.

The same point of view is expressed in his work A Specimen of Dynamics
[Specimen Dynamicum] of 1695 [55, p. 125].

Later on we will see that Mach also defended the idea that the Copernican
and Ptolemaic systems are equally valid and correct. The only difference is that
the Corpernican system is more economical or practical.

But how does Leibniz cope with Newton’s key experiments of the spinning
bucket and the two globes? In a letter written to Huygens in 1694 he proposed
that force may be something real [55, p. 308].

At the same time that he advocates a relational theory of space and time,
he seems to attach some reality or absolute value to the force or kinetic energy.
This is somewhat contradictory. Nor does he state explicitly his reasons for
believing that nothing breaks the general law of equivalence (the relational
theory).

Here is what he says in the 53rd paragraph of his fifth letter to Clarke [54]:

53. I find nothing in the Eighth Definition of the Mathematical Prin-
ciples of Nature, nor in the Scholium belonging to it, that proves,
or can prove, the reality of space in itself. However, I grant there
is a difference between an absolute true motion of a body, and a
mere relative change of its situation with respect to another body.
For when the immediate cause of the change is in the body, that
body is truly in motion; and then the situation of other bodies, with
respect to it, will be changed consequently, though the cause of that
change be not in them. ’Tis true that, exactly speaking, there is not
any one body, that is perfectly and entirely at rest; but we frame
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an abstract notion of rest, by considering the thing mathematically.
Thus have I left nothing unanswered, of what has been alleged for
the absolute reality of space. And I have demonstrated the false-
hood of that reality, by a fundamental principle, one of the most
certain both in reason and experience; against which, no exception
or instance can be alleged. Upon the whole, one may judge from
what has been said that I ought not to admit a moveable universe;
nor any place out of the material universe.

The difficulty here has already been pointed out by H. G. Alexander: “There
is, however, no doubt that this admission of the distinction between absolute
and relative motion is inconsistent with his general theory of space” [54, p.
xxvii]. Leibniz was led astray by Newton’s arguments concerning the bucket
and two globes experiments. He is here tacitly admitting that absolute motion
does in fact exist, contrary to his beliefs. One way out of the contradiction
would be to maintain that these effects (the concave form of the water or the
tension in the string) are due to the relative rotation between the water and the
globes with respect to the fixed stars. He could say that these effects appear not
only when the water and globes rotate relative to the stars, but that they would
also appear when the water and globes were at rest (relative to an observer or
to the earth) while the stars were rotating in the opposite direction relative to
them with the same angular velocity. If he had seen this possibility clearly, he
could have maintained that even these experiments do not prove the existence
of absolute space. He could then also maintain that the water does not need
to be absolutely in motion when its surface is concave, as we might say that
this would happen with the water at rest and the stars rotating around it. But
Leibniz did not explicitly mention this possibility. For this reason he could not
give a clear answer to the Newtonian arguments utilizing his relational theory of
motion. Erlichson has already pointed this out: “In my opinion Leibniz never
really answered Clarke and Newton on the bucket experiment or the other
examples they give to show the dynamical effects of absolute motion” [56].

In at least one point in the correspondence, Clarke saw better than Leib-
niz the consequences of a completely relational theory of motion as regards
the origin of the centrifugal force. In his fifth reply to Leibniz, Clarke wrote
(paragraphs 26-32, p. 101 of [54]):

It is affirmed [by Leibniz], that motion necessarily implies a (§31)
relative change of situation in one body, with regard to other bodies:
and yet no way is shown to avoid this absurd consequence, that
then the mobility of one body depends on the existence of other
bodies; and that any single body existing alone, would be incapable
of motion; or that the parts of a circulating body, (suppose the sun,)
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would lose the vis centrifuga arising from their circular motion, if
all the extrinsic matter around them were annihilated.

Unfortunately Leibniz could not respond to this last argument as it was
transmitted to him on October 29th, 1716 and he died on November 14th, 1716.
In any case, the consequences which Clarke called “absurd” are the main parts
of any real relational theory of motion. If we follow fully a relational theory of
motion, there is no sense to the notion of a single body moving relative to space;
motion is relative to other bodies. Thus, the motion of one body depends on the
existence of other bodies. Much more important is the consequence, pointed
out by Clarke, that the centrifugal force would disappear if the external bodies
were annihilated. In other words, if the stars (and galaxies) were annihilated,
the earth would not be flattened at the poles; the water would not rise towards
the sides of the bucket when they rotated; there would not appear any tension
in the string connecting the two spinning globes; it would not be possible for
the planets to orbit around the sun, as there would not exist anything to oppose
the gravitational attraction between them and the solar system would collapse
etc. This is a necessary consequence of a completely relational theory, and is
implemented in relational mechanics, as we show in this book. It is not an
“absurd” consequence of a relative theory of motion. In principle this idea
can be tested experimentally: consider a bucket with water and two globes
connected by a spring at rest relative to the earth. If we surround them by
a massive spherical shell and rotate only the shell relative to the earth, there
should appear a small centrifugal force acting on the water and on the globes
if Leibniz’s ideas are correct. Later on we present orders of magnitude for this
effect based on relational mechanics. Clarke was the first to point out clearly
the fact that in a purely relational theory, the centrifugal force only appears
when there is a relative rotation between the test body and the distant material
universe. If the distant universe is annihilated, the dynamical consequences
of this centrifugal force should disappear accordingly. Other people were not
impressed by (or did not realize the significance of) these consequences pointed
out by Clarke.

Leibniz believed that kinematically equivalent motions should be dynami-
cally equivalent. This is evident from his statement quoted above that “we must
hold that however many bodies might be in motion, one cannot infer from the
phenomena which of them really has absolute and determinate motion or rest.
Rather, one can attribute rest to any one of them one may choose, and yet the
same phenomena will result.” Despite this belief, he did not implement this
idea quantitatively. For instance, he did not show how a spinning set of stars
can generate centrifugal forces. Nor did he mention the proportionality between
inertial and gravitational masses (or between inertia and weight). Finally he
did not even hint at the possibility that the centrifugal forces might have a
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gravitational origin.
Although he advocated certain ideas which clashed with Newtonian me-

chanics, he did not develop them mathematically. The level of knowledge of
physical science at that time, and especially of electromagnetism, was not yet
sufficient to supply the key to implementing these ideas quantitatively.

5.2 Berkeley and Relative Motion

Berkeley (1685-1753) criticised Newton’s concepts of absolute space, absolute
time and absolute motion mainly in Sections 97-99 and 110-117 of his work The
Principles of Human Knowledge (1710) and in Sections 52-65 of his work Of
Motion - Or the principle and nature of motion and the cause of the commu-
nication of motions (1721). This work is usually known by its Latin title, De
Motu. Here we quote from its English translation [57, pp. 209-227]. A good
discussion of Berkeley’s philosophy of motion can be found elsewhere ([58], [59]
and [60]).

In Section 112 of the Principles he outlined a relational theory, as follows,
[61]:

112. But, notwithstanding what has been said, I must confess it
does not appear to me that there can be any motion other than
relative; so that to conceive motion there must be at least conceived
two bodies, whereof the distance or position in regard to each other
is varied. Hence, if there was one only body in being it could not
possibly be moved. This seems evident, in that the idea I have of
motion doth necessarily include relation.

Analogously, in Section 63 of De Motu we read, [57]:

63 No motion can be recognized or measured, unless through sensi-
ble things. Since then absolute space in no way affects the senses, it
must necessarily be quite useless for the distinguishing of motions.
Besides, determination or direction is essential to motion; but that
consists in relation. Therefore it is impossible that absolute motion
should be conceived.

But Berkeley also seems to contradict himself, as did Leibniz, when he takes
the forces into account. He also gives forces an absolute reality, and in this way
is led astray by the Newtonian arguments. For instance, in paragraph 113 of
the Principles, he writes:

113. But, though in every motion it be necessary to conceive more
bodies than one, yet it may be that one only is moved, namely,
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that on which the force causing the change in distance or situation
of the bodies, is impressed. For, however some may define relative
motion, so as to term that body moved which changes its distance
from some other body, whether the force or action causing that
change were impressed on it or no, yet as relative motion is that
which is perceived by sense, and regarded in the ordinary affairs of
life, it should seem that every man of common sense knows what
it is as well as the best philosopher. Now, I ask any one whether,
in his sense of motion as he walks along the streets, the stones he
passes over may be said to move, because they change distance with
his feet? To me it appears that though motion includes a relation
of one thing to another, yet it is not necessary that each term of the
relation be denominated from it. As a man may think of somewhat
which does not think, so a body may be moved to or from another
body which is not therefore itself in motion.

But even if there is only relative motion, how could he explain Newton’s
bucket and two globes experiments without introducing absolute space? He is
not completely clear on this, but he seems to have meant that the concave form
of the water in the spinning bucket only appeared due to its relative rotation
with respect to the set of fixed stars. And the same would explain the tension
of the string in the two globes experiment. These dynamical effects would be
related to the kinematical motion between the test body and the stars. They
would not be related to a motion of the test body relative to absolute space. In
order to show this possible interpretation of Berkeley’s ideas, we present here
Section 114 of the Principles where he discusses Newton’s bucket experiment:

114. As the place happens to be variously defined, the motion which
is related to it varies. A man in a ship may be said to be quiescent
with relation to the sides of the vessel, and yet move with relation
to the land. Or he may move eastward in respect of the one, and
westward in respect to the other. In the common affairs of life men
never go beyond the earth to define the place of any body; and
what is quiescent in respect of that is accounted absolutely to be so.
But philosophers, who have a greater extent of thought, and juster
notions of the system of things, discover even the earth itself to be
moved. In order therefore to fix their notions they seem to conceive
the corporeal world as finite, and the utmost unmoved walls or shell
thereof to be the place whereby they estimate true motions. If we
sound our conceptions, I believe we may find all the absolute motion
we can frame an idea of to be at bottom no other than relative
motion thus defined. For, as hath been already observed, absolute
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motion, exclusive of all external relations, is incomprehensible; and
to this kind of relative motion all the above-mentioned properties,
causes, and effects ascribed to absolute motion will, if I mistake not,
be found to agree. As to what is said of the centrifugal force, that
it does not at all belong to circular relative motion, I do not see
how this follows from the experiment which is brought to prove it.
See Philosophiae Naturalis Principia Mathematica, in Schol. Def.
VIII. For the water in the vessel at that time wherein it is said to
have the greatest relative circular motion, hath, I think, no motion
at all; as is plain from the foregoing section.

When he says that philosophers “conceive the corporeal world as finite, and
the utmost unmoved walls or shell thereof to be the place whereby they esti-
mate true motions,” he means the set of fixed stars. According to Berkeley
the philosophers put the set of stars at rest by convention and establish motion
of other celestial bodies relative to this frame of reference of the fixed stars.
When Berkeley writes that in the beginning of Newton’s bucket experiment the
“water in the vessel has no motion at all,” he presumably means no motion of
the water relative to the earth or relative to the set of stars. After all, in the
situation described by Newton there is the greatest relative circular motion be-
tween the bucket and the water after the bucket was released and spun fastest
relative to the earth, while the water did not yet have time to rotate together
with the bucket. If this is the case, it would follow that to Berkeley the concave
of the water only appears when there is a relative rotation between the water
and the earth (or between the water and the set of stars), although we cannot
ascribe a real or absolute rotation to the water or to the earth (not even to the
set of stars). But obviously here we are ascribing more to Berkeley than what
he really wrote. As we saw before when discussing his §113 (see especially the
first sentence of this paragraph), Berkeley is sometimes confused by Newton’s
arguments. In these cases he speaks of the forces as something absolute, as-
serting that we can determine which body is really and absolutely in motion by
observing on which body the force is acting. However, this is meaningless in a
truly relational theory.

He suggested replacing Newton’s absolute space by the set of fixed stars
(more clearly than Leibniz) in Section 64 of De Motu, [57]:

64 Further, since the motion of the same body may vary with the
diversity of relative place, nay actually since a thing can be said in
one respect to be in motion and in another respect to be at rest, to
determine true motion and true rest, for the removal of ambiguity
and for the furthearance of the mechanics of these philosophers who
take the wider view of the system of things, it would be enough to
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bring in, instead of absolute space, relative space as confined to the
heavens of the fixed stars, considered as at rest. But motion and rest
marked out by such relative space can conveniently be substituted
in place of the absolutes, which cannot be distinguished from them
by any mark. (...)

Two hundred years later, Mach would also propose replacing Newton’s ab-
solute space with the set of fixed stars.

In Sections 58 to 60 of De Motu Berkeley discussed Newton’s two globes
and experiments as follows, [57]:

58 From the foregoing it is clear that we ought not to define the
true place of the body as the part of absolute space which the body
occupies, and true or absolute motion as the change of true or abso-
lute place; for all place is relative just as all motion is relative. But
to make this appear more clearly we must point out that no motion
can be understood without some determination or direction, which
in turn cannot be understood unless besides the body in motion our
own body also, or some other body, be understood to exist at the
same time. For up, down, left, and right and all places and regions
are founded in some relation, and necessarily connote and suppose
a body different from the body moved. So that if we suppose the
other bodies were annihilated and, for example, a globe were to ex-
ist alone, no motion could be conceived in it; so necessarily is it that
another body should be given by whose situation the motion should
be understood to be determined. The truth of this opinion will be
very clearly seen if we shall have carried out thoroughly the sup-
posed annihilation of all bodies, our own and that of others, except
that solitary globe.

59 Then let two globes be conceived to exist and nothing corporeal
besides them. Let forces then be conceived to be applied in some
way; whatever we may understand by the application of forces, a
circular motion of the two globes round a common centre cannot
be conceived by the imagination. Then let us suppose that the sky
of the fixed stars is created; suddenly from the conception of the
approach of the globes to different parts of that sky the motion will
be conceived. That is to say that since motion is relative in its
own nature, it could not be conceived before the correlated bodies
were given. Similarly no other relation can be conceived without
correlates.

60 As regards circular motion many think that, as motion trully
circular increases, the body necessarily tends ever more and more
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away from its axis. This belief arises from the fact that circular
motion can be seen taking its origin, as it were, at every moment
from two directions, one along the radius and the other along the
tangent, and if in this latter direction only the impetus be increased,
then the body in motion will retire from the centre, and its orbit
will cease to be circular. But if the forces be increased equally in
both directions the motion will remain circular though accelerated -
which will not argue an increase in the forces of retirement from the
axis, any more than in the forces of approach to it. Therefore we
must say that the water forced round in the bucket rises to the sides
of the vessel, because when new forces are applied in the direction of
the tangent to any particle of water, in the same instant new equal
centripetal forces are not applied. From which experiment it in no
way follows that absolute circular motion is necessarily recognized
by the forces of retirement from the axis of motion. Again, how
those terms corporeal forces and connation are to be understood is
more than sufficiently shown in the foregoing discussion.

In other words, for Berkeley it is only meaningful to state that the two globes
rotate when we have other bodies to refer motion to. Moreover, this rotation
will be only relative, as we cannot say if the globes are rotating while the sky
of fixed stars is at rest, or vice versa. But he does not say explicitly that the
tension in the string connecting the two globes will appear only when there is
relative rotation between the globes and the stars. Nor does he say explicitly
that the tension in the string will only appear when the stars are created, as
was pointed out by Clarke.

As regards his discussion of the bucket experiment, once again Berkeley did
not emphasize the role of the fixed stars in generating the centrifugal forces.
Nor did he say that the water would be flat if the other bodies in the universe
were annihilated.

These aspects were pointed out clearly by Jammer ([33, p. 109]): “Berke-
ley’s statement obviously cannot be considered as being equivalent to what is
called in modern cosmology ‘Mach’s principle’ (that is, that the inertia of any
body is determined by the masses of the universe and their distribution), as
Berkeley confines himself to the problem of the perception and comprehensibil-
ity of motion and ignores in this context the dynamical aspect of motion.”

But even if this was the correct interpretation of his ideas, Berkeley did not
implement them quantitatively. He did not present a specific force law to show
that when we keep the globes at rest and rotate the set of stars there appears a
real centrifugal force creating a tension in the string due to this relative rotation.

Finally, he did not mention the proportionality between inertial and grav-
itational masses. He did not suggest the possibility that the centrifugal force
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might be due to a gravitational interaction with distant matter.
Many other authors discussed these aspects of Newtonian theory before

Mach, e.g. Euler, d’Alembert, Kant, etc. However, they did not advance much
further beyond Newton, Leibniz or Berkeley. Most of them defended Newton’s
ideas. A short summary can be found elsewhere ([33, Chapter 5], [54, pp. xl to
xlix] and [62]). We will not enter into more details here, as the main ideas were
developed by Leibniz and Berkeley. Later on these ideas were greatly extended
and explored further by Mach. This is the subject of the next chapter.



Chapter 6

Mach and Newton’s
Mechanics

6.1 Inertial Frame of Reference

In this chapter we present the criticisms made by Ernst Mach (1838-1916) of
Newtonian mechanics. We will try to follow some of the examples discussed
in the previous chapters to illustrate the shortcomings of classical mechanics
according to Mach, and show how he suggested overcoming them.

For a biography of Mach, see reference [63].
We begin with the the problem of uniform rectilinear motion. According to

Newton’s first law of motion (the law of inertia) if there is no net force acting
on a body it will stay at rest or will move along a straight line with constant
velocity. But relative to what frame of reference will the body stay at rest or
move with a constant velocity? According to Newton, the motion is relative to
absolute space or any other frame which moves with a constant velocity relative
to absolute space. The problem with this statement is that we do not have any
access to absolute space. We cannot know our position or velocity relative to
absolute space. Mach wanted to get rid of the notions of absolute space and
time. In the Preface to the first German edition (1883) of his book The Science
of Mechanics, Mach wrote: “The present volume is not a treatise upon the
application of the principles of mechanics. Its aim is to clear up ideas, expose
the real significance of the matter, and get rid of metaphysical obscurities” [39].
In the Preface of the seventh German edition (1912) of this book he wrote:

The character of the book has remained the same. With respect to
the monstrous conceptions of absolute space and absolute time I can

107
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retract nothing. Here I have only shown more clearly than hitherto
that Newton indeed spoke much about these things, but throughout
made no serious application of them. His fifth corollary1 contains
the only practically usable (probably approximate) inertial system.

What did Mach suggest as an alternative to Newton’s absolute space? He
proposed the fixed stars and the rest of matter in the universe [39, pp. 285-6]:

The comportment of terrestrial bodies with respect to the earth
is reducible to the comportment of the earth with respect to the
remote heavenly bodies. If we were to assert that we knew more of
moving objects than this their last-mentioned, experimentally-given
comportment with respect to the celestial bodies, we should render
ourselves culpable of a falsity. When, accordingly, we say, that a
body preserves unchanged its direction and velocity in space, our
assertion is nothing more or less than an abbreviated reference to
the entire universe.

His clearest answer appears in pages 336-7 of this book, our emphasis:

4. I have now another important point to discuss in opposition to
C. Neumann,2 whose well-known publication on this topic preceded
mine3 shortly. I contended that the direction and velocity which
is taken into account in the law of inertia had no comprehensible
meaning if the law was referred to “absolute space.” As a matter
of fact, we can metrically determine direction and velocity only in a
space of which the points are marked directly or indirectly by given
bodies. Neumann’s treatise and my own were successful in directing
attention anew to this point, which had already caused Newton and
Euler much intellectual discomfort; yet nothing more than partial
attempts at solution, like that of Streintz, have resulted. I have
remained to the present day the only one who insists upon referring
the law of inertia to the earth, and in the case of motions of great
spatial and temporal extent, to the fixed stars.

It is difficult to disagree with Mach on this point. This last sentence is much
more practical than Newton’s formulation of the first law in terms of absolute
space. In typical laboratory experiments (such as the study of springs, collision
of two billiards balls, etc.), which last much less than one hour and which do

1Principia, 1687, p. 19.
2Die Principien der Galilei-Newton’schen Theorie, Leipzig, 1870.
3Erhaltung der Arbeit, Prague, 1872. (Translated in part in the article on “The Conser-

vation of Energy,” Popular Scientific Lectures, third edition, Chicago, 1898.)
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not extend very far in space compared to the earth’s radius, we can utilize
the earth as our inertial system. Consequently we can apply Newton’s laws of
motion without fictitious forces in this frame in order to study these motions
with reasonable accuracy. On the other hand, in experiments which last many
hours, such as Foucault’s pendulum, or in which we study motions with long
space and time scales, such as the winds, oceanic currents etc., a better inertial
frame than the earth is the frame defined by the stars. The fixed stars are
also a good inertial frame for studying the rotation of the earth each day, its
flattening at the poles or its translation around the sun in one year. Nowadays,
we might say that a better inertial frame for studying the rotation or motion
of the galaxy as a whole (relative to other galaxies, for instance) is the frame
of reference defined by the external galaxies or the frame of reference in which
the cosmic background radiation is isotropic.

6.2 Absolute Time

Mach also rejected Newton’s absolute time. His points of view as regards time
were presented clearly on p. 273 of The Science of Mechanics:

It is utterly beyond our power to measure the changes of things by
time. Quite the contrary, time is an abstraction, at which we ar-
rive by means of the changes of things; made because we are not
restricted to any one definite measure, all being interconnected. A
motion is termed uniform in which equal increments of space de-
scribed correspond to equal increments of space described by some
motion with which we form a comparison, as the rotation of the
earth. A motion may, with respect to another motion, be uniform.
But the question whether a motion is in itself uniform, is sense-
less. With just as little justice, also, may we speak of an “absolute
time”—of a time independent of change. This absolute time can be
measured by comparison with no motion; it has therefore neither a
practical nor a scientific value; and no one is justified in saying that
he knows aught about it. It is an idle metaphysical conception.

Mach thought that we could replace the time t which appears in Newton’s
laws of motion by the angle of rotation of the Earth with respect to the fixed
stars. He expressed this view on pages 287 and 295 of The Science of Mechanics:

When we reflect that the time-factor that enters into the acceleration
is nothing more than a quantity that is the measure of the distances
(or angles of rotation) of the bodies of the universe, we see that even
in the simplest case, in which apparently we deal with the mutual



110 CHAPTER 6. MACH AND NEWTON’S MECHANICS

action of only two masses, the neglecting of the rest of the world is
impossible. (...)

We measure time by the angle of rotation of the earth, but could
measure it just as well by the angle of rotation of any other planet.
But, on that account, we would not believe that the temporal course
of all physical phenomena would have to be disturbed if the earth or
the distant planet referred to should suddenly experience an abrupt
variation of angular velocity. We consider the dependence as not
immediate, and consequently the temporal orientation as external.
Nobody would believe that the chance disturbance - say by an im-
pact - of one body in a system of uninfluenced bodies which are left
to themselves and move uniformly in a straight line, where all the
bodies combine to fix the system of coordinates, will immediately
cause a disturbance of the others as a consequence. The orientation
is external here also. Although we must be very thankful for this,
especially when it is purified from meaninglessness, still the natural
investigator must feel the need of further insight - of knowledge of
the immediate connections, say, of the masses of the universe. There
will hover before him as an ideal an insight into the principles of the
whole matter, from which accelerated and inertial motions result in
the same way. (...)

Once more it is difficult to disagree with Mach on these points of view.

6.3 The Two Rotations of the Earth

Mach was aware of the observational evidence that the kinematical rotation of
the earth relative to the fixed stars is the same as the dynamical rotation of
the earth relative to inertial frames. In other words, the best inertial system of
reference known to us (in which we can apply Newton’s second law of motion
without centrifugal, Coriolis or other fictitious forces) does not rotate relative
to the set of fixed stars. He expressed this on pages 292-3 of The Science of
Mechanics: “Seeliger has attempted to determine the relation of the inertial
system to the empirical astronomical system of coordinates which is in use,
and believes that he can say that the empirical system cannot rotate about the
inertial system by more than some seconds of arc in a century.” Seeliger’s work
of 1906 has been discussed by Jammer [33, p. 141].

Nowadays we know that if there is a rotation between these two frames it
is smaller than 0.4 seconds of arc per century [64], or:

ωk − ωd ≤ ±0.4 sec/century = ±1.9× 10−8 rad/year .
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As ωk = 2π/T = 2π/(24 hours) = 7.29× 10−5 rad/s we get

ωk − ωd

ωk
≤ ±8× 10−12 .

Few facts in physics have a precision of one part in 1011, as we find here
(another example, as we saw previously, is the proportionality between inertia
and weight). This is one of the strongest empirical supports for Mach’s principle.
It is difficult to accept this fact as a simple coincidence. As we have seen, it
is equivalent to the statement that the universe as a whole (the set of distant
galaxies) does not rotate relative to absolute space. It suggests that distant
matter determines and establishes the best inertial frame. If this is the case,
we need to understand and explain this connection between distant matter and
local inertial systems. No answer to this puzzle is to be found in Newtonian
mechanics as in it there is no relation between the stars and inertial frames.

6.4 Inertial Mass

Another problem in classical mechanics is the notion of inertial mass, the mass
which appears in Newton’s second law of motion, in the linear momentum and
in the kinetic energy. Newton defined it as the product of the volume of the
body by its density. This is a poor definition, as we usually define the density
by the ratio of the inertial mass (or quantity of matter) and volume of a body.
Newton’s definition would only be useful (and would only avoid vicious circles)
if Newton had specified previously how to define and measure the density of a
body without utilizing the mass concept, but he did not do this. The first article
written by Mach where he criticized this definition and presented a better one
is from 1868. It was reprinted in Mach’s book The History and the Root of the
Principle of the Conservation of Energy of 1872 [65, pp. 80-85]. In The Science
of Mechanics he elaborated further his new proposal and wrote: “Definition
I is, as has already been set forth, a pseudo-definition. The concept of mass
is not made clearer by describing mass as the product of the volume into the
density, as density itself denotes simply the mass of unit of volume. The true
definition of mass can be deduced only from the dynamical relations of bodies”
[39], p. 300.

Instead of Newton’s definition, Mach proposed the following [39, p. 266]:

All those bodies are bodies of equal mass, which, mutually acting on
each other, produce in each other equal and opposite accelerations.

We have, in this, simply designated, or named, an actual relation
of things. In the general case we proceed similarly. The bodies
A and B receive respectively as the result of their mutual action
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(see Figure) the accelerations −ϕ and +ϕ′, where the senses of the
accelerations are indicated by the signs.

We say then, B has ϕ/ϕ′ times the mass of A. If we take A as our
unit, we assign to that body the mass m which imparts to A m times
the acceleration that A in the reaction imparts to it. The ratio of
the masses is the negative inverse ratio of the counter-accelerations.
That these accelerations always have opposite signs, that there are
therefore, by our definition, only positive masses, is a point that
experience teaches, and experience alone can teach. In our concept
of mass no theory is involved; “quantity of matter” is wholly unnec-
essary in it; all it contains is the exact establishment, designation,
and determination of a fact.

In this key definition of inertial mass, Mach did not specify clearly the
frame of reference with respect to which the accelerations should be measured.
It is simple to see that this definition depends on the frame of reference. For
instance, observers in two frames which are accelerated relative to one another
will find different mass ratios by analysing the same interaction of two bodies if
each observer utilizes his own frame of reference to define the accelerations and
arrive at the masses. Let us give an example. We consider a one-dimensional
problem in which two bodies, 1 and 2, interacting with one another obtain
accelerations a1 and −a2 relative to a frame of reference O, as in Figure 6.1.

Now suppose a frame of reference O’ has an acceleration ao′ relative to
O, along the direction of the accelerations of 1 and 2. The accelerations of
bodies 1 and 2 relative to O’ will be given by, respectively: a′1 = a1 − ao′ and
a′2 = −a2 − ao′ , as in Figure 6.2.

Utilizing Mach’s definition, the mass-ratio of bodies 1 and 2 relative to O
is given by m1/m2 = −(−a2/a1) = a2/a1. On the other hand, their mass-ratio
relative to O’ is found to be: m′

1/m′
2 = −(−a′2/a′1) = (a2 + ao′)/(a1 − ao′) 6=

m1/m2. In other words, if we can utilize any frame of reference to define the
mass-ratios, then this definition becomes meaningless. After all, there will be as
many different mass-ratios as there are frames of reference accelerated relative
to one another. The value of m1/m2 would depend on the system of reference,
and this is certainly undesirable.

But it is evident from his writings that Mach had in mind the frame of fixed
stars as the only frame to be utilized in this definition. This was shown con-
clusively in an important paper by Yourgrau and van der Merwe [66]. We may
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cite a few passages from Mach to prove this point. When discussing Newton’s
bucket experiment, Mach writes: “The natural system of reference is for him
[Newton] that which has any uniform motion or translation without rotation
(relatively to the sphere of fixed stars)” [39], p. 281. The words in parenthesis
are Mach’s, and did not come from Newton. On page 285 he writes: “Now, in
order to have a generally valid system of reference, Newton ventured the fifth
corollary of the Principia (p. 19 of the first edition). He imagined a momentary
terrestrial system of coordinates, for which the law of inertia is valid, held fast
in space without any rotation relatively to the fixed stars.” Once more, these
last words (relatively to the fixed stars) are from Mach, as Newton did not men-
tion the fixed stars in his fifth corollary. On pages 294-5 Mach wrote: “There
is, I think, no difference of meaning between Lange and myself (...) about the
fact that, at the present time, the set of the fixed stars is the only practically
usable system of reference, and about the method of obtaining a new system of
reference by gradual correction.”

Figure 6.1: Accelerations of two bodies relative to O.

Figure 6.2: Acceleration of the bodies relative to O’.

It should be observed that nowadays the accepted definition of inertial mass
is Mach’s (m1/m2 = −a2/a1) and not Newton’s (m = ρV ). See, for instance,
Symon’s book [27, Section 1.3]. Despite this fact, Mach’s name is not usually
quoted in this connection.

Mach’s operational definition of inertial mass is one of his main contributions
to the foundations of classical mechanics.
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6.5 Mach’s Formulation of Mechanics

After clarifying these points, we now present here Mach’s own formulation of
mechanics, which he suggested in order to replace Newton’s postulates and
corollaries. Mach presented this formulation for the first time in 1868 [65,
especially pp. 84-5]. Here we present his final formulation [39, pp. 303-4]:

Even if we adhere absolutely to the Newtonian points of view,
and disregard the complications and indefinite features mentioned,
which are not removed but merely concealed by the abbreviated
designations “Time” and “Space,” it is possible to replace Newton’s
enunciations by much more simple, methodically better arranged,
and more satisfactory propositions. Such, in our estimation, would
be the following:

a. Experimental proposition. Bodies set opposite each other induce
in each other, under certain circumstances to be specified by exper-
imental physics, contrary accelerations in the direction of their line
of junction. (The principle of inertia is included in this.)

b. Definition. The mass-ratio of any two bodies is the negative
inverse ratio of the mutually induced accelerations of those bodies.

c. Experimental Proposition. The mass-ratios of bodies are inde-
pendent of the character of the physical states (of the bodies) that
condition the mutual accelerations produced, be those states elec-
trical, magnetic, or what not; and they remain, moreover, the same,
whether they are mediated or immediately arrived at.

d. Experimental Proposition. The accelerations which any number
of bodies A, B, C ... induce in a body K, are independent of
each other. (The principle of the parallelogram of forces follows
immediately from this.)

e. Definition. Moving force is the product of the mass-value of a
body into the acceleration induced in that body.

These are clear and reasonable propositions, provided we understand the
frame of reference to which the accelerations are to be referred. As we have
seen, to Mach a reasonable frame of reference for these accelerations was the
earth. If we need a greater precision and more accurate mass-ratios, then
according to Mach we need to utilize the frame of fixed stars.

This Machian formulation of mechanics is vastly superior than the New-
tonian one. After all it is based only on practical procedures and on facts of
experience, without metaphysical concepts such as absolute space and time.
However, this is not enough. It does not explain the proportionality between
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inertia and weight (or between mi and mg), it does not explain why the fixed
stars are a good inertial system (or why the set of fixed stars does not ro-
tate relative to inertial systems), nor does it explain the origin of fictitious
forces (such as the centrifugal and Coriolis forces). Although it represents a
tremendous progress compared with Newton, Leibniz and Berkeley, a complete
quantitative implementation of relational mechanics requires much more than
Mach accomplished. Neverthless, he took a large step in the right direction.

6.6 Relational Mechanics

Beyond these clarifications and important new formulation, Mach presented two
extremely relevant suggestions and insights. The first was to emphasize that in
physics which should have only relational quantities. That is, physics should
depend only on relative distance between bodies and their relative motions.
No absolute positions and velocities should appear in the theory as they do
not appear in the experiments. His second suggestion was related to Newton’s
bucket experiment. We discuss this in the next section, analysing first his
remarks about relational mechanics.

Mach’s statements in this regard can be found at several places in The
Science of Mechanics, from which we quote the following (our emphasis):

p. 279: If, in a material spatial system, there are masses with dif-
ferent velocities, which can enter into mutual relations with one
another, these masses present to us forces. We can only decide
how great these forces are when we know the velocities to which
those masses are to be brought. Resting masses too are forces if all
the masses do not rest. Think, for example, of Newton’s rotating
bucket in which the water is not yet rotating. If the mass m has
the velocity v1 and it is to be brought to the velocity v2, the force
which is to be spent on it is p = m(v1 − v2)/t, or the work which
is to be expended is ps = m(v2

1 − v2
2). All masses and all velocities,

and consequently all forces, are relative. There is no decision about
relative and absolute which we can possibly meet, to which we are
forced, or from which we can obtain any intellectual or other ad-
vantage. When quite modern authors let themselves be led astray
by the Newtonian arguments which are derived from the bucket of
water, to distinguish between relative and absolute motion, they do
not reflect that the system of the world is only given once to us, and
the Ptolemaic or Copernican view is our interpretation, but both
are equally actual. Try to fix Newton’s bucket and rotate the heaven
of fixed stars and then prove the absence of centrifugal forces.
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pp. 283-4: Let us now examine the point on which Newton, ap-
parently with sound reasons, rests his distinction of absolute and
relative motion. If the earth is affected with an absolute rotation
about its axis, centrifugal forces are set up in the earth: it assumes
an oblate form, the acceleration of gravity is diminished at the equa-
tor, the plane of Foucault’s pendulum rotates, and so on. All these
phenomena disappear if the earth is at rest and the other heavenly
bodies are affected with absolute motion round it, such that the
same relative rotation is produced. This is, indeed, the case, if we
start �ab initio from the idea of absolute space. But if we take our
stand on the basis of facts, we shall find we have knowledge only
of relative spaces and motions. Relatively, not considering the un-
known and neglected medium of space, the motions of the universe
are the same whether we adopt the Ptolemaic or Copernican mode of
view. Both views are, indeed, equally correct; only the latter is more
simple and more practical. The universe is not twice given, with an
earth at rest and an earth in motion; but only once, with its relative
motions, alone determinable. It is, accordingly, not permitted us to
say how things would be if the earth did not rotate. We may inter-
pret the one case that is given to us, in different ways. If, however,
we so interpret it that we come into conflict with experience, our
interpretation is simply wrong. The principles of mechanics can,
indeed, be so conceived, that even for relative rotations centrifugal
forces arise.

From these and other quotations we understand that a relational mechanics
following Mach’s point of view should depend only on relative quantities, in
other words, on the distance between the bodies, rmn = |~rm − ~rn|, and their
time derivatives: ṙmn = drmn/dt, r̈mn = d2rmn/dt2, d3rmn/dt3, etc. Moreover,
the concepts of absolute space and time should not appear.

6.7 Mach and the Bucket Experiment

When Mach discussed Newton’s bucket experiment, he emphasized the fact
that we cannot neglect the heavenly bodies in the analysis. According to Mach
the parabolic shape of the spinning water is due to its rotation relative to the
fixed stars, and not due to its rotation relative to absolute space. For instance,
on p. 284 of The Science of Mechanics [39], he wrote:

Newton’s experiment with the rotating vessel of water simply in-
forms us, that the relative rotation of the water with respect to
the sides of the vessel produces no noticeable centrifugal forces, but
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that such forces are produced by its relative rotation with respect
to the mass of the earth and the other celestial bodies. No one is
competent to say how the experiment would turn out if the sides of
the vessel increased in thickness and mass till they were ultimately
several leagues thick. The one experiment only lies before us, and
our business is, to bring it into accord with the other facts known
to us, and not with the arbitrary fictions of our imagination.

The most important point here is that the issue is not just one of language.
Instead of Newton’s absolute space we could speak of Mach’s frame of fixed
stars, and then all would be settled. This would be the case if it were only a
question of language. But the passages cited above indicate a deepest meaning.
In fact they suggest a dynamical origin for the centrifugal force, that Mach
sought the centrifugal force as a real force which appears in a frame of reference
in which the sky of stars is rotating. This cannot be derived from Newton’s
laws of motion, nor even from his universal law of gravitation.

Newton’s experiment is represented in Figure 6.3. The bucket and the water
are rotating together with angular velocity ωẑ relative to the earth and to the
fixed stars. The surface of the water is concave. We choose the z axis along
the axis of the bucket, which does not need to be along the north-south axis.
The rotation of the bucket and water relative to the earth are much greater
than the diurnal rotation of the earth relative to the fixed stars. Thus we can
consider the earth to be essentially without acceleration relative to the frame
of fixed stars during this experiment.

We can distinguish clearly Newton’s point of view from Mach’s with Figures
6.4 and 6.5.

In Figure 6.4 we assume that the bucket, water and earth are at rest relative
to absolute space and that the set of stars rotate relative to this frame or to
the earth with an angular velocity −ωẑ. According to Newton the water will
remain flat, as it is at rest relative to absolute space and the spinning set of
stars exert no net gravitational force on the water molecules.

In Figure 6.5 we have the outcome of this thought experiment according to
Mach. Provided the relative rotation is the same as in Newton’s original and
real experiment (rotating the bucket relative to the earth and relative to the
set of fixed stars with +ωẑ), the surface of the water should remain concave.
To Mach absolute space does not exist and cannot play any role here. Only the
relative rotation between the water and the fixed stars should matter. If the
kinematical situation is the same (stars at rest relative to an arbitrary frame
of reference and water spinning with +ωẑ, or water at rest relative to another
frame of reference and the stars spinning with −ωẑ), then the dynamical effects
must also be the same (the water must rise towards the sides of the vessel
in both cases). The only thing Mach did not know is that the cause of the



118 CHAPTER 6. MACH AND NEWTON’S MECHANICS

Figure 6.3: Newton’s bucket experiment.

concavity of the water surface is its rotation relative to distant galaxies and not
relative to the fixed stars. Later on we explain why.

Obviously the situations of Figures 6.4 and 6.5 are not completely equivalent
to Newton’s real experiment. The kinematical equivalence would be complete
only if the earth rotated together with the fixed stars with −ωẑ relative to the
bucket and water. But here we are neglecting the tangential forces exerted by
the spinning earth on the molecules of water. We are assuming that the force
exerted by the earth on the water is essentially its weight pointing downwards,
regardless of the rotation of the earth relative to the water.

Mach wrote: “try to fix Newton’s bucket and rotate the heaven of fixed
stars and then prove the absence of centrifugal forces.” The chief importance
of this statement was that it implied clearly that the centrifugal force is due
to the relative rotation between bodies which experience these forces and the
distant masses in the universe. Many physicists have been heavily influenced by
Mach’s writings, which were more influential than the similar ideas presented
earlier by Leibniz and Berkeley.
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Figure 6.4: What should be expected in Newton’s theory if we fixed the bucket
relative to the earth and rotated the set of fixed stars.

6.8 Mach’s Principle

Mach did not specify clearly in his writings any specific principle which he ad-
vocated. Despite this fact, he presented cogently argued points of view against
Newton’s absolute space and time, in favour of a relational physics, in favour
of the physical reality of the fictitious forces, supposed that Newton’s bucket
experiment showed a connection between the curvature of the water and its
rotation relative to the fixed stars, etc. These ideas became generally known
by the name “Mach’s Principle.” Here we discuss how different authors have
used this principle [67].

The first to utilize the expressions “Mach’s principle” and “Mach’s pos-
tulates” was M. Schlick in 1915 [68, see especially pp. 10 and 47, note 2].
Apparently he was referring to Mach’s general proposals of a relativity of all
motions (there were no motions relative to space, but only motion of matter
relative to other matter). According to Schlick, a consequence of this proposal
is that “the cause of inertia must be assumed to be an interaction of masses.”
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Figure 6.5: What should be expected in Mach’s theory if we fixed the bucket
relative to the earth and rotated the set of fixed stars.

The expression became widely known and utilized after Einstein’s article of
1918 on this topic. In this article he says the following concerning his general
theory of relativity (see [69, pp. 185-186] for this English translation):

The theory, as it now appears to me, rests on three main points of
view, which, however, are by no means independent of each other...:

a) Relativity principle: The laws of nature are merely statements
about space-time coincidences; they therefore find their only natural
expression in generally covariant equations.

b) Equivalence principle: Inertia and weight are identical in nature.
It follows necessarily from this and from the result of the special
theory of relativity that the symmetric ‘fundamental tensor’ [gµν ]
determines the metrical properties of space, the inertial behavior of
bodies in it, as well as gravitational effects. We shall denote the
state of space described by the fundamental tensor as the ‘G-field.’
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c) Mach’s Principle4: The G-field is completely determined by the
masses of the bodies. Since mass and energy are identical in ac-
cordance with the results of the special theory of relativity and the
energy is described formally by means of the symmetric energy ten-
sor (Tµν), this means that the G-field is conditioned and determined
by the energy tensor of the matter.

Different formulations of Mach’s principle, as given by Einstein, have been
pointed out by J. Barbour in [69, p. 179].

Below are the words of some other authors when referring to this principle:
Sciama: “Inertial frames are those which are unaccelerated relative to the

‘fixed stars’, that is, relative to a suitably defined mean of all the matter in the
universe” [70].

Brown: “Inertia is not due to movement with respect to ‘absolute space’,
but due to surrounding matter” [71].

Kaempffer: “By ‘Mach’s Program’ is meant the intention to understand all
inertial effects as being caused by gravitational interaction” [72].

Moon and Spencer: “Inertia is not an inherent property of matter but is the
result of forces caused by the distant galaxies” [73].

Schiff: “The inertial properties of matter on the local scene derive in some
way from the existence of the distant masses of the universe and their distribu-
tion in space” [64].

Bunge: “The motion and consequently the mass of every single body is
determined (caused, produced) by the remaining bodies in the universe” [74].

Jammer: “The inertia of any body is determined by the masses of the
universe and their disbribution” [33, p. 109].

Reinhardt: “The inertial mass of a body is caused by its interaction with
the other bodies in the universe” [75].

Phipps: “When the subway jerks, it’s the fixed stars that throw you down,”
Phipps says that this raw form was attributed by P. Frank to Mach himself
[76].

Raine: “Inertial forces should be generated entirely by the motion of a body
relative to the bulk of matter in the universe” [77].

Barbour: “Mach suggested that inertial motion here on the earth and in the
solar system is causally determined in accordance with some quite definite but
as yet unknown law by the totality of the matter in the universe” [4].

As Mach himself did not specify an explicit principle but only general ideas
as presented above, we utilize in this work these ideas as “Mach’s Principle.”

4Hitherto I [Einstein] have not distinguished between principles (a) and (c), and this was
confusing. I have chosen the name ‘Mach’s principle’ because this principle has the significance
of a generalization of Mach’s requirement that inertia should be derived from an interaction
of bodies.
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6.9 What Mach did not Show

Here we present briefly some results which are embodied in Mach’s principle
but that he did not implement quantitatively.

Mach did not emphasize that the inertia of a body should be due to its
gravitational interaction with other bodies in the universe. By inertia we mean
here the inertial mass of the body and its inertial properties to resist being
accelerated. In principle this connection between the inertia of a body and the
distant celestial bodies might be due to any kind of interaction already known
(electrical, magnetic, elastic, etc.) or even to a new kind of interaction. In no
place did he state that the inertia of a body should come from its gravitational
interaction with the fixed stars. The first to suggest this seem to have been the
Friedlaender brothers in 1896 [78]. Their work has been partially translated
to English recently [79]. This idea was also adopted by Höfler in 1900, by
W. Hofmann in 1904 (partial English translation: [80]), by Einstein in 1912
(partial English translation of the relevant section: [69, p. 180]), by Reissner in
1914-1915 (English translations: [81] and [82]), by Schrödinger in 1925 (English
translation: [83]) and by many other authors ever since ([12, Sections 7.6 and
7.7] and [68]). In chapter 11 we discuss all of these fonts in more detail.

Nor did Mach derive the proportionality between inertial and gravitational
masses. On page 270 of The Science of Mechanics Mach wrote the following:
“The fact that mass can be measured by weight, where the acceleration of gravity
is invariable, can also be deduced from our definition of mass.” This deduction
is not warranted. The fact that two bodies of different mass (and/or chemical
composition, and/or form, etc.) fall to the earth with the same acceleration in
vacuum cannot be derived from Mach’s definition of mass, but is shown only
from experience. We might let two bodies A and B on a frictionless table
interact through a spring and determine their mass ratio by Mach’s definition,
but from this it could not be concluded that they would fall with the same
acceleration in vacuum. Only experiments show this. Moreover, there is nothing
in Mach’s operational definition of inertial mass (“The mass-ratio of any two
bodies is the negative inverse ratio of the mutually induced accelerations of
those bodies”) which might indicate a connection between inertia and weight
(or between mi and mg). For this reason Mach’s statement (that from his
definition of mass he could deduce that mass might be measured by weight)
is not warranted. In this regard Newton was on better ground than Mach.
According to Newton, it comes from experience (of free fall or with pendulums)
that we can measure mass by weight.

Mach proposed that the distant matter (such as the fixed stars) establishes a
very good inertial system. But he did not explain how this connection between
the distant stars and the locally determined inertial frames might arise. He
stimulated thinking in the right direction, although he did not supply the key
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to unlock the mystery.
Another point is that he did not show how the spinning set of stars can

generate centrifugal forces. The same can be said of Leibniz, Berkeley and all
the others. Mach suggested that nature should behave like this, but he did
not propose a specific force law that possessed this property. With Newton’s
law of gravitation, a spherical shell exerts no forces on internal bodies, whether
the shell is at rest or spinning, regardless of the position or motion of the
internal bodies. As we will see, this can be implemented with Weber’s law for
gravitation. To show this quantitative implementation of Mach’s ideas is the
main goal of this book.

The time was ripe during Mach’s life for an implementation of relational
mechanics. Physical science was highly developed during the second half of
last century. Weber’s relational force for electromagnetism appeared in 1846.
Mach mentioned this work of Weber in his article On the fundamental concepts
of electrostatics, delivered in 1883 [84, pp. 107-136, see especially p. 108].
A similar force law was applied to gravitation in the early 1870’s, just at the
time Mach was publishing his criticisms of Newtonian mechanics and proposing
his new formulation. Mach worked with many branches of physics, including
mechanics, gravitation, thermodynamics, physiology, acoustics and optics. As
regards electromagnetism, his doctoral thesis (1860) was on electrical charge and
induction. Other people at that time knew Weber’s theory and did not make
the connection between Mach’s ideas and Weber’s work. If someone had had the
right insight at that time and connected these two aspects, relational mechanics
might have arisen a hundred years before. All the ideas, concepts, force laws
and mathematical tools to implement relational mechanics were available during
the second half of last century. But it simply did not happen at that time, as
history shows. Relational mechanics was not discovered until many years later.

Before entering the new world view of relational mechanics, we will first pre-
sent Einstein’s theories of relativity and the problems it has inflicted on physics.
This is the subject of the next chapter.
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Chapter 7

Einstein’s Theories of
Relativity

7.1 Introduction

Albert Einstein (1879-1955) published his special theory of relativity in 1905,
while his general theory of relativity was published in 1916. In developing these
theories he was greatly influenced by Mach’s book The Science of Mechanics
[85, pp. 282-288]. In the last 80 years physics, and mechanics in particular,
have been dominated by Einstein’s ideas, since he became famous after 1919 as a
result of the solar eclipse expedition, which apparently confirmed his predictions
for the bending of light. Newtonian mechanics has since been considered only
as an approximation of the “correct” Einsteinian theories.

Here we will argue that Einstein’s theories do not implement Machian re-
lational ideas. Moreover, we will show that Relational Mechanics describes
the observed phenomena of nature in a better way than Einstein’s special and
general theories of relativity.

7.2 Einstein’s Special Theory of Relativity

Einstein’s special theory of relativity is presented in his paper of 1905 entitled
“On the electrodynamics of moving bodies” [86, pp. 35-65]. He begins this
paper with the following two paragraphs:

It is known that Maxwell’s electrodynamics—as usually understood
at the present time - when applied to moving bodies, leads to asym-
metries which do not appear to be inherent in the phenomena. Take,

125
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for example, the reciprocal electrodynamic action of a magnet and
a conductor. The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, whereas the
customary view draws a sharp distinction between the two cases in
which either the one or the other of these bodies is in motion. For
if the magnet is in motion and the conductor at rest, there arises
in the neighbourhood of the magnet an electric field with a certain
definite energy, producing a current at the places where parts of
the conductor are situated. But if the magnet is stationary and the
conductor in motion, no electric field arises in the neighbourhood
of the magnet. In the conductor, however, we find an electromotive
force, to which in itself there is no corresponding energy, but which
gives rise - assuming equality of relative motion in the two cases
discussed - to electric currents of the same path and intensity as
those produced by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to
discover any motion of the earth relatively to the “light medium,”
suggest that the phenomena of electrodynamics as well as of me-
chanics possess no properties corresponding to the idea of absolute
rest. They suggest rather that, as has already been shown to the
first order of small quantities, the same laws of electrodynamics and
optics will be valid for all frames of reference for which the equations
of mechanics hold good. We will raise this conjecture (the purport
of which will hereafter be called the “Principle of Relativity”) to the
status of a postulate, and also introduce another postulate, which is
only apparently irreconcilable with the former, namely, that light is
always propagated in empty space with a definite velocity c which is
independent of the state of motion of the emitting body. These two
postulates suffice for the attainment of a simple and consistent the-
ory of electrodynamics of moving bodies based on Maxwell’s theory
for stationary bodies. The introduction of a “luminiferous ether”
will prove to be superfluous inasmuch as the view here to be de-
veloped will not require an “absolutely stationary space” provided
with special properties, nor assign a velocity-vector to a point of
empty space in which electromagnetic processes take place.

Einstein and his followers have introduced many problems into physics with
this theory. We discuss a few of them in separate subsections.
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7.2.1 Asymmetry in Electromagnetic Induction

The asymmetry of electromagnetic induction noted above does not appear in
Maxwell’s electromagnetism, contrary to what Einstein wrote. It appears only
in Lorentz’s formulation of electrodynamics. This asymmetry did not exist for
Faraday (1791-1867), who discovered the phenomenon. In 1831 Faraday found
that he could induce an electrical current in a secondary circuit if he varied
the current in a primary circuit, but that while the current in the primary
circuit was constant no induction would be produced [87, see especially Series
I, §10]. He also discovered that he could induce a current in the secondary
circuit with a constant current in the primary circuit, provided that he moved
one or the other relative to the laboratory, so that a relative motion between
them would result ([87, see for instance Series I, §18 and 19]). He could also
induce a current in the secondary circuit approaching or receding a permanent
magnet, or by keeping the magnet at rest relative to the earth and moving the
secondary circuit (see for instance §39-43 and 50-54). In order to explain his
observations, he arrived at a law of induction [87, §114, p. 281].

According to Faraday, the explanation of the induction when a circuit is
moved toward a magnet or viceversa is based on the real existence of magnetic
lines of force and on their cutting the electrical circuit. Faraday never doubted
that these lines of force participated totally in the magnet’s translational mo-
tion (although he was in doubt as regards rotational motion) [88, p. 155]. To
Faraday, if we move a magnet (or current carrying wire) with a constant linear
velocity relative to the laboratory, the lines of magnetic field (or lines of force)
will also move with the same constant velocity relative to the laboratory, fol-
lowing the motion of the magnet. In the case of rotation he was not so explicit,
but since in the experiment described by Einstein there are only translational
motions with constant velocities, we will not discuss here the cases of rotation
of the magnet.

Maxwell (1831-1879) shared Faraday’s views on this matter and did not see
any “sharp distinction” in the explanation of Faraday’s experiments, whether
or not the circuit or magnet moved relative to the laboratory. For instance,
in §531 of his Treatise on Electricity and Magnetism, he condensed Faraday’s
experiments into a single law [89, p. 179]. That the lines of force (or lines
of magnetic induction, or lines of the magnetic field ~B) move relative to the
laboratory when the magnet moves relative to the Earth is stated plainly by
Maxwell in §541 of his Treatise. In Maxwell’s view the explanation for the
induction in the secondary circuit is always the same, depending only on the
relative motion between this secondary circuit and the lines of magnetic field
generated by the magnet or primary current-carrying circuit.

Nor does this asymmetry pointed out by Einstein appear in Weber’s elec-
trodynamics, although Weber’s electrodynamics does not utilize the concept
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of lines of force or lines of magnetic field ~B. Weber’s electrodynamics depends
only on the relative distances, relative velocities and relative accelerations of the
interacting charges ([12, Chapter 3 and Section 5.3]). The concepts of electric
and magnetic fields do not need to be introduced in Weber’s electrodynamics.
Apparently Einstein knew nothing about Weber’s electrodynamics, as there is
no work by Einstein in which he mentions either Wilhelm Weber’s name or We-
ber’s electrodynamics, to the best of our knowledge. Weber’s electrodynamics
was the main electromagnetic theory in Germany during the third quarter of
19th century. It was also discussed at length in the last Chapter of Maxwell’s
Treatise. It also appears that Einstein never read Maxwell’s Treatise either,
even though it was first published in 1873 and a German translation appeared
in 1893 [88, pp. 138-139, note 7].

The phenomenon of induction is always interpreted in the same way in We-
ber’s electrodynamics, whether the observer (or the earth) is at rest relative
to the magnet or to the electrical circuit. The only important quantity is the
relative velocity between the magnet and the electrical circuit in which the
current is induced. The velocity of each of these bodies (magnet or electri-
cal circuit) relative to the observer or to the earth is meaningless in Weber’s
electrodynamics.

Here we present briefly an analysis of this experiment based on Weber’s
electrodynamics. The magnet is represented by a circuit 1 in which a current
I1 flows. We want to know the current I2 which will be induced in a second
circuit 2 due to their relative motion. We then consider two rigid circuits 1 and
2 which move relative to the earth with linear velocities ~V1 and ~V2, respectively,
without any rotation, as in Figure 7.1.

If there are no batteries or other current sources connected to circuit 2,
and if its resistance is R2, then the induced current which will flow on it due
to induction by the first circuit is given by I2 = emf12/R2, where emf12 is
the electromotive force induced by the first circuit on the second. Weber’s
electrodynamics gives the infinitesimal d2emf12 exerted by a neutral current
element I1d~l1 (with charges dq1+ and dq1− = −dq1+) located at ~r1 on another
neutral current element I2d~l2 (with charges dq2+ and dq2− = −dq2+) located
at ~r2 as (see [12, Section 5.3] and Figure 7.2):

d2emf12 = −dq1+

4πεo

r̂12 · d~l2
r2
12c

2

{
2~V12 · (~v1+d − ~v1−d)

− 3(r̂12 · ~V12) [r̂12 · (~v1+d − ~v1−d)] + ~r12 · (~a1+ − ~a1−)
}

.

Here r12 is the distance between the current elements, r̂12 is the unit vector
pointing from 2 to 1, ~V12 ≡ ~V1− ~V2, ~v1+d and ~v1−d are the drifting velocities of
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Figure 7.1: Two current carrying circuits moving relative to the earth with
velocities V1 and V2.

the positive and negative charges of current element 1 (their velocity relative to
the wire), while ~a1+ and ~a1− are their accelerations relative to the terrestrial
frame being considered here.

Integrating this result over the closed circuits C1 and C2 yields the usual
expression of Faraday and Neumann, namely (see [12], Section 5.3):

emf12 = −µo

4π

d

dt

[
I1

∮
C1

∮
C2

(r̂12 · d~l1)(r̂12 · d~l2)
r12

]

= −µo

4π

d

dt

[
I1

∮
C1

∮
C2

d~l1 · d~l2
r12

]
= − d

dt
(I1M) .

Here M is the coefficient of mutual induction.
Supposing I1 to be a constant in time and rigid circuits which translate as

a whole without rotation, with velocities ~V1 and ~V2, this emf can be written
as:

emf12 = −I1

∮
C1

∮
C2

d~l1 · d~l2
d

dt

1
r12

= I1(~V1 − ~V2) ·
∮

C1

∮
C2

(d~l1 · d~l2)r̂12

r2
12

.
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Figure 7.2: Two neutral current elements moving relative to the earth with
velocities V1 and V2.

This result can also be obtained directly from Weber’s electrodynamics with
the energy of interaction between the circuits.

What is important to realize is that Weber’s expression depends only on the
relative velocity between the circuits, ~V1 − ~V2. This shows that whenever this
relative velocity is the same, the induced current will also be the same. For
instance, in Einstein’s first situation we have the magnet in motion relative to
the earth or laboratory and the circuit at rest (~V1 = ~V and ~V2 = 0), while in the
second situation we have the magnet at rest and the conductor moving in the
opposite direction relative to the earth or laboratory (~V1 = 0 and ~V2 = −~V ).
As the relative motion is the same in both cases, ~V1 − ~V2 = ~V , Weber’s law
predicts the same induced current, and this is what is observed.

The difference between Weber’s prediction and Lorentz’s is that we do not
need to speak of electric and magnetic fields, so that the Weberian explana-
tion is exactly the same in both cases. There is no “sharp distinction” in the
explanation of the induction in both cases.

This distinction appears only in Lorentz’s formulation of Maxwell’s elec-
trodynamics. Einstein was referring to this formulation when he spoke of the
asymmetry in the explanation of the phenomenon ([88, p. 145]). According to
Lorentz, when the magnet is in motion with a velocity ~vm relative to the ether,
it generates in the ether not only a magnetic field but also an electric field given
by ~E = ~B × ~vm. This electric field acts in the circuit which is at rest relative
to the ether, inducing a current in it. If the magnet is at rest in the ether, it
generates only a magnetic field ~B and no electric field, so that when the circuit
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is moving in the ether with a velocity ~vc, its charges will experience a magnetic
force given by q~vc × ~B which will induce a current in the circuit. If ~vm = −~vc

then the induced current will be the same. But the origin of this current is
completely different in both cases in Lorentz’s theory. In the first case, it is
due to an electric field, and there is no magnetic force, while in the second
case there is no electric field, and the induction is due to a magnetic force. It
would appear that Einstein was following the discussion of the phenomenon as
presented by Föppl in his book of 1894, which Einstein read between 1896-1900
([88, pp. 146 and 150-4]).

To Lorentz only velocities relative to the ether were important. By making
the ether concept superfluous, Einstein needed to utilize velocities relative to the
observer in this analysis. This is the beginning of the introduction in physics of
quantities which depend on the observer (or on motion relative to the observer,
or frame-dependent quantities). Moreover, by relying on Lorentz’s views of
Maxwell’s electrodynamics, with all the asymmetries built into this formulation,
Einstein maintained problems which were to accumulate in the future. All of
this might have been avoided if he had opted for the points of view of Faraday,
the original viewpoint of Maxwell, or of Weber, or if he had been guided only
by the experiments of induction, which do not suggest any asymmetry.

This is one of the strong points in favour of Weber’s electrodynamics. There
are many other experiments which can be easily explained in this formulation,
as is the case of unipolar induction [19].

7.2.2 Postulate of Relativity

Einstein called the postulate of relativity the statement that “the same laws of
electrodynamics and optics will be valid for all frames of reference for which
the equations of mechanics hold good.” He gave the following formal definition
for the principle of relativity [86, p. 41]: “The laws by which the states of
physical systems undergo changes are not affected, whether these changes of
state be referred to the one or the other of two systems of coordinates in uniform
translatory motion.” This postulate is limited. The reason for this limitation
is that in non-inertial frames of reference, Newton’s second law of motion in
the form of Eq. (1.3) needs to be modified by the introduction of “fictitious
forces,” as we saw in chapter 3.

Although he called this a postulate of “relativity,” this is not the case at all.
After all, he retains the Newtonian concept of absolute space disconnected from
distant matter. Newton was much more precise and correct when he adopted
the words “absolute space and time” to explain his laws of motion. He also
knew how to distinguish very clearly the differences which should appear in
the phenomena when there was only a relative rotation between local bodies
and the fixed stars, or when there was a real absolute rotation of local bodies
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relative to space (the bucket experiment, the flattenig of the earth, etc.)
To Newton, absolute space and the frames of reference not accelerated rela-

tive to it form a privileged set of inertial frames, in which the laws of mechanics
take their simplest forms. Einstein’s postulate of relativity continues to give
this set of frames of reference privileged status. For this reason it might be
called, more appropriately, as inertial postulate or absolute postulate.

7.2.3 Twin Paradox

We can also see this absolute aspect of Einstein’s theory in one of the famous
paradoxes which appears in special relativity (but not in Newtonian mechanics
nor in the relational mechanics presented here). A detailed discussion of this
paradox can be found elsewhere ([90] and [91]).

Two twins A and B are born on the same day on the earth. Later on A
travels to a distant place and returns to meet his brother who remained on
the earth. According to relativity, the time runs slower for A than for B, so
that when they meet again B is older than A. But from the point of view of
A, it was B who travelled far away and returned back, so that it should be B
who became younger. This is the paradox. To avoid the paradox we might say
that they always kept the same age, but this is not what Einstein’s theory of
relativity predicts. According to this theory, A really becomes younger than
B. We can only understand this by saying that while B remained at rest or in
uniform rectilinear motion relative to absolute space or to an inertial frame,
the same is not true for A, who was in motion and accelerated relative either
to absolute space or to an inertial system. Once more, we see that despite
the name “relativity,” Einstein’s theory retains the basic absolute concepts of
Newtonian mechanics.

Here we are only discussing the conceptual aspects of Einstein’s theory. It
is usually stated that this dilation of the proper time of a body in motion has
been proved by experiments in which unstable mesons are accelerated and move
at high velocities in particle accelerators. In these experiments it is observed
that the half-lives (time for radioactive decay) of these accelerated mesons are
greater than the half-lives of mesons at rest in the laboratory.

But this is not the only interpretation of these experiments. It can be equally
argued that these experiments only show that the half-lives of the unstable
mesons depend on their accelerations and high velocities relative to the distant
matter in the cosmos, or on the strong electromagnetic fields to which they
were subject. Recently Phipps derived this alternative explanation based on
relational mechanics [92].

An analogy to this new interpretation is what happens to a common pendu-
lum clock. Suppose two identical pendulum clocks at rest on the earth, marking
the same time at sea level and running at the same pace. We then carry one
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of them to a high mountain, keep it there for several hours, and bring it back
to sea level at the location of the other clock. Comparing the two clocks it is
observed that the clock which was carried to the top of the mountain is delayed
relative to the one which stayed all time at sea level. This is the observational
fact. It can be interpreted saying that time ran more slowly for the clock at the
top of the mountain. Or it can be interpreted by saying that time ran equally
to both clocks, but that the period of oscillation of the pendulum clock depends
on the gravitational field of the earth (T = 2π

√
`/g). As the gravitational field

is weaker at the top of the mountain than at sea level, the clock which stayed
on the mountain is delayed as compared with the one at sea level. This latter
interpretation seems to us more natural and simple (and for this reason more
in agreement with the usual procedures of physics) than the other one which
involves changes in the fundamental concepts of space and time.

The same reasoning can be applied to the meson experiment. Instead of
saying that time runs more slowly to a body in motion, it seems to us more
simple to state that the half-lives of the mesons depend on their high velocity
relative to the distant material universe. This explanation is not only more suit-
able to explain the experiment, but also more in agreement with the standard
procedures of physics. It also leads to important new suggestions which might
be checked experimentally (a possible influence of gravitation on radioactive
processes etc.)

7.2.4 Constancy of the Velocity of Light

Einstein’s second postulate (constancy of the velocity of light) introduces an-
other absolute concept or entity in mechanics, the velocity of light. Here is
this postulate [86, p. 38]: “light is always propagated in empty space with a
definite velocity c which is independent of the state of motion of the emitting
body.” On page 41 he gave a formal definition: “Any ray of light moves in the
‘stationary’ system of co-ordinates with the determined velocity c, whether the
ray be emitted by a stationary or by a moving body.”

With this postulate it appears that he is advocating the luminiferous ether.
After all, the property of something with a constant velocity independent of
the motion of the source is characteristic of waves moving in a medium, as
is the case of sound moving in air. But soon after the presentation of this
postulate he states that “the introduction of a ‘luminiferous ether’ will prove
to be superfluous inasmuch as the view here to be developed will not require
an ‘absolutely stationary space’ provided with special properties.” With this
statement we can only conclude that for Einstein the velocity of light is constant
not only whatever the state of motion of the emitting body, but also whatever
the state of motion of the receiving body (detector) and of the observer. This
conclusion is confirmed by Einstein’s own derivation of this “fact” in another
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section of his paper. Einstein calls K the stationary inertial system of reference,
with coordinates (x, y, z, t), where light propagates at a constant velocity c.
The frame of reference k, with coordinates (ξ, η, ζ, τ), moves relative to K
with a constant velocity v along the positive x direction. Here is Einstein’s
proof [86, p. 46]:

We now have to prove that any ray of light, measured in the moving
system, is propagated with the velocity c, if, as we have assumed,
this is the case in the stationary system; for we have not as yet
furnished the proof that the principle of the constancy of the velocity
of light is compatible with the principle of relativity.

At the time t = τ = 0, when the origin of the co-ordinates is common
to the two systems, let a spherical wave be emitted therefrom, and
be propagated with the velocity c in system K. If (x, y, z) be a
point just attained by this wave, then

x2 + y2 + z2 = c2t2 .

Transforming this equation with the aid of our equations of trans-
formation we obtain after a simple calculation

ξ2 + η2 + ζ2 = c2τ2 .

The wave under consideration is therefore no less a spherical wave
with velocity of propagation c when viewed in the moving system.
This shows that our two fundamental principles are compatible.

To us this is the main problem with Einstein’s theory. The reason is the
following: In everyday life we know two kinds of phenomena in physics. The
first kind is ballistic phenomena. Suppose that a cannon at rest on the earth’s
surface shoots cannon balls with a certain initial velocity vb relative to the earth,
neglecting the effects of air resistance. In this analysis we will also neglect the
effect of gravity, which would bend the trajectories of the bullets in parabolic
orbits. If the cannon moves with a velocity vc relative to the earth and shoots
a cannon ball, the velocity of the bullet relative to the earth will be vb + vc,
while the velocity of the bullet relative to the cannon will still be vb, once more
neglecting the effects of air resistance. This is typical of ballistic effects. Now
suppose we have a man holding several identical guns at rest relative to the
earth, each one of them pointing in one direction. Shooting all of them at the
same time will produce a spherical surface of bullets moving with velocity vb

relative to him and to the earth, as in Figure 7.3.
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Now if this man moves with a velocity vc relative to the earth’s surface and
shoots all the guns he is holding at the same time, he will still see a spherical
surface of bullets moving away from him with a velocity vb, neglecting the effects
of air resistance. Let us represent the earth’s frame by O with coordinates (x, y)
and the person’s frame (moving relative to the earth) by O’ with coordinates
(x′, y′). In this case the equation describing the spherical surface of bullets
centered on the moving man is given by x′2 + y′2 = (vbt)2, where t is the
time since the shooting of the guns. With the man moving to the right in
the x direction with velocity vc we have: x′ = x − vct and y′ = y, such that
the equation of the surface of bullets relative to the earth at the place where
the man shot the guns is given by (x − vct)2 + y2 = (vbt)2. For an observer
who stayed at rest relative to the earth the surface of the bullets will only be
centered on him at the initial instant, as in Figure 7.4, where all velocities are
relative to the earth’s surface. The form of the equation changed, and is no
longer given by x2 + y2 = (vbt)2, although this was the form of the equation in
the moving frame. We can see that Einstein’s conclusion (that the form of the
wave equation is invariable) is not valid for ballistic effects. Moreover, in these
ballistic effects the velocity of the bullet depends directly on the velocity of the
source.

Figure 7.3: Man shooting bullets while at rest relative to the earth.

The other kind of phenomenon known in physics depends directly on the
medium. The simplest example is that of sound. Suppose we have a train at
rest relative to the earth emitting a sound which moves relative to the earth
with the velocity vs, assuming the air to be at rest relative to the earth, as in
Figure 7.5.

If the train now moves with a velocity vt relative to the earth and emits a
sound, the sound will still move with the velocity vs relative to the earth. But
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Figure 7.4: Man shooting bullets while moving relative to the earth.

now the velocity of the sound relative to the train will be vs− vt in the forward
direction and vs + vt in the backward direction, assuming once more that the
air is at rest relative to the earth and that vs > vt.

In the case of sound, the form of the sound wave relative to the earth is
always spherical from the point of emission, whether the train is at rest or
moving relative to the earth: x2 + y2 = (vst)2. Relative to the train moving
in the x direction with a velocity vt (frame O’) the equation of the sound wave
takes the form (x′ + vtt)2 + y′2 = (vst)2 and not x′2 + y′2 = (vst)2. Now the
spherical surface is no longer centered on the moving frame (the train), shown
in Figure 7.6, where all velocities are relative to the earth’s surface. Einstein’s
conclusion that the form of the wave equation is invariable is not valid in the
case of sound either. Despite this fact, the velocity of sound relative to the
earth is independent of the state of motion of the source relative to the earth.

In the ballistic case the velocity of the bullets is constant relative to the
source at the moment of emission, even when the source is moving relative to
the earth. On the other hand, in the case of the whistling train the velocity of
sound is constant relative to the air and does not depend on the velocity of the
source. The form of the equation describing the wave front changes for different
moving frames in both cases.

Moreover, the velocity of the sound and of the bullets depends on the velocity
of the observer or detector. Let us consider an observer or detector O moving
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Figure 7.5: Train blowing whistle while at rest relative to the earth and air.

Figure 7.6: Train blowing whistle while moving relative to the earth and air.

with a velocity ~vo = −vox̂ relative to the earth. In the ballistic case he will find
a velocity vb+vo in the first case (cannon at rest relative to the earth shooting a
gun with velocity +vbx̂ relative to the earth) and vb +vc +vo in the second case
(cannon moving with velocity +vcx̂ relative to the earth), shown in Figures 7.7
and 7.8, where all velocities are relative to the earth.

As regards sound, in both cases (train at rest or moving relative to the
earth) the observer or detector will find the velocity of sound given by vs + vo,
irrespective of the train’s velocity relative to the earth or the air, as in Figures
7.9 and 7.10, where all velocities are relative to the earth and air. Once more
we are supposing the air at rest relative to the earth.

Let us give just another example of reasoning which shows that light velocity
must depend on the velocity of the observer or detector. Consider first a man
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Figure 7.7: Observer moving relative to the earth while the cannon is at rest.

Figure 7.8: Observer and cannon moving relative to the earth.

with a gun at rest in the laboratory. We will neglect the effect of air friction and
the deflection of the bullet due to the gravitational attraction of the earth. Let
us suppose that the man shoots a bullet with a velocity of 30 m/s. It will take
one second for the bullet to cross a 30 meter long room. Now let us suppose
there is a person at each end of the room. If both of them shoot their guns
toward each other at the same time, in half a second each bullet will move 15
meters, and the two will meet at the center of the room. The velocity of one
bullet relative to the other is obviously 60 m/s, as they moved the same 30
meters (15 meters each) but only in half a second. Alternatively, if the two
persons shot the guns at the same time but in the same direction, the two
bullets will never meet, keeping the same distance from each other, no matter

Figure 7.9: Observer moving relative to the earth and air, while the train is at
rest.

pessoal
Stamp
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Figure 7.10: Observer and train moving relative to the earth and air.

how long we wait. This means that in this second situation the velocity of one
bullet relative to the other is obviously zero, as their distance remains constant
as time passes. In order to see that the same must be true for light, we only
need to replace the words “gun” with “light source (like a lantern),” “bullet”
with “photon (or wave front)” and “30 m/s” by “3×108 m/s.” In the first case
the velocity of one photon relative to the other must be 6 × 108 m/s, while in
the second case it must be zero. After all, if two photons (or wave fronts) move
in the same direction with the same velocity, the velocity of one photon relative
to the other must be zero, by the definition of velocity (change of distance by
time interval). It cannot be 3× 108 m/s as Einstein said.

As we see here, the velocity of the cannon balls or of the sound always
depends on the velocity of the observer or of the detector. But what Einstein
concluded is that light is a completely different entity, such that its velocity
in vacuum never depends on the velocity of the observer. However, light is a
physical entity which carries momentum and energy, is affected by the medium
in which it propagates (reflection, refraction, difraction, Faraday rotation of the
plane of polarization etc.), it acts on bodies (heating them, causing chemical
reactions, ionizing atoms etc.) In this sense it is not a special entity. As
such it has certain similarities with both bullets and waves. Acceptance of the
conclusion that light velocity in vacuum is a constant for all inertial observers,
irrespective of their motion relative to the source, has created a host of problems
and paradoxes in the last 90 years.

To prove that the velocity of light does not depend on the motion of the
observer or detector, it would be necessary to perform experiments in the lab-
oratory in which the detector was moving at high velocities (close to c) relative
to the earth, while the source of light was at rest in the earth. To our knowledge
this kind of experiment has never been performed.

Wesley, Tolchelnikova-Murri, Hayden, Monti and several other authors have
presented strong and convincing arguments that the methods employed by Roe-
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mer and by Bradley to obtain the velocity of light prove that the measured value
of this velocity depends on the velocity of the observer relative to the source:
Wesley [93, Sections 2.2: Roemer’s measurement of the velocity of light and 2.4:
Bradley aberration to measure the velocity of light], Tolchelnikova-Murri [94],
Hayden [95] and Monti [96]. Roemer’s fundamental work can be found in the
original French ([97] and in [98, pp. 151-154]) and in English translation ([99]
and [97]). Bradley’s work can be found in English: Bradley [100] and [101], and
Sarton [102].

As we have seen, Einstein maintained the Newtonian concept of absolute
space (or of preferred inertial frames of reference) independent of distant mat-
ter and introduced another absolute quantity in the theory, light velocity in
vacuum. The works of Wesley and of Monti, on the other hand, show that light
velocity is a function of the state of motion of the observer.

7.2.5 Velocity in Lorentz’s Force

Another problem created by Einstein was his interpretation of the velocity in
the magnetic force q~v× ~B. We discussed this problem previously ([103] and [12,
Appendix A: The Origins and Meanings of the Magnetic Force ~F = q~v × ~B],
where all the relevant references can be found).

In Lorentz’s force, relative to what object, body or entity is to be under-
stood the velocity ~v of the charge q? Some options: relative to the macroscopic
source of the magnetic field (a magnet or current carrying wire), relative to
the magnetic field itself, relative to an inertial frame of reference, relative to
an arbitrary frame of reference not necessarily inertial, relative to the labora-
tory or to the earth, relative to the average motion of the microscopic charges
(usually electrons) giving rise to the magnetic field, relative to the detector of
the magnetic field, etc. Here we present the historical interpretations of this
velocity.

Maxwell died in 1879. In 1881 J. J. Thomson (1856-1940) for the first time
in physics formulated theoretically the magnetic force as q~v× ~B/2 [104, pp. 306-
310]. The velocity ~v in this theory was the velocity of the charge q relative to the
medium through which it was moving, a medium whose magnetic permeability
was µ. For Thomson this velocity of q was not relative to the luminiferous
ether, nor relative to the magnet which generated ~B, nor the velocity of q
relative to the observer. He called this ~v the actual velocity of the particle of
charge q. On page 248 of his article he stated: “It must be remarked that
what we have for convenience called the actual velocity of the particle is, in
fact, the velocity of the particle relative to the medium through which it is
moving” ..., “medium whose magnetic permeability is µ” [105]. In 1889, O.
Heaviside (1850-1925) deduced theoretically q~v × ~B (twice the value obtained
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by Thomson). He accepted Thomson’s interpretation for the meaning of ~v, as
can be seen from the title of his paper: “On the electromagnetic effects due to
the motion of electrification through a dielectric” [106]. This title shows that
for him this ~v was the velocity of the charge q relative to the dielectric material
through which it was moving. H. A. Lorentz (1853-1928) presented his famous
force law ~F = q ~E + q~v × ~B in 1895. To our knowledge he never performed a
single experiment to arrive at his expression. In order to show how he arrived at
it, we present the discussion in Lorentz’s famous book The Theory of Electrons.
Passages in square brackets are our words and the modern rendering of some
of his formulas (for instance, [a · b] is nowadays usually represented by ~a×~b).
He utilized the cgs system of units. What he called “electron” represented a
generic electrical particle (the charge we call nowadays “electron,” with a charge
q = −1.6×10−19 C and mass m = 9.1×10−31 kg, was only discovered in 1897).
We emphasized some important words. See Lorentz [107, pp. 14-15]:

However this may be, we must certainly speak of such a thing as
the force acting on a charge, or on an electron, on charged matter,
whichever appelation you prefer. Now, in accordance with the gen-
eral principles of Maxwell’s theory, we shall consider this force as
caused by the state of the ether, and even, since this medium per-
vades the electrons, as exerted by the ether on all internal points of
these particles where there is a charge. If we divide the whole elec-
tron into elements of volume, there will be a force acting on each
element and determined by the state of the ether existing within
it. We shall suppose that this force is proportional to the charge of
the element, so that we only want to know the force acting per unit
charge. This is what we can now properly call the electric force.
We shall represent it by f. The formula by which it is determined,
and which is the one we still have to add to (17)-(20) [Maxwell’s
equation’s], is as follows:

f = d +
1
c
[v · h].

[
~f = ~d +

~v × ~h

c

]
. (23)

Like our former equations, it is got by generalizing the results of
electromagnetic experiments. The first term represents the force
acting on an electron in an electrostatic field; indeed, in this case,
the force per unit charge must be wholly determined by the dielectric
displacement. On the other hand, the part of the force expressed by
the second term may be derived from the law according to which an
element of a wire carrying a current is acted on by a magnetic field
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with a force perpendicular to itself and the lines of force, an action,
which in our units may be represented in vector notation by

F =
s

c
[i · h],

[
~F =

id~l × ~h

c

]
,

where i is the intensity of the current considered as a vector, and s
the length of the element. According to the theory of electrons, F is
made up of all the forces with which the field h acts on the separate
electrons moving in the wire. Now, simplifying the question by the
assumption of only one kind of moving electrons with equal charges
e and a common velocity v, we may write

si = Nev,

if N is the whole number of these particles in the element s. Hence

F =
Ne

c
[v · h],

[
~F =

Ne~v × ~h

c

]
,

so that, dividing by Ne, we find for the force per unit charge

1
c
[v · h].

[
~v × ~h

c

]
.

As an interesting and simple application of this result, I may men-
tion the explanation it affords of the induction current that is pro-
duced in a wire moving across the magnetic lines of force. The two
kinds of electrons having the velocity v of the wire, are in this case
driven in opposite directions by forces which are determined by our
formula.

9. After having been led in one particular case to the existence of the
force d, and in another to that of the force 1

c [v ·h], we now combine
the two in the way shown in the equation (23), going beyond the
direct result of experiments by the assumption that in general the
two forces exist at the same time. If, for example, an electron were
moving in a space traversed by Hertzian waves, we could calculate
the action of the field on it by means of the values of d and h, such
as they are at the point of the field occupied by the particle.

It is difficult to disagree with O’Rahilly, when he notes that this proof of the
formula is extremely unsatisfactory, adding that [108, p. 561]: “There are two
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overwhelming objections to this alleged generalization. (1) The two ‘particular
cases’ here ‘combined’ are quite incompatible. In the one case we have charges
at rest, in the other the charges are moving; they cannot be both stationary
and moving. (2) Experiments with a ‘wire carrying a current’ have to do with
neutral currents, yet the derivation contradicts this neutrality.”

We can also mention that in his generalization Lorentz did not consider the
possibility that the electromagnetic force might depend on the acceleration of
the test body, nor on the square of the velocity of the test body. These two
terms appear in Weber’s force law but not in Lorentz’s force.

As we can see from the above quotation (“... force as caused by the state
of the ether, and even, since this medium pervades the electrons, as exerted by
the ether ...”), for Lorentz it was originally the velocity of the charge relative to
the ether and not, for instance, relative to the observer or frame of reference. In
Lorentz’s theory the ether was in a state of absolute rest relative to the frame of
fixed stars [85, p. 111]. A conclusive proof of this interpretation can be found
in another work of Lorentz, Lectures on Theoretical Physics [109, Vol. 3, p.
306] and [108, Vol. 2, p. 566]. In this work Lorentz says: “Imagine an electric
current flowing in a closed circuit without resistance. Will this current act upon
a particle carrying a charge e which is placed in its neighbourhood? (...) The
answer to this question was, of course, that the current did not act upon the
particle. (...) Suppose, however, that both share in some motion, e. g. the
earth’s motion. What then? To begin with, the charged particle will move with
a certain velocity through the magnetic field of the current and it will thus be
acted upon by some force. (...)” In this last case there is no motion between the
charge and the current carrying circuit, nor between the charge and the earth or
laboratory, nor even between the charge and the observer (who is supposedly
at rest in the laboratory). But to Lorentz, even in this case there will be a
magnetic force acting on the charge. He could only consider this because he
supposed the ~v to be the velocity of the charge relative to the ether or to the
fixed stars. As the fixed stars did not cause any net force on q, all that remains
is the force exerted by the ether.

Einstein changed all this with his paper of 1905 on the special theory of rela-
tivity. What Einstein proposed in this paper was that the velocity ~v in Lorentz’s
force should be interpreted as the velocity of the charge relative to the observer
(and not relative to the dielectric, as maintained by Thomson and Heaviside,
nor relative to the ether, as maintanined by Lorentz). Eintein obtains Lorentz’s
transformations for the coordinates and for time (transformations which relate
the magnitudes in one inertial frame to another inertial frame moving relative
to the first with a constant velocity). He obtains these transformations also
for the electric and magnetic fields. Einstein applies them in Lorentz’s force
~F = q ~E + q~v× ~B. He then begins to utilize the velocity ~v as the velocity of the
charge q relative to the observer. For instance, on page 54 he gives the differ-
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ence between the old paradigm of electromagnetism and the new one based on
his theory of relativity (passages between square brackets are our words):

Consequently the first three equations above [for the transformation
of the electric and magnetic field components in two different inertial
systems which move relative to one another] allow themselves to be
clothed in words in the following ways:

1. If a unit electric point charge is in motion in an electromotive
field, there acts upon it, in addition to the electric force, an “elec-
tromotive force” which, if we neglect the terms multiplied by the
second and higher powers of v/c, is equal to the vector-product of
the velocity of the charge and the magnetic force [ ~B], divided by
the velocity of light. (Old manner of expression.)

2. If a unit electric point charge is in motion in an electromagnetic
field, the force acting upon it is equal to the electric force which
is present at the locality of the charge, and which we ascertain by
transformation of the field to a system of coordinates at rest rela-
tively to the electrical charge. (New manner of expression.)

In other words, according to Einstein we would have ~F = q ~E +q~v× ~B in the
first case, while in the second case we only have ~F = q ~E′, because now ~v′ (the
velocity of the charge relative to the new system of reference at rest relative to
it) is zero, so that q~v′× ~B′ = 0. Einstein is introducing frame-dependent forces
here, i.e., forces whose values depend on the motion between the test body and
the observer. The introduction of physical forces which depend on the state of
motion of the observer has created many problems for the explanation of several
simple phenomena of nature. Unfortunately it has been part of theoretical
physics ever since that time. No experiment has suggested or forced this new
interpretation. This whole interpretation arose from Einstein’s mind. The usual
expression for the magnetic force might have been maintained, interpreting ~v as
the velocity of the test charge relative to the magnet or current-carrying wire,
without any contradictions with experimental data.

7.2.6 Michelson-Morley Experiment

Another problem created by Einstein is due to his interpretation of the Michel-
son-Morley experiment. This famous experiment sought an interference pattern
of two light beams which was thought to depend on the motion of the earth
relative to the ether. No effect was found with the predicted order of magnitude
(experiment with a precision of first order in v/c performed by Michelson in 1881
and of second order performed by Michelson and Morley in 1887, where v was
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the supposed velocity of the earth relative to the ether, taken in practice as the
velocity of the earth relative to the frame of fixed stars).

The most straightforward interpretation of this experiment is that there is no
ether. Only the relative motion between light, the mirrors, the charges in them
and the earth are important, no matter what the velocity of any of these bodies
relative to the ether or to absolute space. In this regard the results obtained
by Michelson and Morley agree completely with Weber’s electrodynamics, as in
this theory the ether plays no role.

As noted earlier, Lorentz (and Fitzgerald) believed in the ether. To reconcile
the null result of the experiment with the idea of an ether which is at rest relative
to the set of fixed stars, and which was not dragged by the earth, they needed
to introduce the idea of length contraction of rigid bodies moving through the
assumed ether. This was strange and ad hoc, but worked.

Let us see what Lorentz has to say in his text of 1895 [110], our emphasis:

Michelson’s Interference Experiment

1. As Maxwell first remarked and as follows from a very simple
calculation, the time required by a ray of light to travel from a
point A to a point B and back to A must vary when the two points
together undergo a displacement without carrying the ether with
them. The difference is, certainly, a magnitude of second order;
but it is sufficiently great to be detected by a sensitive interference
method.

(...)

If we assume the arm which lies in the direction of the Earth’s
motion to be shorter than the other by Lv2/2c2, and, at the same
time, that the translation has the influence which Fresnel’s theory
allows it, then the result of the Michelson experiment is explained
completely.

Thus one would have to imagine that the motion of a solid body
(such as a brass rod or the stone disc employed in the later experi-
ments) through the resting ether exerts upon the dimensions of that
body an influence which varies according to the orientation of the
body with respect to the direction of motion. (...)

Einstein, however, stated that “the introduction of the ‘luminiferous ether’
will prove to be superfluous.” If this is the case, then he should have discarded
length contraction of rods and rigid bodies. After all, this idea of length con-
traction was only introduced to reconcile the null result of the Michelson-Morley
experiment with the ether concept. If there is no ether, we should not expect
any change in the interference fringes (and no displacement was found with the
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expected value). But in this case it makes no sense to introduce or to suppose
a length contraction of bodies. Making the ether superfluous would require
making length contraction superfluous as well. This was clearly pointed out
by O’Rahilly in his book, Electromagnetic Theory - A Critical Examination of
Fundamentals, Vol. 1, Chap. VIII, Sect. 1, p. 259 [108]. As we know, this
logical course was not followed by Einstein. He retained the length contraction
although he had discarded the ether! With this, another source of confusions
and paradoxes was brought into physics.

There are several other problems with Einstein’s special theory of relativity:
the difficulty in explaining the Sagnac and Michelson-Gale experiments ([93],
[95] and [96]); observations of Doppler effects for Venus seem to contradict spe-
cial relativity ([111]); superluminal solutions of Maxwell’s equations challenge
the principle of relativity ([112]) etc. We will not go into further detail here.

After discussing some aspects of Eintein’s special theory of relativity, we
analyse his general theory in the next section.

7.3 Einstein’s General Theory of Relativity

Einstein’s general theory of relativity is presented in his 1916 work called “The
foundation of the general theory of relativity” [113]. We present several prob-
lems with this theory, as we have done with his special relativity.

7.3.1 Relational Quantities

Einstein begins his article with the following paragraphs:

The special theory of relativity is based on the following postulate,
which is also satisfied by the mechanics of Galileo and Newton.

If a system of co-ordinates K is chosen so that, in relation to it,
physical laws hold good in their simplest form, the same laws also
hold good in relation to any other system of co-ordinates K ′ mov-
ing in uniform translation relatively to K. This postulate we call
the “special principle of relativity.” The word “special” is meant to
intimate that the principle is restricted to the case when K ′ has a
motion of uniform translation relatively to K, but that the equiva-
lence of K ′ and K does not extend to the case of nonuniform motion
of K ′ relatively to K.

In the general theory of relativity Einstein sought to generalize his special
theory in such a way that “the laws of physics must be of such a nature that
they apply to systems of reference in any kind of motion” (his words), and not
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only for inertial frames [113, p. 113]. Did he succeed in doing so? There are
reasons for doubt. One of the reasons for this failure has been the path he chose
to follow in order to implement his ideas.

According to Barbour [4, p. 6]:

Einstein himself commented1 that the simplest way of realizing the
aim of the theory of relativity would appear to be to formulate the
laws of motion directly and ab initio in terms of relative distances
and relative velocities—nothing else should appear in the theory. He
gave as the reason for not choosing this route its impracticability.
In his view the history of science had demonstrated the practical
impossibility of dispensing with coordinate systems.

Here is Barbour’s translation of the relevant section of Einstein’s paper [69,
p. 186]:

We want to distinguish more clearly between quantities that be-
long to a physical system as such (are independent of the choice of
the coordinate system) and quantitities that depend on the coordi-
nate system. One’s initial reaction would be to require that physics
should introduce in its laws only the quantities of the first kind.
However, it has been found that this approach cannot be realized
in practice, as the development of classical mechanics has already
clearly shown. One could, for example, think—and this was ac-
tually done—of introducing in the laws of classical mechanics only
the distances of material points from each other instead of coordi-
nates; a priori one could expect that in this manner the aim of the
theory of relativity should be most readily achieved. However, the
scientific development has not confirmed this conjecture. It cannot
dispense with coordinate systems and must therefore make use in
the coordinates of quantities that cannot be regarded as the results
of definable measurements.

As we will see in this book, it is possible to follow this route successfully
with a Weber-type law for gravitation. Einstein was mistaken when he asserted
that this route was impractical. Weber introduced his relational force in 1846,
70 years prior to this statement by Einstein. In this book we show that with
a Weber-type law applied to gravitation (as suggested by several authors since
the 1870’s), we can implement quantitatively all of Mach’s ideas. We show that
by spinning a spherical shell or the distant universe, centrifugal and Coriolis’s
forces spring into action; we implement a mechanics without absolute space

1A. Einstein, Naturwissenschaften, 6-er Jahrgang, No. 48, 697 (1918) (passage on p. 699).
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and time; and also without frame-dependent forces; the inertial frames become
directly related or determined by the distant material universe; dynamics be-
comes equivalent to kinematics; and even the kinetic energy can be shown to
be an energy of interaction like any other potential energy.

7.3.2 Invariance in the Form of the Equations

In another part of the paper Einstein explained what he meant by the statement
that “the laws of physics must be of such a nature that they apply to systems of
reference in any kind of motion.” He clarified his thoughts by stating that [113,
p. 117]: “The general laws of nature are to be expressed by equations which
hold good for all systems of co-ordinates, that is, are co-variant with respect
to any substitutions whatever (generally co-variant).” The term covariant had
been introduced by Minkowski in 1907-08. He referred to the identity or equality
in the form of the equations in different inertial frames as “covariance” [88, pp.
14, 240-1 and 288]. Thus, by laws of the same nature Einstein meant laws of the
same form. But this requirement is known to be false when we are dealing with
non-inertial frames of reference. For instance, in an inertial frame of reference
O we write Newton’s second law of motion in the form ~F = mi~a, while in a
non-inertial frame of reference O’ which rotates relative to the first one with
a constant angular velocity ~ω, this law takes the form: ~F = mi(~a′ + ~ω × (~ω ×
~r′) + 2~ω × ~v′). This works perfectly well, as we saw in chapter 3. This means
that Einstein’s statement that the laws of physics should have the same form
in all frames of reference can only cause confusion and ambiguities. We need
to change many concepts of space, time, measurements etc. in order for this
theory to correctly predict the facts in different accelerated frames of reference.
It would be much simpler, more coherent and in agreement with the previous
knowledge of the laws of physics to require that each two-body force have the
same numerical value (although not necessarily the same form) in all frames of
reference. Even Newton’s inertial forces have this property. For instance, the
value mi~a in the inertial system O is exactly equal in magnitude and direction
to the value mi(~a′+~ω×(~ω×~r′)+2~ω×~v′) in the non-inertial system O’, although
the form is completely different in both cases. This is what is implemented in
relational mechanics.

7.3.3 Implementation of Mach’s Ideas

There are many other problems with Einstein’s general theory of relativity. In
particular, although he tried to implement Mach’s principle with this theory,
he did not succeed. In a book originally published in 1922, The Meaning of
Relativity, Einstein presented three consequences which ought to be expected
in any theory implementing Mach’s ideas [114, pp. 95-96]:
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What is to be expected along the line of Mach’s thought?

1. The inertia of a body must increase when ponderable masses are
pilled up in its neighbourhood.

2. A body must experience an accelerating force when neighbourring
masses are accelerated, and, in fact, the force must be in the same
direction as that acceleration.

3. A rotating hollow body must generate inside of itself a ‘Coriolis
field’, which deflects moving bodies in the sense of the rotation, and
a radial centrifugal field as well.

We shall now show that these three effects, which are to be expected
in accordance with Mach’s ideas, are actually present according to
our theory, although their magnitude is so small that confirmation
of them by laboratory experiments is not to be thought of.

According to Einstein, a fourth consequence which should appear in any
theory incorporating Mach’s principle was: “4. A body in an otherwise empty
universe should have no inertia” [75]. Related to this is the following statement:
“4’. All the inertia of any body should come from its interaction with other
masses in the universe” [75]. A statement of Einstein similar to these two
is [114, p. 98]: “Although all of these effects are inaccessible to experiment,
because k is so small, neverthless they certainly exist according to the general
theory of relativity. We must see in them a strong support for Mach’s ideas
as to the relativity of all inertial actions. If we think these ideas consistently
through to the end we must expect the whole inertia, that is, the whole gµν-
field, to be determined by the matter of the universe, and not mainly by the
boundary conditions at infinity.” Another statement of Einstein along the same
direction can be found in [115, see especially p. 180]: “In a consistent theory
of relativity there can be no inertia relatively to “space,” but only an inertia
of masses relatively to one another. If, therefore, I have a mass at a sufficient
distance from all other masses in the universe, its inertia must fall to zero.”

Although Einstein at first thought that these consequences did follow from
his general theory of relativity, he soon realized this was not the case. For an
analysis of this we refer the readers to references in the bibliography (Sciama
[70], Reinhardt [75], Raine [77] and Pais [85, pp. 282-8]).

The first consequence does not appear in general relativity. There are no
observable effects in a laboratory from a spherically symmetric agglomeration
of matter at rest around it. This means that the inertia of a body does not
increase in general relativity with the agglomeration of masses in its neighbour-
hood. Einstein initially arrived at the wrong conclusion that general relativity
predicted this effect based on a misinterpretation of a calculation performed in
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a special coordinate system, as was pointed out by Brans in 1962 (Brans [116],
Reinhardt [75] and Pfister [117]).

The second consequence does occur in general relativity, but its interpreta-
tion is not unique ([75]).

The third consequence also appears in general relativity, as was first found by
Thirring (1888-1976) in 1918 and 1921 ([118] and [119]). There is a translation
to English of these basic papers of Thirring and of another one of Lense and
Thirring in Mashhoon, Hehl and Theiss [120]. However, the terms obtained by
Thirring based on general relativity are not exactly as they should be. Working
in the weak field approximation he showed that a spherical shell of mass M ,
radius R, spinning with a constant angular velocity ~ω relative to a frame of
reference O exerts a force on an internal test particle of mass m, located at ~r
relative to the center of the shell, moving with velocity ~v and acceleration ~a,
given by (Thirring [119], Peixoto and Rosa [121] and Pfister [117]):

~F = − 4GM

15Rc2
[m~ω × (~ω × ~r) + 10m~v × ~ω + 2m(~ω · ~r)~ω] . (7.1)

The common coefficient 4GM/15Rc2 has no dimensions. We will call this ex-
pression Thirring’s force.

There is an axial term proportional to (~ω · ~r)~ω in this equation which does
not have a corresponding term in Newtonian theory. In other words, there is
no “fictitious force” which behaves like this.

Moreover, Einstein wanted to obtain the classical centrifugal and Coriolis
forces after integrating this result for the whole universe. Considering that the
integration of 4GM/15Rc2 over the whole universe yields exactly one, we can
see that Thirring’s force yields the correct centrifugal force. On the other hand,
it will yield simultaneously a term 5 times larger than the classical Coriolis
force 2m~ω× ~v. After all, the classical fictitious force ~Ff is given by Eq. (3.17),
namely:

~Ff = −m~ω × (~ω × ~r)− 2m~ω × ~v

− m
d~ω

dt
× ~r −m~ao′o .

This shows that Einstein’s general theory of relativity does not succeed in
deriving the centrifugal and Coriolis forces simultaneously. Later developments
based on general relativity by Bass, Pirani, Brill, Cohen and many others did
not succeed as well. They could not derive these two terms simultaneously
with the correct coefficients, as they are known to exist in non-inertial frames of
reference in Newtonian theory. Moreover, they could not eliminate the spurious
axial term at the same time. For discussions and references, see Bass and Pirani
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[122], Brill and Cohen [123], Cohen and Brill [124], Reinhardt [75], Peixoto and
Rosa [121] and Pfister [117]. This shows that we cannot derive the correct
Newtonian results in non-inertial frames of reference with Einstein’s theory of
relativity.

Putting ~ω = 0 in Thirring’s force, Eq. (7.1), once more demonstrates that
a stationary and not spinning spherical shell does not exert any force on an in-
ternal test particle according to general relativity, no matter what the position,
velocity and acceleration of the particle relative to the shell. Consequently, the
inertia of a body does not increase when we pile up symmetrically stationary
ponderable mass in its neighbourhood, contrary to Einstein’s wishes.

It should be observed here that Einstein arrived at the third consequence
(that a spinning shell should generate centrifugal forces on bodies in its inte-
rior) influenced by Mach’s ideas. As we saw previously in section 5.1, Clarke
concluded two hundred years before that Leibniz’s ideas would lead to the
same consequence, but upsidedown. In other words, annihilating the fixed stars
(many spherical shells) which are spinning around the solar system should an-
nihilate the centrifugal forces. This shows how similar the ideas of Leibniz and
Mach actually are.

The fourth consequence does not arise in general relativity either. Einstein
showed that his field equations imply that a test-particle in an otherwise empty
universe has inertial properties (Sciama [70] and Reinhardt [75]). The concept
of inertial mass is as intrinsic to the body in general relativity as it was in
Newtonian mechanics. Einstein did not succeed in constructing a theory where
all the inertia of a body comes from its gravitational interaction with other
bodies in the universe, in such a way that a body in an otherwise empty universe
would have no inertia. Even his introduction of the cosmological term in general
relativity did not provide a remedy, because in 1917 de Sitter found a solution
of his modified field equations in the absence of matter [85, p. 287]. Einstein
could never avoid the appearance of inertia relative to space in his theories,
although this was required by Mach’s principle.

Erwin Schrödinger (1887-1961) presented another argument showing that
general relativity does not comply with Mach’s principle [125] and [83]. In this
article he says: “The general theory of relativity too in its original form2 could
not yet satisfy the Machian requirement, as was soon recognized. After the
secular precession of the perihelion of Mercury was deduced, in amazing agree-
ment with experiment, from it, every naive person had to ask: With respect to
what, according to the theory, does the orbital ellipse perform this precession,
which according to experience takes place with respect to the average system
of the fixed stars? The answer that one receives is that the theory requires this
precession to take place with respect to a coordinate system in which the gravi-

2A. Einstein, Ann. d. Phys. 49. S. 769. 1916.
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tational potentials satisfy certain boundary conditions at infinity. However, the
connection between these boundary conditions and the presence of the masses
of the fixed stars was in no way clear, since these last were not included in the
calculation at all.” As the fixed stars were not included in the calculations of
the precession of the perihelion of the planets in general relativity, it does not
make sense to say that this precession is relative to the stars. On the other
hand, the observations made by astronomers indicate that this precession hap-
pens relative to the background of fixed stars. This can only be a coincidence in
general relativity. In relational mechanics this will no longer be a coincidence.
It will be shown that it is the distant universe which generates the inertial force
−m~a or the kinetic energy mv2/2. The distant universe has a fundamental
influence over the bodies of the solar system. The precession of the perihelion
calculated with relational mechanics is really relative to the distant universe,
and not relative to an abstract frame disconnected from the distant matter in
the cosmos.

Other discussions showing that Einstein’s general theory of relativity does
not implement Mach’s principle can be found in Jammer [33, pp. 194-199],
Ghins [62] and Borzeszkowski and Treder [126].

All of this shows that even in Einstein’s general theory of relativity the
concepts of absolute space or preferred inertial systems of reference disconnected
from the distant matter are still present. The same happens with the inertia or
with the inertial mass of bodies.

7.3.4 Newton’s Bucket Experiment

How does Einstein’s general theory of relativity cope with Newton’s key bucket
experiment? As before, let us concentrate on two situations. In the first one
the water and the bucket are at rest relative to the earth, and in the second
situation both are spinning together with a constant angular velocity ωb relative
to the earth. As ωb � ωe � ωs � ωg, during this experiment we can treat
the earth as essentially without rotation relative to the frame of fixed stars and
also relative to the frame of distant galaxies. Here ωe ≈ 7 × 10−5 s−1 is the
angular rotation of the earth relative to the fixed stars each day, ωs ≈ 2× 10−7

s−1 is the angular rotation of the solar system relative to the fixed stars with a
period of one year and ωg ≈ 8× 10−16 s−1 is the angular rotation of the solar
system around the center of our galaxy relative to the frame of distant galaxies
with a period of 2.5× 108 years.

As we have seen, the force exerted on the water molecules by the bucket is
the same in both situations, as they are at rest relative to one another in both
cases. This means that, in general relativity also, the bucket is not responsible
for the concave form of the water surface.

In general relativity, the force exerted by the earth on the water in the first
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situation is essentially the Newtonian result of the weight of the water pointing
vertically downwards. This will not be appreciably modified due to the rotation
of the water relative to the earth in the second situation, as vw � c, where vw

is the tangential velocity of any water molecule relative to the earth. In other
words, as the velocities involved in this problem are negligible compared with
light velocity, relativistic corrections will not be involved (they will not be of
any importance). This means that in general relativity the rotation of the water
relative to the earth cannot be responsible for the concavity of the water.

What about the fixed stars and distant galaxies? As we have seen, Mach
believed the answer of the puzzle lay in the rotation of the water relative to
distant matter. But in general relativity, there are no observable effects in a
laboratory from a spherically symmetric agglomeration of matter at rest around
it. In general relativity, the fixed stars and the distant galaxies exert essentially
zero net force on any molecule of water in the first situation, as they are more
or less evenly distributed around the earth. In the second situation seen from
the earth, the same thing happens, as we now have the water moving relative
to the fixed distant bodies. Consequently the fixed stars and distant galaxies
do not exert any force, such as −m~a, on the water molecules. The consequence
of this is that in general relativity the concave form of the water surface in the
second situation is not due to its rotation relative to the bucket, nor relative to
the fixed stars and distant galaxies.

The consequence of all this is that the concave form of the water must, ac-
cording to general relativity, be due to its rotation relative to something else
disconnected from matter. It might be Newton’s absolute space or an inertial
frame of reference which is completely disconnected (without any physical rela-
tion to) from the distant matter in the cosmos. Once more we see that general
relativity retains the Newtonian concepts of absolute space and absolute motion
(or, if you prefer, the concept of an inertial frame disconnected from distant
matter).

To emphasize this point, suppose we are in an inertial frame of reference
analysing the rotation of the water together with the bucket (second situation
described above). In practice we know that in inertial frames the distant galax-
ies are essentially without translational acceleration and without rotation. This
is a coincidence in Newtonian mechanics and also in general relativity, as there
are no connections between these two entities (inertial frames and distant galax-
ies) according to these theories. To simplify the analysis, let us suppose we are
in an inertial frame in which the distant galaxies homogeneously distributed in
the sky are at rest without rotation. In this frame the bucket and the water are
spinning together and the water surface is concave. As there are no observable
effects in general relativity from a spherically symmetric distribution of matter,
we can double the number and amount of matter of the galaxies around the
bucket without influencing the concavity of the water surface. Alternatively,
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we could make all the distant galaxies disappear (literally annihilate them from
the universe) without the slighest difference in the shape of the water surface.
This is in complete disagreement with Mach’s ideas (that the concavity of the
water was due to its rotation relative to distant matter). This means that ac-
cording to Mach’s ideas, if the distant matter disappears, the concavity of water
should vanish accordingly. Or, if we double the amount of distant matter, the
concavity of water should double for the same relative rotation. None of this
happens in Einstein’s general theory of relativity.

But the situation becomes hopeless in the frame of reference O’ which rotates
with the bucket and with the water in the second situation. Now we have the
bucket and the water at rest in this new frame, despite the concave form of the
water surface. In Newtonian mechanics the term mi~a describing the motion of
the water and responsible for the concavity of the surface in the previous frame
of reference O becomes zero in this new frame O’, as the water is now seen at
rest. As ~a′ = 0 we get mi~a

′ = 0. But according to Newtonian mechanics in the
frame O’, a centrifugal force mi~ω× (~ω×~r′) acts on the water. This centrifugal
force has exactly the same value mi~a had in the previous frame of reference.
We may also say that the term mi~a has been transformed into the centrifugal
force. The centrifugal force thus has exactly the right value to deform the water
surface by the same amount as in the previous frame of reference O. Hence, a
quantitative explanation is still possible in Newtonian mechanics not only in
the inertial frame O (utilizing mi~a), but also in the rotating frame O’ (utilizing
the centrifugal force). But in Eintein’s general theory of relativity a strange
thing happens. Although the fixed stars and distant galaxies exerted no force
on the water in the frame O in which the stars and distant galaxies were seen
at rest, the same does not happen in this frame O’ of the bucket in which the
stars and galaxies are seen rotating with ~ωso′ = −~ωbo, where ~ωbo is the angular
rotation of the bucket and water relative to O. Now, due to the Thirring’s force,
(7.1), there will appear a real gravitational force exerted by the spinning distant
matter on the water. This force did not exist in the frame of reference O. The
problem is that this new force is not exactly the Newtonian fictitious centrifugal
force. In it appears the new axial term (proportional to (~ω · ~r)~ω) which has no
analogue in Newtonian theory.

We saw previously that in general relativity, if we are in an inertial frame of
reference O the concavity of water will be independent of the amount of distant
matter around the bucket. But here we see that if we are in the frame O’
rotating with the bucket and water, so that the set of distant galaxies is rotating
in the opposite direction, the distant matter will exert a real gravitational force
on the water given by Thirring’s expression. In this frame of reference the
galaxies influence the motion of the water and the shape of its surface. If we
double the number of distant galaxies, the concavity of the water will change
accordingly!
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This is an undesirable consequence, as the physical situation is always the
same, only seen from different frames of reference. It does not make sense for
the galaxies to exert real gravitational forces on the water in one frame (with
possible physical consequences, such as changing the form or concavity of its
surface) and none at all in the other frame. In the frame O we can double or
eliminate with the distant galaxies without changing the concavity of the water,
while in the frame O’ there is an influence (although we are analysing the same
situation only from a different perspective): if we double the number of galaxies
the water can may even overflow the bucket!

In Newtonian mechanics the situation was much better and more coherent.
Whether distant matter was at rest or rotating, it never exerted any net force
on the water. We could explain the concavity of the water in the inertial
system O utilizing mi~a, or in the frame O’ rotating with the water introducing
the centrifugal force mi~ω × (~ω × ~r′) (mi~a of frame O was transformed into
mi~ω × (~ω × ~r′) in frame O’). Neither the centrifugal force nor mi~a had any
relation to the distant galaxies. But in general relativity we have a gravitational
frame-dependent force. In other words, the gravitational force between material
bodies (between the water and distant galaxies here) depends on the state of
motion of the observer. When the distant galaxies are seen at rest relative to O
and the water rotates relative to them, they do not influence the concavity of
the water surface, so that even when they disappear or are doubled in number,
the concavity will be the same. But when we see the galaxies in the frame
O’ rotating in the opposite direction, while the bucket and water appear at
rest, then according to Thirring’s expression, there will be a real gravitational
influence of the distant galaxies on the water. This means that in this frame
O’ the degree of concavity (whether or not the water overflows the bucket) is a
function of the mass of distant galaxies! This result is certainly undesirable in
any physical theory.

The same thing will happen according to general relativity in Newton’s two
globes experiment. In the frame of distant galaxies the tension in the cord is
independent of the number of galaxies, while in the frame which rotates with
the globes, the tension in the cord will be a function of the mass of distant
galaxies due to Thirring’s force.

It might be thought that this is a negligible effect, but this is not the case.
When we integrate Thirring’s force over the whole known universe we obtain
an expression of the same order of magnitude as the Coriolis and centrifugal
forces of classical mechanics. Replacing M by dM = 4πR2ρdR in Eq. (7.1) and
integrating from zero to Huble’s radius Ro = c/Ho yields:

~F = − 8Gρ

15H2
o

[m~ω × (~ω × ~r) + 10m~v × ~ω + 2m(~ω · ~r)~ω] . (7.2)

To arrive at this result we supposed a constant matter density ρ. The
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coefficient 8Gρ/15H2
o is of the order of unity with the known values of G, Ho

and the mean matter density of the universe, ρ ≈ 10−27 kg/m3.
Eq. (7.2) gives the gravitational force exerted by the spinning universe on

any body, according to general relativity. It has the same order of magnitude
as the classical Coriolis and centrifugal forces. But the form and numerical
values of Thirring’s force are different from the classical ones. This means
that Foucault’s pendulum or the flattening of the earth, when analysed from
the earth’s frame of reference in which the distant galaxies are seen as rotating,
should, according to general relativity, have values different from those observed
experimentally. This is one of the main quantitative flaws of general relativity.

Let us show this in detail. In the earth’s non-inertial frame of reference
S’ general relativity yields the same equation of motion as classical mechanics
for test bodies moving with small velocities compared with light velocity, Eq.
(3.17):

m
d2~r ′

dt2
= ~F −m~ω × (~ω × ~r ′)

− 2m~ω × d~r ′

dt
−m

d~ω

dt
× ~r ′ −m

d2~h

dt2
. (7.3)

The centrifugal and Coriolis forces are not due to interactions with the dis-
tant universe. However, in general relativity we must include in ~F not only
the local forces like the earth’s gravity acting on the test body but also the
real gravitational force exerted by the spinning distant universe acting on the
test body. This force exerted by the spinning distant universe is given by Eq.
(7.2). To have an order of magnitude of this force we utilize the critical density
characterized in general relativity, namely: ρ = 3H2

o/8πG. This means that the
coefficient in front of the square brackets will have the typical value of 1/15.
Performing the calculations as in chapter 3 yields a flattening of the earth given
by R>/R< ≈ 1 + (1 + 1/15)5ω2R3/4GM , while in Newtonian mechanics it is
given by 1 + 5ω2R3/4GM . The plane of oscillation of Foucault’s pendulum, on
the other hand, will precess at a rate given by Ω = (1 + 1/3)ω sinα, where α is
the local latitude. The factor 1/3 was due to 5×1/15, as in Eq. (7.2) the analo-
gous to Coriolis force is 5 times larger than the analogous to the centrifugal one.
However, what is observed experimentally is a precession given by Newtonian
mechanics, namely: Ω = ω sinα. These two numerical calculations show that
general relativity does not yield the measured values of these quantities in the
earth’s frame of reference.

This analysis shows clearly that in general relativity, kinematically equiv-
alent situations are not dynamically equivalent. Mach, on the other hand,
believed it would be possible to formulate a mechanics in which this would be
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accomplished. Once more we see that Einstein’s theory does not implement
Mach’s ideas.

The discussion of this section shows that general relativity cannot cope
with Newton’s bucket or two globes experiments in all frames of reference.
Classical Newtonian mechanics, on the other hand, could explain these two
experiments in all frames of reference, with mi~a in the inertial ones or with the
fictitious centrifugal forces in the non-inertial ones. Neither of these (mi~a or
the centrifugal force) is related to distant matter, which shows the coherence of
the theory. Einstein’s theory does not present the same coherence.

There are other problems with Einstein’s general theory of relativity: e.g.
the inertial mass is not well defined and it does not comply with the principle
of the conservation of energy [127]. We will not go into further detail here.

7.4 General Comments

In conclusion we may say that there are many problems with Einstein’s special
and general theories of relativity. We stress some of them here.

1) They are based on Lorentz’s formulation of electrodynamics, which suffers
from asymmetries pointed out by Einstein and many others. These asymmetries
do not appear in the observed phenomena of induction. There is another theory
of electrodynamics which naturally avoids all these asymmetries, namely, We-
ber’s electrodynamics. A complete discussion of this theory with many recent
references can be found elsewhere ([93] and [12]). In order to explain inertia,
Weber’s law is a better starting point than Lorentz’s force.

2) Einstein’s special theory of relativity maintains the concept of absolute
space and of inertial frames disconnected from distant matter. Moreover, it
introduces another absolute entity, namely, the velocity of light in vacuum.
Nothing in physics leads to the conclusion that light velocity should be constant
irrespective of the motion of the observer or of the detector. All velocities known
to us are constant relative to the source (like bullets) or constant relative to
the medium (like sound velocity which is constant relative to air, irrespective of
the motion of the source). But all of them vary according to the motion of the
observer or detector. To assert the opposite, as Einstein did, can only lead to
the necessity of introducing strange and unnecessary concepts in physics such
as time dilation, contraction of lengths, proper times etc. Einstein’s theory
maintained the concept of inertial frames disconnected from distant matter
and introduced the absolute character of light velocity in vacuum. To avoid
confusion with Einstein’s theories of relativity we adopt the name “Relational
Mechanics” for the theory developed here. Our work is based only on relative
concepts, without absolute space, absolute time, inertial mass, inertial frames
of reference or absolute light velocity.
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3) Einstein begins to interpret the velocity in Lorentz’s force as the velocity
of the test charge relative to the observer (and not to the dielectric in which
the charge is moving, nor to a special frame like the ether, nor to the magnet or
current-carrying wire generating the magnetic field). This Einsteinian point of
view is contrary to the interpretations of Thomson, Heaviside and Lorentz. No
experiment forced this new interpretation of the terms appearing in the basic
force law. The induction of currents discussed by Einstein was known since
1831, while Thomson’s paper is from 1881. Thomson (1881), Heaviside (1889)
and Lorentz (1895) maintained different interpretations although dealing with
the same experiments.

4) Einstein correctly pointed out that the best way to implement Mach’s
principle was to utilize only the distance between interacting bodies and their
relative velocities and accelerations. Unfortunately he himself did not follow
this route because he thought it was impractical. He was mistaken in this
regard, as we show in this book.

5) He correctly pointed out four features which should be implemented in
any model designed to incorporate Mach’s principle. His own general theory
of relativity does not completely reproduce these four elements, as he himself
concluded and as we have showed in this book. As we will see, these four
consequences follow directly and quantitatively from a relational mechanics
based on the works of Mach and Weber.

6) The forces similar to the centrifugal and Coriolis forces which appear
in general relativity with Thirring’s force are not as expected. The numerical
coefficients are not exactly equivalent to the terms which we know to exist in
non-inertial frames of reference of classical mechanics. The force analogous
to the Coriolis force, in particular, appears five times larger than expected,
assuming the centrifugal force to be correct; see Eq. (7.1). Moreover, there
appear spurious terms such as the axial terms, which we cannot get rid of. It
is known that these axial terms do not exist. In other words, no one has ever
found any effect or force in non-inertial frames which pointed in the direction
of ~ω.

7) General relativity cannot explain Newton’s bucket experiment in all
frames of reference, contrary to what happens in classical mechanics.

8) The only frame-dependent forces in Newtonian mechanics were the in-
ertial forces (mi~a, centrifugal, Coriolis, etc.). In Newtonian mechanics these
forces have no relation to the fixed stars or distant matter in the universe. For
this reason it was understandable that they had this odd property. All other
forces between material bodies were relational forces, depending only on intrin-
sic quantities of the system, such as the distance or velocity between material
bodies. Examples include: Newton’s law of gravitation, the elastic force of a
spring, the force of friction in a fluid which depends on the relative velocity
between the test body and the surrounding medium, Coulomb’s force, contact
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forces etc. Einstein changed all this by introducing frame-dependent electro-
magnetic forces with his new interpretation of the velocity in Lorentz’s force
law. He also introduced a frame-dependent gravitational force with his general
theory of relativity, as we saw when discussing Newton’s bucket experiment in
this theory.

In our view, the theoretical concepts of length contraction, time dilation, Lo-
rentz invariance, Lorentz’s transformations, covariant and invariant laws, Min-
kowski metric, four-dimensional space-time, energy-momentum tensor, Rieman-
nian geometry applied to physics, Schwarzschild line element, tensorial algebras
in four-dimensional spaces, quadrivectors, metric tensor gµν , proper time, con-
travariant four-vectors and tensors, geodetic lines, Christoffel symbols, super
strings, curvature of space, etc. have the same role as the epicycles in the
Ptolemaic theory.

Although Einstein was greatly influenced by Mach’s ideas, Mach himself
rejected Einstein’s theories of relativity. This can be seen from his statement
in the preface of his last book The Principles of Physical Optics - An Historical
and Philosophical Treatment [128]. There he says that he was compelled to
cancel his contemplation of the relativity theory (which he finds to be growing
more and more dogmatical) and that his disclaims to be a forerunner of the
relativists.

Additional proofs that Mach opposed Einstein’s theories of relativity can
be found in Mach’s biography by Blackmore [63], and in his important paper
“Ernst Mach leaves ‘The Church of Physics’ ” [129].
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Chapter 8

Relational Mechanics

8.1 Basic Concepts and Postulates

We now present a new mechanics to replace the Newtonian and Einsteinian
mechanics. We call it “Relational Mechanics.” We begin with the complete for-
mulation of the theory, and then discuss its applications. In the final chapter we
outline the history of relational mechanics, highlighting the main developments
and putting everything in perspective.

By relational mechanics we understand a formulation of mechanics (the
study of the equilibrium and motions of masses) only in terms of relative quan-
tities, avoiding the use of absolute concepts, such as Newton’s absolute space
and time. In relational mechanics we also do not utilize quantities which de-
pend on the observer, such as the velocity in Lorentz’s force, as interpreted
by Einstein. We do not utilize the older expression “relativistic mechanics” to
avoid confusion with Einstein’s special and general theories of relativity.

We begin presenting some basic (or primitive) concepts necessary to define
more complex ones. We do not define these basic concepts, since we wish to
avoid vicious circles. The basic or primitive concepts which we will need are: (1)
gravitational mass, (2) electrical charge, (3) distance between material bodies,
(4) time between physical events, and (5) force or interaction between material
bodies.

It may be possible to derive the gravitational force from an electromagnetic
force, as we have shown elsewhere ([130] and [131]). If this is the case, grav-
itational mass will not be a basic concept. As this is not yet proved, we will
continue treating it as one.

At no time do we introduce the concepts of inertia or inertial mass, inertial
frames of reference, or the concepts of absolute space and absolute time.

163
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We now present the three postulates of relational mechanics:

(A) Force is a vectorial quantity describing the interaction between
material bodies.

(B) The force that a point particle A exerts on a point particle B is
equal and opposite to the force that B exerts on A, and is directed
along the straight line connecting A to B.

(C) The sum of all forces of any nature (gravitational, electric, mag-
netic, elastic, nuclear, etc.) acting on any body is always zero in all
frames of reference.

The first postulate qualifies the nature of a force (stating that it is a vectorial
quantity, with magnitude and direction). With this postulate we are assuming
the law of the parallelogram of forces (that they add like vectors). Observe only
that we are not yet talking about accelerations, only forces. It must also be
clear that force is an interaction between material bodies. For instance, it does
not describe an interaction of a body with “space.”

The second postulate is similar to Newton’s action and reaction law, namely:
~FAB = − ~FBA. In addition, we are specifying that all forces between point
particles, no matter what their origin (electrical, elastic, gravitational, chemical,
nuclear etc.) are directed along the straight line connecting these bodies. It
is important to emphasize here the notion of “point” particles. The reason is
simple and can be illustrated as follows: Consider an electric dipole made up
of two point charges q1 > 0 and −q1 separated by a distance d1. We choose a
frame of reference O with origin at the center of this dipole, with z axis along
the line connecting q1 to −q1, pointing from −q1 to q1. The electric dipole
moment ~p1 is defined by ~p1 ≡ q1d1ẑ. Consider another point charge q2 > 0
located along the x axis, at a distance r2 from the origin. We will consider all
charges at rest, so that this is a simple electrostatic problem. The force exerted
by q1 on q2 is along the straight line connecting them. The force exerted by
−q1 on q2 is along the straight line connecting these two charges. Adding these
two expressions yields the resultant force exerted by the dipole ~p1 on q2. This
force is along the z axis, as in Figure 8.1.

Even when d1 � r2 the force between the dipole and q2 is not along the x
axis, which might considered the straight line connecting the “point” dipole (its
center) to a far away q2. The reason for this behaviour is that even in this case
in which d1 � r2 the dipole is not really a point, as there is a small distance
between its two charges.

Neglecting cases like this, it is often possible to replace two large bodies A
and B by point particles when their dimensions (averate or maximal diameters)
are much smaller than the distance between their centers.
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Figure 8.1: Point charge interacting with an electric dipole.

The third postulate is the main departure from Newtonian mechanics. We
may call it the principle of dynamical equilibrium. It states that the sum of
all forces on a body is always zero, even when the test body is in motion and
accelerated relative to another body, to ourselves or to any other frame of
reference. Later on we derive a law similar to Newton’s second law of motion.

The advantage of this postulate compared to Newton’s second law of motion
is that we do not introduce the concepts of inertia, inertial system of reference,
inertial mass and absolute space. In Newtonian mechanics, the sum of all
forces was equal to the time variation of linear momentum (inertial mass times
velocity). For constant mass, this was equal to the inertial mass of the test
body times its acceleration relative to absolute space or to an inertial frame of
reference. This means that these concepts had to be introduced and clarified
beforehand, and were an essential part of Newton’s second law. This is the
greatest advantage of our third postulate. Moreover, it is valid in all frames of
reference, while the Newtonian law was valid only in inertial frames of refer-
ence (in non-inertial frames we needed to utilize fictitious forces in Newtonian
mechanics). Suppose a person on the earth’s surface throws a rock upwards
in the presence of a strong wind affecting the rock’s motion (influencing its
direction and velocity). The person will apply the postulate that the resultant
force acting on the rock is zero, even when the rock is rising, falling, stopping
at the floor and staying there at rest. In the frame of the rock (a frame that
is always at rest relative to the rock) we should also apply the postulate that
the resultant force acting on it is always zero. In any other arbitrary frame of
reference which is in motion relative to the earth or the rock, the postulate that
the resultant force acting on the rock is zero at all times should also be applied.

When we say that the sum of all forces on any body is always zero in all
frames of reference, we arrive at another result, in agreement with Mach’s ideas.
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We can multiply all forces by the same constant (no matter its dimensional
units) without affecting the results. The only thing that will matter is the ratio
of any two forces. We can never know the absolute value of any force, only how
much one force is larger or smaller than another. The units of the forces also
remain unspecified, provided all forces have the same unit.

If we are working with energies instead of forces, these three postulates
might be replaced by one simple postulate:

The sum of all interaction energies (gravitational, electromagnetic,
elastic, nuclear, etc.) between any body and all other bodies in the
universe is always zero in all frames of reference.

Once more, only the ratio of energies will be important. This postulate
may be called the principle of the conservation of energy. The advantage of
this postulate over the analogous postulate in classical mechanics (the sum of
the kinetic and potential energies is a constant) is that we do not introduce
the concept of kinetic energy, miv

2/2. This kinetic energy has embedded in it
the concepts of inertial mass (mi) and absolute space or inertial systems (the
frames where the velocity v is to be measured). Later on, we derive an analogue
to this classical kinetic energy. We also derive a theorem for the conservation
of energy analogous to the one of classical mechanics.

8.2 Electromagnetic and Gravitational Forces

These postulates refer only to the forces between interacting bodies. Until now
the concepts of gravitational mass, charge and distance between bodies have
not appeared. In order to implement these postulates and obtain the equations
of motion following Mach’s ideas, we need some expressions for the forces and
energies. The postulates only make sense together with specific forces and
energies describing the several types of interactions, as in the case of Newton’s
laws of motion. Here we introduce the main contribution of Wilhelm Weber
(1804-1891). In 1848 he proposed that the energy of interaction between two
electrical charges q1 and q2 be given by [12, Chapter 3]:

U12 = Heq1q2
1

r12

(
1− ṙ2

12

2c2

)
. (8.1)

Here r12 is the distance between the charges and ṙ12 ≡ dr12/dt is their radial
relative velocity and c = 3× 108 m/s, while He is a constant which depends on
the system of units. In Newtonian mechanics and in the International System
of Units it is written as 1/4πεo. In relational mechanics its value (or its ratio
to Hg, see below) will be specified later.
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The force exerted by 2 on 1 can be obtained by ~F21 = −r̂12dU12/dr12,
yielding the result Weber had already proposed in 1846, namely:

~F21 = Heq1q2
r̂12

r2
12

(
1− ṙ2

12

2c2
+

r12r̈12

c2

)
. (8.2)

Weber had arrived at this result in order to unify electrostatics (Coulomb’s
force) with electrodynamics (Ampère’s force between current elements) and
Faraday’s law of induction [12, Chapter 3].

The charges q1 and q2 are located at the position vectors ~r1 ≡ x1x̂+y1ŷ+z1ẑ
and ~r2 ≡ x2x̂+y2ŷ+z2ẑ relative to the origin of an arbitrary frame of reference
(not necessarily inertial in the Newtonian sense). The unit vectors x̂, ŷ and ẑ
point along the orthogonal axes x, y and z of this frame of reference. Their
velocities and accelerations relative to the origin of this coordinate system are
given by: ~v1 = d~r1/dt = ẋ1x̂ + ẏ1ŷ + ż1ẑ, ~v2 = d~r2/dt = ẋ2x̂ + ẏ2ŷ + ż2ẑ, ~a1 =
d2~r1/dt2 = d~v1/dt = ẍ1x̂+ ÿ1ŷ+ z̈1ẑ, ~a2 = d2~r2/dt2 = d~v2/dt = ẍ2x̂+ ÿ2ŷ+ z̈2ẑ.
The position vector of one charge relative to another, and their relative vectorial
velocity and acceleration in this frame of reference, are given by, respectively:

~r12 ≡ ~r1 − ~r2 = (x1 − x2)x̂ + (y1 − y2)ŷ + (z1 − z2)ẑ ≡ x12x̂ + y12ŷ + z12ẑ ,

~v12 ≡
d~r12

dt
= ~v1 − ~v2 = (ẋ1 − ẏ1)x̂ + (ẏ1 − ẏ2)ŷ + (ż1 − ż2)ẑ

≡ ẋ12x̂ + ẏ12ŷ + ż12ẑ ,

~a12 ≡
d2~r12

dt2
=

d~v12

dt
= ~a1 − ~a2 = (ẍ1 − ẍ2)x̂ + (ÿ1 − ÿ2)ŷ + (z̈1 − z̈2)ẑ

≡ ẍ12x̂ + ÿ12ŷ + z̈12ẑ .

They are separated by a distance

r12 ≡ |~r1 − ~r2| = [(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2

=
√

x2
12 + y2

12 + z2
12 .

The unit vector pointing from q2 to q1 is given by:

r̂12 ≡
~r12

r12
.
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Their relative radial velocity and acceleration are given by, respectively:

ṙ12 ≡
dr12

dt
=

x12ẋ12 + y12ẏ12 + z12ż12

r12
= r̂12 · ~v12 ,

r̈12 ≡
dṙ12

dt
=

d2r12

dt2
=

~v12 · ~v12 − (r̂12 · ~v12)2 + ~r12 · ~a12

r12
.

The many properties and advantages of Weber’s electromagnetic theory have
been discussed at length in a separate book, Weber’s Electrodynamics [12].

By analogy with Weber’s electrodynamics, we propose as the basis of rela-
tional mechanics that Newton’s law of gravitation be modified in accordance
with Weber’s law. In particular, the energy of interaction between two gravi-
tational masses mg1 and mg2 and the force exerted by 2 on 1 should be given
by:

U12 = −Hg
mg1mg2

r12

(
1− ξ

ṙ2
12

2c2

)
, (8.3)

~F21 = −Hgmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
. (8.4)

In these equations we assume Hg and ξ to be constants. With ξ = 0 or c→∞
we recover the usual potential energy and force of Newtonian mechanics, if we
put Hg = G. For the time being we only require that ξ > 0. Later on we will
find that ξ = 6 in order to derive the observed precession of the perihelion of
the planets.

In order to avoid the gravitational paradox presented previously, and an
analogous one which appears when we implement Mach’s principle with rela-
tional mechanics, we can utilize the following modifications of these energies
and forces:

U12 = −Hg
mg1mg2

r12

(
1− ξ

ṙ2
12

2c2

)
e−αr12 , (8.5)

~F21 = −Hgmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)

+ αr12

(
1− ξ

2
ṙ2
12

c2

)]
e−αr12 . (8.6)

In these equations α is a constant with dimensions of length−1.
The force is also derived from
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~F21 = −r̂12
dU12

dr12
.

The main properties of Weber’s potential energy and force, as applied to
electromagnetism and gravitation, are the following:

A) These forces follow the second postulate strictly, as they obey the law of
action and reaction and are along the line connecting the interacting bodies.

B) We recover Coulomb’s force and Newton’s law of gravitation when there
is no motion between the particles, when ṙ12 = 0 and r̈12 = 0. This will happen
when the distance between the particles is a constant, even if they are moving
together relative to an arbitrary frame of reference or to other bodies.

C) The most important property is that these energies and forces depend
only on the relative distance, radial velocity and radial acceleration between
the interacting particles. Although the position, velocity and acceleration of
one particle relative to a frame of reference O may be different from the po-
sition, velocity and acceleration of the same particle relative to another frame
of reference O’, the relative distance, relative radial velocity and relative radial
acceleration between the two particles are the same in both frames [12, Section
3.2]. In other words, these forces and energies are completely relational in their
nature. They have the same values for all observers, irrespective of whether the
observer is inertial from the Newtonian point of view.

All energies and force laws to be proposed in the future must have this
property in order to implement Mach’s principle. As we have shown before,
Mach emphasized that “all masses and all velocities, and consequently all forces,
are relative.”

Even when we have a medium, as in the frictional force acting between a
projectile and the surrounding air or water, only relational quantities should
appear. For instance, the force of dynamic friction must be written in terms
of the relative velocity between the projectile and the medium (air or water in
this case). If one day the ether is found, the same must be true for it. The force
between the ether and the particles must depend only on the relative velocity
and acceleration between each particle and the ether, but not on the velocity
and acceleration of the particles relative to any observer or frame of reference.

The situation in physics nowadays is quite different. In Newton’s second
law of motion we have accelerations relative to absolute space or to inertial
frames of reference, and not relative to the bodies with which the test body is
interacting. In Lorentz’s force (~F = q ~E + q~v× ~B) the velocity ~v is understood,
after Einstein, as the velocity of the test charge q relative to the observer and
not relative to the magnet or current-carrying wire with which it is obviously
interacting.
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8.3 Spherical Shell Interacting with a Particle

We first consider a test particle of gravitational mass mg inside a spherical
shell of gravitational mass dMg. The shell has a radius R, thickness dR and an
isotropic gravitational matter density ρg. We consider the shell to be stationary
in a frame of reference U, with its center at the origin of U. The point mass
mg is located at ~rmU and moves with velocity ~vmU = d~rmU/dt and acceleration
~amU = d2~rmU/dt2 relative to the origin U.

The gravitational mass of the spherical shell is given by:

dMg = 4πρgR
2dR .

We now integrate Weber’s gravitational energy of interaction between this
test particle and the shell, Eq. (8.3), obtaining:

dUMm(rmU < R) = −4πHgmgρgRdR

(
1− ξ

6
~vmU · ~vmU

c2

)
. (8.7)

In classical mechanics, the terms with ~vmU would not appear. Only the con-
stant term −4πHgmgρgRdR would be present after an analogous integration.
But as we will see, it is the velocity term which will generate an analogue to
the kinetic energy and an implementation of Mach’s principle.

Integrating Eq. (8.4) to obtain the gravitational force exerted by the spin-
ning shell on the internal particle yields:

d~FMm(rmU < R) = −4π

3
Hg

ξ

c2
mgρgRdR~amU . (8.8)

This term would appear with Newton’s law of gravitation. As we have seen,
Newton proved that the gravitational force acting on a body inside a spherical
shell is zero with his force. On the other hand, this term we have obtained here
will be essential for the implementation of Mach’s principle.

With the test particle localized outside the spherical shell, the interaction
energy and the force exerted by the shell are given by:

dUMm(rmU > R) = −Hgmg(4πρgR
2dR)

1
rmU

{
1

− ξ(r̂mU · ~vmU )2

2c2
− ξ

6c2

R2

r2
mU

[
~vmU · ~vmU − 3(r̂mU · ~vmU )2

]}
, (8.9)

d~FMm(rmU > R) = −Hgmg(4πρgR
2dR)

r2
mU

{[
1
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+
ξ

c2

(
(~vmU · ~vmU )− 3

2
(r̂mU · ~vmU )2 + ~rmU · ~amU

)]
r̂mU

+
ξ

c2

R2

r2
mU

[rmU

3
~amU − (r̂mU · ~vmU )~vmU

− ~vmU · ~vmU

2
r̂mU +

5
2
(r̂mU · ~vmU )2r̂mU − (~rmU · ~amU )r̂mU

]}
. (8.10)

We now consider a test particle of gravitational mass mg inside a spherical
shell of gravitational mass dMg. The shell has a radius R, thickness dR, an
isotropic gravitational matter density ρg, and spins with an angular velocity
~ωMS(t) relative to an arbitrary frame of reference S. The center of the stationary
(but spinning) shell is at the origin O of S.

The point mass mg is located at ~rmS and moves with velocity ~vmS =
d~rmS/dt and acceleration ~amS = d2~rmS/dt2 relative to the origin O of S, as
in Figure 8.2.

We integrate Weber’s gravitational energy of interaction between this test
particle and the shell, Eq. (8.3), obtaining [12, Chapter 7]:

dUMm(rmS < R) = −4πHgmgρgRdR

×
[
1− ξ

6
(~vmS − ~ωMS × ~rmS) · (~vmS − ~ωMS × ~rmS)

c2

]
. (8.11)

In classical mechanics, the terms with ~vmS and ~ωMS would not appear.
Only the constant term −4πHgmgρgRdR would be present after an analogous
integration. But as we will see, it is the velocity term which will generate an
analogue to the kinetic energy and an implementation of Mach’s principle.

Integrating Eq. (8.4) to obtain the gravitational force exerted by the spin-
ning shell on the internal particle yields [12, Chapter 7]:

d~FMm(rmS < R) = −4π

3
Hg

ξ

c2
mgρgRdR

[
~amS + ~ωMS × (~ωMS × ~rmS)

+ 2~vmS × ~ωMS + ~rmS ×
d~ωMS

dt

]
. (8.12)

None of these terms would appear with Newton’s law of gravitation. As we
have seen, Newton proved that the gravitational force acting on a body inside
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Figure 8.2: Spinning spherical shell of mass dMg interacting with a material
particle of mass mg.

a spherical shell is zero with his force. On the other hand all the terms we have
obtained here will be essential for the implementation of Mach’s principle.

If the test particle were localized outside the spherical shell, the interaction
energy and the force exerted by the shell would be given by [12]:

dUMm(rmS > R) = −Hgmg(4πρgR
2dR)

1
rmS

{
1

− ξ[r̂mS · (~vmS − ~ωMS × ~rmS)]2

2c2

− ξ

6c2

R2

r2
mS

[
(~vmS − ~ωMS × ~rmS) · (~vmS − ~ωMS × ~rmS)

− 3[r̂mS · (~vmS − ~ωMS × ~rmS)]2
]}

, (8.13)



8.4. IMPLEMENTATION OF MACH’S PRINCIPLE 173

d~FMm(rmS > R) = −Hgmg(4πρgR
2dR)

r2
mS

{[
1

+
ξ

c2

(
(~vmS · ~vmS)− 3

2
(r̂mS · ~vmS)2 + ~rmS · ~amS

)]
r̂mS

+
ξ

c2

R2

r2
mS

[rmS

3
~amS − (r̂mS · ~vmS)~vmS

− ~vmS · ~vmS

2
r̂mS +

5
2
(r̂mS · ~vmS)2r̂mS

− (~rmS · ~amS)r̂mS + (r̂mS · ~vmS)(~ωMS × ~rmS)

+
2
3
rmS(~vmS × ~ωMS) +

rmS

3
(~ωMS · ~rmS)~ωMS +

r2
mSω2

MS

6
r̂mS

− (~rmS · ~ωMS)2

2
r̂mS + [~rmS · (~ωMS × ~vmS)]r̂mS

+
rmS

3

(
~rmS ×

d~ωMS

dt

)]}
. (8.14)

Suppose now the spherical shell still spinning with ~ωMS relative to S. But
now let us suppose the center of the shell is localized at ~RoS and is moving
with velocity ~VoS and acceleration ~AoS relative to the origin of S. Integration
of Eqs. (8.3) and (8.4) gives results analogous to Eqs. (8.11) to (8.14), but
with ~rmS − ~RoS , |~rmS − ~RoS |, r̂mo ≡ (~rmS − ~RoS)/|~rmS − ~RoS |, ~vmS − ~VoS and
~amS − ~AoS instead of ~rmS , rmS , r̂mS , ~vmS and ~amS , respectively.

8.4 Implementation of Mach’s Principle

We now show how to implement Mach’s principle quantitatively based on these
postulates and relational forces.

In order to obtain the equation for the conservation of energy and the equa-
tion of motion for the test body, we need to include its interaction with all
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bodies in the universe. We divide these interactions into two groups. (A)
The first group defines its interaction with local bodies (the earth, magnets,
charges, springs, frictional forces, etc.) and with anisotropic distributions of
bodies surrounding it (the moon and the sun, the matter around the center
of our galaxy, etc.) The energy of the test body interacting with all these N

bodies will be represented by UAm =
∑N

j=1 Ujm, where Ujm is the energy of the
test body of gravitational mass mg interacting with body j. The subscript A
means anisotropic, but also includes local bodies which may be located around
the test body. The force exerted by all these N bodies acting on mg will be
represented by ~FAm =

∑N
j=1

~Fjm, where ~Fjm is the force exerted by body j on
mg.

(B) The second group is the interaction of the test body mg with isotropic
distributions of bodies surrounding it. By isotropic distributions we mean bod-
ies scattered with spherical symmetry around mg such that mg is inside these
distributions, without necessarily being at their center. The energy of interac-
tion of mg with these isotropic distributions will be represented by UIm, the
subscript I meaning isotropic. The force exerted by these isotropic distribu-
tions on mg will be represented by ~FIm. We now utilize the known fact that the
universe is remarkably isotropic when measured by the integrated microwave
and X-ray backgrounds, or by radio source counts and deep galaxy counts [132].
It should be observed that we are not assuming this fact to be true theoreti-
cally. We are utilizing this fact as coming from astronomical observations and
not as a theoretical hypothesis. Even if one day it is found that the universe
is not isotropic in large scale, it will still be possible to derive the main results
of relational mechanics. The reason is that even in this case the inertia of the
bodies will still be derived from the isotropic part of this anisotropic universe,
while its anisotropic part will yield the usual forces.

As the earth does not occupy a central position with respect to the universe,
this isotropy on large scale suggests homogeneity on a very large scale. The
average density of matter in the universe will not depend on R (the distance
of the point under consideration from us): ρg = ρo = constant. Due to the
great distance between the galaxies and to their charge neutrality, they can only
interact significantly with any distant body through gravitation. We can now
integrate Eq. (8.11) utilizing a constant matter density. In this way we obtain
UIm, the energy of interaction of mg with the isotropic part of the distant
universe. In other words, with the isotropic and homogeneous distribution
of galaxies which is rotating with angular velocity ~ωUS relative to the frame
of reference S, shown in Figure 8.3. We replaced ~ωMS by ~ωUS because we
integrated the mass dM of the shell over the whole universe, indicating the
mass of the universe by U.
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Figure 8.3: Set of distant galaxies rotating relative to S.

UIm = −Φ
[
3
ξ
mgc

2

− mg
(~vmS − ~ωUS × ~rmS) · (~vmS − ~ωUS × ~rmS)

2

]
. (8.15)

where

Φ ≡ 4π

3
Hg

ξ

c2

∫ c/Ho

0

ρgRdR =
2π

3
ξ
Hgρo

H2
o

. (8.16)

In this last equation, Ho is Hubble’s constant and c/Ho is the radius of the
known and observable universe.

Analogously, integrating Eq. (8.12) assuming a constant matter density, we
also obtain the force ~FIm exerted by this isotropic part of the distant universe
on mg. Once more we are replacing ~ωMS by ~ωUS as we are integrating the force
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of the mass dM of the shell over the whole universe, indicating the mass of the
universe by U:

~FIm = −Φmg [~amS + ~ωUS × (~ωUS × ~rmS)

+ 2~vmS × ~ωUS + ~rmS ×
d~ωUS

dt

]
. (8.17)

By the principle of action and reaction obeyed by Weber’s force, we find
that body mg will exert an exactly opposite force on the distant universe.

In a frame of reference S’ in which the universe as a whole (the set of
distant galaxies) is not spinning, ~ωUS′ = 0, but in which the universe as a
whole moves relative to S’ with a velocity ~vUS′ and translational acceleration
~aUS′ the integration of Eqs. (8.3) and (8.4) lead to

UIm = −Φ
[
3
ξ
mgc

2 −mg
(~vmS′ − ~vUS′) · (~vmS′ − ~vUS′)

2

]
, (8.18)

~FIm = −Φmg(~amS′ − ~aUS′) . (8.19)

Here ~vmS′ and ~amS′ are the velocity and acceleration of mg relative to S’, shown
in Figure 8.4. Again mg exerts an opposite force on the set of distant galaxies.

If we are in a frame of reference O in which the universe as a whole (the frame
of distant galaxies) has no translational or rotational accelerations, ~aUO = 0
and ~ωUO = 0, but moves with a constant velocity relative to O, ~vUO, Eqs.
(8.18) and (8.19) reduce to the simple forms:

UIm = −Φ
[
3
ξ
mgc

2 −mg
(~vmO − ~vUO) · (~vmO − ~vUO)

2

]
, (8.20)

~FIm = −Φmg~amO . (8.21)

Here ~vmO and ~amO are the velocity and acceleration of mg relative to O. Again
mg exerts an opposite force on the set of distant galaxies.

If we are in a frame of reference U in which the universe as a whole (the
frame of distant galaxies) is stationary and not rotating, Eqs. (8.18) and (8.19)
reduce to the simple forms:

UIm = −Φ
[
3
ξ
mgc

2 −mg
~vmU · ~vmU

2

]
, (8.22)

~FIm = −Φmg~amU , (8.23)
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Figure 8.4: Distant universe with a linear acceleration relative to S’.

where ~vmU and ~amU are the velocity and acceleration of mg relative to the
frame of reference U.

We are now in a position to implement Mach’s principle quantitatively uti-
lizing our third postulate that the sum of all forces is zero (or that the sum of
the interaction energies is zero), namely:

UAm + UIm = 0 , (8.24)

~FAm + ~FIm = 0 . (8.25)

In the frame of reference S this yields:

UAm + UIm =
N∑

j=1

Ujm − Φ
[
3
ξ
mgc

2

− mg
(~vmS − ~ωUS × ~rmS) · (~vmS − ~ωUS × ~rmS)

2

]
= 0 , (8.26)

~FAm + ~FIm =
N∑

j=1

~Fjm − Φmg

[
~amS + ~ωUS × (~ωUS × ~rmS)
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+ 2~vmS × ~ωUS + ~rmS ×
d~ωUS

dt

]
= 0 . (8.27)

In the frame of reference S’ we have:

UAm + UIm =
N∑

j=1

Ujm − Φ
[
3
ξ
mgc

2 −mg
(~vmS′ − ~vUS′) · (~vmS′ − ~vUS′)

2

]
= 0 ,

(8.28)

~FAm + ~FIm =
N∑

j=1

~Fjm − Φmg(~amS′ − ~aUS′) = 0 . (8.29)

In the frame of reference O we have:

UAm + UIm =
N∑

j=1

Ujm − Φ
[
3
ξ
mgc

2 −mg
(~vmO − ~vUO) · (~vmO − ~vUO)

2

]
= 0 ,

(8.30)

~FAm + ~FIm =
N∑

j=1

~Fjm − Φmg~amO = 0 . (8.31)

Finally, in the frame of reference U we have:

UAm + UIm =
N∑

j=1

Ujm +−Φ
[
3
ξ
mgc

2 − mg~vmU · ~vmU

2

]
= 0 , (8.32)

~FAm + ~FIm =
N∑

j=1

~Fjm − Φmg~amU = 0 . (8.33)

Here ~vmU and ~amU are the velocity and acceleration of mg relative to the
frame of distant galaxies. In this frame the set of distant galaxies is seen at
rest without any linear or angular velocity, and without any linear or angular
acceleration. We will call this the universal frame of reference U, as in Figure
8.5.

Contrary to Newton’s absolute space which was “without relation to any-
thing external,” this universal frame of reference is completely determined by
the external material world. It is the frame in which the distant matter as a
whole is at rest, despite the peculiar velocities of the galaxies in this frame. In
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Figure 8.5: Universal frame of reference U.

this universal frame the universe appears isotropic in the large, with distant
galaxies appearing uniformly distributed. This is presumably also the same
frame in which the cosmic background radiation is seen as isotropic without
the dipole anisotropy. It is in this frame that the equation of motion of re-
lational mechanics takes the simplest form, without the appearance of terms
containing the acceleration of the distant universe.

If we had utilized Eqs. (8.5) and (8.6), we could have integrated R from
zero to infinity, without divergences. Then we would have obtained equations
(8.15) to (8.33) with A ≡ 4πξHgρo/3H2

o instead of Φ, if in (8.5) and (8.6) we
had utilized α = Ho/c ([12], Chapt. 7):

A ≡ 4π

3
Hg

ξ

c2
ρo

∫ ∞

0

Re−HoR/cdR =
4π

3
ξ
Hgρo

H2
o

. (8.34)

It should be emphasized that the ρo which appears in Eqs. (8.16) and
(8.34) is the volumetric matter density of galaxies in space (N times the average
mass of each galaxy, divided by the volume occupied by these N galaxies, with
N � 1). Moreover, we are integrating over the whole known universe. This
means that the main contribution to Φ or to A will come from external and
distant galaxies, and not from the stars belonging to our own Milky Way galaxy.
We will see this in more details in the next section.

This completes the mathematical implementation of Mach’s principle. We



180 CHAPTER 8. RELATIONAL MECHANICS

now discuss all the direct consequences we can obtain from relational mechanics.

8.5 General Consequences

Eq. (8.32) is similar to the classical equation for the conservation of energy
in an inertial frame of reference. Eq. (8.33) is similar to Newton’s second law
of motion in an inertial frame of reference. In order to see this in more detail
we consider two bodies 1 and 2 interacting gravitationally with one another
and with the distant universe. Supposing ṙ2

12 � c2, |r12r̈12| � c2 and utilizing
Eqs. (8.3), (8.4), (8.32) and (8.33) in the universal frame of reference yields the
following equations for body 1:

−Hg

Φ
mg1mg2

r12
+

mg1v
2
1U

2
=

3
ξ
mg1c

2 , (8.35)

−Hg

Φ
mg1mg2

r̂12

r2
12

= mg1~a1U . (8.36)

This last equation will be equivalent to Newton’s second law of motion in
this case if Hg/Φ = 3H2

o/2πξρo becomes the Newtonian constant of universal
gravitation G = 6.67× 10−11 Nm2/kg2:

Hg

Φ
= G↔ 3H2

o

2πξρo
= G . (8.37)

This remarkable relation connecting three independent and measurable (or
observable) magnitudes of physics (G, Ho and ρo) is a necessary consequence
of any model that seeks to implement Mach’s principle. This relation has been
known to be approximately true (with ξ between 1 and 20) since the 1930’s
with Dirac’s large numbers [133]. But while for Dirac this was derived more like
numerology without a deeper understanding, here it is derived from first princi-
ples as a consequence of relational mechanics. We also know that this relation
must be true from the validity of Newtonian mechanics in everyday laboratory
experiments. In other words, as we recover the Newtonian results only with
Hg/Φ = G, we conclude that this must be the case. But the more remarkable
fact is that this can be obtained independently utilizing the known values of G,
Ho and ρo. The value of G is 6.67× 10−11 Nm2/kg2, while ρo/H2

o ≈ 4.5× 108

kgs2/m3 [134, Sections 2.2 and 2.3, pp. 44-74]. The greatest uncertainty is in
the value of ρo/H2

o , which is not yet accurately known.
If instead of integrating up to Hubble’s radius we had integrated only up to

the radius of our own flat galaxy, Rs ≈ ×1020 m, with a total mass Ms ≈ 4×1041

kg, supposing an average matter density ρs ≈ 10−21 kg/m3, Eq. (8.16) would
become:
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Φstar ≡
4π

3
Hg

ξ

c2

∫ Rs

0

ρgRdR =
2π

3
ξ
HgρsR

2
s

c2
. (8.38)

But this would not allow the mathematical implementation of Mach’s princi-
ple based on the principle of dynamical equilibrium. The reason is that Φ/Φstar

is given approximately by:

Φ
Φstar

=
ρoc

2

H2
oρsR2

s

≈ 107 . (8.39)

This means that the contribution of the fixed stars belonging to our own galaxy
to the inertia of any body is negligible compared with the contribution of the
distant galaxies.

If we had chosen Eqs. (8.5), (8.6), with α = Ho/c, and had integrated to
infinity we would arrive at Hg/A = G instead of Hg/Φ = G:

Hg

A
= G↔ 3H2

o

4πξρo
= G . (8.40)

Equations (8.37) and (8.40) show that the value of Hg is not determined in
relational mechanics.

Analogously, suppose we have two point charges q1 and q2 interacting with
one another and with the isotropic distribution of galaxies around them. We
will also consider ṙ2

12 � c2, |r12r̈12| � c2. The equations of motion for charge
1 can be obtained in the universal frame of reference from Eqs. (8.1), (8.2),
(8.32) and (8.33):

He

Φ
q1q2

r12
+

mg1v
2
1U

2
=

3
ξ
mg1c

2 , (8.41)

He

Φ
q1q2

r̂12

r2
12

= mg1~a1U . (8.42)

This last equation is analogous to the equation of motion describing the
interaction of two point charges in Newtonian mechanics provided

He

Φ
=

1
4πεo

↔ 3H2
o

2πξρo

He

Hg
=

1
4πεo

. (8.43)

Analogously, if we had utilized the exponential decay and integrated until
infinity we would obtain:

He

A
=

1
4πεo

↔ 3H2
o

4πξρo

He

Hg
=

1
4πεo

. (8.44)
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Although the value of Hg is not determined, we can obtain the ratio He/Hg.
The same thing happens with the other forces. For instance, the elastic force

and the frictional force proportional to the velocity are written in relational
mechanics as −K(~̀− ~̀

o) and −B~v, respectively. Here K and B are constants,
~̀− ~̀

o is the displacement of the spring from the equilibrium distance `o and
~v is the velocity of the test body relative to the medium (air or water, for
instance) with which it is interacting. From Eq. (8.33) we arrive in these two
cases (test body interacting with a spring and the distant universe, or with a
resistive medium and the distant universe) at: −(K/Φ)(~̀− ~̀

o) = mg~amU and
−(B/Φ)~v = mg~amU . These equations will be analogous to the similar ones in
classical mechanics if

K

Φ
= k , (8.45)

and

B

Φ
= b , (8.46)

where k and b are the elastic constant and frictional constants of classical me-
chanics, respectively. We will assume this is valid for these cases and for other
forces.

In relational mechanics we derive an inertia analogous to Newtonian inertia
from a generalized law of gravitation (Weber’s law). The opposite approach of
deriving gravitation from inertia has been taken by Roscoe [135].

Eq. (8.32) is analogous to the equation of conservation of energy in classical
mechanics in inertial frames of reference, while Eq. (8.33) is analogous to New-
ton’s second law of motion in absolute space or in inertial frames of reference.
But the difference is that now we have derived an expression analogous to the
kinetic energy and another expression analogous to the Newtonian equation of
motion. In classical mechanics, we were obliged to begin with the concept of
kinetic energy (without knowing where it came from). Likewise, Newton was
obliged to begin with ~F = d(mi~v)/dt or ~F = mi~a, as he could not derive it.
For this reason, the concept of inertia or inertial mass had to be introduced a
priori.

In relational mechanics, we are deriving an energy analogous to the clas-
sical kinetic energy. But when we identify the mgv

2
mU/2 of Eq. (8.32) with

the classical kinetic energy miv
2/2, we at once understand the mysterious pro-

portionality between inertial and gravitational masses which had appeared in
Newtonian mechanics. In other words, in relational mechanics we found that
the kinetic energy is an interaction energy, like any other kind of potential
energy. It is an energy of gravitational origin arising from the relative mo-
tion between mg and the universe as a whole surrounding it. It is no longer
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frame-dependent, as was the case with the classical kinetic energy. The reason
is that the energy UIm has the same numerical value (although not necessar-
ily the same form) in all frames of reference. For instance, in the frame O
in which the universe as a whole (the frame of distant galaxies) is not ro-
tating but is translating with velocity ~vUO, the kinetic energy of relational
mechanics is be given by mg|~vmO − ~vUO|2/2 instead of mgv

2
mU/2. Obviously

mgv
2
mU/2 = mg|~vmO − ~vUO|2/2 because ~vmO = ~vmU + ~vUO.
The same can be concluded from Eq. (8.33). Identifying this equation of

relational mechanics with Newton’s second law of motion, yields at once the
proportionality between inertial and gravitational masses. The force −mg~amU

of Eq. (8.33) is a real gravitational force between mg and the universe at large
(the set of distant galaxies) when there is a relative acceleration between them.
The force ~FIm is not frame-dependent. It has the same numerical value and
points in the same direction relative to other matter in all frames of reference,
although it does not necessarily have the same form. For instance, in the
universal frame U we have: ~FIm = −mg~amU . In another frame S which rotates
relative to the frame of distant galaxies, we have: ~FIm = −mg[~amS + ~ωUS ×
(~ωUS × ~rmS) + 2~vmS × ωUS + ~rmS × d~ωUS/dt]. In another frame S’ which
does not rotate relative to the distant galaxies but which has a translational
acceleration relative to the distant matter, we have: ~FIm = −mg(~amS′ −~aUS′).
Although the form of ~FIm is different in these three frames of reference U, S
and S’, the numerical value is the same. For this reason, we did not need to
specify ~FU

Im, ~FS
Im or ~FS′

Im. Not only is the numerical value the same, but the
direction of ~FIm is the same in all these frames, always pointing to the same
point relative to other matter. If this force ~FIm on mg is directed at a specific
time to one galaxy, such as Andromeda, it will point to this galaxy in all frames
of reference. For instance, suppose we have two bodies 1 and 2 connected by a
spring and oscillating along the line of their junction in the frame U, and that
the line of their junction is the same line connecting the center of our galaxy
to the center of Andromeda. Then the forces ~FI1 and ~FI2 will also point along
the line connecting our galaxy to Andromeda when calculated in all frames of
reference. This is due to the fact that Weber’s force depends only on relational
quantities like r12, ṙ12 and r̈12, which have the same value in all frames of
reference.

Suppose now the case in which the resultant anisotropic force ~FAm =∑N
j=1

~Fjm acting on mg is zero. From Eq. (8.33) and from mg 6= 0 we ob-
tain that ~amU = 0. In other words, we conclude that the test body will move
with a constant velocity relative to the frame in which the set of distant galaxies
is at rest. Identifying relational mechanics with Newtonian mechanics shows
that we have derived a law similar to Newton’s first law of motion. But now,
instead of saying that a body will move with a constant velocity relative to
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absolute space (an entity to which we have no access), we say that the body
will move with constant velocity relative to the frame of distant galaxies. If this
is the case, the test body will also move with a constant velocity relative to any
other frame O which moves with a constant velocity relative to the frame of
distant galaxies. These reference frames may then be identified with the inertial
frames of classical mechanics. But now they have been completely determined
by distant matter.

Identification of Eqs. (8.32) and (8.33) with the classical equation for the
conservation of energy and with Newton’s second law of motion explains the pro-
portionality between inertial and gravitational masses of Newtonian mechanics.
The concepts of inertia of a body, of inertial mass, of inertial frames of refer-
ence, of kinetic energy, etc. have not been introduced in relational mechanics.
It is only when we identify Eqs. (8.32) and (8.33) with the analogous equations
of classical mechanics that we understand and solve this puzzle of Newtonian
theory. We explain why the Newtonian inertial and gravitational masses are
proportional to one another. The reason is that the second terms on the left of
Eqs. (8.32) and (8.33) arose from gravitational interactions between the gravi-
tational mass mg and the gravitational mass of the distant galaxies when there
is a relative motion between mg and these galaxies. The mass of mgv

2
mU/2 or

of mg~amU is the gravitational mass of the test body. Only when we identify
these terms with Newtonian mechanics, where we have miv

2/2 and mi~a, does
it become clear that these “kinetic” expressions of Newtonian mechanics have
a gravitational origin. Newtonian mechanics gains a new meaning and a clear
understanding when viewed from the standpoint of relational mechanics.

In relational mechanics we do not need to postulate the proportionality or
equality between mg and mi, as must be done in Einstein’s general theory
of relativity. Einstein had postulated the equality between mg and mi in his
principle of equivalence. As he postulated this relation without supplying more
fundamental explanations for its origin, we can see that he could not derive it.
On the other hand, in relational mechanics this result is a direct consequence
of the theory. This shows the great advantage of relational mechanics over
Einstein’s general theory of relativity.

Another thing which is explained at once in relational mechanics is the
equality between ~ωk and ~ωd, the kinematical and dynamical rotations of the
earth. As we have just seen, the equations of motion only take the simple form
of Eqs. (8.32) and (8.33) in a frame of reference relative to which the universe
as a whole (the set of distant galaxies) is stationary. In another frame of refer-
ence S there must appear terms in the energy UIm and in the force ~FIm which
depend on ~vUS , on ~aUS and on ~ωUS (the velocity, translational acceleration and
rotational velocities of the universe as a whole relative to S). When we iden-
tify this fact and relational mechanics with Newtonian mechanics everything
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becomes obvious and understandable. The explanation for the coincidence of
Newtonian mechanics (~ωd = ~ωd) is that the distant universe as a whole defines
the best inertial frame (which is the frame in which Newton’s laws of motion are
valid without the introduction of centrifugal and Coriolis forces). This means
that the set of distant galaxies does not rotate relative to absolute space (this is
the meaning of the observational fact ~ωk = ~ωd) because it defines what absolute
space is.

In a frame of reference S in which the universe as a whole is spinning relative
to the center of this frame with ~ωUS(t), but without translational acceleration,
Eq. (8.27) takes the form

N∑
j=1

~Fjm − Φmg [~amS + ~ωUS × (~ωUS × ~rmS)

+ 2~vmS × ~ωUS + ~rmS ×
d~ωUS

dt

]
= 0 . (8.47)

Here ~rmS is the position vector of mg relative to the origin of S. Moreover, ~vmS

and ~amS are the velocity and acceleration of the test body relative to this frame
of reference S.

This result of relational mechanics has the same form as Newton’s second
law of motion with fictitious forces. Identifying these two formulae leads to
the conclusion that the centrifugal and Coriolis forces are not fictitious forces
anymore. Quite the contrary, in relational mechanics they are seen as real forces
of gravitational origin arising from the interaction of the accelerated test body
and the spinning universe around it. This is in almost complete agreement
with Mach’s ideas, as we have shown that ‘when the heaven of galaxies is
rotated, centrifugal forces arise!’ The only difference is that Mach knew only
the existence of the set of fixed stars. It was in 1924 that Hubble established
the existence of external galaxies. This came after Mach’s death in 1916. Here
we have shown that rotating only our own galaxy (i.e., the set of fixed stars)
relative to an observer does not yield enough sensible centrifugal force. On
the other hand, the rotation of the whole known universe (the set of distant
galaxies) will yield exactly the full centrifugal force observed to exist in frames
relative to which the set of galaxies is rotating.

Let us now discuss how to derive another aspect which was correctly pointed
out by Mach. In Eq. (8.33) the acceleration which appears is the acceleration of
the test body mg relative to the frame of distant galaxies. It is the acceleration
of the test body in a reference frame relative to which the set of galaxies as
a whole does not rotate and has no translational acceleration. When we are
dealing with bodies on the surface of the earth, performing collision experiments
with billiard balls, for instance, we usually measure only the accelerations of
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the test bodies relative to the earth. However, the earth rotates around its
axis relative to the frame of fixed stars with a period of one day, and translates
around the sun relative to the frame of fixed stars with a period of one year,
while the solar system translates around the center of our galaxy relative to
the frame of distant galaxies with a period of approximately 2.5 × 108 years.
As these are all accelerated motions relative to the distant universe, all of
them should be taken into account when we try to apply Eq. (8.33) to study
the motion of the test body. However, there is a situation in which these
aspects are greatly simplified. Suppose that this acceleration of the test body
relative to the earth is much greater than the acceleration of its location on the
earth’s surface relative to the frame of distant galaxies. There are three main
components in the acceleration of the earth at each point of its surface relative
to the frame of distant galaxies. The first is the centripetal acceleration due
to the rotation of the earth every day relative to the distant stars, which is
given at the equator by (vt being the tangential velocity and R the radius of
curvature): ar ≈ v2

t /R ≈ (4.6 × 102 m/s)2/(6.4 × 106 m) ≈ 3.4 × 10−2 m/s2.
The second is the centripetal acceleration due to the translation of the earth
around the sun every year relative to the distant stars, which is given roughly
by: at ≈ (3 × 104 m/s)2/(1.5 × 1011 m) ≈ 6 × 10−3 m/s2. The third is the
centripetal acceleration of the solar system due to its orbit around the center
of our galaxy relative to the frame of the distant galaxies every 2.5× 108 years,
which is given approximately by: as ≈ (2× 105 m/s)2 / (2.5× 1020 m) ≈ 10−10

m/s2. Calling the acceleration of the test body mg relative to the earth ~ame

there is a situation in which:

ame � ar > at � as . (8.48)

In this case, we can disregard the components of the body’s acceleration
related to the motion of the earth relative to the frame of distant galaxies, and
consider only the acceleration of the test body relative to the earth. When
this condition is satisfied we can say that during this experiment the set of
distant galaxies will be essentially without acceleration relative to the frame
of fixed stars, and also relative to the earth. This means that accelerations
relative to distant galaxies can be conveniently described with good accuracy
by accelerations relative to the earth. Eq. (8.33) can then be approximated
whenever Eq. (8.48) is satisfied in the simple form given by

N∑
j=1

~Fjm − Φmg~ame = 0 . (8.49)

For experiments over the earth’s surface in which the test body moves with
accelerations satisfying Eq. (8.48) we can consider to a good approximation
only its acceleration relative to the earth’s surface.
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However, if we are studying the acceleration of the earth as a whole in its
orbit around the sun, or a test body moving over the earth’s surface with a very
small acceleration of the order of ar ≈ 3.4×10−2 m/s2 or of at ≈ 6×10−3 m/s2,
then we also need to take these accelerations into account. In these cases, and
due to the fact that the centripetal acceleration of the solar system, ≈ 10−10

m/s2, is much smaller than ar or at, we can write Eq. (8.33) in the form

N∑
j=1

~Fjm − Φmg~amf = 0 . (8.50)

In this equation, ~amf is the acceleration of the test body relative to the
frame of fixed stars (frame in which the set of fixed stars is seen without rotation
and without translational acceleration). This equation in this form should be
applied in the frame of fixed stars when the following condition is satisfied:

amf ≈ ar > at � as . (8.51)

In this case we may say that the set of distant galaxies is essentially without
acceleration relative to the frame of fixed stars. It is then possible and conve-
nient to refer motions to the fixed stars instead of referring them to the distant
galaxies.

In the case in which
∑N

j=1
~Fjm = 0, we find from Eq. (8.49) that the test

body will move relative to the earth’s surface with a constant velocity. If we
need a better approximation, then we find that in this case of zero anisotropic
resultant force Eq. (8.50) leads to the conclusion that the test body will move
with a constant velocity relative to the frame of fixed stars. An even better
approximation utilizing Eq. (8.33) leads to the conclusion that the test body
will move with a constant velocity relative to the frame of distant galaxies.

The meaning of Mach’s statement that “I have remained to the present day
the only one who insists upon referring the law of inertia to the earth, and in
the case of motions of great spatial and temporal extent, to the fixed stars”
is now clear. Obviously, in his time the existence of external galaxies was not
yet known, but it is essentially the same thing. The important fact obtained
with relational mechanics is that the law of inertia has now been derived as
meaningful when motion is referred to material bodies. These material bodies
can be the earth, the fixed stars or the distant galaxies.

In relational mechanics there are only relational quantities. That is, only
velocities and accelerations of the test body relative to the other bodies in the
universe with which it is interacting are meaningful. For this reason it is not
necessary to worry about coordinate transformations (Galilean transformation,
Lorentz’s transformation, etc.). This is one of the main advantages of relational
mechanics when compared with classical physics.
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We now summarize the main direct consequences of relational mechanics
when we identify it with Newtonian mechanics:

A) We derive equations similar to Newton’s first and second laws of motion.
B) We derive the proportionality between inertial and gravitational masses.
C) We derive the fact that the best inertial frame we have is the frame of

distant galaxies. In other words, we derive the observed fact that ~ωk = ~ωd.
D) We derive the kinetic energy as an interaction energy of gravitational

origin between the test body and the distant galaxies.
E) We derive the fact that all fictitious forces of Newtonian mechanics are

in fact real forces of gravitational origin acting between the test body and the
distant galaxies.

F) We derive the relation known to be true between G, Ho and ρo, namely,
3H2

o = 2− 4πξGρo, with ξ = 6 as we will see later.
G) We derive that the “inertial” forces ~FIm have the same numerical value

in all frames of reference, though not necessarily the same form.

8.6 Cosmology

We now discuss Eqs. (8.37) and (8.40). They can also be written as R2
o =

3c2/2πξGρo or R2
o = 3c2/4πξGρo, where Ro = c/Ho is the radius of the known

universe. If the universe is expanding, Ro will be a function of time. This
means that c2/ξGρo will also be a function of time.

But the idea of the expansion of the universe and the related big bang arose
from the assumption that Hubble’s law of redshifts (4λ/λo ≈ rHo/c) is due
to a Doppler effect caused by the recession between galaxies. Our own point
of view, however, is that the cosmological redshift (related to Hubble’s law) is
due to some kind of effect known in the literature as “tired-light” and not to a
Doppler effect. We believe Hubble’s law is due to an interaction between the
light emitted by a distant galaxy and the intergalactic matter. It seems to us
that the principal cause of this redshift is the loss of photon energy as it interacts
with the intergalactic medium. With this supposition Hubble’s law can be easily
derived without assuming it to be due to a Doppler effect [136]. Essentially
we utilize the photon energy as E = hν = hc/λ, where h = 6.6 × 10−34 Js is
Planck’s constant. We also assume as usual an exponential decay for the energy
due to its interaction with the intervening medium, namely: E(r) = Eoe

−Hor/c,
where Eo is the emitted energy in the distant galaxy at a distance r from our
own and E(r) is the energy arriving here. From these two expressions the
redshift z ≡ (λ(r) − λo)/λo is found to be given by eHor/c − 1 ≈ Hor/c. This
expresssion has been derived by many writers since 1929. No Doppler effect has
been assumed in this derivation.
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We are not yet sure what kind of mechanism is at work here (photon-photon
interaction, inelastic collision between photons and free electrons, or between
photons and molecules, etc.). Neverthless, we have explored this possibility
in other works ([35], [136], [36], [137] and [138]). In these articles many more
references can be found to other authors working along the same lines. In es-
sential aspects we are continuing the works of Regener, Walther Nernst, Finlay-
Freundlich, Max Born and Louis de Broglie on an equilibrium cosmology with-
out expansion (see Regener [139] with an English translation in [140], Nernst
[141] and [142] with English translations in [143] and [144], Finlay-Freundlich
[145], [146], [147], Born [148], [149] and de Broglie [150]). As there is no ex-
pansion of the universe in this model, it does not need a continuous creation of
matter, as required by the steady-state model of Hoyle, Bondi and Gold. Our
model is a universe in dynamical equilibrium without expansion and without
creation of matter. It should be emphasized here that Walther Nernst (the
father of the third law of thermodynamics and Nobel prize winner) and Louis
de Broglie (one of the founders of quantum mechanics and Nobel prize winner)
never accepted the idea of the big bang, always working with a model of the
universe in dynamical equilibrium without expansion. For more recent devel-
opments and different approaches to these models of a universe in dynamical
equilibrium without expansion, see [151] and papers therein, [152], [153], [154],
[155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166], [167],
[162], [168], [169], [96] etc.

Hubble himself had doubts that the cosmological redshift was due to a
Doppler effect. He suggested it might be due to a new principle of nature
[170, pp. 30, 63 and 66], [171] and [172, pp. 88-89, 121-123, 193 and 197].

It is important to discuss here the cosmic background radiation, CBR. This
is a radiation with the spectrum characteristic of a black body having a tem-
perature of 2.7 K. Usually it is claimed that the CBR is a proof of the big bang
and of the expansion of the universe as it had been predicted by Gamow and
collaborators (proponents of the big bang) prior to its discovery by Penzias and
Wilson in 1965 [26]. However, we performed a bibliographic search and found
something quite different from this view [136], [36], [173], [138]. The main point
to be stressed here is that the published predictions of this temperature made
by Gamow and collaborators (based on the big bang) were of 5 K in 1948, >
5 K in 1949, 7 K in 1953 and 50 K in 1961 [174], [175], [147] and [176, pp.
42-43]. The values were always increasing and each time they departed more
and more from the 2.7 K found later on! On the other hand we have found
several predictions or estimations of this temperature based on a stationary
universe without expansion, always varying between 2 K and 6 K. Moreover,
one of these estimates was performed in 1896, prior to Gamow’s birth in 1904!
The estimates are: 5 K < T < 6 K (Guillaume in 1896); 3.1 K (Eddington in
1926); 2.8 K (Regener in 1933 and Nernst in 1937 and 1938) and 1.9 K < T <
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6.0 K (Finlay-Freundlich and Max Born between 1953 and 1954): Guillaume
[177] with partial English translation in [173], Eddington [178], Regener [139]
with English translation in [140], Nernst [141] with English translation in [143],
[142] with English translation in [144], Herzberg [179, p. 496], Finlay-Freundlich
[145], [146], [147], Born [148] and [149].

The conclusion is that the discovery of the CBR by Penzias and Wilson
in 1965 is a decisive factor in favour of a universe in dynamical equilibrium
without expansion, and against the big bang.

Our own cosmological model is an eternal universe (not being created) with-
out boundaries (extending indefinitely in all directions). For this reason we
prefer to integrate to infinity and utilize Eqs. (8.34) and (8.40), instead of
(8.16) and (8.37). In this case Ro = c/Ho would be seen as a characteristic
length of gravitational interactions, instead of denoting the radius or size of the
universe. This means that for us, Ro and all other quantities (like c, ξ, and ρo)
are constants, and not a function of time. As up to now we have written all
equations of motion in relational mechanics in terms of Φ and not A, we will
continue doing so here to avoid repetition.

8.7 Ptolemaic and Copernican World Views

As we have seen, Leibniz and Mach emphasized that the Ptolemaic geocentric
system and the Copernican heliocentric system are equally valid and correct.
With relational mechanics we implement this quantitatively, showing the equiv-
alence of both world views.

Let us consider motions over the earth’s surface and in the solar system
such that we can neglect the acceleration of the solar system relative to the
frame of distant galaxies (with a typical value of 10−10 m/s2). Moreover, as
the mass of the sun is much greater than the mass of the planets, we can, in a
first approximation, disregard the motion of the sun relative to the fixed stars
due to the gravitational attraction of the other planets, as compared with the
motion of the planets relative to the stars. We can then say that the sun is
essentially at rest relative to the fixed stars, while the earth and other planets
move relative to them.

We first consider the Copernican world view, which is usually seen as being
proved to be true by Galileo and Newton. Here we consider the sun in the cen-
ter of the universe while the earth and the planets orbit around it and rotate
around their axes relative to the frame of fixed stars. To simplify the analy-
sis we consider only circular orbits. Relational mechanics can be applied here
with astounding success in the form of Eq. (8.50). Despite the gravitational
attraction between the sun and the planets, the earth and other planets do not
fall into the sun because they have an acceleration relative to the fixed stars.
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The distant matter in the universe exerts a force −mg~amf on accelerated plan-
ets, keeping them in their annual orbits. The rotation of the earth around its
axis relative to the fixed stars explains its oblate form, with a smaller distance
between the poles than at the equator between east and west. Foucault’s pen-
dulum is explained by noting that the plane of oscillation remains fixed relative
to the fixed stars etc.

In the Ptolemaic system the earth is considered to be at rest and without
rotation in the center of the universe, while the sun, other planets and fixed
stars rotate around the earth. In relational mechanics this rotation of distant
matter yields the force (8.17) such that the equation of motion takes the form
of Eq. (8.47). Now the gravitational attraction of the sun is balanced by a
real gravitational centrifugal force due to the annual rotation of distant masses
around the earth (with a component having a period of one year). In this way
the earth can remain at rest and at an essentially constant distance from the
sun. The diurnal rotation of distant masses around the earth (with a period
of one day) yields a real gravitational centrifugal force flattening the earth at
the poles. Foucault’s pendulum is explained by a real Coriolis force acting on
moving masses over the earth’s surface in the form −2mg~vme× ~ωUe, where ~vme

is the velocity of the test body relative to the earth and ~ωUe is the angular
rotation of the distant masses around the earth. The effect of this force will
be to keep the plane of oscillation of the pendulum rotating together with the
fixed stars, etc.

As a matter of fact, any other frame of reference would be equally valid.
Anyone or any arbitrary frame of reference can be considered at rest, while the
entire universe moves relative to this person according to his will. This happens
not only kinematically as has been always known, but also dynamically. All
local forces acting on the person will be balanced by the force exerted by the rest
of the universe in such a way that the acceleration and velocity of the person will
be always zero. For instance, consider a rock falling freely to the earth due to its
weight ~P . In the frame of the rock it will always remain at rest, while the earth
and the universe are accelerated upwards (in the direction of the earth towards
the rock). This happens in such a way that the gravitational force ~P exerted by
the earth on the rock is balanced by a gravitational force exerted by the distant
masses on the rock with a value mg~aUm such that ~P +mg~aUm = 0, where ~aUm

is the acceleration of distant masses relative to the rock of gravitational mass
mg.

Relational mechanics implements quantitatively and dynamically the old
objective of making all frames of reference equally valid and correct. The form
of the force exerted by distance masses on a test body may be different in
different frames of reference, but not the value or direction of this force relative
to other masses. It may be more practical, simple or mathematically convenient
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to consider one frame of reference as preferred relative to others, but as a matter
of fact all of them will yield the same dynamical consequences (although it may
be more difficult to perform the calculations in certain frames in order to arrive
at the final results).

An important consequence of relational mechanics is that kinematically
equivalent motions have been shown to be dynamically equivalent. Regard-
less of whether we say that the stars and galaxies are at rest while the earth
rotates around its axis with a period of one day, or that the earth is at rest
while the stars and galaxies rotate in the opposite direction relative to the earth
with a period of one day, in both cases relational mechanics will yield the flat-
tening of the earth as a consequence of this relative rotation. No other theory
of mechanics ever proposed has implemented quantitatively this consequence.
Although other theorists have tried to implement this philosophical and aes-
thetic appealing consequence, no one has ever succeeded. What was missing
was a relational force law like Weber’s.

8.8 Implementation of Einstein’s Ideas

We saw in section 7.3 that in 1922 Einstein pointed out four requirements which
should be present in any theory incorporating Mach’s principle:

1. The inertia of a body must increase when ponderable masses are accu-
mulated in its neighbourhood.

2. A body must experience an accelerating force when neighbouring masses
are accelerated, and, in fact, the force must be in the same direction as that
acceleration.

3. A rotating hollow body must generate inside of itself a ‘Coriolis field’,
which deflects moving bodies in the sense of the rotation, and a radial centrifugal
field as well.

4. A body in an otherwise empty universe should have no inertia. Related
to this is the statement that all the inertia of any body should arise from its
interaction with other masses in the universe.

As we have seen, these four consequences are not fully implemented in Ein-
stein’s general theory of relativity. Here we show that all of them are completely
implemented in relational mechanics [67] and [12, Chapter 7].

We begin with the first consequence. Let us suppose a body of gravita-
tional mass mg interacting with anisotropic distributions of matter and with
the isotropic distribution of distant galaxies around it. The force exerted by
this anisotropic distribution of matter composed of N bodies is represented by
~FAm =

∑N
j=1

~Fjm, Figure 8.6.
As we have seen, in this case the equation of motion derived in relational

mechanics is given by Eq. (8.33), namely
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N∑
j=1

~Fjm − Φmg~amU = 0 , (8.52)

where the acceleration ~amU is the acceleration of mg relative to the universal
frame of reference. This is analogous to Newton’s second law of motion with
the test body having an inertial mass mi given by mi = mg.

Figure 8.6: Test body interacting with other bodies and galaxies.

We now surround the test body with a spherical shell at rest and without
rotation in the universal frame U. The shell has a radius R, thickness dR, and
isotropic gravitational matter density ρg. The mass of this spherical shell is
simply Mg = 4πR2dRρg, shown in Figure 8.7.

We then apply in this second case the third postulate of relational mechanics,
the principle of dynamical equilibrium, which states that the sum of all forces
acting on mg is zero. Applying this principle together with Eq. (8.52) and the
result (8.12) for the gravitational force exerted by this stationary spherical shell
on mg yields:

N∑
j=1

~Fjm −Hg
ξ

3c2

mgMg

R
~amU − Φmg~amU = 0 . (8.53)

This equation can also be written as (with (8.37)):
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Figure 8.7: The previous situation with the test body surrounded by a spherical
shell.

N∑
j=1

~Fjm = Φmg

(
1 + G

ξ

3c2

Mg

R

)
~amU . (8.54)

This is analogous to Newton’s second law of motion with the test body
having an effective inertial mass given by:

mi = mg

(
1 + G

ξ

3c2

Mg

R

)
.

This shows that the inertia of a body must increase when ponderable masses
are accumulated in its neighbourhood, as required by Mach’s principle and as
correctly pointed out by Einstein. This is implemented in relational mechanics,
but not in Eintein’s general theory of relativity.

Let us now analyse the second consequence. To simplify the analysis we
consider a one dimensional motion in which two gravitational masses mg1 and
mg2 are interacting through Weber’s law, Eq. (8.4). We consider bodies 1 and
2 moving along the x axis, with x1 < x2, so that r̂12 = − x̂ (see Figure 8.8).

We simplify the notation utilizing the fact that r12 = |~r1−~r2| = |x1−x2| ≡ r.
Moreover, ~r12 = (x1−x2)x̂, ~v12 = (ẋ1− ẋ2)x̂ and ~a12 = (ẍ1− ẍ2)x̂. This means
that ṙ12 = r̂12 ·~v12 = −(ẋ1− ẋ2), and also that r12r̈12 = ~v12 ·~v12− (r̂12 ·~v12)2 +
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Figure 8.8: Two masses interacting along the x axis.

~r12 ·~a12 = (x1 − x2)(ẍ1 − ẍ2). The force exerted by 2 on 1 is then simplified to
the form:

~F21 = + Hgmg1mg2
x̂

r2

{
1− ξ

c2

[
(ẋ1 − ẋ2)2

2
− (x1 − x2)(ẍ1 − ẍ2)

]}
. (8.55)

This means that if mg2 is accelerated to the right (ẍ2 > 0) there will be a
component of the force acting on mg1 proportional to ẍ2, namely:

Hgmg1mg2ξ(x2 − x1)ẍ2x̂

c2r2
.

As ξ > 0 and (x2 − x1) > 0, this force points to the right, that is, in the
same direction as the acceleration of mg2. If mg2 were accelerated to the left,
there would also appear a force on body 1 pointing to the left and proportional
to ẍ2.

We have shown that in relational mechanics a body experiences an accel-
erating force when neighbourring masses are accelerated. Moreover, we have
shown that this force is in the same direction as the acceleration of the neigh-
bouring masses. All of this is required in order to implement quantitatively
Mach’s principle, and this was correctly pointed out by Einstein. The deriva-
tion of this effect in relational mechanics is extremely simple and natural. A
similar result can also be derived in Einstein’s general theory of relativity, but
in a more complicated way.

Let us now analyse the third consequence. Suppose we are in a frame of
reference S in which there is a spherical shell of gravitational mass dMg with its
center at rest relative to S and coinciding with its origin O. Moreover, suppose
this spherical shell to be spinning relative to this frame with angular velocity
~ωMS . The gravitational mass of the shell is given by Mg = 4πR2dRρg, where
R is its radius, dR its thickness and ρg its gravitational mass density. Suppose
now there is a test body inside the shell moving relative to this frame. The
gravitational force exerted by the shell on the test body is found to be given in
relational mechanics by Eq. (8.12), namely:
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d~F = −G
ξ

3c2

mgMg

R

[
~amS

+ ~ωMS × (~ωMS × ~rmS) + 2~vmS × ~ωMS + ~rmS ×
d~ωMS

dt

]
.

This shows that in relational mechanics a rotating hollow body generates in-
side itself a Coriolis force proportional to 2mg~vmS×~ωMS which deflects moving
bodies in the sense of the rotation, and a radial centrifugal force proportional
to mg~ωMS × (~ωMS × ~rmS). This is in complete agreement with Mach’s princi-
ple. As we have seen, the analogous effect in general relativity was derived by
Thirring, but with wrong (not observed experimentally) coefficients in front of
the Coriolis and centrifugal forces. Moreover, general relativity predicts spuri-
ous effects not found in any experiment (the axial term proportional to ~ω).

Let us now analyse the fourth consequence. It also follows immediately from
relational mechanics. The inertia of a body, namely, the force −mg~amU , was
obtained only supposing the contribution from the distant galaxies. If we make
these galaxies disappear, which is analogous to making ρo = 0 in Eqs. (8.12),
(8.16) and (8.34), there will be no force analogue to the Newtonian mi~a. The
inertia of the body disappears.

Another way of observing this consequence in relational mechanics is that
all forces in this theory are based on two-body interactions. There is no force
on any body from “space.” It is then meaningless to speak of the motion of
a single body in an otherwise empty universe. The simplest system we can
consider with motion is a universe composed of two particles.

As we have seen, this does not happen in Einstein’s general theory of rela-
tivity in which a body in an otherwise empty universe is endowed with its full
inertia.



Chapter 9

Applications of Relational
Mechanics

In this chapter we present some applications of relational mechanics. When we
consider the weight of a body on the earth’s surface, it is no longer given simply
by ~P = mg~g, with ~g = −GMgtr̂/R2

t , as this latter expression was obtained with
Newton’s law of gravitation. Now we have replaced it by Weber’s law applied
to gravitation. In order to know the force exerted by the earth on a test body
moving near its surface we need to integrate Eq. (8.14) for the whole earth.
But in this chapter we will only consider situations in which v2/c2 � 1, v being
the velocity of the test particle relative to the earth, and ra/c2 � 1, r being
the distance of the test particle to the center of the earth and a its acceleration
relative to the earth. Usually we will be in the frame of the earth, so that ~ω = 0.

In these approximations the force exerted by the earth on a test particle
moving near its surface according to Weber’s law reduces to a result similar to
Newton’s, namely: ~P = mg~g, with ~g = −HgMgtr̂/R2

t . The only difference is
the appearance of Hg instead of the universal constant of gravitation G.

9.1 Uniform Rectilinear Motion

The equation of motion of relational mechanics in a frame of reference in which
the set of distant galaxies is at rest and without rotation is given by Eq. (8.33):

N∑
j=1

~Fjm − Φmg~amU = 0 . (9.1)

197
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If
∑N

j=1
~Fjm = 0 this equation leads to ~amU = 0, observing that Φ 6= 0 and

mg 6= 0:

~vmU =
d~rmU

dt
= constant .

The difference as regards Newtonian mechanics is that the velocity ~vmU here
is the velocity of the test particle mg relative to this frame of reference defined
by the distant galaxies. Obviously, if the velocity of the test body is constant
in this frame it will also be constant in any other frame which moves with a
constant velocity relative to the frame of distant galaxies (the universal frame
of reference).

If we are disregarding accelerations of the order of 10−10 m/s2 (the typical
acceleration of the solar system around the center of our galaxy relative to
the frame of distant galaxies) we may say that the test body will move with a
constant velocity relative to the frame of fixed stars or to any other frame that
moves with a constant linear velocity relative to the set of fixed stars. If we
are disregarding accelerations of the order of 10−3 to 10−2 m/s2 (the typical
centripetal accelerations due to the anual translation and diurnal rotation of
the earth relative to the frame of fixed stars) we may say that the test body
will move with a constant velocity relative to the earth or to any other frame
of reference moving with a constant velocity relative to the earth.

9.2 Constant Force

We now consider the situation in which Eq. (8.48) is satisfied, so that we only
consider the acceleration of the test body relative to the earth’s surface. In this
approximation the acceleration of the test body relative to the set of distant
galaxies will be essentially the same as its acceleration relative to the frame of
fixed stars and to the earth: ~amU ≈ ~amf ≈ ~ame. The equation of motion is
then given by (8.49):

N∑
j=1

~Fjm − Φmg~ame = 0 . (9.2)

We now have a situation in which
∑N

j=1
~Fjm = ~Fo = constant. Application

of Eq. (9.2) leads to:

~ame =
d~vme

dt
=

~Fo

Φmg
= constant . (9.3)
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Once more, the difference as regards Newtonian mechanics is that this is not
the acceleration of the test body relative to absolute space or relative to an iner-
tial frame of reference, but relative to the earth’s surface (in the approximation
being considered here, where Eq. (8.48) is valid).

If we are in the frame of reference S’ in which the universe as a whole (the set
of distant galaxies) has a translational acceleration ~aUS′ relative to S’ and no
rotation, the equation of motion of relational mechanics takes the form (8.29):

N∑
j=1

~Fjm − Φmg(~amS′ − ~aUS′) = 0 . (9.4)

In the case of a constant anisotropic force,
∑N

j=1
~Fjm = ~Fo = constant, we

obtain:

~Fo + Φmg~aUS′ − Φmg~amS′ = 0 . (9.5)

Here ~amS′ is the acceleration of the test body in this frame. In a frame
fixed with the test body, ~amS′ = 0, so that the constant force ~Fo is balanced
by the gravitational force exerted by the distant accelerated universe, namely,
~Fo = −Φmg~aUS′ .

9.2.1 Free Fall

Here we study the motion of a test body, such as an apple, falling freely near
the surface of the earth (neglecting air friction). When studying the problem of
free fall we will neglect the acceleration of the earth (due to the gravitational
attraction of the apple) relative to the frame of distant galaxies as compared
with the acceleration of the test body in this same frame, due to the negligible
mass of the test body (an apple, for instance) compared to the earth’s mass.

If the constant force is the weight of the test body due to the gravita-
tional attraction of the earth near its surface, we have: ~Fo = mg~g, where
~g = −HgMgtr̂/R2

t is the gravitational field of the earth. Utilizing this and Eq.
(8.16) in Eq. (9.3) yields:

~ame =
mg~g

Φmg
=

3H2
o

2πξρo

Mgtr̂

R2
t

= constant . (9.6)

This explains clearly the observational fact, due to Galileo, that all bodies
fall in vacuum with the same acceleration near the surface of the earth, no
matter what their weight, form, chemical composition, etc. This is due to the
fact that the force −Φmg~ame of relational mechanics is a real force caused by
the gravitational interaction of the test body with the distant masses in the
cosmos. So the mass which appears in −Φmg~ame is the same mass which
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appears in the weight of the test body due to its gravitational interaction with
the earth, namely: ~P = mg~g. The explanation of this remarkable fact which
so puzzled Galileo, Newton, Einstein and many others, becomes obvious. This
explanation of relational mechanics is very simple and elegant. We don’t need to
postulate this proportionality, as had been done in general relativity. Instead of
postulating it (without a better understanding of the fact), this result is derived
in relational mechanics. We then acquire a complete understanding of this fact,
which opens up many new possibilities.

The graphical representation of the forces in this case is given in Figure 9.1.
The accelerations in this frame are represented in Figure 9.2.

Figure 9.1: Forces in the situation of free fall in the frame of the earth.

There is action and reaction in the gravitational interaction between the
earth and the test body, as there is action and reaction in the gravitational
interaction between the distant universe and the test body (here called inertial
attraction to highlight the identification and new meaning of Newtonian me-
chanics). The weight of the test body is paired with an opposite force acting
on the earth, while the gravitational force exerted by the distant universe on
mg, −Φmg~ame, is paired with an opposite force acting on the distant universe
(distributed between all galaxies). In Newtonian mechanics the inertial forces,
such as −mi~a, were not associated with a counter-force on another body. The
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Figure 9.2: Accelerations as seen from the earth.

forces acting on the test body, its weight (mg~g) and the force exerted by the
stationary distant universe on the accelerated test body (−Φmg~ame) balance
one another yielding the acceleration of the body.

The fact that the inertial forces (mi~a, centrifugal, Coriolis, etc.) of classical
mechanics do not comply with the law of action and reaction was clearly pointed
out by Einstein in the Foreword (1953) of the book Concepts of Space, by Max
Jammer: “The concept of space was enriched and complicated by Galileo and
Newton, in that space must be introduced as the independent cause of the
inertial behavior of bodies if one wishes to give the classical principle of inertia
(and therewith the classical law of motion) an exact meaning. To have realized
this fully and clearly is in my opinion one of Newton’s greatest achievements.
In contrast with Leibniz and Huygens, it was clear to Newton that the space
concept (a) [space as positional quality of the world of material objects; as
opposed to concept (b): space as container of all material objects] was not
sufficient to serve as the foundation for the inertia principle and the law of
motion. He came to this decision even though he actively shared the uneasiness
which was the cause of the opposition of the other two: space is not only
introduced as an independent thing apart from material objects, but also is
assigned an absolute role in the whole causal structure of the theory. This role
is absolute in the sense that space (as an inertial system) acts on all material
objects, while these do not in turn exert any reaction on space,” [33, pp. xiii-
xiv]. This can be seen clearly in the bucket experiment. If the bucket and
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water are at rest or move uniformly in a straight line relative to the Newtonian
absolute space, the water surface is flat. When the water is spinning relative
to absolute space its surface is concave, rising towards the sides of the bucket.
We can say that absolute space is acting on the water, pressing it towards the
sides of the bucket. On the other hand, nothing happens to absolute space.
The spinning water does not exert any reaction force on space. In relational
mechanics this no longer happens. All forces termed inertial in Newtonian
mechanics are now considered to be caused by an acceleration between the test
body and the distant universe. And there is a reaction to these forces, exerted
by the test body on the distant universe (distributed between all galaxies).

If we are in the frame of reference S’ of the test body so that it does not
move in this frame (only the earth approaches the test body), we have, from
Eq. (9.5) with ~amS′ = 0 and remembering that ~Fo = mg~g:

mg~g + Φmg~aUS′ = 0 .

The forces in this case are represented in Figure 9.3, while the accelerations
in this frame are seen in Figure 9.4.

Figure 9.3: Forces in the situation of free fall in the frame of the test body.

What we see here is again action and reaction between the earth and the
test body, and the same between the distant universe and the test body. But
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Figure 9.4: Accelerations as seen by the test body.

now the interpretation is a little bit different. Now we say that the weight of the
body is balanced by an upward gravitational force exerted by the accelerated
universe, so that the test body does not move in its own frame of reference.

We now show another fundamental aspect of relational mechanics which is
not implemented in Newtonian mechanics or in Einstein’s theories of relativity,
namely, the relative aspect of mass or density. In classical mechanics or in
general relativity the acceleration of free fall near the surface of the earth is
given by

aN = aE = G
Mt

R2
t

, (9.7)

where G = 6.67 × 10−11 Nm2/kg2 is the universal constant of gravitation.
Utilizing the earth’s mass and radius we obtain in this first case for Newton
and Einstein: aN

I = aE
I = 9.8 m/s2. If we double the masses of all bodies in

the universe (the test body, the earth, the stars and distant galaxies), keeping
all distances and sizes fixed (which is equivalent to saying that we are doubling
the densities of all bodies), this equation predicts that the acceleration of free
fall will double: aN

II = aE
II = 19.6 m/s2. This shows that not only space and

time are absolute in these theories (without relation to anything external), but
the same also applies to mass. But this is against Mach’s ideas. Remember
that he wrote: “All masses and all velocities, and consequently all forces, are
relative” [39, p. 279]. This means that if we doubled or halved all masses, it
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should be impossible to discover this. But here we showed that in the theories
of Newton and Einstein, if we double all the masses the acceleration of free fall
also doubles, so that by this effect we might discover that the absolute masses
of the universe had doubled.

On the other hand, in relational mechanics the acceleration of free fall is
given by Eq. (9.6). Writing the mass of the earth as Mgt = 4πR3

t ρt/3, where
ρt is the mean gravitational density of the earth’s mass, we have:

aRM =
2
ξ
RtH

2
o

ρt

ρo
. (9.8)

Utilizing the known values of Rt, Ho, ρt and ρo yields aRM ≈ 9.8 m/s2. This
equation shows that the acceleration of free fall according to relational mechan-
ics depends only on the ratio of the matter density of the earth by the average
matter density of the universe. If we double or halve both of them, the accel-
eration of free fall should remain the same. The explanation is very simple:
When we double the mass of the earth, the weight of the test body doubles,
but when we also double the mass of the distant universe, it also doubles the
“inertia” of the test body (utilizing the language of Newtonian mechanics). In
other words, the force −Φmg~amU exerted by the distant universe on mg also
doubles. For this reason the net acceleration of free fall of the test body will
remain the same, 9.8 m/s2.

We now make a variation of this example. In the first case we have a
test body of 1 kg falling freely near the earth’s surface. All three theories
(Newtonian, Einsteinian and relational mechanics) predict the observed value:
aN

I = aE
I = aRM

I = 9.8 m/s2. In the second case we double the mass of the
test body, keeping the masses of the earth, stars and galaxies constant. Once
more all three theories predict, by Eqs. (9.7) and (9.8): aN

II = aE
II = aRM

II = 9.8
m/s2. This is confirmed by Galileo’s experiment. In the third situation we keep
the original mass of 1 kg for the test body but halve the masses of the Earth,
stars and galaxies, keeping all dimensions and distances constant. According
to Eq. (9.7) we conclude that classical mechanics and general relativity predict
an acceleration of free fall given by: aN

III = aE
III = 4.9 m/s2. Only relational

mechanics, by Eq. (9.8), predicts the same acceleration in this case: aRM
III = 9.8

m/s2. This is the only prediction which makes sense philosophically. The reason
is that the ratio of any two masses in case II is the same as the ratio of the
equivalent masses in case III, so that it should be impossible to distinguish these
two cases. We will represent the test body by the superscript a, the earth by
e and the galaxies by g. As ma

II/me
II = ma

III/me
III , ma

II/mg
II = ma

III/mg
III

and me
II/mg

II = me
III/mg

III we should have the acceleration of free fall in case
II equal to the acceleration of free fall in case III. This is predicted only by
relational mechanics.
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This shows that in classical mechanics and in Einstein’s general theory of
relativity there is not only absolute space and time but also absolute mass.
The reason for this is Newton’s theorem that a spherical shell exerts no force
on internal test particles, no matter what the position or motion of the test
particle. The same happens in general relativity, as was shown by Brans in
1962 [116], [75] and [117]. Although the acceleration of free fall depends on
the mass of the earth in these theories, it does not depend on the mass of the
stars and galaxies. This means that we can remove spherical shells composed
of stars and galaxies around the earth without changing the acceleration of a
falling apple. This does not happen in relational mechanics, as in this case the
acceleration of free fall will depend on the ratio of the mass (density) of the
earth to the mass (density) of the distant universe.

9.2.2 Charge Moving Inside an Ideal Capacitor

The other example analysed here is that of a charged particle q which suffers
a force from an ideal capacitor which is at rest relative to the earth. The
capacitor is charged with surface densities ±σ on its plates orthogonal to the
z axis located at ±zo, as in Figure 2.3. The test charge is located at time
t at ~r = zẑ and moves with velocity ~v = vxx̂ + vy ŷ + vz ẑ and acceleration
~a = axx̂ + ay ŷ + az ẑ relative to the plates of the capacitor.

The force on a test charge inside the ideal capacitor in Weber’s electrody-
namics is different from Lorentz’s force in this case. Weber’s force is given by
[12, Section 6.7]:

~F (−zo < z < zo) = −4πHeqσ

[
ẑ +

v2

2c2
ẑ

− vx(vxx̂ + vy ŷ)
c2

− z~a

c2
+

2zaz

c2
ẑ

]
,

Here we consider only the approximation in which v2/c2 � 1 and za/c2 � 1,
so that this result reduces to the classical one based on Lorentz’s force, namely:
~Fo ≈ −4πHeqσẑ = q ~E.

Eqs. (9.2) and (8.43) lead to:

~ame =
q

Φmg

~E = −6
ξ

He

Hg

H2
o

ρo

qσ

mg
ẑ = − qσ

mgεo
ẑ .

As there is no relation between the electrical charge q and the gravitational
mass of the particle mg, the acceleration of two different particles, such as an
alpha particle and a proton in the same capacitor, may be different, as is indeed
the case.
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If we doubled (halved) the density of external galaxies, maintaining the test
charge and capacitor without alteration, the acceleration of the test charge
would halve (double), as we can see from the dependence of ame on ρo. This
is predicted by relational mechanics but not by Newtonian nor Einsteinian
theories. Once more this is explained in relational mechanics by saying that
the effective inertial mass (employing the common terms of classical mechanics)
will double (halve) in this case.

9.2.3 Accelerated Train

We now consider a train with a constant acceleration relative to the earth’s
surface, with a simple pendulum fixed on its roof. We analyse here only the
equilibrium situation when the bob of the pendulum does not move relative to
the train, so that it is at a constant angle θ relative to the vertical. The forces
acting on the bob, neglecting air resistance, are its weight ~P = mg~g, the tension
in the string, ~T , and the gravitational force due to the distant universe. Eq.
(9.2) leads to:

mg~g + ~T − Φmg~ame = 0 , (9.9)

where in relational mechanics g = HgMgt/R2
t .

Utilizing the angle θ of Figure 2.5 yields:

mgg = T cos θ ,

T sin θ = Φmgame .

From these expressions we obtain immediately, with Eq. (8.16) and Mgt =
4πR3

t ρt/3:

tan θ =
Φame

g
=

ξ

2
ρo

ρt

ame

RtH2
o

. (9.10)

Hence it follows immediately from relational mechanics that the angle of
inclination will depend only on the ratio of the linear acceleration of the body
relative to the earth, ame, and the free fall acceleration, g. It will not depend
on the weight, form or chemical composition of the body, although the tension
in the string will depend on the weight of the test body.

We now analyse this problem in the train’s frame of reference T. In this case,
the train and the pendulum are seen at rest, while the earth and the distant
universe are seen moving with acceleration ~aUT given by: ~aUT = −~ate, where
~ate is the acceleration of the train relative to the earth’s surface. Eq. (9.4) now
takes the form:
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~P + ~T + Φmg~aUT = Φmg~amT .

Since in this frame the test body is at rest, ~amT = 0, and ~aUT = −~ate,
we obtain the same equation as Eq. (9.9), so that the final result is the same.
Only the interpretation is now slightly different from the situation seen in the
earth’s frame. Now we say that the tension ~T and the weight ~P are balanced
by a gravitational force exerted by the accelerated distant universe on mg, so
that mg does not move in this frame. See Figure 9.5.

Figure 9.5: Accelerations and forces as seen from the train (T). The earth and
the galaxies have an acceleration aUT to the left while the body of mass mg has
no acceleration in this frame. The accelerated galaxies exert a force mgaUT to
the left on mg, which balances the weight of the body and the tension in the
string.

The easiest way to understand the equilibrium situation in the train’s frame
of reference is to think that the universe accelerated to the left exerts a grav-
itational force on the bob pointing to the left proportional to mg and to the
acceleration of the universe. Given the universe acceleration, we can then find
the angle θ and the tension T in the string such that the body will be at rest.
In other words, we equate T cos θ with P = mgg and T sin θ with ΦmgaUT . In
this way we find θ and T such that the bob is at rest, amT = 0.

From Eq. (9.10) we can see that the angle of inclination is proportional to
ρo/ρt, i.e. to the ratio of the average density in the universe by the density
of the earth. Keeping Rt constant and always analysing the situation in which
the train has the same acceleration relative to the earth, ame = constant, we
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conclude that tan θ will double if ρo/ρt doubles. This will happen no matter if
we halve ρt, keeping ρo constant, or if we double ρo, keeping ρt constant. Once
more, only relational mechanics arrives at this simple and appealing result.

9.3 Harmonic Oscillator

We consider here bodies moving over the surface of the earth such that condition
(8.48) is satisfied. In this case, the equation of motion of relational mechanics
reduces to Eq. (9.2).

9.3.1 Spring

We first analyse a body fastened to a spring and oscillating horizontally. Its
weight is balanced by the reaction force exerted by a frictionless table, shown in
Figure 2.6. In the one-dimensional motion of a test body connected to a spring
of elastic constant K the equation of motion reduces to:

− Kx− Φmgame = 0 .

Here x is the displacement of the body from the equilibrium position. As
we are in a one-dimensional problem we can put ame = ẍ. The solution of this
equation is then found to be:

x(t) = Ao sin(ωt + θo) ,

where Ao is the amplitude of oscillation (specified by the initial conditions),
θo is the phase of oscillation (also specified by initial conditions) and ω is the
frequency of oscillation given by (with Eq. (8.16)):

ω =

√
K

Φmg
=

√
3

2πξ

K

mg

H2
o

Hgρo
.

This result shows that for springs oscillating horizontally the frequency of
vibration is inversely proportional to the weight of the test body, as observed
experimentally. Comparison with Eq. (2.11) of Newtonian mechanics shows
that the greatest difference is the appearance in relational mechanics of the
gravitational mass mg instead of the inertial mass mi.

Doubling the density of galaxies in the universe, while keeping the spring
and test body unaltered, would decrease the frequency of oscillation by

√
2.

This would be the same as doubling the Newtonian inertial mass of the test
body.
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9.3.2 Simple Pendulum

We now have a simple pendulum oscillating near the earth’s surface. Neglecting
air resistance, the forces acting on the bob of gravitational mass mg are its
weight ~P = mg~g = mg(HgMgt/R2

t )ĝ, the tension in the string ~T and the
gravitational force exerted by distant galaxies, −Φmg~ame:

mg~g + ~T − Φmg~ame = 0 .

The length ` of the string is a constant. Using a polar coordinate system
with ~T = −T ˆ̀, ~ame = −(`θ̇2)ˆ̀+ `θ̈θ̂, Figure 2.7, yields:

T −mgg cos θ − Φmg`θ̇
2 = 0 ,

−mgg sin θ − Φmg(`θ̈) = 0 .

This last equation shows that even without further approximations the value
of the angle of oscillation as a function of time will not depend on mg, as it
cancels out of the expression. The same did not happen in the previous equation
for the tension T .

In the approximation of small oscillations (θ � π/2) this last equation and
its solution reduce to (with Eq. (8.16) and Mgt = 4πR3

t ρt/3):

θ̈ +
g

Φ`
θ = θ̈ +

2
ξ
H2

o

Rt

`

ρt

ρo
= 0 ,

θ = A1 cos(ωt + B1) ,

where A1 and B1 are constants depending on the initial conditions and ω is the
frequency of oscillation given by:

ω =
√

g

Φ`
=

√
2
ξ
H2

o

Rt

`

ρt

ρo
.

Relational mechanics explains at once Newton’s experimental result that
bodies of different chemical composition oscillate with the same frequency in
pendulums of the same length in the same location at the earth’s surface.

Doubling the number of galaxies in the universe (i.e., doubling ρo), while
keeping the string, earth and the test body unaltered, would decrease the fre-
quency of oscillation by

√
2. It would be the same as halving ρt, while keeping

Rt and ρo constants. It would also be the same as doubling the Newtonian
inertial mass of the test body, while keeping its gravitational mass unaltered.
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9.4 Uniform Circular Motion

9.4.1 Circular Orbit of a Planet

In this subsection we consider two bodies orbiting around one another relative
to distant masses due to their gravitational attraction. The frame of reference
considered here is that of the fixed stars, and the bodies might be the sun and
a planet. The centripetal acceleration of the solar system around the center of
our galaxy is given approximately by as ≈ 10−10 m/s2. The typical centripetal
accelerations of the planets around the sun in the frame of fixed stars is the
earth’s, namely: 10−2 to 10−3 m/s2. As these accelerations are much greater
than 10−10 m/s2, in planetary motion we can disregard the acceleration of the
solar system relative to distant galaxies. The set of distant galaxies may be
considered essentially without acceleration relative to the frame of fixed stars.
This means that ~amU ≈ ~amf . So Eq. (8.33) reduces to:

N∑
j=1

~Fjm − Φmg~amf = 0 ,

where ~amf is the acceleration of the test body mg relative to the frame of fixed
stars. This is the equation of motion of relational mechanics which is valid in
the frame of fixed stars in this approximation where amf � 10−10 m/s2.

The gravitational force exerted between two bodies 1 and 2 is given by
Weber’s law, Eq. (8.4):

~F21 = −Hgmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
= −~F12 .

We consider here the situation in which they are moving in circles relative
to the fixed stars, keeping a constant distance to the center of mass. In this
case ṙ12 = 0 and r̈12 = 0, so that Weber’s force reduces to the Newtonian force.

We choose the origin of the coordinate system at the center of mass. The
situation seen in the frame of fixed stars is shown in Figure 9.6.

In this case the accelerations of bodies 1 and 2 are only their centripetal
accelerations, namely: ~a1f = −(v2

t1/r1)r̂1 and ~a2f = −(v2
t2/r2)r̂2. Here vt1

is the tangential velocity of body 1 relative to the frame of fixed stars at a
distance r1 to the center of mass and r̂1 is the radial unit vector pointing to it,
and analogously for body 2. As r̂1 = −r̂2 = r̂12 and ~F21 = −~F12 we are led to:

F = Hg
mg1mg2

r2
12

= Φmg1a1f = Φmg1
v2

t1

r1
= Φmg2a2f = Φmg2

v2
t2

r2
.

The gravitational masses cancel as usual. As we have mg1r1 = mg2r2 we
see that both bodies orbit at a constant angular velocity ωmf relative to the
fixed stars given by, with Eq. (8.16):
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Figure 9.6: Gravitational orbits in the frame of fixed stars.

ωmf =
vt1

r1
=

vt2

r2
=

√
3H2

o

2πξρo

mg1

r2
12r2

=

√
3H2

o

2πξρo

mg2

r2
12r1

.

If the z axis is normal to the plane of motion and pointing according to the
right hand rule following the planets’ motion, then it will point upwards in
Figure 9.6. The vectorial angular rotation of the planets will be then given by
~ωmf = ωmf ẑ.

Here we must stress a great conceptual difference when this problem is
treated in Newtonian and in relational mechanics. In the first case, it is a
simple two body problem, with the planets or bodies orbiting in space. On the
other hand, in relational mechanics this is a many body interaction, namely:
the two bodies (the sun and a planet, for instance) plus the distant masses in the
cosmos, such as the distant galaxies. The distant galaxies play a fundamental
role in relational mechanics and cannot be neglected. With the real universe
full of bodies we cannot treat any single “two body” problem, as the stars and
distant galaxies will exert a real force on any accelerated body. This conceptual
difference should always be kept in mind.

Now suppose we are in a frame of reference S centered on the center of mass
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but in which the planets are at rest. In this frame the distant galaxies and the
fixed stars are seen spinning as a whole with an angular velocity (neglecting
10−10 m/s2 compared to ωUS):

~ωUS = −~ωmf = −

√
3H2

o

2πξρo

mg1

r2
12r2

ẑ .

The relational equation of motion in this case is given by Eq. (8.47), namely:

N∑
j=1

~Fjm − Φmg [~amS + ~ωUS × (~ωUS × ~rmS)

+ 2~vmS × ~ωUS + ~rmS ×
d~ωUS

dt

]
= 0 .

As in this frame the bodies 1 and 2 are seen at rest, ~vmS = 0 and ~amS = 0.
Moreover, d~ωUS/dt = 0. So this equation reduces to:

Hg
mg1mg2

r2
12

= Φmg1ω
2
USr1S ,

and an analogous equation for body 2. In other words, the gravitational force
between the two bodies 1 and 2 is balanced by a real centrifugal gravitational
force exerted by the spinning set of distant galaxies on each one of them. This
explains how they can keep a constant distance relative to one another and re-
main at rest in this frame, despite their gravitational attraction. In Newtonian
mechanics this could be explained only by the introduction of a “fictitious”
centrifugal force without any known physical origin. In relational mechanics
we identify the bodies that are causing this centrifugal force, namely, the dis-
tant galaxies. We also identify the origin of this force, namely, a gravitational
attraction depending on relative motion, shown in Figure 9.7.

If we could keep the solar system without modifications but could double the
number or density of galaxies in the universe, then relational mechanics would
predict that the bodies would behave as having twice their present Newtonian
inertial masses. This is evident from Eqs. (8.16) to (8.27).

9.4.2 Two Globes

The situation of the two globes connected by a string and spinning relative
to the distant galaxies and fixed stars is the same situation as the previous
problem, replacing the gravitational force by the tension ~T in the string.
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Figure 9.7: Real gravitational centrifugal force balancing the gravitational at-
traction between two bodies.

In the frame of the fixed stars the globes rotate around the center of mass
and the tension in the string is balanced by the gravitational force −Φmg~amf

due to their acceleration relative to the distant galaxies and fixed stars. See
Figure 9.8.

In the frame S in which they are seen at rest the tension in the string is
balanced by the centrifugal gravitational force −Φmg~ωUS × (~ωUS × ~rmS) due
to the rotation of the distant universe around the globes. See Figure 9.9.

The main difference between relational and Newtonian mechanics in this
case is that the tension in the string will always appear provided the relative
rotation is the same. In the frame of the fixed stars, f , the set of stars and
distant galaxies is essentially at rest while the globes rotate with an angular
velocity ~ωgf = ωoẑ. In another frame S in which the globes are at rest, it is the
set of fixed stars and distant galaxies that rotate relative to S with an angular
velocity ~ωUS = −ωoẑ. As we had seen in subsection 2.4.2, for Newton there
would appear no tension in the cord in this last situation. See Figure 9.10.

But for Mach, the tension would be there as in the previous situation. Re-
lational mechanics has implemented Mach’s ideas quantitatively showing with
Weber’s law for gravitation that in this last situation there will appear a real
centrifugal force creating or balancing the tension in the string, as in Figure
9.9. Provided the kinematical rotation is the same (globes rotating with ωoẑ
with galaxies and stars at rest, or the globes at rest with the galaxies and fixed
stars rotating with −ωoẑ), the dynamics will also be exactly the same (the same
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Figure 9.8: Globes rotating relative to the distant galaxies.

tension in the string in both cases). This prediction does not happen in classical
mechanics or in Einstein’s general theory of relativity. In relational mechanics
we cannot know who is really rotating. But from the tension in the string we
can conclude that there is a relative rotation between the globes and the distant
universe.

Suppose now we double the density of external galaxies, without changing
the cord and the globes. It would be more difficult to rotate the globes, due
to their increased inertia. But if we rotated the globes with the same angular
velocity relative to the distant galaxies, the tension in the cord would double
compared with the present situation. We can see this by observing that the
tension will be proportional to Φmgamf . As Φ is proportional to ρo, doubling
the number of galaxies will double the tension.

9.4.3 Newton’s Bucket Experiment

We are now in a situation in which condition (8.48) is satisfied, so that the
equation of motion of relational mechanics takes the simple form of Eq. (9.2):

N∑
j=1

~Fjm − Φmg~ame = 0 .

This is similar to Newton’s second law of motion, with mi replaced by mg

and the acceleration relative to an inertial frame replaced by the acceleration
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Figure 9.9: Rotating frame of galaxies balancing or creating the tension between
the stationary globes.

relative to the earth. Then the solution is the same, namely, the concave surface
in the form of a paraboloid of revolution. The procedure to arrive at the
equation describing the form of the surface is the same as in subsection 2.4.3:

Let us consider a small volume of liquid dmg = ρgdV just below the sur-
face. It is acted upon by the downward force of gravity, dP = dmgg =
dmg(HgMgt/R2

t ), and by a force normal to the surface of the liquid due to
the gradient of pressure, dE. This portion of liquid moves in a circle centered
on the z axis, so that there is no net vertical force acting on it. The distant
galaxies exert only a force pointing towards the z axis changing its direction of
motion: −Φdmg~awe, where ~awe is the acceleration at each point of the water
relative to the earth. From Figure 2.18 we obtain in this case (ac = ω2

wex be-
ing the acceleration of dmg at a distance x from the axis of rotation, with an
angular velocity relative to the earth given by ωwe):

dE cos α = dP = dmgg = dmg
HgMgt

R2
t

, (9.11)

dE sinα = Φdmgac = Φdmgω
2
wex . (9.12)
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Figure 9.10: According to Newtonian mechanics, a rotating set of stars and
galaxies does not produce any centrifugal force.

From these two equations we get:

tanα =
Φω2

weR
2
t

HgMgt
x . (9.13)

Utilizing the fact that tanα = dz/dx, where dz/dx is the inclination of the
curve at each point, and the fact that we want the equation of the curve which
contains the origin x = z = 0 yields (taking into account Eq. (8.16) and the
fact that Mgt = 4πR3

t ρt/3):

z =
Φω2

weR
2
t

2HgMgt
x2 =

(
ξ

4
ω2

we

RtH2
o

ρo

ρt

)
x2 . (9.14)

In the frame of the bucket, the water is at rest, while the earth, the fixed stars
and the distant galaxies are all spinning in the opposite direction (compared
with the spinning water seen from the earth’s frame of reference). In the frame
of the bucket, B, the equation of motion of relational mechanics takes the form
of Eq. (8.47). As in this frame the water is at rest, ~vmB = 0 and ~amB =
0. Moreover, the angular rotation of the universe is essentially a constant,
d~ωUB/dt = 0. So, this equation reduces to:

N∑
j=1

~Fjm − Φmg~ωUB × (~ωUB × ~rmB) = 0 .
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This is similar to Newton’s second law of motion with centrifugal force when
the test body does not move. This means that in this frame relational mechan-
ics predicts the appearance of a real gravitational centrifugal force exerted by
the distant universe spinning around the bucket. We can then say that this
centrifugal force presses the water against the wall of the bucket making the
water rise on this wall until the centrifugal force is balanced by the gradient of
pressure.

Let us now suppose we multiply the density of matter ρo in the universe by
a constant k, leaving the earth, bucket and water without alterations in their
masses, sizes or densities. According to Eq. (9.14) we can see that the curvature
of the paraboloid (the coefficient in front of x2) will also be proportional to k.
This shows that keeping the same angular rotation of the water relative to the
earth and distant galaxies would make it rise more on the sides of the vessel
if k > 1. If k → 0, which means annihilating the external galaxies, then the
surface of the water would remain essentially plane despite its rotation. In any
case, it would always be somewhat concave even with the disappearance of the
external galaxies due to the rotation of the water relative to the earth, an effect
which we are not considering here. In order to take this effect into account we
should integrate Eq. (8.14) instead of saying that the force exerted by the earth
on the spinning water is simply ~P = −mggr̂.

This discussion helps to illustrate the striking difference between relational
mechanics and the Newtonian or relativistic mechanics. Only in relational
mechanics will the curvature of the water will depend on the amount of matter
of the distant galaxies. Doubling or halving this amount, while keeping the
mass and size of the earth constant, doubles or halves the curvature of the
water, assuming the same angular rotation of the water relative to the earth,
ωwe = constant. In Newtonian mechanics or in Einstein’s general theory of
relativity, if we are in the universal frame of reference, doubling or halving the
mass of the galaxies has no effect on the curvature of the water.

When Mach was criticizing Newton’s absolute space he wrote: “Try to fix
Newton’s bucket and rotate the heaven of fixed stars and then prove the ab-
sence of centrifugal forces.” Here we have implemented Mach’s principle quan-
titatively, fixing Newton’s bucket, rotating the set of fixed stars together with
the distant galaxies, and proving the presence of real gravitational centrifugal
forces!
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9.5 Rotation of the Earth

9.5.1 The Figure of the Earth

We now consider the rotation of the earth relative to the set of fixed stars with
a period of one day.

In the frame of the fixed stars the equation of motion of relational mechanics
has the same form as in Newton’s second law of motion (neglecting the effects
of the rotation of the solar system around the center of our galaxy relative
to distant galaxies). The changes which appear are: (A) Φmg instead of mi;
(B) ~a being the acceleration of the earth relative to the fixed stars and not
relative to absolute space or to an inertial system of reference; and (C) Hg

instead of G. This rotation of the earth will flatten it at the poles. Performing
the calculations as in subsection 3.3.2 we find that the ratio of the equatorial
radius to the polar radius is given by, with these changes (see Eq. (8.16):

R>

R<
≈ 1 +

5ΦωtfR3
t

4HgMt
= 1 +

5ξ

8
ω2

tf

H2
o

ρo

ρt
, (9.15)

where ωtf is the angular rotation of the earth relative to the fixed stars. With
the known values of ωtf , Ho, ρo, ρt and ξ we find that R>/R< ≈ 1.004.

In the earth’s frame of reference, and neglecting the translation of the earth
around the sun with a period of one year, the equation of motion of relational
mechanics takes the form of Eq. (8.47):

N∑
j=1

~Fjm − Φmg [~ame + ~ωUe × (~ωUe × ~rme)

+ 2~vme × ~ωUe + ~rme ×
d~ωUe

dt

]
= 0 .

As the earth is at rest in this frame, ~vme = 0 and ~ame = 0. Considering also
that d~ωUe/dt = 0 we arrive at:

N∑
j=1

~Fjm −mg~ωUe × (~ωUe × ~rme) = 0 .

In this frame there will appear a real centrifugal force of gravitational origin
due to the rotation of distant galaxies around the earth. This centrifugal force
flattens the earth at the poles.

What would happen if the external galaxies were annihilated or did not ex-
ist? According to relational mechanics the centrifugal force would disappear,
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except for a small value due to the rotation of the earth relative to the sun,
planets and stars belonging to our galaxy. The earth would no longer be flat-
tened, R> = R<. And Clarke’s “absurd” consequence discussed in chapter 5,
would be fulfilled. If we double the density of galaxies, then the earth would
have a double oblateness (R> −R< would double from its present value), pro-
vided it kept the same angular rotation relative to the distant universe (with a
period of 24 hours).

9.5.2 Foucault’s Pendulum

In this case only the Coriolis force will be relevant. The difference as regards
Newtonian mechanics is the appearance of Φmg instead of mi, Hg instead of G
and the rotation of the frame of distant galaxies around the earth instead of the
rotation of the earth relative to absolute space. The quantitative explanation
will be the same in Newtonian mechanics and in relational mechanics. The
final result for the precession of the plane of oscillation of the pendulum will be
given by

Ω = −ωef cos θ = ωef sinα , (9.16)

where ωef is the angular rotation of the earth relative to the fixed stars, α is
the latitude and θ = π/2− α.

What should be emphasized once again is that relational mechanics offers a
physical explanation of the Coriolis force. It is now seen as a real gravitational
force due to a relative rotation between the earth and the frame of distant
galaxies.

It is worthwhile to present here another calculation of the rotation of the
plane of oscillation of Foucault’s pendulum. In Figure 9.11 we see the earth
centered on O spinning with ~ωeU = ωẑ relative to the universal frame of refer-
ence U fixed with the distant galaxies. The pendulum is located at a latitude
α (i.e., at an spherical angle θ with the SN axis). The weight of the bob mg is
−mggr̂.

In the earth’s frame of reference the equation of motion of relational me-
chanics is given by Eq. (8.47):

N∑
j=1

~Fjm − Φmg

[
~ame + ~ωUe × (~ωUe × ~rme)

+ 2~vme × ~ωUe + ~rme ×
d~ωUe

dt

]
= 0 .



220 CHAPTER 9. APPLICATIONS OF RELATIONAL MECHANICS

Figure 9.11: Foucault’s pendulum in the universal frame U.

As we are in the earth’s frame of reference, all velocities, accelerations and
angular velocities are relative to the earth’s surface. We can consider d~ωUe/dt =
0. Moreover, we know that the centrifugal force has no effect in rotating the
plane of oscillation of a pendulum, so that we will neglect this force here. The
equation of motion for a test particle of gravitational mass mg can then be
written as

N∑
j=1

~Fjm − 2Φmg~vme × ~ωUe = Φmg~ame ,

where ~ame is the acceleration of the test body relative to the earth and ~ωUe is
the angular rotation of the distant galaxies (or the fixed stars, neglecting the
small acceleration of the solar system relative to the distant galaxies of ≈ 10−10

m/s2) relative to the earth. In other words, ~ωUe = −~ωeU = −ωẑ.
Now, suppose we have a pendulum of length l with a bob of mass mg oscil-

lating in the gravitational field of the earth. We introduce another coordinate
system (x′, y′, z′) or (r′, θ′, ϕ′). The origin of this new coordinate system
O’ is the point of support. We utilize spherical coordinates and consider the z′

axis pointing vertically upwards at that location of the earth, orthogonal to the
earth’s surface at each point, as in Figure 9.12.
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Figure 9.12: Foucault’s pendulum in the earth’s frame.

The local forces acting on the bob are its weight ~P = −mggẑ′, with g =
HgMt/R2

t , and the tension ~T = −T r̂′ in the string. Accordingly, the equation of
motion of relational mechanics can be written as (with Eq. (8.37 and a similar
one for the tension in the string):

−mg
GMt

R2
t

ẑ′ − T r̂′ + mg~vme × ~Bg = mg~ame .

Here we have defined ~Bg ≡ −2~ωUe to let this Coriolis term become similar
to Lorentz’s magnetic force. It might be called the gravitational magnetic
field generated by the rotation of the set of distant galaxies. Now we utilize
the fact that ẑ′ = r̂′ cos θ′ − θ̂′ sin θ′, ~r′ = lr̂′, l = constant, ~vme = lθ̇′θ̂′ +
lϕ̇′ sin θ′ϕ̂′, ~ame = −(lθ̇′2 + lϕ̇′2 sin θ′2)r̂′+(lθ̈′− lϕ̇′2 sin θ′ cos θ′)θ̂′+(lϕ̈′ sin θ′+
2lθ̇′ϕ̇′ cos θ′)ϕ̂′. Let us consider that the motion is initially in the x′z′ plane.
It is then easy to see that a gravitational magnetic field in the y′ direction
will only change the tension in the string in order to keep its constant length,
but will not change the plane of oscillation (observing that the force mg~v× ~Bg

will be in this plane). A gravitational magnetic field in the x′ direction will
not change the plane of oscillation as well. The x′ component of the velocity
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will not be influenced by this field. On the other hand while the bob is going
down (with a component of the velocity towards the negative z′ direction) the
magnetic gravitational force will be in the negative y′ direction, while when the
bob is going up the force will be in the positive y′ direction, both signs reversing
when the bob is coming back to the point of release after this half period. This
shows that on average the x′ component of the gravitational magnetic field does
not rotate the plane of oscillation. With the z′ component of the gravitational
magnetic field the same does not happen. During half a period (while the
bob goes down and up) the pendulum experiences a force in the positive y′

direction, while during the second half period the force is in the negative y′

direction. This clearly rotates the plane of oscillation. From now on we will
consider only a gravitational magnetic field in the z′ direction, to simplify the
analysis: ~Bg = Bgz′ ẑ′. With this in the r̂′ component of the equation of motion
we obtain the value of the tension in the string which keeps its length constant:
T = −mg[(GMt/R2

t ) cos θ′−lθ̇′2−lϕ̇′2 sin2 θ′−Bgz′ lϕ̇′ sin2 θ′]. We are interested
only in small oscillations around θ′ = π. This means that sin θ′ ≈ π − θ′ and
cos θ′ ≈ −1. Utilizing this in the θ̂′ and ϕ̂′ components of the equation of
motion yields, respectively:

θ̈′+
(

GMt/R2
t

l
−Bgz′ ϕ̇′ − ϕ̇′2

)
θ′+π

(
Bgz′ ϕ̇′ − GMt/R2

t

l
+ ϕ̇′2

)
= 0 , (9.17)

ϕ̈′ =
θ̇′(Bgz′ + 2ϕ̇′)

π − θ′
. (9.18)

We utilize as initial conditions the fact that θ′ = θ′o, θ̇′ = 0, ϕ′ = ϕ′o and
ϕ̇′ = 0. This yields the solution of Eq. (9.18) as:

ϕ̇′ =
Bgz′

2

[
1−

(
π − θ′o
π − θ′

)2
]

.

This equation shows that if Bgz′ = 0 then ϕ′ = constant. The solution
of Eq. (9.17) satisfying the initial conditions in this case would be: θ′ =
π + (θ′o − π) cos(ωot), where ωo ≡

√
(GMt/R2

t )/l.
We now solve Eq. (9.18) iteratively supposing B2

gz′ � ω2
o = g/l. We put

the solution for Bgz′ = 0 in the right hand side of (9.18) and integrate it. The
solution of this equation is:

ϕ′ = ϕ′o +
Bgz′

2

[
t− tan(ω′ot)

ω′o

]
.
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The period of the pendulum is given by T = 2π/ωo. As ϕ′(t = 0) = ϕ′o we
find that after one period the final value of ϕ′ becomes:

ϕ′(t = 2π/ωo) = ϕ′o +
πBgz′

ω′o
.

This means that the angular velocity of rotation of the plane of oscillation
is found to be given by:

Ω =
4ϕ′

4t
=

ϕ′(T )− ϕ′o
T

=
Bgz′

2
.

Now let us look at Figure 9.12.
The stars and distant galaxies rotate in the north-south direction relative

to the earth. This is the direction of ~ωUe = −ωẑ. For a pendulum oscillating
at latitude α (at Paris, for instance, where α = 48o 51′ N) the z′ component of
the gravitational magnetic field will be given by Bgz′ = Bg cos θ = Bg cos(90o−
α) = Bg sinα = 2ωUe sinα, where we utilized the definition introduced earlier,
namely: ~Bg = −2~ωUe. This means that the angular rotation of the plane of
oscillation will be given by:

Ω =
Bgz′

2
= ωUe sinα .

This is the observed value of the rotation of the plane of oscillation. The
approximation utilized in this calculation that B2

gz′ � ω2
o = (GMt/R2

t )/l is
easily justified observing that in Foucault’s real experiment we had l = 11 m
such that ωo ≈ 1 rad/s � Bgz′ = 2ωUe sinα = 2(7.3 × 10−5 rad/s) ×0.75 =
10−4 rad/s.

In relational mechanics we can interpret this rotation as an analog of the
magnetic Lorentz force law. In this case the spinning set of distant galaxies
generates a gravitational magnetic field ~Bg = −2~ωUe which exerts a force on
moving masses given by mg~vme × ~Bg.

The flattened figure of the earth or Foucault’s pendulum can no longer be
utilized as proofs of the earth’s real rotation. In relational mechanics, both facts
can be equally explained with the frame of distant galaxies at rest (exerting a
gravitational force −Φmg~amU on bodies at the earth’s surface) while the earth
rotates relative to this frame, or with the earth at rest while the distant galaxies
rotate around it exerting a gravitational force −Φmg(~ame +2~vme×~ωUe +~ωUe×
(~ωUe × ~rme)) on bodies at the earth’s surface. Both explanations are equally
correct and yield the same effects. It then becomes a matter of convenience
or of convention to choose the earth, the distant galaxies or any other body
or frame of reference to be considered at rest. This is an important and deep
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result of relational mechanics, which had not been implemented by any other
formulation of mechanics up to now.

We then acquire a new comprehension of Foucault’s pendulum. Let us
present it only in the simplest case of a pendulum oscillating over the North
pole. We conclude that the plane of oscillation is fixed relative to the frame of
distant galaxies, no matter what the rotation of the earth relative to this frame,
as in Figure 9.13. In this Figure we are in the universal frame of reference U
watching the earth rotate below us. While the earth rotates, the plane of
oscillation remains fixed relative to U.

Figure 9.13: Plane of oscillation of Foucault’s pendulum fixed relative to the
set of distant galaxies.

For an observer fixed on the earth, the explanation is the same. Accordingly,
he can say that the distant galaxies rotating around the earth make the plane
of oscillation of the pendulum rotate with them, as in Figure 9.14: ~Ωpe = ~ωUe.

If all the matter in the universe were annihilated, except the pendulum and
the earth, then according to relational mechanics the plane of oscillation of
the pendulum would be fixed relative to the earth. The reason for this is that
the Coriolis force is due, in relational mechanics, to an interaction between the
test body and the distant galaxies. If these galaxies disappear, the Coriolis
force disappears as well, the same happening with −Φmg~amU . If the density
of external galaxies were multiplied by a constant value k, keeping the earth
and the bob with the same gravitational masses, then the bob would behave
as having a Newtonian inertial mass given by kmg. Utilizing this, we can com-
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Figure 9.14: Rotating universe making the plane of oscillation rotate with it.

pare the results of relational mechanics with those of Newtonian or relativistic
mechanics.
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Chapter 10

Beyond Newton

In the previous chapters we saw how we can recover results analogous to the
results of Newtonian mechanics with relational mechanics. Moreover, we were
able to explain many puzzles of classical physics, such as the proportionality
between inertial and gravitational masses, the origin of the centrifugal and
Coriolis forces, etc.

In this chapter we discuss some phenomena which are beyond the Newtonian
theory. These will come from the extra terms which appear in Weber’s force
applied to gravitation, compared with Newton’s inverse square law.

10.1 Precession of the Perihelion of the Planets

We begin by discussing the problem of two bodies moving under gravitational
interaction in the presence of distant galaxies. In the case of the solar system
we can apply Eq. (8.51) so that the equation of motion for body 1 in the frame
of the fixed stars takes the form

~F21 − Φmg1~a1f = 0 .

Here ~F21 is the force exerted by 2 on 1 and ~a1f is the acceleration of body 1
relative to the fixed stars (which will be essentially the same as its acceleration
relative to distant galaxies). Analogously, for body 2 we obtain

~F12 − Φmg2~a2f = 0 .

We consider here the sun interacting with a planet. We can assume the
planets to be material points, as their diameters are much smaller than their

227
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distances to the sun. In this problem, the sun can also be considered to be
a material point. As a matter of fact, the force exerted by the sun of radius Rs

on an external material point 1 is obtained integrating Eq. (8.14). As we have
shown before [132], the terms multiplying the second ξ in this equation are at
least 6×10−4 smaller than those multiplying the first ξ for the planetary system.
This means that we can treat the sun as a material point in this problem.

The force exerted by the sun 2 on a planet 1 according to Weber’s expression
is then given by Eq. (8.4):

~F21 = −Hgmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
= −~F12 .

This means that the equations of motion take the form (with Eq. (8.37):

mg1~a1f = − Gmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
, (10.1)

mg1~a2f = + Gmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
. (10.2)

Adding these two equations yields the conservation of the total linear mo-
mentum of the system sun-planet relative to the fixed stars:

mg1~a1f + mg2~a2f =
d

dt
(mg1~v1f + mg2~v2f ) = 0 .

The center of mass of the sun-planet system, ~R ≡ (mg1~r1f + mg2~r2f )/(mg1 +
mg2) then moves with a constant velocity relative to the fixed stars.

The difference between the accelerations in Eqs. (10.1) and (10.2) yields:

~a12 ≡ ~a1f − ~a2f = −G(mg1 + mg2)
r̂12

r2
12

[
1 +

ξ

c2

(
r12r̈12 −

ṙ2
12

2

)]
. (10.3)

This shows that ~a12 is parallel to r̂12.
We can define a relative angular momentum in the frame of fixed stars by

~L12 ≡ ~r12 × (Mg~v12) ,

where Mg ≡ mg1 +mg2 is the total gravitational mass of the sun-planet system.
Taking the derivative of this equation with respect to time and utilizing the fact
that ~v12 × ~v12 = 0 and the previous result that ~a12 is parallel to r̂12 yields a
zero value. This means that ~L12 is a constant in time. Moreover, ~r12 and ~v12

lie in a plane whose normal is parallel to ~L12. We then choose a coordinate
system centered on the sun such that its z axis is parallel to ~L12. In this frame
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of reference the planet will always move in the xy plane. Writing Eq. (10.3)
in plane polar coordinates yields two equations, one for the ϕ̂ component and
another for the ρ̂ component, namely

ρϕ̈ + 2ρ̇ϕ̇ = 0 , (10.4)

ρ̈− ρϕ̇2 = −GMg

[
1
ρ2

+
ξ

c2

(
ρ̈

ρ
− ρ̇2

2ρ2

)]
. (10.5)

The first of these equations yields the conservation of angular momentum.
This means that the quantity H ≡ ρ2ϕ̇ is a constant for all time.

Defining u ≡ 1/ρ and utilizing a standard prescription, the second equation
can be put in the form

d2u

dϕ2
+ u = GMg

{
1

H2
− ξ

c2

[
1
2

(
du

dϕ

)2

+ u
d2u

dϕ2

]}
. (10.6)

The exact solution of this equation in terms of elliptic functions can be
found in previous works [180] and [12]. Here we solve it iteratively following
another study [132]. Observing that the second and third terms in the square
bracket are much smaller than the first one, we seek a solution in the form
u(ϕ) = uo(ϕ) + u1(ϕ), with |uo| � |u1|, and where uo and u1 satisfy the
equations

d2uo

dϕ2
+ uo =

GMg

H2
,

d2u1

dϕ2
+ u1 = −GMg

ξ

c2

[
1
2

(
duo

dϕ

)2

+ uo
d2uo

dϕ2

]
.

The solution of the first equation is the classical result

uo(ϕ) =
GMg

H2
+ A cos(ϕ− ϕo) ,

where A and ϕo come from the initial conditions. With this solution for uo the
solution for u1 is found to be

u1(ϕ) =
G2M2

g A

2H2

ξ

c2
(ϕ− ϕo) sin(ϕ− ϕo) +

GMgA
2

2
ξ

c2
sin2(ϕ− ϕo) .

The turning points, at which the distance of the planet from the sun is a
maximum or a minimum, are given by du/dϕ = 0. We can see from these
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equations that ϕ = ϕo is one solution. After one revolution, the turning point
will be near ϕo + 2π. Expanding du/dϕ around this value and equating to zero
yields

ϕ ≈ ϕo + 2π +
πG2M2

g

H2

ξ

c2
.

The advance of the perihelion in one revolution is then given by

4ϕ = π
ξ

c2

G2M2
g

H2
= π

ξ

c2

GMg

a(1− ε2)
, (10.7)

where a is the semimajor axis and ε is the eccentricity of the orbit. With the
value of ξ = 6 we arrive at a result which is well observed in the solar system
and which agrees algebraically with the one given by Einstein’s general theory
of relativity.

Despite this coincidence, the orbit equation obtained in general relativity is
given by

d2u

dϕ2
+ u =

GM

H2
+

3GM

c2
u2 .

Comparison of this equation with (10.6) shows that they are not equivalent
in general. At zeroeth order both yield the ellipses, parabolas and hyperbolas of
Newtonian theory. At first order both yield the same precession of the perihelion
of the planets. At the second order they differ from one another. At present,
we cannot distinguish the second order terms of these models utilizing the data
from the solar system.

Before comparing these two equations in second order, it would be more
important to review the calculations of the precession of the perihelion of the
planets utilizing these two theories, but taking into account the perturbation
due to other planets. As is well known, the Newtonian theory explains most of
the observed precession of the perihelion of the planets taking into account the
perturbations due to other planets. But there remains a small residual value
which the Newtonian theory cannot explain. It is this residual value which
is explained in general relativity and in relational mechanics by Eq. (10.7).
In order to be coherent, it would be better to calculate the precession due to
the perturbation of other planets again, not with the Newtonian inverse square
force, but with general relativity and Weber’s force applied to gravitation. We
then see what residual values remain with both theories (they may be different
from one another, or from the one given by the Newtonian theory). After this
calculation we can compare the residual values which cannot be explained in
both models considering only the influence of the other planets, if they still
exist, with Eq. (10.7). In other words, taking into account the effect due to the
sun.
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10.2 Anisotropy of Inertial Mass

We discuss here an important consequence of any model that seeks to imple-
ment Mach’s principle. We concentrate our analysis on Weber’s law applied to
gravitation. When we identify relational mechanics with Newtonian mechanics
we conclude that the inertia of a body, its inertial mass, is due to a gravi-
tational interaction with distant masses. One consequence of this fact is as
follows: if this distribution is anisotropic, the effective inertial mass of the test
body should be anisotropic as well. We illustrate this effect by analysing the
“two-body problem” (two bodies plus the distant galaxies).

In the previous section we found that the equation of motion for a planet mg1

interacting with the sun mg2 and the distant galaxies in relational mechanics
is given by Eq. (10.1):

mg1~a1f = − Gmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
.

In the approximation in which mg2 � mg1, we can disregard the motion
of the sun relative to the frame of fixed stars, and consider this essentially as
a “one body problem” under the influence of a central force. For the motion
in the xy plane centered on the sun we have, with cylindrical coordinates:
~a1f = (ρ̈ − ρϕ̇2)ρ̂ + (ρϕ̈ + 2ρ̇ϕ)ϕ̂, r12 = ρ, ṙ12 = ρ̇, r̈12 = ρ̈, r̂12 = −ρρ̂,
where ρ is the distance of the planet to the sun. The ϕ̇ component of this
equation yields the conservation of angular momentum, Eq. (10.4). The radial
component is given by Eq. (10.5), which can be written in this approximation
where mg2 � mg1, as:

mrρ̈−mtρϕ̇2 = −G
mg1mg2

ρ2
+ Gmg1mg2

ξ

c2

ρ̇2

2ρ2
,

where mt ≡ mg1 is the usual gravitational mass of the planet and mr ≡ mg1(1+
Gmg2ξ/ρc2). Consequently, apart from the second term on the right hand side,
this equation is analogous to the Newtonian equation of motion with an effective
radial inertial mass mr and an effective tangential inertial mass mt. These two
masses, mr and mt, are different from one another due to the fact that the sun
is interacting with the planet along the radial direction connecting them, but
not along the tangential direction. It is exactly this term in mr which will be
responsible for the precession of the perihelion of the planets, the second term
on the right hand side of this equation yielding no precession.

We may then consider the precession of the perihelion of the planets as
another strong fact supporting (although not proving) Mach’s principle and
the anisotropy of the inertial mass of bodies. This seems to have been seen
clearly for the first time by Schrödinger [125] (English translation: [83]). He
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calculated the precession of the perihelion of the planets utilizing a potential
energy analogous to Weber’s, instead of working with the forces. The interaction
gravitational energy between the planet and the distant galaxies has been found
to be given by mgv

2/2, where mg is the gravitational mass of the planet and v its
velocity relative to the universal frame of reference. Utilizing polar coordinates
in the plane of the motion and the approximation that the mass of the sun is
much greater than the mass of the planet (Mg � mg) yields v2 = ρ̇2 + ρ2ϕ̇2.
The energy of interaction between the planet and the sun is given by Eq. (8.3).
So the total constant energy for the planet is found to be (with Eq. (8.37)):

mg
ρ̇2 + ρ2ϕ̇2

2
−G

Mgmg

ρ

(
1− ξ

ρ̇2

2c2

)
= constant .

This equation can be written as:

mr

2
ρ̇2 +

mt

2
ρ2ϕ̇2 −G

Mgmg

ρ
= constant ,

where mt ≡ mg and mr ≡ mg(1 + ξGMg/ρc2). Hence, the law for the conser-
vation of energy becomes analogous to the Newtonian law, provided there are
different radial and tangential effective inertial masses. This was the conclusion
of Schrödinger when he wrote (see [83, especially p. 151]): “The presence of
the sun has, in addition to the gravitational attraction, also the effect that the
planet has a somewhat greater inertial mass ‘radially’ than ‘tangentially’.” The
different effective masses in the radial and tangential components yield the pre-
cession of the perihelion of the planets in relational mechanics. The observation
of the precession of the perihelion of the planets can then be regarded as a proof
of the anisotropy of inertial mass. Schrödinger goes on to conclude that the in-
ertia of a body should be greater in the galactic plane than perpendicular to
it [ibidem, p. 153]: “A mass distribution like that established for the radiating
stars would have to have the consequence that bodies are subject to a greater
inertial resistance in the galactic plane as at right angles to it.”

As we have seen, the effective inertial mass of a body is different when
there are anisotropies in the distribution of matter around the body. This is
observed in purely gravitational interactions, as in the motions of the solar
system. In electromagnetic interactions, this effect also appears. Recently we
showed that the self-induction of an electrical circuit can be derived from the
component of Weber’s electromagnetic force which depends on the acceleration
of the test charges [181]. We found that the self-induction is a measure of the
effective inertial mass of the mobile electrons. We also derive the fact that in a
conducting cylindrical shell of length ` and radius a the self-inductance for the
case of a longitudinal current (current along the axial direction) will be different
from the the self-inductance in the case of a poloidal current (current in the
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ϕ direction of polar coordinates). This shows the anisotropy in the effective
inertial mass discussed here. After all, it is a known experimental fact that the
self-induction for the same cylindrical shell is different for different directions
of current flow. As this effect can be derived from Weber’s electrodynamics, it
yields greater support to the idea of an anisotropic effective inertial mass.

The effect should also appear in other electromagnetic situations. If a test
charge is interacting with fixed anisotropic distributions of charge around it, it
should behave according to Weber’s electrodynamics as if it had an effective
inertial mass which depends on the geometry of the problem, on the direction
of motion and on the electrostatic potential energy where it is located ([9], [10],
[12, Section 7.2], [14] and [15]). Experimental tests of this fact, which does
not appear in Maxwell-Lorentz electrodynamics, have been proposed in other
studies ([17] and [18]). We believe Weber’s electrodynamics will be vindicated
by these experiments. In order to perform the test, it is important to keep the
anisotropic distributions of charge, which are acting on the test charge, fixed
relative to one another and to the laboratory, while the test charge is accelerated
relative to them and to the laboratory. The experiment cannot be performed
by charging a Faraday cage and accelerating charges inside it. The reason for
this is that in this latter situation there are free charges in the metallic Faraday
cage which will move when the test charge is accelerated inside it, responding
to the motion of the test charge. This will mask the effect to be observed (the
possible change in the effective inertial mass of the test charge). To perform
the experiment it is important to charge a dielectric, which will keep the net
charges fixed relative to it no matter what the motion of the test charge inside
it.

For a different approach on this topic see Eby’s work [182].
We conclude here by calling attention to the work of the Nobel prize winner

Maurice Allais and of other writers quoted in his work. In optical experiments
and in experiments performed with pendulums they found anomalous effects
which might be interpreted as an anisotropy in the inertial mass of the test
particle connected with the astronomical bodies (Moon, etc.) [183].

10.3 High Velocity Particles

There are some indications that the correct expression for the kinetic energy
of a test particle is given by mc2(1/

√
1− v2/c2 − 1) instead of mv2/2. These

indications come from experiments with high speed electrons and in high energy
collisions of charged particles. Following this clue, Schrödinger in his impor-
tant paper of 1925, and independently Wesley in 1990, proposed a modification
of Weber’s potential energy for gravitation ([125], [184] and [12, Section 7.7]).
What they proposed was a gravitational potential energy between two gravita-
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tional masses mg1 and mg2 given by

U12 = β
mg1mg2

r12
+ γ

mg1mg2

r12

1
(1− ṙ2

12/c2)3/2
. (10.8)

Schrödinger proposed β = −3G and γ = 2G, while Wesley took β = −4G/3
and γ = G/3. When ṙ12 = 0 we recover the Newtonian potential energy.
Expanding this expression up to second order in ṙ12/c yields a potential energy
for gravitation analogous to Weber’s.

The force exerted by 2 on 1 is obtained by ~F21 = −r̂12dU12/dr12 or by
dU12/dt = −~v12 · ~F21. This yields:

~F21 = mg1mg2
r̂12

r2
12

[
β + γ

(
1− ṙ2

12

c2
− 3

r12r̈12

c2

)(
1− ṙ2

12

c2

)−5/2
]

. (10.9)

We now integrate both expressions for a test particle of gravitational mass
mg1 interacting with the isotropic distribution of mass around it (with the
isotropic distribution of distant galaxies with a constant gravitational mass
density ρo). We perform the integration in the universal frame of reference
U, frame in which the set of distant galaxies is essentially at rest and without
rotation. The velocity and acceleration of mg1 relative to this frame are given
by, respectively: ~v1U and ~a1U . The result of integration up to the Hubble
distance c/Ho is

UIm = 2π
mg1ρoc

2

H2
o

(
β +

γ√
1− v2

1U/c2

)
, (10.10)

~FIm = −2πγ
ρo

H2
o

[
mg1~a1U√
1− v2

1U/c2
+

mg1~v1U (~v1U · ~a1U )
c2(1− v2

1U/c2)3/2

]

= −2πγ
ρo

H2
o

d

dt

(
mg1~v1U√
1− v2

1U/c2

)
. (10.11)

If we wanted to integrate to infinity, it would only be necessary to include
an exponential decay in both terms on the right hand side of Eq. (10.8).

With the principle of dynamical equilibrium, it is then possible to derive a
relativistic kinetic energy analogous to the Einstenian energy, and an equation
of motion analogous to his equation of motion. But despite the similarity in the
form of the equations, there are many differences in both models. The first is
that results (10.10) and (10.11) were obtained after a gravitational interaction
of the test body with the distant masses in the cosmos in relational mechanics,
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while this is not the case in Einstein’s theory of relativity. As a consequence,
the masses which appear in (10.10) and (10.11) are gravitational masses, while
the Einsteinian masses are inertial masses in the Newtonian sense, with iner-
tia related to space and not to distant matter. Moreover, the velocities and
accelerations of the test body which appear in these equations are relative to
the distant universe in relational mechanics, while in Einstein’s theory they are
relative to an arbitrary inertial frame of reference.

Let us consider two bodies 1 and 2 interacting with one another and with
the distant galaxies. The principle of dynamical equilibrium applied to Eqs.
(10.9) and (10.11) yields the equation of motion for body 1 in the universal
frame of reference, namely:

mg1mg2
r̂12

r2
12

[
β + γ

(
1− ṙ2

12

c2
− 3

r12r̈12

c2

)(
1− ṙ2

12

c2

)−5/2
]

− 2πγ
ρo

H2
o

[
mg1~a1U√
1− v2

1U/c2
+

mg1~v1U (~v1U · ~a1U )
c2(1− v2

1U/c2)3/2

]
= 0 .

Assuming that bodies 1 and 2 are orbiting around one another in this frame,
with ṙ12 = 0 and r̈12 = 0, and assuming that v2

1U � c2, this equation reduces
to:

(β + γ)H2
o

2πγρo
mg1mg2

r̂12

r2
12

= mg1~a1U .

This shows that we can recover Newtonian mechanics only if the following
relation is exactly valid:

(β + γ)H2
o

2πγρo
= −G .

Utilizing the values of β and γ given by Schrödinger and Wesley, and the
observational values of Ho, ρo and G, we find that this relation is approximately
valid. We cannot say that this relation is exactly valid, due to uncertainties in
the observational values of Ho and ρo. In any event, we see once more that with
β/γ ≈ −1 we obtain as a consequence of relational mechanics that H2

o/ρo ≈ G,
a result which is confirmed by the observational values of these independent
quantities.

An important topic in relational mechanics deals with the interaction be-
tween matter and radiation: deflection of light in a gravitational field and grav-
itational redshift. The first paper dealing with the bending of light utilizing a
Weber’s type law for gravitation has been given by Ragusa [185]. In order to
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obtain the correct bending of light and the correct precession of the perihelion
of the planets he introduced two parameters, one in front of ṙ2 and another
in front of rr̈. However, although it worked correctly, this solution has prob-
lems with the conservation of energy as has been pointed out by Bunchaft and
Carneiro [186]. But as they say in the paper, if there are in the gravitational
law terms of order higher than 1/c2, they would not affect the calculations for
the precession of the perihelion (low velocity phenomenon) but would affect the
calculation for the gravitational deflection of light. Once more we need further
research in this direction before drawing final conclusions. To our knowledge
there are not yet publications with complete calculations for the gravitational
redshift performed with Weber’s law for gravitation and with generalizations of
it to high velocity particles (for velocities close to c or equal to c).

10.4 Experimental Tests of Relational Mecha-
nics

In principle we might test a Weber’s force applied to gravitation by utilizing the
result (8.12), yielding the force of a spherical shell of radius R on an internal
test particle:

d~FMm(r < R) = −4π

3
Hg

ξ

c2
mgρgRdR

[
~amS + ~ωMS × (~ωMS × ~rmS)

+ 2~vmS × ~ωMS + ~rmS ×
d~ωMS

dt

]
.

Now suppose we are in the earth’s frame of reference in such a situation that
relation (8.48) is satisfied. We then surround a test particle of gravitational mass
mg by the previous spherical shell of mass dMg = 4πρgR

2dR at rest relative
to the earth, while the test body is accelerated relative to it by other forces.
The force exerted by this shell on mg is then given by −HgξmgMg~ame/3Rc2.
The gravitational force exerted by the distant galaxies on mg in the absence of
the spherical shell has been found in the approximation of (8.48) to be given
by −Φmg~ame. The equation of motion of relational mechanics then takes the
form:

N∑
j=1

~Fjm −
HgξmgMg

3Rc2
~ame − Φmg~ame = 0 .

That is,
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N∑
j=1

~Fjm = Φm∗~ame .

Here m∗ can be considered the effective inertial mass of the test body sur-
rounded by the spherical shell. It is given by (with Eqs. (8.16) and (8.37):

m∗ ≡ mg

(
1 +

GξMg

3Rc2

)
.

In principle this increase in the effective inertial mass of the test body sur-
rounded by the spherical shell might be tested experimentally. We should first
study the acceleration of a test body not surrounded by the spherical shell, for
instance, by accelerating a charged particle with other charges, currents and
magnets; or letting a body fall freely on the surface of the earth. Then we sur-
round the test body with the neutral shell and accelerate the test body again
with the same bodies (other charges, currents and magnets from the previous
example; or the earth in the free fall experiment) and study its new acceleration,
which should be different now. The new acceleration or any effect depending
on this acceleration, such as the radius of curvature of the curved orbit of the
test body should have been changed, according to relational mechanics. The
problem is the small value of this increase. The percentage increase is given by

m∗ −mg

mg
=

GξMg

3Rc2
.

If we have a spherical shell of mass 100 kg, radius 1 m and take ξ = 6 this
yields ≈ 10−25, which is obviously undetectable.

It should be observed that nothing of this would happen in Newtonian me-
chanics or in Einstein’s general theory of relativity. The reason is that in these
theories there are no effects due to a spherically symmetric and stationary dis-
tribution of masses around a test body.

An analogous test for Weber’s law applied to electromagnetism has been
proposed in [18]. The idea is to compare Weber’s electrodynamics and Lorentz’s
force law. Here we analyse the motion of a test charge inside and outside a
charged spherical shell. For details see the paper and [12, Section 9.3: Charged
Spherical Shell].

If we had surrounded the test body by an anisotropic distribution of mass (a
hollow cube or a hollow cylinder) the effective inertial mass would be different
in different directions. The next step after testing the previous effect would be
to check this prediction.
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It might also be possible to test this anisotropy in the effective inertial mass
of test bodies by taking into account existing anisotropies in the distribution of
matter in nature. As we have seen, the precession of the perihelion of the planets
may be viewed, from this standpoint, as due to this anisotropy owing to the
sun’s influence radially but not tangentially. If the test body is near the surface
of the earth, there is the anisotropy due to the proximity of the earth. The
effective inertial mass of a test body moving vertically should be different from
the effective inertial mass of the same test body moving horizontally relative to
the earth’s surface. By the same token, the inertia of a body being accelerated
in the direction of the moon, or of the sun, or of the center of our galaxy,
should be different from the inertia of the same body being accelerated in a
plane orthogonal to these directions. The effect can be estimated by looking at
Weber’s force applied to gravitation, Eq. (8.4):

~F21 = −Hgmg1mg2
r̂12

r2
12

[
1− ξ

c2

(
ṙ2
12

2
− r12r̈12

)]
.

If the effective inertial mass of 1 when moving in a plane orthogonal to
the straight line connecting it to 2 is mit = mg1, this equation shows that its
effective inertial mass when accelerated in the direction of 2 will be given by the
following order of magnitude: mir = mg1[1 + ξGmg2/r12c

2]. The percentage
change is then given by:

mir −mit

mit
≈ ξGmg2

r12c2
.

In this analysis we will suppose ξ = 6. Taking mg2 = 3×1041 kg as the mass
of our galaxy and r12 = 2.5× 1020 m as the distance of the solar system to the
center of our galaxy yields: 5× 10−6. There should be a difference of one part
in 106 comparing the inertia of a planet or any other body accelerated in the
direction of the center of our galaxy and accelerated normal to this direction.
Taking mg2 = 2 × 1030 kg as the sun’s mass and r12 = 1.5 × 1011 m as our
distance to the sun yields 2 × 10−7. Taking mg2 = 7 × 1022 kg as the moon’s
mass and r12 = 3.8×108 m as our distance to the moon yields 8×10−13. Taking
mg2 = 6×1024 kg as the earth’s mass and r12 = 6×106 m as the earth’s radius
yields 5 × 10−9. This shows that we could observe this effect by performing
experiments in which the test body moves vertically or horizontally relative to
the earth’s surface. To this end, the precision should be of the order of 10−10. If
we want to compare the anisotropy due to our own galaxy, the precision needs
to be 10−7.

To estimate these effects, we are supposing a purely gravitational experi-
ment. Moreover, we are neglecting the influence of the term in ṙ2

12/c2 which
might mask the effect being looked for. A careful analysis and calculation should
be performed in each specific case before reaching any general conclusion.
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In an interesting paper published in 1958, Cocconi and Salpeter predicted
these ideas by considering a general implementation of Mach’s principle, not
necessarily connected with Weber’s force [187]. They do not mention Weber’s
force or Schrödinger’s work, but only Mach’s ideas. In any case, Weber’s force
fits nicely in their general approach. After all, they considered the possibility
that the contribution to the inertia of a test body of mass m resulting from
its interaction with a mass M separated by a distance r has the following
properties: proportional to M , falls as rν and depends on the angle θ between
the acceleration of the test body and the straight line connecting them. Weber’s
component, which yields the inertia of a body, has these properties with ν = 1,
as it is of the form −Gmg1Mg2r̂12r̈12/r12c

2. Motivated by this paper, many
experiments were devised to find this anisotropy in the inertial mass of the
bodies ([188], [189], [190], [191], etc.) They looked for anisotropies utilizing the
Zeeman splitting in an atom, the Mössbauer effect, nuclear magnetic ressonance,
etc. All of these yielded a null result.

How can we explain their negative findings in the context of relational me-
chanics? The first answer was given by Dicke [192], who observed that according
to Mach’s principle this effect must be there, but it should be observed that this
anisotropy of the inertial mass is universal, the same for all particles (including
photons and pions). Due to this universality of the anisotropy, it would be unob-
servable locally. The second answer was given by Edwards [193], who observed
that the effect of such an anisotropy on local measuring instruments must be
carefully considered before one can draw the conclusion that the anisotropy of
the inertial mass has been ruled out by these experiments. We agree with Dicke
and Edwards that we must be very careful in analysing the negative findings of
these experiments in the light of Mach’s principle. As we have seen, Schrödinger
pointed out correctly that the precession of the perihelion of the planets can
be considered to be due to the anisotropy of the inertial mass. This was in a
purely gravitational situation. The connection of gravitation with electromag-
netism is reasonable and plausible. It is possible that gravitation and inertia
come from fourth and sixth order terms in the electromagnetic potential energy
([130] and [131]). If this is the case, then the anisotropy in inertial mass may
be the same as the anisotropy in electromagnetic forces, in such a way as to
rule out observation of the effect in complex experiments such as these. The
same can be said of nuclear forces, although their connection to gravitational
and electromagnetic forces is not yet clear. What should be kept in mind is
that at least in purely gravitational situations, the effect has been found, lead-
ing to the precession of the perihelion of the planets. The same can be said in
electromagnetic situations, as it has been shown that self-induction of a circuit
is different depending on the direction of current flow [181]. The self-induction
of a circuit has been shown to be a measure of the effective inertial mass of the
conduction electrons, at least according to Weber’s electrodynamics.
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Let us illustrate this discussion with a simple example. We assume a situ-
ation in which Eq. (8.48) is satisfied, so that the force exerted by the distant
galaxies on a test body can be written as −Φmg~ame. On a frictionless table we
have a body of gravitational mass mg oscillating horizontally, connected to a
spring of elastic constant k, shown in Figure 10.1.

Figure 10.1: Oscillation of a body of mass mg aligned with the sun.

The force exerted by the spring on mg is represented by −K~r = −Kxx̂,
where ~r = xx̂ is the position vector of mg from the point of equilibrium of
the spring. The gravitational force of the earth is balanced by the normal
force exerted by the table, so that we will disregard it here. Here we analyse
the influence of the sun on the anisotropy of the inertial mass of mg. In the
situation of Figure 10.1 we have the sun aligned with the oscillation of the test
body along the x axis. According to Weber’s law the force exerted by the sun
of gravitational mass Mg on mg is given by Eq. (8.4). When the values of ṙ
and r̈ are used in terms of ~r12, ~v12 and ~a12 this force can be expressed as:

~FMm = −HgMgmg
r̂12

r2
12

{
1 +

ξ

c2

[
~v12 · ~v12 −

3
2
(r̂12 · ~v12)2 + ~r12 · ~a12

]}
.

(10.12)
For any oscillation of the spring around the point of equilibrium we can

consider r12 ≈ R = constant, where R is the earth-sun distance. As the mass of
the sun is much greater than the mass mg, we can disregard its motion relative
to the frame of fixed stars, so that ~r2 = Rx̂, ~v2 = 0 and ~a2 = 0. Since the test
body is oscillating along the x axis we can write: ~r1 = xx̂, ~v1 = ẋx̂ and ~a1 = ẍx̂
and ~r12 ≈ −Rx̂. If the velocity terms are small, (ẋ/c)2 � 1, the equation of
motion for mg becomes:

HgMgmg
x̂

R2

(
1− Rẍ

c2

)
−Kxx̂− Φmgẍx̂ = 0 .

The constant force HgMgmg/R2 does not change the frequency of oscillation
and only changes the point of equilibrium, so that we will not consider it here.
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With Eqs. (8.16), (8.37), (8.45) and in these approximations, the equation
of motion becomes the equation of a Newtonian harmonic oscillator given by
kx + m∗ẍ = 0, where m∗ ≡ mg(1 + ξGMg/Rc2) is the effective inertial mass
of the test body. The solution of this equation is a sinusoidal oscillation with a
frequency given by: ωa =

√
k/m∗.

Let us now consider an oscillation of the test body along the x axis, but
now with the sun located along the y axis, as in Figure 10.2.

Figure 10.2: Oscillation of a body of mass mg orthogonal to the sun.

The difference from the previous situation is that now we should approx-
imate ~r2 = Rŷ, ~r12 = xx̂ − Rŷ ≈ −Rŷ, r̂12 = −ŷ, where we are disregard-
ing terms of order x/R compared with unity, namely: x/R � 1. With the
previous approximation the equation of motion in the x direction becomes
kx + mgẍ = 0, yielding a sinusoidal solution with a frequency of oscillation
given by ωo =

√
k/mg. This example shows that the frequency of oscillation

when the test body is aligned with the sun should be different from the case
when the oscillation is orthogonal to the sun.

Some critical remarks are in order. This simple example illustrates very
clearly the effect of a component of the force law which depends on the ac-
celeration of the test body. The consequence is an anisotropy in the effective
inertial mass, which in this case would be seen by a frequency of oscillation
depending on the direction of vibration. But to arrive at this result, we had
to consider several things simultaneously. First of all the analysis should be
performed including the velocity terms. But they can reasonably be neglected
if we observe that in Eq. (10.12) we are comparing terms of the order ẋ2 with
those of order Rẍ. The solution of the equation is essentially x = A sinωt, so
that ẋ = Aω cos ωt and ẍ = −Aω2 sinωt, so that ẋ2 ≈ A2ω2 � Rẍ ≈ RAω2, as
the earth-sun distance is much larger than the amplitude of oscillation. Despite
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this fact it should be kept in mind that Weber’s force depends not only on the
acceleration between bodies, but also on their velocities, and these terms may
be relevant in some experiments. Another factor was also considered simulta-
neously in this analysis: we supposed the elastic constant K or k = K/Φ to
be the same no matter what the direction to the sun. The dimension of k is
kg/s2, so that it may happen that its value is also anisotropic. If the inertial
mass of a test body is anisotropic, the same may be true of the elastic constant
of a spring, as embodied in it there is also something with the dimension of
mass. The same might also hold for electromagnetic and nuclear forces. If the
anisotropies match those of the inertial mass, the effect would be masked. Only
experiments can decide the matter here, showing whether there is an anisotropy
in the frequency of oscillation. But these possibilities should be kept in mind.

Another experimental test was suggested by Eby in 1979 [194]. Essentially,
he calculated the precession of a gyroscope utilizing Weber’s Lagrangian energy
applied to gravitation (without being aware of Weber’s electrodynamics). He
obtained geodetic and motional precessions which differed from those of gen-
eral relativity (the Lense-Thirring effect) by factors of 2 and 3/2, respectively.
His analysis should first be checked independently, and then the experiments
should be performed to distinguish these models. It is interesting to quote his
discussion of these predictions (our words between square brackets):

It is conceptually satisfying that in these theories [i.e., relational
mechanics which he is constructing based on Weber’s law] it is clear
what the gyroscope is precessing with respect to, namely, the distant
matter. This is not the case in metric theories of gravity [like Ein-
stein’s general theory of relativity] since there is no distant matter
explicitly included in the Schwarzschild metric or its equivalent.

Another extremely important point to be tested directly is the existence
of an exponential decay in gravitation. This is not necessarily connected with
relational mechanics or Mach’s principle, but as we have seen if we have an
exponential decay in Newton’s potential energy it is reasonable to suspect that
an analogous term should exist which multiplies both terms of Weber’s potential
energy; see Eq. (8.5). Experiments to test the Seeliger-Neumann term have
been performed since the last century, with some of them yielding positive
results. We reviewed this subject in another study [35]. We suggest especially
the repetition of Q. Majorana’s many experiments on this effect ([47], [48], [49]
and [50]).

Many other tests will appear in due course as more people begin working
along these lines of research.



Chapter 11

History of Relational
Mechanics

Now that we have presented relational mechanics and the main results we can
obtain with it, let us put the main steps leading to its discovery in perspective.

As we have seen, Leibniz, Berkeley and Mach clearly visualized the main
qualitative aspects of a relational mechanics. Yet none of them implemented it
quantitatively. Here we present a brief history of the quantitative implementa-
tion of relational mechanics [12].

11.1 Gravitation

Although Newton had the first insights regarding gravitation in his Anni Mi-
rabilis of 1666-67, the clear and complete formulation of universal gravitation
seems to have come only in 1685, after a correspondence with Hooke in 1879-80
([195, Chapter 5] and [196]). His force of gravitation appeared in print for the
first time only with the publication of the Principia in 1687. Nowadays we
write it in the form

~F21 = −Gmg1mg2
r̂12

r2
12

.

Hooke and others had the idea of a gravitational force falling as the inverse
square of the distance between the sun and the planets. But it is remarkable
how Newton arrived at the universality of this force and the fact that it should
be proportional to the product of the masses. To obtain this latter result his
third law of motion, the law of action and reaction, was essential. We saw this
in section 1.2, when we presented some quotations from Newton.

243
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Newton defended the ideas of absolute space and time. Despite this fact,
his force of gravitation is the first relational expression for interactions which
appeared in science. It depends only on the distance between the interacting
bodies and is directed along the straight line connecting them.

The introduction of the scalar potential function in gravitation is due to
Lagrange (1736-1813) in 1777 and to Laplace (1749-1827) in 1782. The gravi-
tational potential energy can be expressed as:

U12 = −G
mg1mg2

r12
.

Once more this is completely relational. To obtain the force exerted by 2
on 1 we utilize the procedure ~F21 = −∇1U12.

The gravitational paradox which appears with Newton’s law of gravitation
in an infinite universe was discovered by H. Seeliger and C. Neumann in 1895-
6. Their solution was to introduce an exponential decay in the gravitational
potential of each point mass. Many others have proposed the same idea for
different reasons.

11.2 Electromagnetism

Coulomb arrived at the force between point charges in 1785. There is a partial
English translation of his works in Coulomb, 1935: [197] and [198]. Coulomb’s
force can be expressed as:

~F21 =
q1q2

4πεo

r̂12

r2
12

.

He also arrived at an expression relating the force between two magnetic
poles qm

1 and qm
2 given by:

~F21 =
µo

4π
qm
1 qm

2

r̂12

r2
12

.

These two expressions are completely relational, as they have the same structure
as Newton’s force of gravitation.

It seems that Coulomb arrived at the force between point charges more by
analogy with Newton’s law of gravitation than by his doubtful measurements
with the torsion balance [8]. He perfomed only three experiments of attraction
and three of repulsion, but his results could not be reproduced when his exper-
iments were repeated recently. Moreover, he never tested the proportionality
of the force on q1q2. In principle the electric forces might behave like q1 + q2,
or like (q1q2)n with an exponent n different from 1. Only experiments could
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have decided this, but he did not perform them. But in the end, his proposed
force law proved to be extremely successful in explaining many phenomena. It
is curious to see how he presents the fundamental law of electricity [197]: “The
repulsive force between two small spheres charged with same sort of electricity
is in the inverse ratio of the squares of the distances between the centers of the
two spheres. Experiment: (...)” There is no mention of the proportionality in
q1q2. On the other hand, for the law of magnetic force he writes ([198]): “The
magnetic fluid acts by attraction or repulsion in a ratio compounded directly
of the density of the fluid and inversely of the square of the distance of its
molecules. The first part of this proposition does not need to be proved; let us
pass to the second. (...)” While Coulomb thinks it is not necessary to prove
that the force is proportional to qm

1 qm
2 , Newton made a very thorough analysis

before concluding that the gravitational force should be proportional to m1m2.
This at least shows a great distinction between these two scientists.

By analogy with the gravitational potential proposed by Lagrange and
Laplace, Poisson introduced the scalar potential in electromagnetism in 1811-13.
The energy of interaction between two point charges or between two magnetic
poles is then given by

U12 =
q1q2

4πεo

1
r12

,

U12 =
µo

4π

qm
1 qm

2

r12
.

In 1820 Oersted discovered experimentally the deflection of a magnetized
needle by a current-carrying wire. Fascinated by this fact, Ampère (1775-1836)
performed a series of classical experiments and in the period between 1820-26
arrived at the following expression describing the force exerted by a current
element I2d~l2 located at ~r2 on another I1d~l1 located at ~r1:

d2 ~F21 = −µo

4π
I1I2

r̂12

r2
12

[
2(d~̀

1 · d~̀
2)− 3(r̂12 · d~̀

1)(r̂12 · d~̀
2)
]

.

Once more this is a completely relational force. Even here the influence
of Newton was very large, although this force is much more complex than
the Newtonian one due to the dependence on the angles between the current
elements and between the straight line connecting 1 and 2 and each one of them.
To arrive at this expression Ampère assumed explicitly the proportionality of
the force on I1d`1 and I2d`2, and also supposed that it obeys the law of action
and reaction with the force along the line connecting the elements. These
two facts did not emerge from the experiments. But as with Coulomb’s force,
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Ampère’s force has been shown to be extremely successfull in explaining many
phenomena of electrodynamics.

The great influence of Newton’s law of gravitation upon Ampère’s work can
be seen in his main work summarizing his researches, On the mathematical
theory of electrodynamics phenomena, experimentally deduced [199]. This work
was published in the Mémoires de l’Académie Royales des Sciences de Paris
for 1823. Despite this date this volume was published only in 1827. In the
printed version were incorporated communications which transpired after 1823,
and Ampère’s paper is dated August 30th, 1826. This work has been partially
translated to English by Tricker [200, pp. 155-200]. See especially the beginning
of the paper and p. 172 of the English translation.

The influence of Newton’s law of gravitation is clear, as Ampère assumed
the force to be along the straight line connecting the elements (r̂12) and to be
proportional to I1d`1I2d`2. He then proceeded to derive from his experiments
that this force between current elements should fall as r2 and be proportional
to 2(d~̀

1 · d~̀
2)− 3(r̂12 · d~̀

1)(r̂12 · d~̀
2).

The first to test directly the fact that the force was proportional to I1I2 was
W. Weber in 1846-48 ([201], [202] and [203]). To this end he measured directly
the forces between current carrying circuits with the electrodynamometer he
invented. Ampère never measured the forces directly and utilized only null
methods of equilibrium which did not yield forces.

As regards the energy of interaction between two current elements, there
have been many proposals. They can be summarized following Helmholtz by
the expression (see Woodruff [204], Wise [205], Archibald [206], Graneau [207],
Bueno and Assis [208]):

d2U12 =
µo

4π

I1I2

r

[
1 + k

2
(d~l1 · d~l2) +

1− k

2
(r̂ · d~l1)(r̂ · d~l2)

]
. (11.1)

Here k is a dimensionless constant. Although F. Neumann worked with
only closed circuits, we may say that his energy between current elements of
1845 would be given by this equation with k = 1. Weber’s electrodynamics to
be discussed next yields k = −1 [12, Section 4.6]. Maxwell’s electrodynamics
yields k = 0. More recently, Graneau proposed an expression like this equation
with k = 5 ([207]). But no matter what the value of k, these are all relational
energies.

Although most textbooks present Neumann’s expression as representing the
energy of interaction between two current elements in Maxwell’s theory, this
is not the case. The energy of interaction according to Maxwell should really
be given by k = 0, and not by k = 1 ([204], [205], [206]). This can be seen
utilizing Darwin’s Lagrangian energy of 1920 which describes the interaction of
two point charges q1 and q2 located at ~r1 and ~r2, moving with velocities ~v1 and
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~v2, respectively. It is the Lagrangian of classical electromagnetism (Maxwell-
Lorentz’s theory) involving relativistic corrections, time retardation and radia-
tion effects, correct up to second order in v/c, inclusive. It is given by (Darwin
[209], Jackson [210, Section 12.7, pp. 593-595], Assis [12, Section 6.8]):

UD
12 = UD

21 =
q1q2

4πεo

1
r12

[
1− ~v1 · ~v2 + (~v1 · r̂12)(~v2 · r̂12)

2c2

]
.

Let us suppose the current elements to be composed of positive and negative
charges, dq1− = −dq1+ and dq2− = −dq2+. The energy to bring the elements
from an infinite distance from one another to the final separation r12 is given
by

d2U12 = d2U2+,1+ + d2U2+,1− + d2U2−,1+ + d2U2−,1− .

Utilizing the fact that I1d~l1 ≡ dq1+~v1+ + dq1−~v1−, I2d~l2 ≡ dq2+~v2+ +
dq2−~v2−, the charge neutrality of the elements and Darwin’s Lagrangian yields
Eq. (11.1) with k = 0.

Attempting to unify electrostatics with electrodynamics, so that he could
derive the forces of Coulomb and Ampère from a single expression, in 1846 W.
Weber proposed that the force exerted by charge q2 on q1 should be given by:

~F21 =
q1q2

4πεo

r̂12

r2
12

(
1− ṙ2

12

2c2
+

r12r̈12

c2

)
. (11.2)

The constant c = 3×108 m/s is the ratio of electromagnetic and electrostatic
units of charge. Its value was first determined experimentally by Weber and
Kohlrausch in 1856 [211], [212], [213], [204], [214], [215], [205], [216], [217, Vol.
1, pp. 144-146 and 296-297] and [218].

In 1848 he proposed an interaction energy from which this force might be
derived, namely:

U12 =
q1q2

4πεo

1
r12

(
1− ṙ2

12

2c2

)
. (11.3)

It is important to observe that in order to arrive at Eq. (11.2) Weber began
with electrostatics (Coulomb’s force) and with Ampère’s force between current
elements. For this reason he was being influenced by Newtonian ideas, although
indirectly.

Expressions (11.2) and (11.3) are once more completely relational. Despite
this fact they present major differences as regards Newton’s law of gravitation
due to the dependence on the velocity and acceleration of the charges. This was
the first time in physics that a force was proposed which depended on the veloc-
ity and acceleration between the interacting bodies. Later on many other pro-
posals appeared in electromagnetism describing the force between point charges,
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such as those of Gauss (developed in 1835 but published only in 1877), Rie-
mann (developed in 1858 but published only in 1867), Clausius in 1876 and
Ritz in 1908. Further references and discussions can be found elsewhere [12,
Appendix B: Alternative Formulations of Electrodynamics]. Beyond differences
in form, there is a tremendous distinction between Weber’s expression and all
these others: Only Weber’s force is completely relational, depending only on
the distance, radial relative velocity and radial relative acceleration between
the point charges; and thus has the same value for all observers or frames of
reference. On the other hand the other expressions depend either on the veloc-
ity and acceleration of the charges relative to a preferred frame or medium like
an ether, or relative to the observer.

Lorentz’s force of 1895, as developed in the works of Lienard, Wiechert,
Schwarzschild and Darwin, can also be written as an interaction between point
charges. When this is done there also appear velocities and accelerations be-
tween the charges and the ether (as thought by Lorentz) or between the charges
and inertial frames of reference (interpretation introduced by Einstein). Once
more it is not the velocity and accelerations between the point charges which
matter, but their motion relative to something external to them. This external
frame may be the ether, the observer or a frame of reference. Only Weber’s
electrodynamics is completely relational. For this reason it is the only one
compatible with the relational mechanics presented in this book.

In 1868 C. Neumann arrived at the Lagrangian energy describing Weber’s
electrodynamics, namely:

S12 =
q1q2

4πεo

1
r12

(
1 +

ṙ2
12

2c2

)
. (11.4)

The Lagrangian of a two body system might then be written as L ≡ T−S12,
where T = m1v

2
1/2 + m2v

2
2/2 is the kinetic energy of the system. Note the sign

difference in front of ṙ12 when comparing U12 and S12. The Lagrangian energy
S12 is also completely relational.

In 1872 Helmholtz found that the energy of a test charge q interacting with
a surrounding non-conducting charged spherical shell of radius R and charge Q
according to Weber’s electrodynamics is given by [219]

UqQ =
qQ

4πεo

1
R

(
1− v2

6c2

)
. (11.5)

To arrive at this expression Helmholtz supposed a stationary spherical shell
interacting with an internal point charge q located anywhere inside the shell
and moving with velocity ~v relative to the shell.

An analogous expression obtained with a Weber’s law applied to gravita-
tion is the key for the implementation of Mach’s principle, as we have seen.
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(Remember that Mach’s ideas on mechanics had been published since 1868.)
By analogy with Helmholtz’s calculations, applied now to a Weberian poten-
tial energy for gravitation, this energy of interaction turns out to be exactly
the kinetic energy of classical mechanics (the stars and distant galaxies would
be considered as a system of spherical shells surrounding the solar system).
But Helmholtz always had a negative attitude towards Weber’s electrodynam-
ics. Instead of taking this result as a hint for explaining the inertia of bodies
or the origin of kinetic energy, he proposed this result as a failure of Weber’s
electrodynamics. Maxwell presented Helmholtz’s criticisms of Weber’s electro-
dynamics in his Treatise of 1873 [89, Vol. 2, Chapter 23]. He did not observe
that Helmholtz’s result was the key to unlock the mystery of inertia. The same
can be said of all the readers of Maxwell’s book at the end of last century and
during this century, who had available to them not only Helmholtz’s result, but
Mach’s books as well. We discussed this in detail in earlier work [12, Section
7.3: Charged Spherical Shell]. We can say that Helmholtz and Maxwell lost a
golden opportunity to create a relational mechanics utilizing a result analogous
to this one in gravitation. Fortunately, Schrödinger and others obtained similar
results and were prepared to draw all the important consequences from them.

11.3 Weber’s Law Applied to Gravitation

Due to the great success of Weber’s electrodynamics in explaining electrostatic
(through Coulomb’s force) and electrodynamic phenomena (Ampère’s force,
Faraday’s law of induction, etc.) some writers tried to apply an analogous
expression to gravitation. The pendulum swung back: after the great influence
of Newton’s gravitational force on Coulomb and Ampère, it was gravitation’s
turn to be influenced by electromagnetism.

The idea is that the force exerted by the gravitational mass mg2 on mg1

should be given by

~F21 = −Gmg1mg2
r̂12

r2
12

(
1− ξṙ2

12

2c2
+

ξr12r̈12

c2

)
. (11.6)

The energy of interaction would then be given by:

U12 = −Gmg1mg2
1

r12

(
1− ξṙ2

12

2c2

)
. (11.7)

The gravitational Lagrangian energy is accordingly:

S12 = −Gmg1mg2
1

r12

(
1 +

ξṙ2
12

2c2

)
. (11.8)
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The first to propose a Weber’s law fo gravitation seems to have been G.
Holzmuller in 1870 [32, p. 46]. Then in 1872 Tisserand studied Weber’s force
applied to gravitation and its application to the precession of the perihelion of
the planets. The two-body problem in Weber’s electrodynamics had been solved
by Seegers in 1864 [32, p. 46]. But Tisserand solved the problem iteratively,
more or less as outlined in this book.

Other people also worked with Weber’s law for gravitation applying it to
the problem of the precession of the perihelion of the planets: Paul Gerber in
1898 and 1917, Erwin Schrödinger in 1925, Eby in 1977 and ourselves in 1989
([220], [221], [125] with English translation in [83], [222] and [132]). Curiously,
none of them were aware of Weber’s electrodynamics, with the exception of our
work. Each one of them arrived at Eqs. (11.7) or (11.8) on his own. Gerber was
working with ideas of retarded time and worked in the Lagrangian formulation.
Schrödinger was trying to implement Mach’s principle with a relational theory.
Eby was following the works of Barbour on Mach’s principle and also worked
with the Lagrangian formulation.

Poincaré discussed Tisserand’s work on Weber’s law applied to gravitation
in 1906-7 [223, pp. 125 and 201-203]. Gerber’s works were criticized by Seeliger,
who was aware of Weber’s electrodynamics [224].

For references to other writers who have applied Weber’s law to gravitation
in the second half of this century, see Assis [12, Section 7.5].

It should be emphasized that Weber himself considered the application of his
force law to gravitation. Working in collaboration with F. Zollner in the 1870’s
and 1880’s he applied the ideas of Young and Mossotti of deriving gravitation
from electromagnetism. But instead of working with Coulomb’s force they
employed Weber’s own force between point charges, so that the final result was
a Weber’s law applied to gravitation (Young and Mossotti had arrived at a
similar to Newton’s law of universal gravitation). For references see Woodruff
[215] and Wise [205]. We are not sure if they published works prior to those of
Holzmuller and Tisserand in 1870 and 1872.

With the exception of Schrödinger, Eby and ourselves, the other authors who
applied Weber’s law to gravitation we have quoted here were not concerned with
Mach’s principle.

11.4 Relational Mechanics

Mach suggested that the inertia of a body should be connected with distant
matter and specially with the fixed stars (in his time the external galaxies were
not yet known). He did not discuss or emphasize the proportionality between
inertial and gravitational masses. He did not say that inertia should be con-
nected with a gravitational interaction with distant masses. He did not propose
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any specific force law to implement his ideas quantitatively (for instance, show-
ing that a spinning set of stars generates centrifugal forces). However, his book
The Science of Mechanics was extremely influential as regards physics, much
more than Leibniz’s or Berkeley’s writings. It was published in 1883, and from
that time onwards people began trying to implement his intuitive ideas, which
were very appealing.

The first to propose a Weber’s law for gravitation in order to implement
Mach’s principle seems to have been I. Friedlaender in 1896. This suggestion
appeared in a footnote on page 17 of the book by the Frielander brothers, in
which each part was written by a brother [78]. A partial English translation of
this book can be found in Friedlaender and Friedlaender, 1995 [79]. Immanuel
Friedlaender begins by speaking about the centrifugal force (tendency to depart
from the axis of rotation) which appears when we spin an object relative to the
earth. He says that it should be possible to reverse this. The centrifugal force
should appear when we rotate the earth and the distant universe in the opposite
sense relative to the test body. He believes Newtonian mechanics is incomplete
as it does not supply this equivalence. Then comes the part which concerns us
here [79, see especially pp. 310-311]: “(...) it seems to me that the correct form
of the law of inertia will only then have been found when relative inertia as an
effect of masses on each other and gravitation, which is also an effect of masses
on each other, have been derived on the basis of a unified law.1 The challenge to
theoreticians and calculators to attempt this will only be crowned with success
when the invertibility of centrifugal force has been successfully demonstrated.
Berlin, New Year 1896.”

This was only a suggestion and they did not develop it further. Despite
this fact it was important in at least two respects: They were the first to
suggest in print that inertia is due to a gravitational interaction. Moreover, they
proposed Weber’s law as the kind of interaction to work with. The inversion
of the centrifugal force (the dynamical equivalence for kinematically equivalent
situations), has been completely implemented in relational mechanics, as we
have seen in this book.

In 1900 Höfler also suggested an application of Weber’s law for gravitation
in order to implement Mach’s principle, [68, pp. 21 and 41]. Once more, this
suggestion was not developed.

In 1904 W. Hofmann proposed to replace the kinetic energy miv
2/2 by

a two body interaction like L = kMmf(r)v2, where k is a constant, f(r)
some function of the distance between the bodies of masses M and m, and

1In this connection it is greatly to be desired that the question of whether Weber’s law is
to be applied to gravitation and also the question of the propagation velocity of gravitation
should be resolved. For the second issue, one could use an instrument that makes it possible
to measure statically the diurnal variations of the earth’s gravity as a function of the position
of the heavenly bodies.
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v is the relative speed between M and m. His work is discussed in Norton
[68]. The usual result mv2/2 would be recovered after integrating L over all
masses in the universe. Hofmann did not complete the implementation of his
qualitative idea. His work is important because he is considering an interaction
of Weber’s type (see Eq. (11.7)) to arrive at the kinetic energy, although he did
not specify the function f(r). However, he did not seem to be aware of Weber’s
electrodynamics.

Although Einstein was greatly influenced by Mach’s book on mechanics, he
did not try to employ a relational expression for the energy or force between
masses. He never mentioned Weber’s force or potential energy. All those who
were influenced by Einstein’s line of reasoning remained very far from relational
mechanics. For this reason we do not consider them here.

After the Friedlaenders, Höfler and Hofmann, another important person
who attempted to implement Mach’s principle utilizing relational quantities
was Reissner. Without being aware of Weber’s work he arrived independently
at a potential energy very similar to Weber’s potential applied to gravitation
[225] with English translation in [81], and [226] with partial English translation
in [82]. In the article of 1914 he works with a classical gravitational potential
energy plus a term of the type m1m2f(r)ṙ2, particularized for f(r) = constant.
In 1915 he substitutes this term for m1m2ṙ

2/r. Unfortunately, from 1916 on-
wards he began to develop Einstein’s ideas on general relativity and no longer
worked with relational quantities [227] and [68, p. 33].

Erwin Schrödinger (1887-1961) wrote a very important paper in 1925 where
he arrived at the main results of relational mechanics [125] with English trans-
lation in [83].

In this paper Schrödinger says that he wishes to implement Mach’s ideas. He
mentions the fact that Einstein’s general theory of relativity does not implement
these ideas and for this reason he tries a different approach. Taking the form of
the kinetic energy mv2/2 as a guiding idea he proposes heuristically a modified
form of the Newtonian potential energy, namely:

U = −Gm1m2(1− γṙ2)/r . (11.9)

To arrive at this expression he explicitly emphasized the aspect that any
interaction energy should depend only on the distance and relative velocities
between the particles in order to follow Mach’s approach. Absolute velocities
should not appear, only relational quantities. Curiously enough, he never men-
tions Weber’s name or Weber’s law, although he was a German speaker. He
integrates this energy of interaction for a spherical shell of mass M and radius
R interacting with an internal point mass m located near its center and moving
relative to it with velocity v and obtains the approximate result
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U = −G
mM

R

(
1− γv2

3

)
.

He did not know this, but his approximate result was exact and valid any-
where inside the shell and not only near its center, as had been known since
Helmholtz in 1872 (working with charges instead of masses, but the consequence
is the same). Schrödinger identifies this result with the kinetic energy of the test
body and implicitly arrives at the main results of relational mechanics. He then
considers a “two-body problem” (the sun, the planet and the distant masses)
and arrives at the precession of the perihelion of the planets. As we have seen,
others had arrived at this result before him, but he does not quote anyone.
To get the Einstenian relativistic result, which was known to agree with the
observed values, Schrödinger obtains γ = 3/c2. Then he integrates the result of
the spherical shell for the whole world up to a radius Ro supposing a constant
mass density ρo, and obtains relation (8.37), namely: G = c2/4πρoR

2
o. He ob-

serves that taking Ro and ρo as the radius and density of our galaxy we would
obtain a value of G 1011 times smaller than what is observed. His conclusion
is then that the inertia of bodies in the solar system is due mainly to matter
farther away from our galaxy. For Eq. (8.37) to be valid, with G = 6.67×10−11

Nm2/kg2, Ro needed to be much greater than all other astronomical distances
known at his time. It is curious to observe that the existence of external galax-
ies had just been confirmed by E. Hubble in 1924. Until then, many thought
the whole universe was only our own galaxy. Hubble’s law of redshifts appeared
only in 1929. This relation between G, Ro, c and ρo was rediscovered later by
Sciama in 1953, by Brown in 1955, by Edwards in 1974, by Eby in 1977 and by
ourselves in 1989 [70], [71], [193], [222], [132].

Schrödinger then goes a step further. He takes the classical kinetic energy
as an approximation for small velocities and assumes the relativistic kinetic
energy mc2(1/

√
1− v2/c2 − 1) as an empirical relation valid for low and high

velocities. To derive this energy he modifies Weber’s potential energy by the
expression

U = −G
mg1mg2

r

(
3− 2

(1− ṙ2/c2)3/2

)
.

This reduces to Weber’s expression up to second order in ṙ/c. After integrating
this expression for the distant masses analogously to the prior procedure, Schrö-
dinger obtains an expression like the relativistic kinetic energy. He also observes
that this energy can be derived from a Lagrangian energy L given by

L = G
mg1mg2

r

(
2√

1− ṙ2/c2
− 4
√

1− ṙ2/c2 + 3

)
.
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After the usual integration, this yields a Lagrangian analogous to the relativistic
Lagrangian for a point particle, namely: L = −mc2

√
1− v2/c2. Once more

the mass which appears in Schrödinger’s derivation is the gravitational mass.
Moreover, the velocity of the test charge is relative to the frame of distant
matter (frame in which the distant masses are at rest).

Recently Wesley published a similar work, without being aware of Schrö-
dinger’s paper [184].

To our knowledge, he did no more work along these lines after this paper,
nor had he published anything previously on this subject. This was one of his
last paper before the famous works on quantum mechanics, where he developed
Schrödinger’s equation and the wave approach to quantum mechanics. The
enormous success of these papers may explain why he did not return to his
work on Mach’s principle.

Another reason may have to do with Reissner. In his article of 1925 Schrö-
dinger claims that he arrived at Eq. (11.9) “heuristically.” He does not mention
Weber, Tisserand, Reissner, nor any other author. Now if indeed he did achieve
this heuristically, he should have arrived at this expression all by himself. Let
us quote here the relevant passage [83] (our emphasis):

One must therefore see if it is possible in the case of the kinetic
energy, just as hitherto for the potential energy, to assign it, not to
mass points individually, but instead also represent it as an energy
of interaction of any two mass points and let it depend only on the
separation and the rate of change of the separation of the two points.
In order to select an expression from the copious possibilities, we use
heuristically the following analogy requirements:

1. The kinetic energy as an interaction energy shall depend on the
masses and the separation of the two points in the same manner as
does the Newtonian potential.

2. It shall be proportional to the square of the rate of change of the
separation.

For the total interaction energy of two mass points with the masses
µ and µ′ with separation r we then obtain the expression

W = γ
µµ′ṙ2

r
− µµ′

r
.

The masses are here measured in a unit such that the gravitational
constant has the value 1. The constant γ, which for the moment is
undetermined, has the dimensions of a reciprocal velocity. Since it
should be universal, one will expect that, apart from a numerical
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factor, this will be the velocity of light, or that γ will be reduced
to a numerical factor when the light second is chosen as the unit of
time. We shall have cause later to set this numerical factor equal to
3.

As a matter of fact, this is not the whole history of how Schrödinger ar-
rived at this relation. The collected works of Schrödinger have been published
recently. At the end of the reprint of this article there is a typewritten note,
signed by Schrödinger, where he expresses apologies to Reissner for plagiarizing
his ideas, unconsciously [228, p. 192]. He says that he knew his first paper of
1914 but is not certain as regards the second one of 1915. Perhaps the fact that
he utilized Reissner’s ideas, without quoting him, and the constraint he may
have felt to admit this publicly influenced him not to deal with this subject
further (others may have perceived the similarities between their works).

In any event it is a great irony that Weber’s law for electromagnetism had
been published some 70 years before Reissner (80 years before Schrödinger).
An application of Weber’s law to gravitation dates back at least to the 1870’s,
some 40 years before Reissner. Weber published in German, like Reissner and
Schrödinger; his work was discussed by Maxwell and many others. It is amazing
that Reissner and Schrödinger did not know about his work and that even after
their publications in 1915 and 1925 no one called their attention to Weber’s
works.

There is a possible third reason why Schrödinger stopped working with a
Weber’s law in order to implement Mach’s principle: he turned to Einstein’s
general theory of relativity, as had happened with Reissner. Schrödinger, for
instance, worked later with a unified theory based on Einstein’s works [229]. He
even published a book on the expanding universe, based on Einstein’s general
theory of relativity [230].

This paper of 1925 was not followed or developed by other workers either.
It was forgotten for the next 60 years, until it was reprinted in 1984. We found
only one reference to it in another place, in a paper of 1987 [231, see especially
p. 1157]. Another quotation can be found in Mehra’s book [231, pp. 372-373
and 459]. Only in 1993 did it begin to be rediscovered by other people. Julian
Barbour told us about this paper in July 1993, and he himself was informed
about this paper by Domenico Giulini, who found it in Schrödinger’s collected
works (private communication by Julian Barbour and [69, p. 5]). This article
was then discussed at a conference on Mach’s principle which happened in
Tübingen, Germany, in 1993 [69]. In the Proceedings of this conference there
is a complete English translation of the paper. We published a Portuguese
translation in 1994 [232]. Further applications of this approach can be found
elsewhere [12, Section 7.7] and [14].

Although many important results of relational mechanics are contained in
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Schrödinger’s paper, he did not show that a rotating spherical shell generates
inside itself centrifugal and Coriolis forces. He also did not discuss in greater
detail the proportionality between inertial and gravitational masses. Moreover,
as he worked only with energies, he did not derive a law analogous to the
Newtonian m~a, nor did he discuss how to do this. He also did not know that
the energy of interaction of a test particle inside a spherical shell was valid
anywhere inside the shell, and not only close to its center.

After Schrödinger, we are not aware of any relational theory that seeks to
implement Mach’s principle for the next fifty years. Although there have been
alternatives to general relativity, they were usually modelled on Einstein’s ap-
proach and so maintained most non-Machian aspects of his theories of relativity
(absolute quantities, inertia due to space, frame dependent forces, etc.) For this
reason we will not consider them here.

An exception which must be mentioned is the work of Burniston Brown
[71] and [233]. He did not follow general relativity but an analogy with the
electromagnetic forces. Unfortunately the force expression he employed for
gravitation was not exactly relational, as is the case with Weber’s law. Despite
this fact he arrived at several Machian consequences with his model.

In 1974 Edwards was led by analogies between electromagnetism and gravi-
tation to work with relational quantities such as ṙ, etc.: [193]. He was not aware
of Schrödinger’s approach. He mentions that his “approach employs some of
the basic ideas of Weber’s and Riemann’s electromagnetic theories.” He draws
attention to an interesting possible explanation of the origin of binding forces
within fundamental particles and nuclei utilizing the fact that Weber’s force
applied to electromagnetism depends on the acceleration between the charges.
This means that the effective inertial mass of a charged particle depends on its
electrostatic potential energy, so that this effective inertial mass can become
negative under certain conditions. As a consequence of this, negative charges
might attract one another when these conditions are satisfied. As we have seen,
Helmholtz had arrived at these ideas of an effective inertial mass depending
on the electrostatic potential energy 100 years before [12]. Edwards published
nothing else along these lines of implementing Mach’s principle from a Weber’s
force applied to gravitation.

At the same time Barbour, and later Barbour and Bertotti, worked with
relational quantities, intrinsic derivatives and with the relative configuration
space of the universe [234], [235] and [236]. They now follow Einstein’s approach
closely.

Eby followed Barbour’s ideas and worked with a Lagrangian energy like Eq.
(11.4) applied to gravitation [222]. He calculated the precession of the perihe-
lion of the planets with this Lagrangian and also implemented Mach’s principle.
Once more, he was not aware of Weber’s electrodynamics or of Schrödinger’s pa-
per. In a following paper, Eby considered the precession of a gyroscope with his
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model, and showed that there are different predictions between relational me-
chanics and Einstein’s general theory of relativity in the geodetic and motional
precessions [194]. Recently he published another paper on Mach’s principle
[182].

Our own work on relational mechanics and Weber’s law applied to elec-
tromagnetism and gravitation began in 1988 and is being published in several
places. We have five books on these subjects ([11], [12], [13], [237] and [2]).

To our knowledge we were the first to obtain Eq. (8.12) [132]. In other
words, we were the first to implement quantitatively Mach’s idea that spinning
the distant universe yields real centrifugal and Coriolis forces. It seems to us
that no one had derived this key result before. We were also the first to derive
Eq. (8.11) with ~ω 6= 0. Helmholtz and Schrödinger obtained it before us when
~ω = 0. We were also the first to derive Eqs. (8.13) and (8.14) [132], [35] and
[12, Chapter 7]. We were also the first to introduce the exponential decay in
Weber’s potential energy, Eqs. (8.5) and (8.6) [35].

As regards the principle of dynamical equilibrium (the third postulate of
relational mechanics), Sciama seems to have been the first to state a particular
form of this assumption [70]. Let us quote his main postulate: “(...) in the
rest-frame of any body the total gravitational field at the body arising from all
the other matter in the universe is zero.” The first limitation of his formulation
was that he assumed it to be valid only for gravitational interactions, while we
have applied it to all kinds of interaction. But much more serious than that was
the fact that he restricted the validity of his postulate only to the rest frame of
the test body which experiences the interaction, while we have supposed it to
be valid in all frames of reference. The reason for his limited supposition is very
simple. He utilized as his force law an expression similar to Lorentz’s force law
applied to gravitation, which is certainly not relational. Moreover, as is well
known, Lorentz’s force depends on the position and velocity of the test body,
but not on its acceleration. When the test body was accelerated relative to the
distant galaxies, Sciama was able to show, in the frame of the test body (frame
always fixed with it) that the distant galaxies would exert a force on the test
body of gravitational mass mg given by mg~aUm, where ~aUm is the acceleration
of the set of distant galaxies relative to the test body. But in the frame of
the distant galaxies there is no force exerted by them on the accelerated test
body in Sciama’s calculation! If you are in the universal frame of reference
(fixed relative to the set of distant galaxies) and calculate the gravitational
force exerted by these galaxies on a test body which is accelerated relative to
them, this yields a zero value with Sciama’s expression for the gravitational
force (analogous to Lorentz’s force), no matter what the acceleration of the test
body relative to the distant galaxies. This is due to the fact that Lorentz’s
force is not relational, yielding different results in different frames of reference,
and also because it depends on the acceleration of the source body but not on
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the acceleration of the test body [17], [18] and [12, Sections 6.4 and 7.3]. This
means that he could not implement Mach’s principle in its full generality. First
of all, he did not work with relational quantities. Nor could he derive Newton’s
second law of motion in the frame of distant matter, where it is known to be
valid. The first presentation of the principle of dynamical equilibrium in its full
generality, deriving all important consequences from it, was given in our paper
of 1989 [132].



Chapter 12

Conclusion

We believe strongly in the relational mechanics as presented in this book. We
have written it to show this formulation in its full generality, so that others can
see the power of this approach.

Graneau is one of those who grasped all aspects of relational mechanics
[238], [239], [240], [241], [242] and [243, Chapter 3, The Riddle of Inertia]. Other
people we can mention are Wesley [184] and [93, Chapter 6], Zylbersztajn [244]
and Phipps [92].

We believe that the three postulates of relational mechanics will not need
to be modified. On the other hand, experimental findings may modify Weber’s
law applied to gravitation and electromagnetism. For instance, it may be found
necessary to introduce terms which depend on d3r12/dt3, d4r12/dt4, etc. Higher
order powers of the derivatives may also appear, like: ṙ, ṙ3, ṙ4, ..., r̈2, r̈3, ...
(d3r/dt3)m, etc. A possible exponential decay in gravitation (and maybe in
electromagnetism) needs to be confirmed experimentally.

But the main lines of approaching future problems have already been laid
down: no absolute space and time; only relational quantities should be involved;
all forces should come from interactions between material bodies; for point
particles the force should be directed along the line joining them and should
obey the principle of action and reaction; etc.

Newton created the best possible mechanics of his time. He understood
clearly the difference between inertia and weight (or between gravitational and
inertial mass). He knew Galileo’s result on the equality of the acceleration of
freely falling bodies and performed a very accurate experiment with pendulums
which showed that the inertia of a body was proportional to its weight to one
part in a thousand. Although he could not explain this proportionality, he was a
giant to see the importance of this fact and to perform such a precise experiment.
He introduced the universal law of gravitation, which falls as the inverse square

259
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of the distance. Moreover, he proved two key theorems: a spherical shell attracts
an external material particle as if it were concentrated at its center, and exerts
no net force on any internal body. Both theorems are valid no matter what the
motion of the test body or of the shell. He performed the bucket experiment
and observed that the concavity of the water was not due to its rotation relative
to the bucket. Due to his two theorems stated above, he believed the concavity
of the water could not be due to its rotation relative to the earth or to the fixed
stars. He had no other alternative to explain this experiment except to say that
it proved the existence of absolute space which had no connections with any
matter.

It was only 160 years later that Wilhelm Weber proposed an electromagnetic
force depending on the distance between the point charges, on their relative
radial velocity and on their relative radial acceleration. He also proposed a
potential energy depending on the distance and radial relative velocity between
the charges. These were the first force and energy in physics depending on
velocity and acceleration between the interacting bodies. Weber’s formulation
is the only theory of electrodynamics ever proposed depending on relational
magnitudes between the interacting charges. For this reason Weber’s force and
energy always have the same value in all frames of reference, even for non-
inertial frames (in the Newtonian sense of this word). Weber’s force complies
with the principle of action and reaction. Moreover, it is directed along the
straight line connecting the charges. It follows the principles of conservation
of linear momentum, of angular momentum and of energy. When there is no
motion between the charges, we derive from it Coulomb’s force and Gauss’s law
of electrostatics. With Weber’s force we also derive Ampère’s force between
current elements. From this last expression we derive the law of non-existence
of magnetic monopoles and the magnetic circuital law. With his expression
Weber also derived Faraday’s law of induction. Weber and Kirchhoff derived,
before Maxwell, a wave equation describing the propagation of electromagnetic
perturbations along wires at light velocity. They worked independently from
one another, but both of them based on Weber’s electrodynamics. Weber was
also the first to measure the electromagnetic quantity 1/

√
µoεo, finding the

same value as light velocity in vacuum. This was one of the first quantitative
indications showing a connection between optics and electromagnetism.

With a Weber’s potential energy for gravitation and applying it for the
interaction of a test particle and the distant universe we obtain an energy
analogous to the classical kinetic energy. In this way this last expression can be
seen as an interaction energy, like all other energies (elastic, electromagnetic,
etc.) A Weber’s force applied to gravitation shows that the distant universe
exerts a gravitational force on any body accelerated relative to it. This force is
proportional to the gravitational mass of the test body and to its acceleration
relative to the distant universe. This result, together with the principle of
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dynamical equilibrium, yields equations of motion similar to Newton’s first and
second laws. Finally it explains the proportionality of inertia and weight. We
could also derive the fact that the best inertial frame available to us is the
distant galaxies. We have been able to explain the coincidence of Newtonian
mechanics that the universe as a whole does not rotate relative to absolute space
or to any inertial frame of reference. In other words, we have explained why
the kinematical rotation of the earth is identical to its dynamical rotation. We
have derived a relation connecting microscopic quantities (G) with macroscopic
quantities (Ho and ρo). This relation had been known for a long time, with no
convincing explanation for its origin. We have found a complete equivalence
between the Ptolemaic and Copernican world systems. It is then equally valid
to say that the earth moves relative to the distant universe, or that it is at
rest and that it is the distant universe which moves relative to the earth. We
have derived the fact that all inertial forces of Newtonian mechanics, like the
centrifugal or Coriolis forces, are real forces acting between the test body and
the distant universe. These forces have a gravitational origin and appear when
there is a relative rotation between the body and the universe. This also explains
the concavity in Newton’s bucket as due to a relative rotation between the water
and the distant universe, as had been suggested by Mach.

We have reached a clear and satisfactory understanding of the key facts of
classical mechanics. From now on the best alternative is to follow the new path
this relational approach opens up. It is the path to a new world!
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Editora da Universidade Estadual de Campinas - UNICAMP, Campinas,
1995. ISBN: 85-268-0358-1.

[14] J. J. Caluzi and A. K. T. Assis. Schrödinger’s potential energy and We-
ber’s electrodynamics. General Relativity and Gravitation, 27:429–437,
1995.

[15] J. J. Caluzi and A. K. T. Assis. An analysis of Phipps’s potential energy.
Journal of the Franklin Institute B, 332:747–753, 1995.

[16] P. W. Worden and C. W. F. Everitt. Resource letter GI-1: gravity and
inertia. American Journal of Physics, 50:494–500, 1982.

[17] A. K. T. Assis. Centrifugal electrical force. Communications in Theoret-
ical Physics, 18:475–478, 1992.

[18] A. K. T. Assis. Changing the inertial mass of a charged particle. Journal
of the Physical Society of Japan, 62:1418–1422, 1993.

[19] A. K. T. Assis and D. S. Thober. Unipolar induction and Weber’s electro-
dynamics. In M. Barone and F. Selleri, editors, Frontiers of Fundamental
Physics, pages 409–414, New York, 1994. Plenum Press.

[20] Archimedes. The Works of Archimedes. Dover, New York, 1912. Edited
in modern notation with introductory chapters by T. L. Heath, with a
supplement The Method of Archimedes.

[21] Archimedes. The Works of Archimedes. Great Books of the Western
World. Encyclopaedia Britannica, Chicago, 1952. Translated by T. L.
Heath.

[22] T. S. Kuhn. The Copernican Revolution. Harvard University Press, Cam-
bridge, 1957.

[23] P. Caldirola and E. Recami. The concept of time in physics. Epistemolo-
gia, 1:263–304, 1978.

[24] G. J. Whitrow. Time in History. Oxford University Press, Oxford, 1989.



BIBLIOGRAPHY 265

[25] F. A. Mella. La Misura del Tempo nel Tempo. Hoepli, Milano, 1990.

[26] A. A. Penzias and R. W. Wilson. A measurement of excess antenna
temperature at 4080 Mc/s. Astrophysical Journal, 142:419–421, 1965.

[27] K. R. Symon. Mechanics. Addison-Wesley, Reading, third edition, 1971.

[28] L. Foucault. Démonstration physique du mouvement de rotation de la
terre au moyen du pendule. Comptes Rendues de l’Academie des Sciences
de Paris, Feb. 03:135–138, 1851.

[29] L. Foucault. Physical demonstration of the rotation of the earth by means
of the pendulum. Journal of the Franklin Institute, 21:350–353, 1851.

[30] R. Crane. The Foucault pendulum as a murder weapon and a physicist’s
delight. The Physics Teacher, 28:264–269, 1990.

[31] M. Born. Einstein’s Theory of Relativity. Dover, New York, Revised
edition, 1965.

[32] J. D. North. The Measure of the Universe — A History of Modern Cos-
mology. Clarendon Press, Oxford, 1965.

[33] M. Jammer. Concepts of Space - The History of Theories of Space in
Physics. Harvard University Press, Cambridge, 2nd edition, 1969.

[34] S. L. Jaki. Cosmos in Transition — Studies in the History of Cosmology.
Pachart Publishing House, Tucson, 1990.

[35] A. K. T. Assis. On the absorption of gravity. Apeiron, 13:3–11, 1992.

[36] A. K. T. Assis. A steady-state cosmology. In H. C. Arp, C. R. Keys,
and K. Rudnicki, editors, Progress in New Cosmologies: Beyond the Big
Bang, pages 153–167, New York, 1993. Plenum Press.

[37] E. Harrison. Newton and the infinite universe. Physics Today, 39:24–32,
1986.

[38] I. B. Cohen (ed.). Isaac Newton’s Papers & Letters on Natural Philosophy.
Harvard University Press, Cambridge, second edition, 1978.

[39] E. Mach. The Science of Mechanics — A Critical and Historical Account
of Its Development. Open Court, La Salle, 1960.

[40] V. C. Rubin, W. K. Ford, Jr., and N. Thonnard. Rotational properties
of 23 Sb galaxies. Astrophysical Journal, 261:439–456, 1982.



266 BIBLIOGRAPHY

[41] V. C. Rubin. Dark matter in spiral galaxies. Scientific American, 248:88–
101, 1983.

[42] R. H. Sanders. Anti-gravity and galaxy rotation curves. Astronomy and
Astrophysics, 136:L21–L23, 1984.

[43] R. H. Sanders. Finite length-scale anti-gravity and observations of mass
discrepancies in galaxies. Astronomy and Astrophysics, 154:135–144,
1986.

[44] R. H. Sanders. Mass discrepancies in galaxies: dark matter and alterna-
tives. Astronomy and Astrophysics Review, 2:1–28, 1990.

[45] D. S. L. Soares. An alternative view of flat rotation curves in spiral
galaxies. Revista Mexicana de Astronomia e Astrofisica, 24:3–7, 1992.

[46] D. S. L. Soares. An alternative view of flat rotation curves. II. The obser-
vations. Revista Mexicana de Astronomia e Astrofisica, 28:35–42, 1994.

[47] Q. Majorana. On gravitation — Theoretical and experimental researches.
Philosophical Magazine, 39:488–504, 1920.

[48] Q. Majorana. Quelques recherches sur l’absorption de la gravitation par
la matière. Journal de Physique et de Radium, 1:314–324, 1930.

[49] Q. Majorana. On gravitation — Theoretical and experimental researches.
In V. DeSabbata and V. N. Melnikov, editors, Gravitational Measure-
ments, Fundamental Metrology and Constants, pages 523–539, Dordrecht,
1988. Kluwer.

[50] Q. Majorana. Quelques recherches sur l’absorption de la gravitation par
la matière. In V. DeSabbata and V. N. Melnikov, editors, Gravitational
Measurements, Fundamental Metrology and Constants, pages 508–522,
Dordrecht, 1988. Kluwer.

[51] G. Dragoni. On Quirino Majorana’s papers regarding gravitational ab-
sorption. In V. DeSabbata and V. N. Melnikov, editors, Gravitational
Measurements, Fundamental Metrology and Constants, pages 501–507,
Dordrecht, 1988. Kluwer.

[52] G. T. Gillies. Resource letter MNG-1: Measurements of Newtonian grav-
itation. American Journal of Physics, 58:525–534, 1990.

[53] R. de A. Martins. Huygens’s reaction to Newton’s gravitational theory.
In J. V. Field and A. J. L. James, editors, Renaissance and Revolution,
pages 203–213. Cambridge University Press, Cambridge, 1993.



BIBLIOGRAPHY 267

[54] H. G. Alexander (ed.). The Leibniz-Clarke Correspondence. Manchester
University Press, Manchester, 1984.

[55] G. W. Leibniz. Philosophical Essays. Hackett Publishing Company, In-
dianapolis, 1989. Edited and translated by R. Ariew and D. Garber.

[56] H. Erlichson. The Leibniz-Clarke controversy: absolute versus relative
space and time. American Journal of Physics, 35:89–98, 1967.

[57] G. Berkeley. De Motu - Of Motion, or the principle and nature of motion
and the cause of the communication of motions. In M. R. Ayers, editor,
George Berkeley’s Philosophical Works, pages 211–227, London, 1992.
Everyman’s Library.

[58] G. J. Whitrow. Berkeley’s philosophy of motion. British Journal for the
Philosophy of Science, 4:37–45, 1953.

[59] K. R. Popper. A note on Berkeley as precursor of Mach. British Journal
for the Philosophy of Science, 4:26–36, 1953.

[60] K. P. Winkler. Berkeley, Newton and the stars. Studies in History and
Philosophy of Science, 17:23–42, 1986.

[61] G. Berkeley. A Treatise concerning the Principles of Human Knowledge.
In M. R. Ayers, editor, Geroge Berkeley’s Philosophical Works, pages
61–127, London, 1992. Everyman’s Library.
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Errata 

 

Page 45, equation (2.17) should read: 

 

yiox amtBqBqv   sin ||    

 

Page 74, equation (3.11) should read: 
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Page 78, equation (3.16) should read: 

 

   sin2/cos dd   

 

Page 129, the last equation should read: 
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Page 152, the ninth line of Section 7.3.4 should read: 

 

 s
-1

 is the angular rotation of the earth relative to the fixed stars with a 

 

Page 170, the last sentence before Eq. (8.8) should read: 

 

 Integrating Eq. (8.4) to obtain the gravitational force exerted by the shell on the internal 

particle yields: 

 

Page 170, the first sentence below Eq. (8.8) should read: 

 

 This term would not appear with Newton’s law of gravitation. 

 

Page 208, the second line below the last equation should read: 

 

vibration is inversely proportional to the square root of the gravitational mass of the test body, as 

observed 
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