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THE INFLUENCE OF THE ELECTRIC FIELD OUTSIDE A RESISTIVE
SOLENOID ON THE AHARONOV-BOHM EFFECT'

Héctor Torres S.> Andre K.T. Assis’®

ABSTRACT

it is a known fact that there s no magnetic fleld outside an infinite solenoid carrying a constant current, although
there is magnetic vector potential non-null outside it. The existence of the Aharonov-Bohm cffect (AB) is usually
considered as proof of the relevance of the vector potential for quantum mechanics. In this paper we will see that
there is a non null eleciric field owside an infinite resistive solenoid carrying a constant current and its possible
relevance to the analysis of the Aharonov-Bohm effect. When caleulating, we introduce the Galilean invariance of
Maxwell's equations and then we obtain the contribution to the AB effect due to electric potential,

INTRODUCTION

In classical clectromagnetism there are the concepts of
the scalar electric potential and the magnetic vector
potential. Despite this fact, the relevant quantities are
the clectric and magnetic fields as they are the ones
which appear in Maxwell’s equations and in Loventz’
force law. On the other hand, in quantum mechanics
these potentials are relevant, as they appear in the
Hamiltonians,  which  describe  electromagnetic
interactions between charged particles,

In 1956 Aharonov and Bohm proposed an experimental
test of the relevance of the magnetic vector potential in
a region free of the electromagnetic fields, [1]. As an
example, suppose an infinite solenoid along the z-axis
carrying a constant poloidal current in the ¢ dircction.

It generates a constant magnetic field B at all points
In its interior pointing along the z-axis and no
magnetic ficld cutside it. Despite this fact, there is a

magnetic vector potential A outside the solenoid
pointing in the ¢ direction.

The Aharonov-Bohm eflect was first experimentally
confirmed by Moellenstedt and Bayh, [2]. Since then
this cffect has been considered as a proof of the
essential importance of the magnetic vector potential for
quantum mechanics., This 15 a curious result from the
classical point of view, as the magnetic force on any
charged particle is zero.

Here we wish to call attention to a fact, which has
always been neglected in this connection. If the
solenoid mentioned above i1s made of a normal resistive
wire like copper and the current is generated by a
battcry, there will be an external electric field, although
the external magnetic field is zero, [3]. Ths electric
field will exist outside the solenoid, even in the case of
statjonary solenoid carrying a constant current.

Jefimenko was able to show experimentally the
existence of electric ficld outside conduclors carrying
congtant currents utilizing grass seeds, which align
themselves with the lines of electric field, in analogy
with iron fillings, which map magnetic fields, [4.5]. He
also measured potentials outside these curtent carrying
wires utilizing an electronic electrometer connected to a
radioactive alpha-source, [6]. Historical analysis of this
whole subject has been prescnted in [7].

The case of the solenoid was considered theoretically by
Heald, [3]. He was able to obtain analytic expressions
for the electric potential inside and outside the solenoid
in the case, in which there is a “line” battery driving
current azimuthally in a uniform cylindrical resistive
sheet. From this potential the clectric field can be easily
obtained. This electric ficld has radial and poleidal
components. The important aspect is that the poloidal
component follows the dircction of the cument just
outside the solenoid, as thc magnetic vector potential
mentioned above. Considering the typical configuration
of the Aharonov-Bohm effect, we will have an electron
beam moving in the general direction of the electric
ficld and the other electron beam moving opposite to
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the electric ficld. In the first case the electrons will be
retarded by the electric ficld, while in the second case
they will be accelerated by 1. This might be relevant to
the interpretation of the Aharonov-Bohm effect.

Qur goal is to call attention that the region outside an
infinite solenoid is not free of electromagnetic fields, as
usually supposed and hew it can be calculated.
Although the external magnetic field is zero, the electric
field is different from zero and it can play a role in the
Aharonov-Bohm effect. To do that, first we derive the
Galilean invariance of Maxwell's equations [8] [9], and
then we obtain the force due to thc magnetic vector
potential and the electric potential. From the framework
of classical electrodynamics we postulate  this
imvariance, because it may give forces, which are of
longitudinal type, i.e. is directed along motion of the
charge, oppositely to Lorentz force, which is of
transversal type [9].

Dimensional analysis of Maxwell's equations implies a
I

wave propagation speed of ¢, defined as (/105‘0 )_5
But Maxwell's cquations in and of themselves say
nothing about the value of ¢ in any particular observer's
frame of reference. The gencerally accepted frame-

invariance of ¢, and hence £, and &, constitutes an

assumption. Lorentz  transformations  allow  the
preservation of the form of Maxwell's equations in any
inertial frame of reference (IFR) under this assumption,
raised to the status of a postulate by Einstein. [t is
likely only the experimental means by which we

measure ¢, f,and &£,, that produces the observed

mmvariance of light’s velocity.

By the principle of ecquivalence, any experiment
performed in a uniformly moving reference frame
should produce the same results as if performed in a
"stationary” frame. Unless one is willing to assumc the
existence of an ether or preferred reference framc, all
experiments will result in a measured "veclocity” of ¢ in
any uniformly moving frame of reference, regardless of
the actual behavior of the light itself. Observers in

different 1FRs measuring values for gt and &, will

cach obtamn the same resuit. Thus each of scveral
observers in different [FRs will measure the velocity of
light from a distant source to be intersecting their
apparatus at a velocity of c.

In lhight of the above, the second postulatc can be
modified to state: "The observed velocity of light is
constant from all inertial [rames of reference, and is
independent of the motion of the source”.
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Electromagnetic radiation propagates from its source at
all velocities from zero to some undetermined upper
value C. Only that component of this radiation, that
passes a physical observer at a relative velocity of ¢ in
the observer's frame of reference, produces physical
intcraction and is detected. Any observer in motion
relative to the first observer will, in general, detect a
different component of the radiation, that component
being the one that has a relative velocity of ¢ in its
frame of reference.

THE GALILEAN INVARIANCE OF
MAXWELL'S EQUATIONS

Onc considers three quantities, length, time and the
speed of electromagnetic (EM) propagation in
transforming Maxwell's equations between reference
frames. Einstein assumed the velocity of HM
propagation to be strictly ¢, requiring the Lorentz
transformations to keep the form of Maxwell's
cqualions consistent.  This was at the expensc of
standard concepts of length, time, and simultaneity;
cach becoming distorted 1o accommodate the constaney
of ¢. RCM simply adds the word observed to the
second postulate, and derives the Galilean invariance of
Maxwell's equations.

In Fig. 1, observers in the stationary (K) and moving
{K') frames are at the origins § and S' respectively. The
origins are initially concident at the time of a flash at
A, a distance x from S. [n RCM, where 0 = ¢ < (, the
component velocity of light in the non-moving K frame
is ¢. As measured in the K' frame (moving with a
constant vclocity v}, ¢'=¢, butin the K frame ¢’ is
¢ + v Restricting motion of the K' frame to the x axis,
the Galilean transformations become:

*

x'=x+w;y' =y, z =z (1
=1 (2)
Y Y
K K
z
LA vl =/ X ..
Z' X
pd 2 K SWEA
g X
Fig.1.- Galilean systems: Observers in thc stationary

(K) and moving {K') frames are at the origins S
and §' respectively
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From a treatment of wave mechanics, for wave
propagation in the x direction with E, = 0 and ¢ the

velecity of propagation, we write:

| JE, JE,

Fa T & ®

If a flash of light occurs some distance x from the
origin of K, we can let x be represented by ¢ times the
time it takes light to reach an observer at K’s origin.
Thus, we derive the following relations:

x=ct; x'=xtvi=ax (@
a=(c+vic (5)

Combining equations (1) and {(4), we obtain the
following useful relations, where we can pull o out of
the partial as a constant:

ot' ot ox' Odax adx

We can alse derive two useful relations from (4),
whereby we express ¢X in terms of @ and ¢, where
the last expression holds since t' = £

jab}

X = COt;

L}

x"'= Box =

adx =acét=c'dt=c'ot'

()]

(7)

Now we wish to examine the wave equation for the
same wave in the K' system. We have:

| &FE,. J'E,
At & ®

Substituting (6) into (8) and comparing with (2) yields:

1 ¢°F, o'E,
> = . or
c” ot a’ox’
a’ azEJ. B 82Ey )
c” 8t*  Ox’

Equation (9) implies:

a’ 1 , c+v
2 ="7, Or c=ac= c=c+v(0)
¢ ¢

Equations (9) and (19} demonstrate the frame
invariance in going from the K frame to K', provided
that the velocity observed in K', as me assured in K,
18 ¢ + v. This wave has a velocity as observed in K' of
c, as required by experiment. The wave we are
considering must have a velocity with respect to the
source of ¢ plus the velocity, v, of the K' system, Since
v can assume any value, the light must leave the source
in a continuum of velocities such that 0 < ¢ < C, where
we place no congiraints on the upper bound of .

One interesting consequence of the SR Lorentz group is
the invariance of the metric:

cdt®—dx"—dy”—dz"
= cdt? = dx? _dyz — dz? (15

However, since ¢' is forced to transform into ¢, the left
side of equation (10) could simply begin with ¢ and
such a statement then holds under a Galilean
trans formation, where we use the substitution dx = cdt.

Cfdrlz_dxtl_dyu_dzﬂ

(¢3dt® + 2vedt® +vide?)
(12)

(dx® + 2vdxdr +vide)—dy’ — dz?

cdtt —dx? —dyt —dzt

Now we consider the transformation of Maxwell's
equations to ensurc that the assumed wave equation of
(8) is actually valid. Maxwell's equations may be
expressed as:

divE =4zp, cuwlE = B (13)
c ot

dvB =0, culH =~ 470 14
c ¢

J is a vector quantity of current density, equal to the net
amount of positive charge crossing a unit area of
surface per second. Using the Galilean transformation,
the transformation of J” is as follows:
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I'=pv, J =pv =pav =at ,
' x X
(15}

All that remains is to show that primed equations in K'
remain  form  invariant under the  Galilean
transformations of (1). We will demonstrate the
transform for one quantity. All other equations
transform similarly:

oy acdt oc (16)
_oD, _4n, _8D, _4r
Jox c - Ox c
_ 19D, 4m,

Thus, we sec that Maxwell's equations are indeed form
nvariant under the Galilean transformation we have
proposed. Next we will compare the wave as observed
in the K' system with that observed in the K system.

THE FORCE ON A MOVING CHARGE ABOVE A
CURRENT CARRYING WIRE

We desire to solve the problem of the force on a moving
charged particle above a newtral, current carrying wire
without resorting to Lorentz transformations. We begin
with the formula for the force on a moving particle
outside an infinitely long current carryving wire:

F=gv,xB+gVV (17)

The magnetic force on a wire is duc only to the
movement of the charges in it, and thereby depends
only on the total current, and not the amount of charge
carried by each particle or even its sign. Thus we must
be careful, in considering different reference frames, to
keep track of both the positive and negative currents in
the wire.

We define v, as the velocity of the charged particle
with respect to the mass of the wire carrying the
current producing charge density (VV =0). Thus v,
will not change as we, the observers, change our
reference frame. By convention, v, is positive in the
same direction as the flow of a current defined by
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moving negative charges. We further define the
velocity of the current due to moving negative charges
in the frame of the wire as v. If we observe a wire
moving opposite to the flow of a negative charge
current with respect to our reference frame at a velocity
of -2v, and a charge above that wire moving the same
direction at a wvelocity of -1.5v with respect to
our reference frame, then v, will be equal to-1.5v-
{-2v) = v/2 in the wire's reference frame. This is
illustrated in Fig. 2.

-1.5v o
Vo=V{2
r
Py ‘ e,
V= -2v V.= -v
-2v A

Fig. 2.- Flow of negative and positive charge densities
in a wirc with cross-section A

Generally, we attribute a current / in a wire stationary
with respect to our reference frame to the motion of the
negative conduction electrons, while the positive
nuclear charges stay fixed with respect to the wire.
Depending on our frame of reference, we have two
currents, onc due to the flow of the negative charge
density, the other due to the flow of the positive charge
density, each with respect to our IFR. In the following

expression for the total current in the wire, v and v,

arc the velocities of thc negative and positive charge
densities, respectively, with respect to our reference
frame, and A is the cross-sectional area of the wire:

I=(pv.+pv )4 {18)

In {17) we replace B with the equation for the ficld at a
distance r due to a current [:

F — % . @’_ (19)
4nec r

Substituting {18) into (19) yields the expression for the

force on a charged particle moving above a current

carrying wire. An example shows that (20) is valid

when viewed from any inertial frame of reference.

F — ]' 5 . qu(p+v+ +p—v—)v0 {20)
drzg,c r
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In Fig. 2, we are moving at a velocity with respect to
the wire of 2v. Thus the total current is given by:

I ={p2)+p(-v)i4
(2n
={o)-p(v)id= pvd

This current is the same current we observe when
stationary with respect to the wire. The velocity of the
charged particle with respect to the wire is v/2. Thus
the force on the charged particle is given by:

oL 294pv +pVv IV, _
dzsc’ ¥

(22)
I 2gA(pv)vi2 qdvip
drzec'r

drec’ y

The force on a moving charged particle due 1o a current
carrying wire is the same regardless of the reference
frame of the observer. More importantty, the force is a
magnetic force in all frames of reference. In SRT the
length contraction expericnced by one charge density
(the one arbitrarily chosen to be in motion by our choice
of reference frame), but not the other causes an
increased positive charge density and the wire becomes
charged. This is unsettling at best. As we move from
one refercnce frame to another, we see what was a
magnetic field effect vanish while an electric field
arises, and a neutral wire acquires excess positive
charge. Equally confusing is that the velocity of the
particle, v,, is measured with respect to cur arbitrary
frame of reference, rather than the frame of the current
carrying wire. '

Now, if we apply thesc concepts to an infinite solenoid
along the z-axis carrying a constant poloidal current in
the ¢ direction, it gencrates a constant magnetic field
B at all points in its interior pointing along the z-axis
and no magnetic field outside it. Despite this fact there

is a magnetic vector potential 4 outside the solenoid
pointing in the #direction given by,

3

a
A =B%, 4=0, 4=0 (3
¢ 2r § 23

where B is the field inside the solenoid.

The Schrodinger equation for an electron in a magnetic
field is given by

L(E —gA)D =ED (24)
2m

50 in a region where B =Vx.A4 vanishes, the solution
is

.2
1q 7
O=0P@ ex -—|A-dl , 25
0 p{hl (25)

where @ is the solution when A=0

The phase difference between any two paths with the
same initial and final positions gives the AB effect

95 s
A0, =~ qVA dl 26)

which represents the total magnetic flux contained in
the solenoid. Thus we have the typical existence of the
AB effect due to the vector poiential A, but now we
extended this result fo a resistive solenoid, where we
considered the contribution of the electrical potential V.
Within the approach presented here we can obtain the
force due to VV . The magnitude of the electric field
outside the solenoid is

e

F, 27

Trp

Now the change in phase due to the eleciric field is

1%, — -
AD, =— j _L F+didt (28)
) h 12
1
where rand o are the polar radii measured from the
center (axis) and from the battery respectively. Here the
particle of charge q and mass m is emitted at time {,
with position C| and detected at the point C, at a later
time #,.The battery is located at ¢=Z7and its

terminals are at potentials *F /2 . This last equation is

the main result, which in . neuiral systems is not
considered., The electric Aharonov-Bohm effect
founded here can be compared with the magnetic AB
effect, (eqs. 26). For typical copper wire, if we take for
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a resistive solenoid: 5 = 4, Ni /] where N=1000 turns,

1=10mts, a=lcm, ©=3 cm, r=1cm, ¥, =1 voit, we can
estimate from equations (23), {26) and (28), that
AD

£ <0.1.

AD

nr

This shows that the electric field may be important
when the magnetic contribution vanishes.

CONCLUSION

In this paper we have studied the Aharonov-Bohm
effect, when there is a non null electric field outside
an infinite resistive solenoid carrying a constant current
To the calculation we introduce the Galilean invariance
of Maxwell’s equations and then we obtain the

contribution AD, to the AB effect due to the electric

potential. This analysis shows that the AB effect has
not a purely mathematical origin and it has physically
cbservable consequences.
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