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Chapter 1

Introduction to Volume III

A. K. T. Assis1

The picture on the cover of Volume 3 shows Weber around 1876. It comes from the
frontispiece of a book of 1876 by Friedrich Zöllner (1834-1882) on the principles of an elec-
trodynamic theory of matter.2

Volume III contains Weber’s main works related to diamagnetism, including his Third
major Memoir on Electrodynamic Measurements (1852).

These works are followed by three papers published by Weber and Rudolf Kohlraush
in 1855-1857 in which they presented the measurement of Weber’s fundamental constant c
appearing in his force law. Weber and Kohlrausch’s 1857 work is the Fourth major Memoir
on Electrodynamic Measurements.

Soon after this measurement, Kirchhoff and Weber succeeded in deducing the complete
telegraph equation from Weber’s electrodynamics. Their works were published in 1857 and
1864. When the resistance of the wire was negligible, the telegraph equation reduced to
the wave equation. The velocity of propagation of an electric wave along the wire was then
shown to be independent of the cross section of the wire, of its conductivity and of the
density of electricity along the surface of the wire. Its value was equal to the known light
velocity in vacuum. This remarkable result of Weber’s electrodynamics indicated for the first
time in the history of physics a direct and quantitative connection between electrodynamics
and optics. This volume contains the English translations of Kirchhoff’s two papers of 1857,
together with a paper by J. C. Poggendorff emphasizing the independent researches made by
Weber and Kirchhoff on this subject in which both scientists arrived simultaneously at similar
results. Weber’s 1864 work is his Fifth major Memoir on Electrodynamic Measurements.
The translation of this paper is also included in this Volume.

1Homepage: www.ifi.unicamp.br/~assis
2[Zöl76]. It also appears, for instance, in [Wie60, p. 208] and [Wie67, p. 155].

9
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Chapter 2

[Weber, 1852b, EM3] Electrodynamic
Measurements, Third Memoir,
relating specially to Diamagnetism

Wilhelm Weber3,4,5

I - Introduction. Concept of Diamagnetic Polarity

Diamagnetism in the few years since its discovery became the topic of various researches.
These not only broadened the field but also led to the discovery and examination of several
other new natural phenomena. Therefore, the interest on these researches grew continuously.
However, the field of diamagnetism still needs a fundamental law, in order to become compa-
rable to magnetism, electromagnetism, and magnetoelectricity, to which it is closely related.
To obtain such a fundamental law seemed since its beginning doable, because Faraday6 man-
aged to find a very simple and general expression concerning the major facts discovered by
him, namely the diamagnetic repulsion and the equatorial position of diamagnetic materials
in the vicinity of a strong magnet. Even if his general expression cannot be considered as
a fundamental law, it seems to be closely related to one. Faraday namely deduced these
diamagnetic actions from the laws of variable magnets (iron magnets), by comparing the ac-
tions of diamagnetic materials to the ones of magnetized iron for which North magnetism and
South magnetism were interchanged. The relation between diamagnetism and magnetism
after that is the law of diamagnetic polarity found by Faraday.

To make it clear what magnetic or diamagnetic polarity means, we explain how this
notion is used in this paper. It is well-known that Gauss proved,7 that all actions by which
a magnet (or a material which contains galvanic currents) effects other materials, can be
deduced from two magnetic fluids, which are distributed on its surface in a specific manner.

3[Web52b] with English translation in [Web21a].
4Translated by U. Frauenfelder, urs.frauenfelder@math.uni-augsburg.de. Edited by U. Frauenfelder and

A. K. T. Assis.
5The Notes by Wilhelm Weber are represented by [Note by WW:]; the Notes by H. Weber, the Editor

of Volume 3 of Weber’s Werke, are represented by [Note by HW:]; while the Notes by A. K. T. Assis are
represented by [Note by AKTA:].

6[Note by AKTA:] [Far46a] and [Far46b].
7[Note by AKTA:] [Gau39] with English translations in [Gau41a] and [GT14].
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Gauss called this distribution the ideal distribution of magnetic fluids. Hence we refer in this
paper by magnetic or diamagnetic polarity to the state of a material through which it can
effect forces to other materials in such a way that these forces can be explained in terms of
the ideal distribution of magnetic fluids.

Therefore the law of diamagnetic polarity implies, that all actions of a diamagnetic ma-
terial can be explained in terms of an ideal distribution of the two magnetic fluids on its
surface. Since the law of the magnetic polarity requires the same for magnetic materials, it
follows under the assumption that there exists really a diamagnetic polarity in this sense,

diamagnetic materials do not distinguish themselves essentially from magnetic ones
in terms of their actions, but how they are generated and how they change.

Namely suppose that before their generation (or transformation) we have an ideal distribu-
tion, then all the actions are given, independent if it is magnetism, galvanism, or diamag-
netism which leads to that ideal distribution.

If the law of diamagnetic polarity is really universally true, it is not just applicable to the
phenomena first discovered by Faraday, namely the interaction of the diamagnetic material
with the magnet due to whose influence it became diamagnetic, but to all phenomena a ma-
terial can effect other materials due to a certain distribution of its magnetic fluids. All these
different kinds of phenomena can be classified into purely magnetic ones, electromagnetic
ones, and magnetoelectric ones. Therefore it is highly interesting to detect the actual occur-
rence of these different modes of effects. If the second effect really existed for diamagnetic
materials, it would lead to the fundamental experiment of electrodiamagnetism. The third
effect would lead to the fundamental experiment of diamagnetoelectricity (or the diamag-
netic induction of electric currents). On the other hand, if not all these effects occurred, this
would imply that the law of diamagnetic polarity is not universally valid, so that it would
loose its importance and theoretical significance.

Concerning the occurrence of these different modes of effects the results of different
researchers do not yet agree with each other. This is easily explained, if one takes into account
how weak necessarily the later kinds of effects have to be. Therefore it can easily happen that
not all researchers can detect them especially since they do not use exactly the same kind of
devices. In particular, Faraday did not succeed in convincing himself of the (inducing) effect
of diamagnetic materials, despite the fact that he repeated the corresponding experiments
with great diligence and care.

How weak for example the effect of a diamagnetic material on a magnetic compass is,
can be easily understood by noting that even the forces of a strong electromagnet also in
small distance to a diamagnetic material are very weak, although they are proportional to
the large forces of electromagnets. If one considers instead of the interaction of a somehow
diamagnetic material with a strong electromagnet the interaction of a diamagnetic material
with a weak magnetic compass, one easily understands that from this last interaction in the
same distance a force occurs which in the same proportion is smaller although the force in
the first interaction was already pretty small.

Under these circumstances where one can see a priori that the interactions in question,
if they exist, are extremely weak, one needs special arrangements to distinguish them from
other small actions in order to prove their existence. It does not suffice to improve and
refine the observational equipments, but one has to get a deeper understanding of the size
of the effects in question which can be observed so that one can be sure that the observed
ones really corresponds to the thing one was looking for. To say it shortly the observation of
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such small effects needs quantitative control to produce results on a sound basis. But such
a quantitative control was missing completely so far. In particular, the question about the
existence or non-existence of a diamagnetic induction of electric currents which is one of the
major issues can only be decided by experiment, if the size of the current, which has to be
induced diamagnetically, can roughly be estimated. Indeed, only after that one can decide
about the means needed to check it.

However, in order to achieve such a quantitative control of these considerations one has to
discuss more carefully the consideration which led to the conjecture of amagnetic induction of
electric currents. According to this consideration one assumes that all effects of a diamagnetic
material can be explained in terms of a certain distribution of the two magnetic fluids
on its surface and that on the other hand a diamagnetic material has all effects of the
magnetic fluids distributed in this way. It follows from this that one has to associate to each
diamagnetic material a magnetic moment. Moreover, each kind of diamagnetic action has
to be used in order to determine the size of this magnetic moment so that one can predict
precisely or to good approximation all kinds of diamagnetic effects. If this consideration is
true it opens the way to infer from known diamagnetic phenomena to unknown ones and
predict their size so that each experiment which does not have the required accuracy can be
discarded immediately. On the other hand each experiment which has the required accuracy
but does not give the result or a completely different one can be used to falsify the whole
consideration. A serious decision can only be reached in this way.

During the whole paper I tried to follow this way and I believe that the results obtained
here leave no doubt, although it is desirable that in the future the quantitative measurements
can be carried out with even higher precision. If I had more funding I could have easily
obtained better equipments and gotten more precise results, what is definitely desirable,
although the main result does not seem to be in doubt.

13



II - Electrodiamagnetism and Measurement of the Mo-

ment of an Electrodiamagnet

2.1 Electromagnet and Electrodiamagnet

In the same way how one distinguishes usual iron magnets, i.e., iron magnets whose mag-
netism is due to the influence of other magnets, from electromagnets, one can distinguish
usual diamagnets (whose diamagnetism is caused by magnetic influence) from electrodia-
magnets. However, between electromagnets and electrodiamagnets there is a huge for the
observation important difference. Namely if two equal galvanic currents go around a bar of
iron and a bar of bismuth, iron acts by magnetic forces in the distance compared to which the
forces of the galvanic current almost vanish, while the diamagnetic forces of bismuth almost
vanish compared to the ones of the galvanic current. This is the reason that the existence
of electrodiamagnetism is difficult to prove. However, this difficulty can be overcome and it
even follows from this that the force of an electrodiamagnet is much more suitable to the
actual measurements than the one of a usual diamagnet. However, for that a special device
is needed, in order to get rid of the influence of the galvanic current. Here I first want to
describe the device using that I got the pure action of an electrodiamagnet so that I could
compare the size of its force with the one of an electromagnet. After that I describe the
results I obtained in the experiments using that device.

2.2 Electrodiamagnetic Measuring Device

The goal was to observe the effect of an elecrodiamagnet on a magnetic needle one puts in
some distance. It was already mentioned before, how small the expected effect of a diamag-
netic material on a usual magnetic needle is, especially if this needle is some inches away
from the diamagnet. The smaller the expected effect was, the finer methods of observa-
tion have to be applied. Therefore a small magnetometer was used, whose needle was 100
millimeters long and carried a mirror in order to be observable according to the method
of Gauss using telescope and scale. With this method deflections of the needle of single
arc minutes could be measured exactly. The sensitivity of such a needle depends as is well
known on the size of the horizontal deflecting force exerted by terrestrial magnetism. If
the deflecting force of terrestrial magnetism was not weakened the oscillation period of the
needle was 7.687 seconds. To augment the sensitivity the deflecting force was weakened in
such a way that the oscillation period increased to 18.45 seconds. This can be achieved in
a quite simple way with the help of a strong magnetic bar SN of Figure 2, which one puts
with reversed poles in direction of the needle NS in appropriate distance. With the help of
a small displacement of this magnetic bar, the sensitivity of the needle could be regulated
as one pleases. However, a too high sensitivity puts the precision of the observation in slight
danger. Furthermore it turned out that the above mentioned sensitivity was sufficient. It is
worth mentioning that the needle was furnished with a damper made of copper which had
the effect to reduce the oscillation arcs according to the proportion 3:2 or more precisely the
decrementum logarithmicum8 was

8[Note by AKTA:] That is, the logarithmic decrement.
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= 0.178 87 .

After this description of the magnetic measuring device we now proceed with the pre-
sentation of the electrodiamagnet and its deployment. The electromagnet first consisted
of two equal cylinders made of bismuth whose length was 92 millimeters, whose width was
16 millimeters, and whose combined weight was 343 500 milligrams. They were connected
to each other in vertical position at a distance of 100 millimeters, as represented by aa in
Figure 1.

Using a simple crank mechanism they could be lifted and lowered. Secondly the elec-
tromagnet consisted of spiraling copper wires. Each of these spirals had a length of 190
millimeters, an interior diameter of 17 millimeters and consisted of four layers, each layer
containing 146 windings. Like columns, they were vertically mounted on a stand at a dis-
tance of 100 millimeters and their wires were connected to each other in such a way that a
current which went from one to the other passed through them in opposite direction. Both
cylinders of bismuth could be lowered simultaneously into these two spirals and were trans-
formed into electrodiamagnets due to the galvanic current. One North pole turned upwards
and one North pole turned downwards. To represent the current six Grove’s elements9 were
used.

9[Note by AKTA:] In German: Grove’schen Bechern. The Grove voltaic cell or Grove element was named
after its inventor, William Robert Grove (1811-1896), [Gro39].
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These two spirals were now positioned in such a way that a horizontal plane through the
needle bisected them. The southern end S of the needle was floating precisely in the middle
between the two spirals. In Figure 2 one can see a horizontal section of the position of the
needle NS and of the two spirals around aa. The two cylinders consisting of bismuth were
either lowered in the spirals to such an extent that their upper end reached the level of the
needle or they were lifted to such an extent that their lower end reached the level of the
needle.
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The reasons for this deployment are the following. Firstly it was important that the
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galvanic current which went through both spirals did not affect directly the needle despite
it was strong and close to the needle and despite the sensitivity of the needle. Due to the
symmetric position of the two spirals to the same amount above and below the horizontal
plane through the needle, the deflections cancelled. Due to the same distance of the two
spirals to the needle and thanks to the opposite direction of their currents, the vertical
forces cancelled as well. Otherwise the vertical forces would cause the needle to oscillate.
However, since a complete symmetry cannot be achieved in practice a special deployment
was needed to compensate the small unavoidable deviations. For this purpose a third wire
was used which winded 18 times around a quadrangular frame M and was incorporated into
the circuit. This frame had a length of 244 millimeters, a height of 146 millimeters and was
erected vertically in the plane of the needle. The same current who went through the two
spirals exerted a torque10 on the needle by passing through the third wire. By moving the
frame closer or farther away, the torque could easily be made bigger or smaller until the
intended compensation was reached perfectly.

Secondly the two cylinders consisting of bismuth were put alternatively into the lower and
the upper position. In the lower position their upper ends influenced the needle more strongly
and in the upper position it was their lower ends which had the stronger influence. It was
important to achieve this in such a way that the strength of the diamagnetism changed without
inducing through this movement a current in the conductor bismuth. Here the advantage of a
diamagnet compared to a usual one became manifest. In fact, a usual diamagnetic material
whose diamagnetism is due to the vicinity of a magnetic pole changes its diamagnetism after
each displacement. Moreover, if the material is a conductor, currents are always induced
in it. This is quite different for an electrodiamagnet, where the diamagnetic cylinder of
bismuth is enclosed by the galvanic spiral. When this spiral winds uniformly and is so
long that the cylinder of bismuth has always some distance to the ends of the spiral, the
electromagnetic force of the spiral is almost constant in space according to the known laws of
electromagnetism. Therefore one can move the cylinder of bismuth inside the spiral without
changing its diamagnetism and without inducing galvanic currents in it. Furthermore the
material becomes uniformly diamagnetized. In the usual case where the diamagnetism is
caused by the vicinity of a magnetic pole, such a thing does not happen. The reason is that
the parts which are closest to the pole become much stronger than the other ones. This fact
prevents all measurements.

If in the set-up described there was no direct influence of the current on the needle and
no current was induced in the cylinders of bismuth, the deflection of the needle which one
observed had to be a pure effect of the diamagnetic force of the bars of bismuth. Moreover,
this deflection had, according to the law of diamagnetic polarity, to be either positive or
negative depending if the bars of bismuth are in upper or lower position inside the wire
spirals. It follows the lucky circumstance for closer examination that one can increase the
deflection by multiplication, namely by changing the position of the bars of bismuth always
in the moment when the needle reaches the end of its oscillation arc. This is repeated so long
until due to the effect of the damper the oscillation arc of the needle during each oscillation
decreases in the same amount as it increases due to the diamagnetic effect of the bars of
bismuth. The corresponding limit can be computed with great accuracy by taking into
account the sequence of observed oscillation arcs. If the damping is known, it can be used
as a measure of the strength of the electrodiamagnetism of the bars of bismuth.

10[Note by AKTA:] In German: Drehungsmoment. It can be translated as “torque”, “rotational moment”,
“rotation moment”, or “moment of force”.
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If one uses instead of the bars of bismuth an iron cylinder of the same length and repeats
the same experiments, one can compare the strength of an electrodiamagnet with the one of
an electromagnet. It is clear that due to the high sensibility of the apparatus one has to
weaken the effect of the electromagnet as far as possible by using a very thin iron bar. In
the following experiments the iron bar was so thin that its weight was only the 59200th part
of the weight of the two bars of bismuth. Even in this case its effect was much stronger than
the one of the two bars of bismuth together.

Finally, the third major point in these experiments is to determine the direction of the
deflection for every position of the bars of bismuth and to compare it with the direction the
deflection had for the iron bars positioned at the same place. Therefore we kept track in the
observations of the position of the bars for every oscillation period. The result was always as
the following experiments show, that if the bars of iron and the bars of bismuth had the same
position, the deflection of the needle was in opposite direction. Hence for electrodiamagnets
the northern and southern magnetic fluid under the same conditions for the currents have to
be thought as opposite compared to electromagnets as is shown by these experiments. The
same phenomenon was known for usual diamagnets from different effects.

2.3 Experiments and Measurements

The experiments and measurements using the above described devices were made by differ-
ent people in order to remove the uncertainty a single observer faces with such weak effects.
Besides me the following gentlemen kindly agreed to repeat the same measurements at differ-
ent days, namely Professor Listing, Professor Sartorius von Waltershausen, Dr. von Quintus
Icilius and Dr.Riemann.11 For example instead of the data of my own measurements I pro-
vide here all datas of the measurements of Professor Listing, which were carried out with
extreme care. I just remark, that my own ones as well as all the others closely agree with
the ones of Professor Listing.

Göttingen 1851. June 21.
Observer: Professor Listing.
Galvanic Current of six Grove platin-zinc elements.

11[Note by AKTA:] Johann Benedict Listing (1808-1882), Wolfgang Sartorius Freiherr von Waltershausen
(1809-1876), Ernst Wilhelm Gustav von Quintus Icilius (1824-1885) and Georg Friedrich Bernhard Riemann
(1826-1866).
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1. Experiments with Both Bars of Bismuth

No. of the position of position of the equilibrium oscillation
oscillation the bars needle at the position of arc of the

beginning and the needle needle
the end of each

oscillation
500.0

1. above
467.0 487.6 -40.0

2. below
513.9 488.3 -50.4

3. above 459.9 488.3 −56.3
4. below 518.5 489.2 −58.5
5. above 460.0 487.3 −55.2
6. below 512.0 489.3 −46.5
7. above 471.1 484.9 ∓ 29.7
8. above 489.7 487.3 ∓ 7.0
9. below 494.2 489.3 −8.9
10. above 480.9 488.9 −15.6
11. below 498.9 482.7 −30.0
12. above 457.0 483.1 −50.4
13. below 516.0 487.2 −57.8
14. above 459.3 484.2 −50.9
15. below 504.4 487.6 ∓ 35.6
16. below 478.3 483.1 ± 12.4
17. above 476.9 485.6 −14.7
18. below 504.9 485.7 −36.6
19. above 459.6 480.6 −42.6
20. below 499.4 479.6 −39.6
21. above 460.1 484.1 −46.6
22. below 513.9 488.2 −51.7
23. above 464.2 486.8 −45.9
24. below 506.2 480.0 −50.6
25. above 446.9 474.1 −55.2
26. below 498.0 476.4 ∓ 44.5
27. below 460.0 465.6 ± 15.5
28. above 453.1 462.5 −16.8
29. below 479.8 464.6 −29.8
30. above 446.9 467.8 −40.3
31. below 494.6 471.8 −46.0
32. above 450.4 471.3 −42.2
33. below 490.5 468.2 −44.0
34. above 442.6
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2. Experiments with One Bar of Iron

In order to decrease the effect of the iron to the sensitive needle we only used a simple little
bar and made two series of measurements where the little bar was first moved in the first
spiral back and forth and then in the second one. The little iron bar had the same length
as the little bars of bismuth but its weight was just 5.8 milligram, i.e., it was 59200 times
lighter than the two little bars of bismuth together. Nevertheless the effect was so strong
that the deflection could only be measured in a simple way without multiplication.

First series
no. position of elongation rest position average

the iron bar of the needle of the needle
428.1

300.4
215.2

1. below 303.8 302.0
362.8

301.7
261.0
451.2

571.7
652.0

569.8
2. above 515.0 571.0

571.9
609.9

570.6
544.4
435.5

298.2
206.7

301.5
3. below 364.7 300.6

298.6
254.6

304.0
336.9
503.2

560.1
4. above 598.0 560.7

561.3
536.9
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Second series
no. position of elongation rest position average

the iron bar of the needle of the needle
524.0

563.9
1. above 590.5 564.9

565.8
549.3
227.4

323.2
387.1

2. below 320.1 322.7
275.4

324.9
357.9
450.9

577.4
661.8

3. above 579.9 575.8
525.3

570.1
600.0
217.8

322.4
392.2

4. below 318.9 319.6
270.0

317.6
349.4
439.7

559.2
638.8

5. above 553.0 555.8
495.8

555.3
595.0

It is worth mentioning that the intensity of the current produced by six Grove’s elements
was measured with a tangent galvanometer12 whose ring had a diameter of 211 millimeters.
The current deflected the compass by an amount of 28◦ 21’ from which the intensity of the
current (the horizontal part of the terrestrial magnetic force = 1.8) becomes

= 105.5 · 1.8
2π

· tang 28◦21′ = 16.31 .

12[Note by AKTA:] In German: Sinus-Boussole and Tangenten-Boussole. The tangent galvanometer was
invented by Johan Jakob Nervander (1805-1848) and the sine galvanometer by Claude Servais Mathias
Pouillet (1790-1868), [Ner33], [Pou37] and [Sih21]. Friedrich Kohlrausch discussed measurement of currents
with the tangent and sine galvanometers, [Koh83, Chapters 64 and 65, pp. 188-192].
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2.4 Computation of the Experiments

In the Table containing the experiments with the two bars of bismuth the positions of the
needle observed at the beginning and the end of an oscillation are written in the third
column. From each three of these consecutively observed positions of the needle there are
computed in the fourth and fifth column the corresponding state of rest and the oscillation
arc with respect to the damping. A positive sign in front of the oscillation arc means that
the needle went in case of the upper position of the bars of bismuth from smaller to larger
scales, respectively in case of the lower scale from larger to smaller ones. The opposite holds
for the negative sign. After the position of the bars of bismuth was changed several times
at the end of each oscillation and the oscillation arc almost reached its limit, a break was
produced by keeping the positions of the bars of bismuth during two oscillations unchanged.
After that they were changed again after every oscillation. The negative oscillation arc was
transformed in this way into a positive one, which however quickly decreased to zero and
very soon became negative again. In this way one understood the direction of the deflection
caused by the bars of bismuth most clearly. — If one counts the oscillation arcs starting
from the one which is closest to zero, one can easily reduce the observed values using the
well-known decrementum logarithmicum to the limit and deduce in this way a more accurate
mean value of the limit. In the case at hand the decrementum logarithmicum is close to
= log 3

2
and therefore it suffices to divide the value of the oscillation arc by

(

1 −
(

2
3

)n)
or

more precisely since the decrementum logarithmicum = 0.178 87 by (1−0.6624n). Using this
procedure one obtains the following reduced values.

No. observed reduced average
1. −40.0 −63.4
2. −50.4 −66.6
3. −56.3 −67.1 −61.8
4. −58.5 −65.5
5. −55.2 −59.4
6. −46.5 −48.8
11. −30.0 −47.5
12. −50.4 −66.6 −59.8
13. −57.8 −68.5
14. −50.9 −56.8
19. −42.6 −67.5
20. −39.6 −52.3
21. −46.6 −55.5
22. −51.7 -57.9 −56.1
23. −45.9 −49.4
24. −50.6 −53.1
25. −55.2 −57.0
30. −40.3 −63.9
31. −46.0 −60.2 −55.8
32. −42.2 −50.0
33. −44.0 −49.3

Combining all the observations one obtains the following limit

x = −58.4 .
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The negative sign means, that the needle at the lower position of the bars of bismuth was
driven to a larger scale division, while at the upper position to a smaller one. Moreover,
from these experiments carried out according to the method of multiplication it follows from
the limit of the oscillation arcs found to be = x that the deflection E corresponding to the
equilibrium of the needle

E =
x

2
· 1− e−λ

1 + e−λ
,

according to my rule in the previous paper.13 Here log eλ denotes the logarithmic decrement,
i.e., log eλ = 0.178 87. From that the deflection corresponding to the equilibrium of the needle
follows to be

E = −5.93 .

From the experiments with the little iron bar carried out without multiplication the following
equilibria of the needle were obtained alternately for the upper and lower position:

first series second series
above – 564.9
below 302.0 322.7
above 571.0 575.8
below 300.6 319.6
above 560.7 555.8

From that the values of the deflection E follow immediately:

first series second series
+134.50 +121.10
+135.20 +126.55
+130.05 +128.10

+118.10

Hence averaging both columns one obtains for the deflection

E ′ = +128.4 .

The positive sign means, that the needle at the lower position of the iron bars was driven to
a smaller scale division while at the upper position to a larger one, i.e., just opposite as in
the case of the bars of bismuth.

Therefore, the moment of the magnetism of the little iron bar compared to the moment
of the diamagnetism of both bars of bismuth behaves as

+128.4 : −5.93 ,

i.e., the moment of the iron equals 21.7 times the one of bismuth with opposite sign, despite
the fact that the mass of the iron was 59 200 times smaller. Hence reducing to equal masses
the diamagnetism of bismuth becomes 1 285 000 times smaller than the magnetism of iron.

From a similar series of experiments carried out by Professor Sartorius von Waltershausen,
the limit

x = −48.2 ,

13[Note by AKTA:] [Web52c, p. 440 of Weber’s Werke] with English translation in [Web21b].

24



was obtained, from a third one due to Dr.Quintus Icilius

x = −47.3 ,

from a fourth one of Dr.Riemann
x = −45.0 ,

and from the one carried out by me

x = −55.8 .

The average of all these experiments is therefore

x = −50.9 ,

E = −5.17 ,

and therefore the diamagnetism of bismuth becomes 1 470 000 times smaller, than the mag-
netism of iron.

The above experiments allow one to prove the existence of the electrodiamagnetism of
bismuth. Its derived size can only be considered as an approximate one of course. However,
such an approximate value is a sufficiently firm base for the following examination of the
diamagnetic induction of galvanic currents.

2.5 The Most Convenient Device to Observe Diamag-

netic Polarity

The previous experiments prove three things:

(i) For the representation of diamagnets as for the representation of magnets, the purely
magnetic forces can be replaced by electromagnetic forces of galvanic currents.

(ii) In the same way as the magnetic polarity of an iron bar magnetized by the same current,
the diamagnetic polarity of a uniformly diamagnetized bar of bismuth can be observed
clearly and for sure with the help of the electromagnetic force of a galvanic spiral in
which it is put by observing opposite torques14 it effects on a magnetic needle depending
on the way the bar approaches the needle with one end or with the other.

(iii) Under the circumstances described the torque of a diamagnetic bar of bismuth on a
magnetic needle can be determined and compared to the torques of a magnetized iron
bar exerted on the same magnetic needle. It follows that the direction of the torque is
always opposite, while the determination of its magnitude leads to a comparison of the
magnetic and diamagnetic moments corresponding to each other.

All these experiments can be carried out with simple means if they are used appropriately.
This is even more remarkable by taking into account that the forces under examination
are extremely tiny as mentioned in the introduction. Therefore one could think that the

14[Note by AKTA:] In German: Entgegengesetzted Drehungskräfte. This expression can also be translated
as “opposite rotational forces” or “opposite rotatory forces”.

25



observation of clearly recognizable effects of these small forces requires the application of
highly sophisticated devices what is in fact not the case. Indeed, a pile of Grove or Bunsen15

of six to eight elements and some pound of copper wire of appropriate strength are objects
needed for many different experiments. Apart from that one just needs in addition a little
magnetic needle endowed with a mirror in order to be observed by a telescope (where a
sextant telescope is sufficient) as in the case of a magnetometer.

I invented a device in order to make as easy as possible the implementation of these exper-
iments, which are of crucial importance for the justification of the theory of diamagnetism.
In particular, I wanted to minimize the pain to install the apparatus. In particular, I recom-
mend it as the most convenient one for the repetition of the experiments. Its essential feature
is that instead of two galvanic spirals which were put into vertical position in the experi-
ments described above in Section 2.2, so that one of the poles of a straight magnetic needle
lay symmetrically between them, the new device only requires a single spiral.16 This single
spiral is installed symmetrically in the middle of two poles of a horseshoe-shaped magnetic
needle. In Figure 3 the cross section of this spiral is represented by A, which lies symmetri-
cally between the poles N and S of the horseshoe-shaped bent magnetic needle NBS. This
magnetic needle is kept by the clip DE, in whose middle C the thread is attached. Figure 4
and Figure 5 illustrate the instrument in a lateral view.17

15[Note by AKTA:] The Bunsen voltaic cell or element was named after its inventor, Robert Wilhelm
Eberhard Bunsen (1811-1899). It was a zinc-carbon primary cell.

16[Note by AKTA:] That is, a single finite solenoid.
17[Note by AKTA:] Another reproduction of Figures 3, 4 and 5 appear on page 82.
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It is advantageous to give the spiral a considerable length, for example from 400 to 500
millimeters, which makes it easier to control the mounting of the needle. In particular, one
would like to achieve that the spiral is hovering in the horizontal plane which divides the
length of the spiral into two equal halves so that the current going through the spiral does not
effect any torque on the needle. In case there is a small torque, it can be easily compensated
as explained in Section 2.2 by a multiplier M consisting of few windings (see Figure 5). To
observe the needle it is necessary to supply it with a mirror P as in Figure 4, in which one
observes the mirror image of a remote scale. In addition the magnetic needle is encompassed
with a damper QQ as in Figure 4. The bar of bismuth aa is suspended vertically in the
spiral with a thread (Figure 4 and Figure 5). It can be lifted or lowered so that either, as
represented in Figure 4 and Figure 5, its lower end lies between the poles of the magnetic
needle or its upper end. The observations can be carried out in the most convenient way if
using coils or a simple crank mechanism the observer himself at the telescope is able to lower
or lift the bar of bismuth by lifting or lowering the pedestal. When the current is closed
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and the magnetic needle at complete rest, if one lifts the bar of bismuth then one observes a
small movement of the needle. As soon as the needle attains its largest elongation, the bar
of bismuth is lowered again and the magnetic needle moves back with a higher speed. As
soon as it attains its largest elongation on this side, the bar of bismuth is lifted again and
so on. Between two elongations one notes the position which the bar of bismuth had during
the elapsed time. If one interchanges the bar of bismuth with a very thin wire of iron of
the same length, one can convince oneself that the deflection of the needle happens in the
opposite direction.
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III - Diamagnetoelectricity and Measurement of Dia-

magnetic Induced Electric Currents

2.6 Diamagnetic Induction

The experiments about diamagnetic induction are obviously more difficult then the previous
experiments on electrodiamagnetism, because its observation is more subtle. It requires
special techniques to set up the experiments in order to actually reach the goal with limited
means. The following experiments show how this is possible. Even if the effects obtained with
the help of these means are tiny, they show such an agreement that by taking into account
the circumstances they are quite remarkable, if the task at hand is to justify the fact of
diamagnetic induction and to make sure that one is not deceived by external influences.
As we will see the effects can be used for quantitative determinations of the strength of
diamagnetic induction which are applicable to such verifications for which a lesser degree of
accuracy is sufficient. Only the desire to give these quantitative determinations the necessary
precision for some special examinations will make it necessary in the future to apply more
sophisticated instruments. I first describe the diamagnetic inductor and then proceed with
the experiments carried out with its help.

2.7 Description of the Diamagnetic Inductor

Here I describe a different diamagnetic inductor then the one with the help of which I
found a weak trace of diamagnetic induction (Berichte 1847 and Poggendorff’s Annalen
1848, Vol. 73),18,19 which however did not have the desirable fineness and accuracy for these
experiments. That device was essentially the same which Faraday later used and described
in the Philos. Transact. 1850, P. I.20 However, Faraday did not succeed to detect magnetic
induction with that device, although he made various different interesting applications with
it. The reason for that mixed success probably lies in the finer galvanometric instruments I
used. I would have not been able to observe such a diamagnetic induction either, if I had
not a galvanometer at my disposal whose needle is observed with mirror and telescope as the
magnetometers of Gauss. Nevertheless as well my experiments carried out with that device
cannot be considered as sufficient, since the weak effects seem to be combined with other
effects from which they hardly can be separated. Moreover, the circumstances do not admit
a quantitative control. The here described inductor differs from the previous one essentially
in the following points.

1. Instead of a usual magnet, an electromagnet is used for the induction, whose moment due
to the previous examination at least approximately is known. This allows the prediction
of the ratio of the inducing effect of the device for a bar of bismuth compared to a bar
of iron.

2. The induction is produced by the mere movement of the diamagnetic material in a wire
spiral at rest. Through this the diamagnetism remains unchanged and one avoids the

18[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 255.
19[Note by AKTA:] [Web48b], [Web48c, p. 255 of Weber’s Werke] with English translation in [Web52d]

and [Web66c].
20[Note by AKTA:] [Far50].
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induction of galvanic currents in bismuth as a conductor. Otherwise these galvanic
currents can easily be confused with the diamagnetic induced currents.

The Electrodiamagnet Used for the Induction

The electrodiamagnet used for the induction consisted of a bar of bismuth in a long wire
spiral, cccc of Figure 6 A through which a current of eight coal-zinc elements of Bunsen was
conducted. The bar of bismuth was 186 millimeters long and weighed 339 300 milligrams.
The wire spiral consisted of copper wire spanned with wool and additionally insulated with
a capping of gutta-percha. The pure copper wire was 2.3 millimeters thick and the wire
consisted of eight layers each having 120 windings. The whole spiral was 383 millimeters
long and had 23.9 millimeter interior and 70 millimeter exterior diameter.21

21[Note by AKTA:] Another reproduction of Figure 6 appear on page 83.
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The Induction Spiral

The induction spiral bbbb of Figure 6 A is that spiral in which due to the movement of the
electrodiamagnet a current is induced. This spiral has to be carefully insulated from the one
belonging to the electromagnet through which the current of the galvanic pile flows and has
to be connected to the multiplier of the galvanometer in order to observe the induced current.
This spiral consisted of a copper wire which was 1 millimeter thick and spanned with silk
building three layers each having 294 windings. The length was 383 millimeters, the interior
diameter 19, the exterior one 23 millimeters. After it was wrapped with thin gutta-percha
for better insulation it was locked tightly in the further tube of the spiral belonging to the
electromagnet or more precisely the spiral was wound around it.

The essential point to be noted for this spiral is that it decomposes into two completely
symmetric halves. That means that the wire does not uniformly wind in the same direction,
rather the spiral decomposes into two halves in which the wire is wound in opposite directions.
This is necessary if through the movement of a diamagnetic bar of bismuth or a magnetic iron
bar a current has to be induced in this spiral which can be observed with the galvanometer
connected to it. Namely if the inducing bar is put in the middle of the spiral and then moved,
the induction force in one half of the spiral exerted from its northern end is just opposite to
the one exerted from its southern end. The effect of both would cancel out if both halves of
the spiral were wound in the same direction. Since they are wound in opposite directions,
the induction forces do not cancel each other out but double.

This mechanism necessary for the purpose of induction has another important advantage
for the practical implementation. It is clear that the current of the galvanic pile in the spiral
of the electrodiamagnet as long as it is constant does not exert an inducing force on the
induction spiral with respect to that it has a firm, unchanging position. However, due to
the slightest change of its intensity a current would be induced in the spiral which would be
much stronger than the diamagnetic induced current and would disturb the observation of
the latter. However, it is obvious that the same mechanism of the induction spiral through
which the diamagnetic induction in both halves get doubled as well leads to a cancellation
of the induction forces of the current in the galvanic pile so that if the symmetry of both
halves is perfect even huge changes of the intensity of the current in the galvanic pile have
no influence at all. Moreover, firstly it is very easy to check if this cancellation happens
exactly by switching off or commuting the whole current instead of producing small changes.
Secondly if it turns out that the cancellation is not perfect, it is easy to make it perfect
by winding one end of the induction spiral once or several times around the spiral through
which the current of the galvanic pile flows. In this way it is no big problem to free the
effects of the diamagnetic induction from all exterior influences.

The Remaining Parts of the Inductor

Concerning the implementation of the remaining parts of the induction device which more or
less are left to the taste of the observer I add just the following remarks. In order to move the
bar of bismuth in the induction spiral back and forth I connect it with the crank of a wheel,
see Figure 6 B. Moreover, in order that the induced current when moving the bar of bismuth
back has the same direction as when moving the bar of bismuth forward, a commutator dd
is attached to the wheel, which turns itself with the wheel so that after each half turn of
the wheel (in the moment, where the bar of bismuth reaches the initial or endpoint of its
orbit) the connection of the ends of the wires of the induction spiral with the ones of the
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multiplier of the galvanometer are interchanged. Therefore the always same direction in
which all induced currents through the multiplier of the galvanometer go would deflect the
needle always to the same side. In order to enable the observer to produce as well a deflection
of the needle to the other side next to the telescope in Figure 6 E a second commutator ee is
installed, which only from the observer himself is changed. This commutator is referred to as
the auxiliary commutator. It connects the two wire ends of the multiplier with the two ends
of the conductors coming from the rotating commutator. By the way one should observe
especially the following points. Firstly one tries to intensify the induction more through
the acceleration of the turning of the wheel than through the size of the path on which one
moves the bar of bismuth back and forth. In the following experiments the bar of bismuth
was moved back and forth in a just 58.2 millimeters long path. However, it traversed this
path 10.58 times each second. If the path were longer, a part of the bar of bismuth would
have approached the end of the spiral through which the current of the galvanic pile went.
This would not just change the strength of its diamagnetism but as well induce in it as a
conductor a current which produces a secondary induced current in the induction spiral. This
has to be avoided if one wants to obtain a pure effect of diamagnetic induction. Secondly
the rotating commutator needs special attention, since in it easily a thermomagnetic current
is created. Therefore one has to arrange the commutator in such a way that equal metals
(brass to brass) rub each other. By this the thermomagnetic currents get just weakened
but not avoided completely. The different thermomagnetic currents cancel each other more
or less. However, since this cancellation happens in general not completely one has to get
rid of their influence by taking it into account. This can be achieved easily if the observer
immediately before and after makes the same observations where the rotating commutator
is moved without the bar of bismuth. By the way one can arrange the observations as
well easily in such a way that the small effects of the thermomagnetic currents alternatively
increase and decrease the effects of the diamagnetic induction, which leads to an average value
independent of the thermomagnetic current. This is achieved by changing from time to time
the direction of the current in the galvanic pile which reverses the diamagnetism in the bar of
bismuth. For the galvanometer in Figure 6 D I used as in the case of the electrodiamagnetic
measuring device a little magnetometer set up by Gauss which was supplied with a very
strong multiplier. The length of the needle was reduced to 30 millimeters. The deflecting
force of terrestrial magnetism was reduced as before. The needle also was surrounded by a
thick copper ring as a damper. It barely needs to be mentioned that the induction device
has to be removed so far from the galvanometer that the current of the galvanic pile used
does not influence directly the needle. If there is not enough room to do this, one has to
bring the induction device by a special orientation in such a position that its deflecting force
on the needle becomes zero or at least very small. Finally, to get a rough estimate of the
strength of the current of the galvanic pile itself, a usual compass (Figure 6 C) was installed
in an appropriate distance of the spiral through which the current went. In this way the
deflection of the compass produced by the current could be used to determine the intensity
of the current.

2.8 Experiments

The following experiments as well were not carried out by me alone but Professor Listing,
Professor Sartorius von Waltershausen, Dr.Quintus Icilius, and Dr.Riemann participated as
in the previous electrodiamagnetic part. As an example I convey here as well the full record
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of the experiments carried out by Professor Listing with which all the others closely agree.

The inductor was installed in such a way that the vertical plane going through the middle
of the galvanometer and through the middle of the wire spiral had an angle of 45 degrees
to the magnetic meridian. The axis of that wire spiral was perpendicular to the magnetic
meridian. It follows from the laws of electromagnetism confirmed by experience that with this
set-up the current does not deflect the needle of the galvanometer. Under these circumstances
it was most advantageous to install the compass used to determine the intensity of the current
in the direction of the extended axis of the wire spiral through which the current went. This
happened in a distance of 708 millimeters from the center on the western side. That current
through which the northern end of the compass is deflected westward is referred to as normal
current the one in which the northern part is deflected eastward is referred to as reversed
current. Furthermore, the displacement of the bar of bismuth in the induction device in
direction from West to East is called normal displacement and in direction from East to
West reversed displacement. Finally the position the rotating oscillator had during the
normal displacement of the bar of bismuth is called normal position and the one during the
reversed displacement is called reversed position. A pendulum clock regulated the rotation
of the balance wheel and it turned out that the bar of bismuth traversed its path 10.58 times
per second. The horizontal distance of the mirror of the magnetic needle from the scale of
the galvanometer was 1400 scale divisions. The oscillation period of the galvanometer which
for the full deflecting force of terrestrial magnetism was close to 9 seconds was brought to
20.437 seconds through partial cancellation of the force of terrestrial magnetism thanks to
the above described method. The logarithmic decrement for the decrease of the oscillation
arcs was = 0.12378.

The needle of the galvanometer was deflected thanks to diamagnetic induction in the
same way when the bar of bismuth moved from West to East as when it moved from East to
West, because of the change of the rotation commutator in between. This happened without
changing the direction of the current in the galvanic pile in the spiral of the electrodiamagnet
and the position of the auxiliary commutator. The deflection occurred by moving quickly
back and forth in the same way as the one produced by a constant current. However, if the
position of the auxiliary commutator is changed the deflection of the needle occurs to the
opposite side. This implies that in order to get more accurate observations the deflection of
the needle can be increased through multiplication by changing the position of the auxiliary
commutator always in the moment where the needle attained the end of the oscillation arc,
so long, until finally through damping of the needle its oscillation arc is decreased during
each oscillation by the same amount as the increase due to the induced current. Therefore
between two observed elongations of the needle the by + or − denoted position of the
auxiliary commutator was recorded. If the needle at the beginning of the observations was
already in swing one started with that position of the auxiliary commutator at which the
induced current created a decrease of the present oscillation arc, which than by a continuous
change decreased until zero and than started increasing until it attained its limit. When the
needle went from smaller to larger scale divisions during the by + designated position of the
auxiliary commutator, in the following aggregation of data the + sign was put in front of the
oscillation arc, in the opposite case the − sign. The signs of the oscillation arcs turned out
to be opposite by the diamagnetic induction of bismuth compared to the magnetic induction
of iron. Moreover, the latter oscillation arcs were much bigger, although the bar of iron
was much thinner than the bar of bismuth. In fact having the same length the bar of iron
weighed 790.86 milligrams where the one of bismuth was 339 300 milligrams. Therefore, to
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measure the effect of the magnetoelectric induction it was not necessary to move the bar
of iron back and forth in the same speed as the bar of bismuth. Instead of that a single
translation was sufficient during each swing of the needle in the moment when the swinging
needle passed its rest position. The two commutators stayed in their normal position and
during each two observations of the elongation one always noted the direction into which the
bar of iron was displaced. The direction from West to East was denoted by + and the one
from East to West by −, which allowed the comparison to the bar of bismuth. As already
mentioned one observed opposite effects for the same translations of the bar of iron and the
bar of bismuth.

The experiments started by checking 1. if there was an influence of the thermomagnetic
current and how big it was. For that purpose one started by putting the rotation com-
mutator into motion without moving the bar of bismuth back and forth. The effect was
multiplied by changing the auxiliary commutator at each elongation. 2. the bar of bismuth
was put simultaneously into motion and a bunch of observations were carried out for normal
current. 3. the same series was done for reversed current. 4. the same series again for nor-
mal current. 5. for reversed current and 6. finally again for normal current. After that 7. it
was checked again if there was an influence of the thermomagnetic current and 8. the bar of
bismuth was exchanged with the iron bar and the induction effect of the latter was measured.

Göttingen 1851. July 13.
Observer: Professor Listing.
Galvanic Current of eight Bunsen coal-zinc elements.

1. Thermomagnetic current.
no. of the position position of the rest oscillation
oscillation of the needle at the position arc of the

auxiliary beginning of the needle
commutator and end of each needle

oscillation
497.0

1. +
496.2 496.45 −0.5

2. −
496.4 496.35 −0.1

3. +
496.4 496.30 +0.2

4. −
496.0 496.15 +0.3

5. +
496.2

According to this Table basically no influence of the thermomagnetic current was there.
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2. Induction of the bar of bismuth for normal current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
475.3

1. −
472.8 474.65 +3.70 32◦ 10’

2. +
477.7 475.00 +5.40 westward

3. −
471.8 475.20 +6.80

4. +
479.5 475.32 +8.35

5. −
470.5 475.33 +9.65

6. +
480.8 475.52 +10.55

7. −
470.0 475.70 +11.40

8. +
482.0 475.87 +12.25

9. −
469.5 475.85 +12.70

10. +
482.4 475.90 +13.00

11. −
469.3
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3. for reversed current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
503.5

1. +
515.9 511.15 +9.50 31◦ 50’

2. −
509.3 511.13 +3.65 eastward

3. +
510.0 510.62 −1.25

4. −
513.2 510.82 −4.75

5. +
506.9 510.58 −7.35

6. −
515.3 510.85 −8.90

7. +
505.9 510.70 −9.60

8. −
515.7 510.72 −9.95

9. +
505.6 510.53 −9.85

10. −
515.2
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4. for normal current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
480.5

1. +
471.0 474.57 −7.15 31◦ 48’

2. −
475.8 474.40 −2.80 westward

3. +
475.0 474.58 +0.85

4. −
472.5 474.40 +3.80

5. +
477.6 474.47 +6.25

6. −
470.2 474.23 +8.05

7. +
478.9 474.27 +9.25

8. −
469.1 474.10 +10.00

9. +
479.3 473.93 +10.75

10. −
468.0 473.65 +11.30

11. +
479.3 473.65 +11.30

12. −
468.0
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5. for reversed current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
501.5

1. +
515.0 509.93 +10.15 32◦ 13’

2. −
508.2 510.35 +4.30 eastward

3. +
510.0 510.02 −0.05

4. −
511.9 510.20 −3.40

5. +
507.0 509.80 −5.60

6. −
513.3 509.68 −7.25

7. +
505.1 509.42 −8.65

8. −
514.2 509.38 −9.65

9. +
504.0 509.05 −10.10

10. −
514.0 508.72 −10.55

11. +
502.9 508.40 −11.00

12. −
513.8 508.15 −11.30

13. +
502.1 507.83 −11.45

14. −
513.3 567.67 −11.25

15. +
502.0
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6. for normal current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
486.0

1. +
461.0 471.20 −20.40 31◦ 39’

2. −
476.8 470.60 −12.40 westward

3. +
467.8 470.87 −6.15

4. −
471.1 470.48 −1.25

5. +
471.9 470.52 +2.75

6. −
467.2 470.08 +5.75

7. +
474.0 470.45 +7.10

8. −
466.6 470.25 +7.30

9. +
473.8 469.92 +7.75

10. −
465.5 469.83 +8.90

11. +
475.0 470.02 +9.70

12. −
465.1 470.13 +10.05

13. +
575.3 470.17 +10.25

14. −
465.0 470.08 +10.15

15. +
475.0 469.95 +10.10

16. −
464.8
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7. for thermomagnetic current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
486.1

1. +
486.5 486.30 +0.40

2. −
486.1 486.22 +0.25

3. +
486.2 486.25 −0.10

4. −
486.5 486.35 −0.30

5. +
486.2 486.20 0.00

6. −
485.9 486.25 +0.70

7. +
487.0 486.48 +1.05

8. −
486.0 486.72 +1.45

9. +
487.9 487.05 +1.70

10. −
486.4 487.35 +1.90

11. +
488.7
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8. induction of the iron bar for normal current.
no. of the position position of rest oscillation deflection
oscillation of the the needle position arc of the of the

auxiliary at the of the needle compass
commutator beginning needle

and end
of each

oscillation
461.0

1. +
457.2 464.85 −15.30 31◦ 48’

2. −
484.0 467.17 −33.65 westward

3. +
443.5 466.30 −45.60

4. −
494.2 466.73 −54.95

5. +
435.0 466.10 −62.20

6. −
500.2 466.47 −67.45

7. +
430.5 466.25 −71.50

8. −
503.8 466.55 −74.50

9. +
428.1 466.55 −76.90

10. −
506.2 466.90 −78.60

11. +
427.1 467.05 −79.90

12. −
507.8 467.38 −80.85

13. +
426.8 467.35 −81.10

14. −
508.0 467.35 −81.30

15. +
426.6 467.35 −81.50

16. −
508.2 467.33 −81.75

17. +
426.3
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2.9 Computation of the Measurements

If one starts counting the oscillation arcs starting from the one closest to zero, the ones
coming closest to the limit can be reduced to the limit by dividing the n’th oscillation arc by
(1 − 0.752n) in view of the well-known logarithmic decrement of the decrease of oscillation
arcs = 0.12378. Hence the following reduced values are obtained for the experiments carried
out for bismuth:

oscillation arc observed reduced average
8. +11.40 +13.20

2. 9. +12.25 +13.65 +13.60
10. +12.70 +13.75
11. +13.00 +13.80
8. −9.60 −14.12

3. 9. −9.95 −13.10 −13.08
10. −9.85 −12.02
9. +10.00 +13.17

4. 10. +10.75 +13.12 +13.06
11. +11.30 +13.08
12. +11.30 +12.88
10. −10.10 −12.33
11. −10.55 −12.21

5. 12. −11.00 −12.25 −12.16
13. −11.30 −12.24
14. −11.45 −12.15
15. −11.25 −11.76
11. +8.90 +10.86
12. +9.70 +11.23

6. 13. +10.05 +11.20 +10.95
14. +10.25 +11.10
15. +10.15 +10.77
16. +10.10 +10.56

If one denotes the small influence by x, which the thermomagnetic current had on the
result of these measurements, one obtains from the values above the limit corresponding to
the diamagnetic induction alone reduced to normal current :

from 2. +13.60 + x
+13.34

from 3. +13.08− x
+13.07

from 4. +13.06 + x
+12.61

from 5. +12.16− x
+11.555

from 6. +10.95 + x

Hence on average
= +12.644 .
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From this limit of the oscillation arcs found according to the method of multiplication for
uniform distribution of the induction pulses on the whole swinging period of the needle, it
is now easy to derive the limit value, which would have been obtained by the same method
of multiplication if all induction pulses instead of being distributed on the whole oscillation
period were concentrated at the moment, where the needle passed its rest position. In
this way the result obtained for bismuth can be compared to the one obtained for iron.
Namely, by using the well-known logarithmic decrement of the decrease of swinging arcs
0.12378 = λ log e, where e denotes the unit of the natural logarithm, one finds from the
above limit the desired one by multiplication with

√
π2 + λ2

1 + e−λ
· e− λ

π
arctan π

λ = 1.574 235 .

Hence the desired limit is

+1.574 235 · 12.644 = +19.905 .22

The reduction to the limit of the experiments carried out with iron leads to the following
results:

22[Note by WW:] If there are many induction pulses distributed uniformly on the whole oscillation period,
they act as a constant current on the needle. In this case the rule mentioned on pp. 440 and 487, [[Web52c,
p. 440 of Weber’s Werke] with English translation in [Web21b], and [Web52b, p. 487 of Weber’s Werke]
which is equivalent of page 24 of this translation], can be applied to the limit x found according to the
method of multiplication. According to this rule one has x = 2E · (1 + e−λ)/(1 − e−λ), where E is the
deflection corresponding to the equilibrium of the needle in case of a constant current and λ log e denotes
the logarithmic decrement of the decrease of oscillation arcs. At this equilibrium position of the needle the
deflecting force equals the directive force of the needle, which is given by π2/T 2 ·E, where T is the oscillation
period without the influence of damping. It τ denotes the actual oscillation period taking damping into
account, then the velocity the needle obtains is = π2/T 2 · Eτ . This happens under the assumption that
the current force evenly distributed on the whole oscillation period acts concentrated at one moment. From
this velocity one can compute the limit of the oscillation arcs, which one approximates according to the
method of multiplication in case that the concentrated force always acts on the needle when it passes its rest
position. In fact, if one denotes the limit by y, then according to the rule given in the previous article on
p. 440, [[Web52c, p. 440 of Weber’s Werke] with English translation in [Web21b]], by plugging in the value
= π2/T 2 · Eτ for the velocity one obtains

π2

T 2
· Eτ =

y

2
· π
T
(1− e−λ)e

λ

π
arctan π

λ .

Comparing the value of y with the above given value of x leads to the proportion

y : x =
πτ

T
e−

λ

π
arctan π

λ : (1 + e−λ) ,

where according to the theory of damping the quotient τ/T can be replaced by
√

1 + λ2/π2.
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oscillation arc observed reduced average
8. −71.50 −84.98
9. −74.50 −84.60
10. −76.90 −84.47
11. −78.60 −84.28
12. −79.90 −84.16
13. −80.85 −84.04 −83.876
14. −81.10 −83.50
15. −81.30 −83.10
16. −81.50 −82.85
17. −81.75 −82.78

From this one obtains for the ratio of the two limits corresponding to the bar of bismuth
and the bar of iron

+19.905 : −83.876 .

Similar experimental series were carried out in the same way by myself, Dr. von Quintus
Icilius and Dr.Riemann, where the following ratios were found

+18.158 : −83.82 ,

+15.357 : −82.80 ,

+14.890 : −83.45 .

Averaging all series one obtains the ratio

+16.956 : −83.49 .

Now the intensity of the currents induced from the bar of bismuth and the bar of iron is
directly proportional to these limits und inversely proportional to the number of induction
pulses during an oscillation, i.e., the number 10.58 · 20.437 = 216.2 for the bar of bismuth
and 1 for the bar of iron. Hence the electric currents induced from the diamagnetic bar of
bismuth are according to their direction opposite to the ones induced from the magnetic bar
of iron and the ratio of their intensities is

16.956 : 83.49 · 216.2 = 1 : 1064.5 ,

despite the fact that the bar of bismuth weighed 339 300 milligrams where the bar of iron just
weighed 790.86 milligrams. From that one computes that if the bar of bismuth had the same
small weight as the bar of iron, the strength of the diamagnetically induced current would
have been 456 700 times less than that from the bar of iron magnetically induced current.

2.10 Comparison of the Two Determinations of the

Strength of an Electrodiamagnet from Its Mag-

netic and Magnetoelectric Effects

After we considered in the previous two Sections the magnetic and magnetoelectric action of
an electrodiamagnet individually, we finally compare quantitatively the two kinds of action.
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It could seem that this comparison can be carried out quite easily by just first expressing the
observed magnetic action of an electrodiamagnet in terms of the as well observed magnetic
action of the electromagnet. Then one expresses the observed magnetoelectric action of an
electrodiamagnet in terms of the as well observed magnetoelectric action of the electromag-
net. This was already done above and led to the following results

1.
magnetic action of the electrodiamagnet

magnetic action of the electromagnet
=

1 470 000

1

2.
magnetoelectric action of the electrodiamagnet

magnetoelectric action of the electromagnet
=

1

456 700
.

This simple comparison would only be correct if first the same electrodiamagnet used for the
representation of the magnetic effects would have been used as well for the representation
of the magnetoelectric effects and secondly the same electromagnet would have been applied
for the representation of both kinds of effects. Finally it would be necessary that the elec-
trodiamagnet as well as the electromagnet acted from a larger distance compared to its own
size and the one of the material acted on. However, these conditions were not met in the
experiments described above and it was impossible to meet them since the representation of
the magnetoelectric effects requires the application of quite different devices then the mag-
netic ones which forced us to make the distances of the materials acting on each other as
small as possible.

However if one uses, as was actually the case, different electrodiamagnets and different
electromagnets for the representation of the magnetic and magnetoelectric effects no equality
in the mentioned ratios is expected even if they are acting from larger distances. The
disparity, namely, that one ratio was about three times larger than the other one, would have
been even much larger unless already for the determination of these ratios one took account of
the difference of the masses of bismuth and iron used for the different electrodiamagnets and
electromagnets. By taking into account the inequality of the masses, the coarsest occurring
difference was balanced. It is interesting to remark that by taking this into account the
above mentioned ratios actually got so close to each other that they can be considered as
quantities of the same order.

The task at hand is now to detect and determine the other differences which after the
difference in mass have the largest influence in order to check how the above ratios change
and if they get closer to equality.

The reason why this examination is important is that if the used electrodiamagnets and
electromagnets were not different at all and acted from a larger distance, the two ratios
would have been quite the same according to the laws of diamagnetic polarity discussed in
the Introduction. Since this equality cannot be directly checked in practice, it is important
to check at least if one approximates this equality the more one takes into account the
difference of the electrodiamagnets and electromagnets and the influence the small distance
they are acting from has on the ratio of their actions. In this way one achieves the same by
approximation as if one were able to check the claimed equality directly.

The following survey and discussion of all possible differences in question serves this
purpose.

In view of the small distance the observed effects refer to, first the ideal distribution of the
magnetic fluids on the surface of the bar of bismuth compared to the one of the bar of iron
should be known more closely. Since this is not the case, it is obvious that such a comparison
even if the exactness of the observations were perfect only gives a rough estimate, because
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the actions effected at small distances have to be put proportional to the moments, what
strictly speaking is only the case for actions acting at larger distances.

Secondly for the above experiments two different iron bars were used, one had a weight
of just 5.8 milligrams where the other one was 790.86 milligrams. We cannot assume that
the iron of both little bars behaves in magnetic respect quite the same. Therefore the
magnetism of both little bars subject to the same galvanic current was compared and indeed
for small intensity of this current the ratio of the magnetic moments differed considerably
from the ratio of their masses. However, for increasing intensity of the current, this disparity
disappeared and the magnetism of both little bars turned out soon to be almost exactly
proportional to their masses. It follows that for our experiments where even more intense
currents were used, a reduction due to the heterogeneity of iron was not necessary.

Thirdly in the above experiments different bars of bismuth were used, namely two smaller
ones for the observation of the magnetic effects and a larger one for the magnetoelectric
effects. It cannot be supposed that they behave completely the same in diamagnetic respect.
Therefore the latter one was divided into two halves which compared to the former two ones
almost coincided in terms of length and thickness. Then with both pairs alternately some
experiments to compare diamagnetism were carried out from which a not quite insignificant
difference turned out. The effect of the first pair compared to the second one was like
1266 : 1000. Hence if from the induction effects of the larger bar according to the two
previous Sections the diamagnetic moment of bismuth compared to the magnetic moment of
iron turns out to be = 1/456 700, then one obtained for bismuth of the other bar = 1/360 740,
which does not decrease the difference of this ratio from the one deduced from magnetic
actions but even increases it.

Fourthly one should consider the difference of the electromagnetic separating force23 of

23[Note by AKTA:] In German: Elektromagnetischen Scheidungskraft. This expression can also be trans-
lated as “electromagnetic force of separation” or “electromagnetic segregating force”.
I present here a simple example of a separating force. Consider a metal plate AB insulated from the

ground by a dielectric support I as in Figure (a) of this footnote:
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(a)

A AB B

I

If a negatively charged straw is placed close to side A of the plate, the charges on the plate become
separated as illustrated in Figure (b). Side A of the plate becomes positively electrified, while side B
becomes negatively electrified. This polarization of the plate is caused by the electric force of the negatively
electrified straw acting on the free electrons of the plate. I presented several interesting experiments on this
topic made with simple material, together with many quotes from original sources, in the 2 volumes of the
book The Experimental and Historical Foundations of Electricity which is available in English, Portuguese,
Italian and Russian: [Ass10a], [Ass10b], [Ass15b], [Ass17], [Ass18a], [Ass18b] and [Ass19b].
Another effect of a separating force takes place in electrolysis. The electric forces in general are proportional

to the charge q of the test particle on which they are acting. A positively electrified particle with q > 0
experiences a force in one direction, while a negatively electrified particle with q < 0 will be forced in the
opposite direction. If these particles are free to move as in electrolysis, a double current will be produced due
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the two devices used. This difference can be deduced with sufficient exactness from the
designations of these devices and it turned out that the electromagnetic separating force of
the inductor was 4.8 times larger than the one of the electrodiamagnetic measuring device.24

At the same time it follows that in both devices the electromagnetic separating force had such
a strength that according to the interesting experiments of Müller25 the magnetic moment of
the little iron bar could not differ considerably from its maximal value,26 so that the 4.8 times
larger separating force of the inductor did not induce a stronger magnetism in the little iron
bar than it obtained from the ordinary force. A different behaviour show the bars of bismuth

to this separating electric force. That is, the positive particles will move in one direction and the negative
particles will move in the opposite direction.

24[Note by WW:] The wire spiral of the electrodiamagnetic measuring device according to Section 2.2 had
four layers each consisting of 146 turns and was 190 millimeters long. Its interior diameter was 17 its exterior
one 26 millimeters and the intensity of the current was according to Section 2.3 = 16.31. It follows from this
that the electromagnetic separating force in its middle is quite close

=
4 · 146 · 2π · 16.31

1
2 · 190 = 629.9 .

On the other hand the wire spiral of the inductor according to Section 2.7 had eight layers each consisting of
120 turns and was 383 millimeters long. Its interior diameter was 23.9 its exterior one 70 millimeters and the
deflection of a compass laying 708 millimeters to the West was according to the experiments in Section 2.7
around 32◦ where one has to put the intensity of the horizontal part of terrestrial magnetism = 1.8. From
this one can first compute the intensity of the current i and the result is quite close to

i =
383

S
· 1.8 · tan 32◦

1
(708− 1

2
383)2

− 1
(708+ 1

2
383)2

,

where S denotes the area enclosed by the spiral which was found = 1 793 200 square millimeters, hence
i = 95.6. The separating force of the spiral in question follows from this very closely = 8·120·2π·95.6

1

2
·383

= 3 012.

However 3 012 : 629.9 equals in very good approximation 4.8 : 1.
25[Note by AKTA:] [Mül51b] and [Mül51a].
26[Note by WW:] A soft iron bar attains a weaker and a stronger magnetism off and on depending on

the size of the magnetic or electromagnetic separating force acting on it. Professor Joh.Müller in Freiburg
published an interesting examination of the dependence of the magnetism of such iron bars on the strength of
the separating forces acting on them in “Berichte über die neuesten Fortschritte der Physik”, Braunschweig
1850, p. 494 et seq., [Mül51a]. An interesting point of this publication is that the magnetism of iron bars has
been determined for different, even very large, separating forces. From that the remarkable result followed
that the magnetism of the iron bar is not at all always proportional to the separating force acting on the iron,
but that it approaches a limit for increasing separating forces. Müller summarized the results he measured
with an electromagnetic spiral in the following formula

s = 0.016 · d 3

2 · tan m

0.001 08 · d2 ,

where, if i denotes the intensity of the current of the electromagnetic spiral in terms of absolute measure
(according to page 252 ibid.)

i = 66.813 · s ,
and (according to p. 511) ifM denotes the magnetism of the iron bar in the electromagnetic spiral according
to absolute measure, then

M = 5 426 021 ·m .

The iron bars used by Müller were 330 millimeters long (according to p. 502) and laid in a wire spiral which
was 300 millimeters long protruding on both sides 15 millimeters. d denotes the thickness of the iron bar.
The wire spiral consisted of five layers each having 76 turns. Its interior diameter was 49 millimeters and
the thickness of the wire was 2.8 millimeters. Consequently, the strength of the separating force the current
of one layer of turns whose radius = r exerts on a point in the iron bar laying at a distance = a from the
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whose diamagnetic moment has to be assumed even for the largest representable separating

spiral is given by the following expression

2 · 76
300

πr2i

∫ a+150

a−150

dx

(r2 + x2)
3

2

=
152

300
πi

{

a+ 150
√

(a+ 150)2 + r2
− a− 150
√

(a− 150)2 + r2

}

.

This implies that on average for the whole iron bar the strength of the force is given by

152 · πi
300 · 330

∫ +165

−165

[

a+ 150
√

(a+ 150)2 + r2
− a− 150
√

(a− 150)2 + r2

]

da

=
304 · πi
99 000

{

√

3152 + r2 −
√

152 + r2
}

.

Finally for all five layers

304 · πi
99 000

· 5

14

∫ 38.5

24.5

[

√

3152 + r2 −
√

152 + r2
]

dr = 13.562 · i .

This force differs from the terrestrial magnetic force only by its strength and can therefore be determined
according to the same absolute measure, what also happened here. We denote the strength of this force by
X , so that

X = 13.562i .

Plugging these values into Müller’s equation one obtains

X = 14.498 · d 3

2 · tan M

5860 · d2 .

This formula is just valid for iron bars of length 330 millimeters. To apply it to bars with a different length
the arc M/(5860 · d2) has to be multiplied by 330 and divided by the length ℓ of the bar, hence

X = 14.498 · d 3

2 · tan M

17.76 · d2ℓ .

However, Müller himself remarked that the influence of the length taken into account in this way does not
completely coincide with experience and has to be checked in more detail. If one applies this rule deduced
from the experiments by Müller, to determine the magnetism of the two little bars of iron, which were in
the above described spirals of the electrodiamagnetic measuring device and the induction apparatus, one gets
for the first little bar ℓ = 92 and in addition for its absolute weight = 5.8 milligram and its specific weight
= 7.78, from which for its thickness d = 0.1016. The value of X for this little bar was determined in the
previous Note X = 629.9. Therefore one obtains for this little bar

M

d2ℓ
= 17.75arc tang 89◦57′23′′ = 27.886.

For the second little bar one has ℓ′ = 186. In addition its absolute weight = 790.86 milligrams and its specific
weight = 7.78, so that one finds for its thickness d′ = 8342. The value of X ′ for this little bar is determined
in the previous Note X ′ = 3 012. One obtains

M ′

d′2ℓ′
= 17.76arc tang 89◦47′23′′ = 27.834.

Noting that d2ℓ and d′2ℓ′ are proportional to the masses of the two little iron bars, one obtains an almost
equal ratio between magnetism and mass of the two little bars, although on the second little bar a 4.8 times
larger separating force was acting. A more thorough treatment one finds in Sections 2.24 until 2.26 where as
well the doubts expressed by Buff and Zamminer against the experiments by Müller are discussed, [BZ50].
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forces as proportionally increasing.27 Hence if one reduces the result obtained from the
induction effects to a 4.8 times weaker separating force in order to make it comparable to
the results obtained from the magnetic action, the diamagnetic moment of bismuth has to
be assumed to be 4.8 times smaller while the magnetic moment of iron remains unchanged.
One then obtains for the former moment compared to the latter one instead of 1/360 740
merely 1/4.8 · 360 740 = 1/1 731 560.

This result deduced from the magnetoelectric action can now be compared directly to the
one found in Section 2.4 according to which the diamagnetic moment of bismuth compared
to the magnetic moment of iron was obtained to be

=
1

1 470 000
.

The difference of the two considered ratios which before was 200 percent is reduced to
17 until 18 percent by taking into account the mentioned difference. This approximation of
equality has to seem even more satisfactory since the comparison is only rough due to the
fact that the mentioned reason of that difference could not be considered. One should also
observe that the last mentioned far most influential reason of this difference is capable of a
closer consideration, if instead on the above quoted experiments by Müller the analysis is
based on the more precise results described in Section 2.24 until Section 2.26. By doing that
the ratio 1/1 470 000 is reduced to 1/1 593 000 as explained in Section 2.27 so that only a
difference of about 8 percent remains compared to the other ratios.

After this comparison of the ratio of the magnetic and electromagnetic effects of an elec-
trodiamagnet with the ratio of the magnetic and magnetoelectric effects of an electromagnet
the result is confirmed that in the nature of diamagnetism the electrodiamagnetic and the
diamagnetoelectric efficacy is actually justified in the same way as in the nature of magnetism
the electromagnetic and magnetoelectric one. In fact, the diamagnetic effects in their mag-
nitude have the same ratio as the magnetic ones as far as this can be checked. This proves
that between diamagnetic and magnetic efficacy in manifold aspects there is no difference.
This gives a proof of the law mentioned in the Introduction of diamagnetic polarity.

It only remained to use the results of the above experiments to determine the ratio
between the strength of diamagnetism of bismuth and the strength of iron magnetism. The
previous discussions make it clear that in general one cannot speak of a definite ratio between
the diamagnetism of bismuth and the magnetism of iron. Indeed, even if one supposes that
the bars of bismuth and iron have the same size and form, this ratio heavily depends on the

27[Note by WW:] There is no known fact which shows a deviation of the law of proportionality of diamag-
netism with the magnetic separating force. Instead of that, although measurements are missing, different
facts in favour of this law can be mentioned. The most important one and as well in different aspects the
most interesting one is the fact discovered and examined more closely by Plücker, according to which the

same magnetic pole depending on the distance induces in the same material for example charcoal diamag-

netism or magnetism. The closer examination which Plücker communicated in Poggendorff’s Annalen 1848,
Vol. 73, pp. 616 et seq., [Plü48], proves, that here the different distance of the magnetic pole has not to be

considered directly but just indirectly, as a decrease of the force corresponds to a larger distance. Plücker
namely proved that the magnetism of charcoal is transformed to diamagnetism by the mere increase of the

magnetic force acting on the charcoal. The simplest explanation for this interesting fact is the above men-
tioned law of proportionality of diamagnetism with the magnetic separating force, as soon as one assumes
the law proved by Müller for the magnetism of iron as well for charcoal. Indeed, if the magnetism of charcoal
for increasing separating force approximates a limit while the diamagnetism of charcoal increases uniformly,
it is obvious that diamagnetism finally has to outmatch the magnetism, meaning that the magnetism of
charcoal is transformed into diamagnetism.
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strength of the magnetic separating force. While the diamagnetism is increasing uniformly
with increasing separating force, the magnetism approaches a limit. Therefore such a ratio
can only be determined under the constraint that the magnetic separating forces are so
small that the deviation of the magnetism of iron is roughly proportional to these forces.
Under this constraint it could be determined the ratio of the diamagnetism of bismuth to
the magnetism of iron using the law of Müller referred to in the footnote 26 of this Section.
However, it is advantageous to postpone this determination in order to take into account for
the magnetism of iron as well the experiments we get to know in Section 2.25 and Section 2.26
where we add the determination of this ratio.

2.11 The Experiments of Faraday

We do not discuss here the former experiments of Faraday which led him to the assumption
which Plücker phrased in the shortest way by saying: “In Bismuth each North pole of a
magnet induces a North pole and each South pole a South pole”.28 Plücker says about this
assumption that each physicist has to come up with it and that diamagnetic polarity is a
necessary consequence of it. We restrict ourselves here to these experiments, which Faraday
recently carried out to disproof the by him first conjectured diamagnetic polarity.

In fact soon after it was realized how important the actual proof of diamagnetic polar-
ity is, many and various facts were found and communicated so that this polarity seemed
almost to be beyond doubt. In my first article (Berichte der Königl. Sächs.Gesellschaft der
Wissenschaften 1847, p. 346 and Poggendorff’s Annalen 1848, Vol. 73, p. 242)29,30 I stressed
in particular the evidence the experiment of Reich has in this aspect.31 According to this
experiment, if North and South pole act from the same side to a piece of bismuth, they
repel it in no way with the sum of the forces they are exerting individually, but rather with
the difference of these forces. I added other experiments which allowed to recognize both
poles of a bar of bismuth in a diamagnetic state by the contrast of attraction and repulsion.
Finally, I added the experiments with the device mentioned in Section 2.7 which seemed to
detect similar electromotive forces exerted from diamagnetic poles as well as from magnetic
poles. Some experiments by Poggendorff, Annalen 1848, Vol. 73, pp. 475)32 followed immedi-
ately, which on the one hand served as a confirmation, on the other hand as a supplement.
In particular, they provided evidence for the two diamagnetic poles by the contrast of the
effect which the galvanic current is exerting on them. They downright proved that a bar
of bismuth in equatorial position would be an actual transversal magnet, which turns the
line of its North poles to the North pole and the line of its South pole to the South pole of
the magnet. Plücker (Annalen 1848, Vol. 73, p. 613)33 found this confirmed by a very smart
application based on that, which provided a simple and practically important mean to inten-
sify considerably the diamagnetism of swinging bodies. Plücker himself declared it beyond
doubt that the diamagnetism consists of a polar excitement. Before that he discarded this
theory due to the enormous difficulties to justify it. After polarity was confirmed in such a
decisive manner he revived the theory. Finally in this article Plücker overcame one of the

28[Note by AKTA:] [Plü48, pp. 614-615].
29[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 255.
30[Note by AKTA:] [Web48b], [Web48c] with English translation in [Web52d] and [Web66c].
31[Note by AKTA:] [Rei48] and [Rei49].
32[Note by AKTA:] [Pog48].
33[Note by AKTA:] [Plü48].
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most important difficulties mentioned by him, namely the difficulty due to the for many
materials observed magnetic behaviour in larger distance from the magnetic pole and the
diamagnetic behaviour in smaller distance (see the footnote 27 in the previous Section). In
view of his closer examination he himself said that34

“the by him not believed, but from a theoretical point of view expected result instead
of the former difficulties found a remarkable confirmation of the adopted theory of
diamagnetism from Faraday, Reich, Weber, and Poggendorff, to which he now became
as well a resolute supporter”.

All this confirmations of diamagnetic polarity first conjectured by Faraday complemented
each other quickly and appeared in the same Volume 73 of Poggendorff’s Annalen. However,
Faraday himself contradicts it in his 23. series of experiments,35 whose closer consideration
is of importance as well for the here described experiments.

In view of the very well deserved authority this great scientist has and the interest his
works stir everywhere we can assume that his experiments to disprove diamagnetic polariy
are well-known. Moreover, there is no doubt on the validity of these experiments in view of
Faraday’s acknowledged experimental skills. The question is just if and how far these experi-
ments disprove diamagnetic polarity as defined here right at the beginning. There are mainly
three points to consider. Firstly, Faraday did not repeat all experiments carried out to prove
diamagnetic polarity. Secondly, despite his outstanding skills Faraday restricted himself in
the accuracy of the instruments he used. Thirdly, Faraday tried to explain in a different way
many phenomena which are in the opinion of other physicists due to diamagnetic polarity.
Therefore it is even not clear if Faraday really contradicts diamagnetic polarity in the sense
we defined it at the beginning.

Concerning the experiments which are not repeated and considered by Faraday, I first
mention that in paragraph 2689 of his article an experiment carried out by me seems to be
confused with a one carried out by Reich. Therefore it happened that Faraday completely
overlooked the experiment by Reich whose evidence for diamagnetic polarity I stressed in
particular. According to this experiment North and South pole acting simultaneously from
the same side on a piece of bismuth do not repel it with the sum of their individual forces
but with their difference. This experiment was carried out by Reich with the most accurate
instrument available, namely the torsion balance he used for the classical repetition of the
experiments by Cavendish.36 I can only repeat here what I said in my first article on this
experiment, that through it alone it can be deduced with high probability that the reason for
the diamagnetic force lies in a moveable imponderable ingredient existing in bismuth which
is moved and distributed in different ways when a magnetic pole is approximating it. The
simultaneous approximation of two opposite poles from the same side has then namely the
effect that the imponderable ingredient neither can assume the one or the other movement
or distribution responsible for the appearance of the diamagnetic force, which explains the
vanishing of this force. Furthermore one has to mention in this context the experiments
carried out by Poggendorff and described in the same volume 73 of his Annalen (p. 475–
479),37 through which he obtained by a simple convincing experiment in two ways the same

34[Note by AKTA:] [Plü48, p. 618].
35[Note by AKTA:] [Far50].
36[Note by AKTA:] Henry Cavendish (1731-1810).
37[Note by AKTA:] [Pog48].
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result without the help of subtle measuring devices. There is no difficulty to repeat the
experiments by Poggendorff and many observers carried this out.

Among the devices which allow an even higher degree of fineness and accuracy then
the ones used by Faraday are mainly the magnetometer and the galvanometer arranged
according to the instructions of Gauss. I would not have been able at all to carry out my
experiments without these instruments. When Faraday repeated these experiments without
the help of these instruments it is easily explainable that he was not able to see the very weak
effects I observed. Faraday’s major concern against my observations described in volume 73
of Poggendorff’s Annalen is, that I did not mention the by him with great care observed
secondary Volta induction, which I should have been able to see the more clearly the finer my
instruments are. Therefore I mention here, that the above article in Poggendorff’s Annalen
borrowed from the “Berichten der Königl. Sächs.Gesellschaft der Wissenschaften”38 was just
a preliminary note of my work, where the more specialized discussion was postponed to a
later article. It should be sufficient to add here that in those experiments I tried to eliminate
the influence of the secondary Volta induction as far as possible by a proper combination
of the experiments, that it is however not highly preferable at all to remove this influence
completely as happened in the experiments described in this article.

Let us briefly summarize which influence the investigation of Faraday had on the question
of diamagnetic polarity in the sense as defined at the beginning. This influence should
be of minor importance. Faraday namely overlooked several experiments by Reich and
Poggendorff. Concerning different experiments, namely the ones by Plücker, he just gave
an explanation based on different premises, where it is not clear if these premises contradict
diamagnetic polarity as defined here at the beginning. Finally, related to the doubt Faraday
mentions about the validity of the results of my experiments, firstly this doubt should be
removed by the remark above, secondly it has no application to the experiments described
in this article.

2.12 The Experiments and the Theory of Feilitzsch

In Section 2.3 and Section 2.4 it was proved that a bar of bismuth in a galvanic spiral as
an electrodiamagnet exerts on a magnetic needle a torque in opposite direction than an iron
bar exerts in the same spiral as an electromagnet. This contradicts a result of Feilitzsch
who, inspired by a different theory, expected a different result and tried to confirm it by
experiments (see Poggendorff’s Annalen 1851, Vol. 82, p. 90–110).39 Namely he thought
that:40

“bismuth inside the electric spiral receives a weaker, but equaly directed polarity, as
soft iron.”

The reason for this contraction as I believe lies in a very essential difference of the devices
used by me and Feilitzsch. Feilitzsch mentioned that41

“the spiral was deployed at a distance of about 200 millimeters on the western side
from a small compass suspended on a cocon thread and the needle was brought back
to its initial position by an auxiliary magnet on the eastern side”.

38[Note by AKTA:] [Web48b], [Web48c] with English translation in [Web52d] and [Web66c].
39[Note by AKTA:] [Fei51].
40[Note by AKTA:] [Fei51, p. 103].
41[Note by AKTA:] [Fei51, p. 103].
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In contrast to that I used two spirals and deployed them symmetrically with respect
to the compass so that no auxiliary magnet was necessary to bring back the needle to its
initial position. The crucial difference of the two arrangements is that in Feilitzsch’s case the
needle only for a determined current intensity lies in the magnetic meridian, but is deflected
to either side for each variation of the current intensity. On the other hand in my case the
variations of the current intensities have no influence on the position at rest of the needle.
However, this independence of the position at rest of the needle from the variations of the
current intensity in the spiral is necessary if the deflection of the needle has to be associated
to the immediate effect of the bar of bismuth on the needle when the bar of bismuth is put
into the spiral. Namely putting the bar of bismuth into the spiral effects a small change of
the intensity of the current and this might be in Feilitzsch case the reason for the deflection
of the needle. Namely putting the cold bar of bismuth into the spiral heated by the current
leads to a cooling of the spiral and therefore an increase of the current intensity, which
necessarily creates a deflection of the needle in the direction observed by Feilitzsch. A long
time ago I carried out several experiments according to the same method as Feilitzsch and
found similar results. However, a closer examination showed, that the observed force did
not appear instantaneously in the moment the bar of bismuth entered, but rather gradually.
Also when pulling out the bar the force disappeared gradually, what is a sufficient proof that
it is not a matter of an instantaneous action of the bar of bismuth. One could also increase,
decrease, or reverse these influences through a mere cooling or heating of the bar of bismuth.
It is likely, that as well the deflections of the needle observed by Feilitzsch are due to the
influences of temperature on the intensity of the current.

Concerning the theory of diamagnetism which Feilitzsch tried to give in this context, I just
want to mention the following. Feilitzsch wants to explain the diamagnetic phenomena from
a certain distribution of magnetic fluids, too. However, he assumes that this distribution
is due to the separation of magnetic fluids in the same direction as in iron and that the
only difference is that this separation in an iron bar decreases from the middle to the ends,
while in the bar of bismuth it increases. It follows from this increase between the middle
and the end of the bar a dispersion of opposite free magnetism as at the end, and if this
opposite between the middle and end dispersed free magnetism were stronger, than the one
at the end, the diamagnetic phenomena could be explained. However, if Feilitzsch examined
the conditions more closely which lead to an explanation of the diamagnetic phenomena
according to his own presentation, he would have found that this case is only possible, if
the magnetic fluids in the middle of the bar are not separated in the same but in opposite
directions as at its ends, which contradicts his assumptions. Anyway, one easily sees that it
is impossible to explain the diamagnetic phenomena from a distribution of magnetic fluids
arising from the same separation as in iron according to the direction.
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IV - On the Connection Between the Theory of Diamag-

netism with the Theory of Magnetism and Electricity

2.13 On the Foundation of a Theory of Diamagnetism

In the first two parts of this paper I tried to establish the law of diamagnetic polarity
in more generality, mainly by showing that it is valid as well for electrodiamagnetic and
diamagnetic actions. This law alone even if it is general does not establish yet a theory of
diamagnetism. This is because it only defines diamagnetism in view of its effects. However
for the foundations of a theory of diamagnetism it is necessary to define it not just in view
of its effects but as well in view of its causes. Therefore, I will add in this part the necessary
complement to the theory on the causes of diamagnetism in more generality than what I did
in my previous paper.

2.14 On the Way How to Examine the Causes of Dia-

magnetism

In the theory of magnetism one distinguishes two types of magnets, namely permanent ones
and variable ones. For example a magnet made of glass-hard steel is a permanent one, while
a magnet made of soft iron is a variable one. Strictly speaking in reality there is not a strict
distinction between permanent and variable magnets, since even the most permanent ones
become variable under the influence of strong forces, and in the same way all magnets even
the ones made of the most soft iron become permanent under the influence of very small
forces. However, since one usually chooses for physical experiments magnets and conditions
under which either the permanent or variable aspect of the magnet does not show up, one
can assume without loss of generality this simple distinction. For the sequel we point out
the following difference between the two kinds of magnets. The permanent ones can only be
examined in view of its effects, while the variable ones in two ways, namely in terms of its
effects as well as in terms of its causes.

If one tries to apply this distinction to diamagnets, one sees, that permanent diamagnets
do not exist, or more precisely, that they cannot be distinguished from permanent magnets.
Therefore, one only needs to consider variable diamagnets and these can be examined in two
ways partly by their effects and partly by their causes.

It is known, that by examining the effect of a magnet on other materials one can obtain
the ideal distribution of the magnetic fluids on its surface. Gauss has shown that if one knows
the ideal distribution one can predict all effects of the magnet.42 Many researches take great
profit that through its knowledge one does not need any hypothesis about the interior of
the material, particularly, if the causes of these effects are unknown and first have to be
examined. It is obvious from this that by examining the effects one cannot get further than
to the knowledge of the ideal distribution which has to be distinguished necessarily from the
true nature of the interior of the magnet. For example, it is not possible by examining the
effects to get to know the actual distribution of the magnetic fluids in the magnet or the
actual number, strength and position of the electric currents inside.

42[Note by AKTA:] See footnote 7 on page 11.
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The same is therefore true as well for the effects of a diamagnet. One could get knowledge
of the ideal distribution of magnetic fluids at the surface of the diamagnet and this replaced
the knowledge of its whole true internal state concerning the consideration of all its effects.
On the other hand one would not get information about the true internal state of the
diamagnet nor the actual nature of diamagnetism nor its generation and transformation.
To get a clue of these one must not restrict oneself to the consideration of the effects and the
ideal distribution depending on it, but it is necessary to take into account different points of
view which are independent of these effects.

All possible causes of diamagnetism, as well as of magnetism, can be classified into inter-
nal and external ones. The external cause, as the effects, is given through observation. It is
the same for magnetism and diamagnetism, namely a magnetic or electromagnetic separating
force having determined size and direction. Would we know apart from this external cause
the internal one in the material itself, then diamagnetism would be determined. Conversely,
this opens a way to determine the unknown internal cause if, in addition to the known ex-
ternal cause, the diamagnetism resulting from both is already known from its effects. If one
follows the way sketched here and lists as well for iron and bismuth the known magnetic sep-
arating forces together with the from the effects deduced ideal distribution, one observes that
the same separating force leads to opposite ideal distributions or conversely the same ideal
distribution for iron and bismuth gives rise to opposite separating forces. The reason that
opposite external causes produce the same effects in iron and bismuth has to be contained in
the difference of internal causes in iron and bismuth themselves. To determine more closely
the difference of internal causes in iron and bismuth it is necessary to classify all possible
internal causes which can have such effects explainable in terms of an ideal distribution.
After that one has to check if among these possible internal causes there are some which can
give rise to the above mentioned differences in magnetic and diamagnetic materials.

2.15 Classification of Internal Causes which Can Give

Rise to the Given Effects of an Ideal Distribution

One can give four essentially different kinds of internal causes contained in the materials
which can give rise to such effects explainable in terms of an ideal distribution of magnetic
fluids.

1. The internal cause of such effects can be due to the existence of two magnetic fluids
which are more or less movable independently from their ponderable carrier.

2. It can be due to the existence of two magnetic fluids which are only movable with the
molecules of their ponderable carrier, i.e., rotating molecular magnets.

3. It can be due to the existence of permanent molecular currents built from the two
electric fluids, which can be rotated with the molecules.

4. It can be due to the existence of two movable electric fluids, which can become a
molecular current.

These four here mentioned possible internal causes of the effects due to an ideal distri-
bution at the surface are the only ones which are known and can be examined. The first
case is the base of the theory of magnetism developed by Coulomb and Poisson.43 The third

43[Note by AKTA:] Charles Augustin de Coulomb (1736-1806) and Siméon Denis Poisson (1781-1840). See
[Cou88a] with partial English translation in [Cou35a], complete English translation in [Cou12] and German
translation in [Cou90b]; [Cou88c] with German translation in [Cou90d] and partial English translation in
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case is the base of the theory of magnetism using electrodynamics developed by Ampère.44

The second case can be reduced to the third one in view of the theorem due to Ampère that
molecular magnets and molecular currents coincide in all their effects if one substitutes the
first one for the latter one. It therefore just remains the fourth case which was not noticed
and discussed before.

2.16 Dependence of the Ideal Distribution on the Mag-

netic Separating Force According to the Differ-

ence of the Four Above Mentioned Possible In-

ternal Causes

For each of these four cases one easily obtains a connection between the type of ideal distri-
bution and the direction of the magnetic separating force giving rise to the distribution. For
the first case it follows according to the theory of Poisson, that if one denotes the direction
of the magnetic separating force as the positive one in which the North pole of a magnetic
needle points and if one determines the barycenters of the northern and southern fluid corre-
sponding to the separating force of the corresponding ideal distribution, the former of these
two barycenters is displaced in the positive direction with respect to the latter one. For the
third case this connection was developed by Ampère and it follows that it leads to the same
dependence of the ideal distribution from the magnetic separating force. It is obvious that
the same dependence holds as well for the second case since the second case can be deduced
from the third one as mentioned above. It therefore remains to discuss just the fourth case.

This fourth case assumes the existence of electric fluids which can become molecular
currents. The possibility that such molecular currents develop is based on the assumption
that in single molecules or around them there are closed orbits in which the fluids are movable
without resistance. It follows from this, that only a current-inducing force, i.e., a force which
acts on the positive and negative fluid in opposite directions, in the direction of this orbit is
required to actually move the fluids in this orbit. The theory of magnetoelectricity implies
that due to an increasing or decreasing intensity of the magnetic separating force actually
an electromotive force is given, which acts on the two movable electric fluids in opposite
direction and therefore has to induce a current. The direction of the molecular current is
given by the fundamental law of magnetic induction depending on the increase or decrease of
the magnetic separating force. Moreover, the ideal distribution is given in its dependence of
the molecular currents according to the connection between electrodynamics and the theory
of magnetism discovered by Ampère for the third case. It follows from that the connection
between the ideal distribution and the increase or decrease of the magnetic separating force
corresponding to the distribution.

[Cou35b]; [Cou88d] with German translation in [Cou90a]; [Cou88b] with German translation in [Cou90c];
[Cou89]; [Cou91]; [Cou93]; [Pot84]; [Gil71b] and [Gil71a]. See also [Poi12a], [Poi12b], [Poi13], [Poi25a],
[Poi25b], [Poi22a] and [Poi22b].

44[Note by AKTA:] André-Marie Ampère (1775-1836). His masterpiece was published in 1826, [Amp26]
and [Amp23]. There is a complete Portuguese translation of this work, [Cha09] and [AC11]. Partial English
translations can be found at [Amp65] and [Amp69]. Complete and commented English translations can be
found in [Amp12] and [AC15].
A huge material on Ampère and his force law between current elements can be found in the homepage

Ampère et l’Histoire de l’Électricité, [Blo05].
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Moreover, it is clear from this that in each moment where an increase or decrease of the
magnetic separating force occurs, such a molecular current is induced. Therefore the induced
currents, if they do not cancel each other, have to be summed up. However, these currents
do not disappear by themselves. Indeed, Ampère has shown that one has to associate to
electrical molecular currents permanence, i.e., that the electric fluids on their circular motions
around the ponderable molecules are not subject to such a resistance like the electric fluids
flowing through a conductor which gives rise to an explanation for the quick disappearance
of the electric currents in these conductors. (This permanence proved by Ampère for the
molecular currents is the reason for the above mentioned theorem that the possibility to put
electric fluids in a molecular current has as its hypothesis that there exist closed orbits in
the individual molecules in which fluids can move without resistance.) It follows from this
that through continued increase of the magnetic separating force in the ideal distribution,
there has to occur a continued increase of magnetic fluids as well. It follows from this, that
to each given strength of the magnetic separating force there coincides a certain amount of
ideally distributed fluids. However, this summation only takes place for molecular currents,
since only for them the movement of electric fluids has no resistance. The other currents,
which are induced from the same separating force in additional orbits, which however due
to the resistance they are subject in these orbits disappear quickly, only have magnetic
effects on other materials in the moment they are induced. These effects immediately vanish
as soon as the separating force, which was the reason for the change, becomes constant.
Therefore they are in no determined ratio to the existing separating force, what would be
necessary, if they should account for the observed magnetic effect for which therefore only
molecular currents are useful. If one develops this dependence on the molecular currents
more carefully according to the laws of magnetic induction, one finds, that when one denotes
this direction as the positive one to which the North pole of a magnetic needle points and
when one determines the ideal distribution of the barycenters of the northern and southern
fluid depending on the separating force, that the former one of these two barycenters is
displaced with respect to the latter one in the negative direction, i.e., opposite to the other
three cases.

2.17 Internal Cause of Diamagnetism

This remarkable result can now be applied to justify the theory of diamagnetic phenomena
which explains the internal state of a diamagnetic material and the forces responsible for it.
Such a justification was not available before. In fact, it does not suffice for such a theory
that one is able to represent the diamagnetic state of a material in connection with all its
effects by an ideal distribution of magnetic fluids on its surface as already argued above. But
it is essential to justify as well these forces through which that state occurred and, moreover,
on what these forces act and according to which laws they act.

From the compilation and consideration of the possible cases above, through which a
state of a material can occur representable by an ideal distribution of magnetic fluids, we
found only one [case] compatible with the fundamental phenomena during the emergence
of diamagnetism. It follows from this, that one can explain the emergence of a diamagnetic
state of a material only if one assume that this case really exists. Namely the case where the
diamagnetic state emerges due to the induced forces which acted on the material and the
electric fluids in the material which move without resistance on circular orbits. Therefore one
assumes that a bar of bismuth consists of molecules which contain closed orbits (or canals),
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in which the electric fluids can move without resistance, while in all other orbits they can
only move after overcoming a resistance proportional to its velocity. The occurrence of a pure
diamagnetism not intermingled with magnetism also requires, that the molecules together
with those orbits or canals cannot be rotated. Otherwise rotating molecular currents would
emerge leading to a magnetic state, if during the rotation their intensity does not change, as
proved by Ampère.

2.18 Determination of the Electromagnetic Separating

Force in a Galvanic Spiral

According to the presentation given above it is not themagnetic or electromagnetic separating
force itself which is responsible for the diamagnetic state of a material, but this separating
force determines diamagnetism only indirectly as far as the sum of the electromotive forces
is concerned which before acted on the diamagnetic material and put the electric fluids into
motion around the individual molecules. The strength of the now existing (induced) molecular
currents which is the nature of diamagnetism depends on the sum of the electromotive forces
having acted on the diamagnetic material. In this way the determination of the intensity
of the existing magnetic or electromagnetic separating force is used only indirectly to the
determination of diamagnetism since it gives rise to the integral value of all changes to which
the magnetic or electromagnetic separating force was subject. To this integral value the sum
of the electromotive forces and consequently the strength of the now existing (induced)
molecular currents is proportional.

Suppose the wire of a galvanic current spirals uniformly around a cylindrical tube. Denote
the electromagnetic separating force of the current at the midpoint of the tube in direction
of the axis by X . According to the known electromagnetic laws it is given by

X =
2πni

d

where n is the number of windings, i is the intensity of the current, and 2d the diagonal of the
tube (i.e., when 2a is the length of the tube and 2r is the diameter, then d =

√
a2 + r2).45

If the intensity of the current i is expressed according to the in the previous paper on
Electrodynamic Measurements (page 321 of this Volume)46 determined absolute mass, then
in the expression above the electromagnetic separating force is given by the same measure,
which Gauss used for the determination of the intensity of terrestrial magnetism.47 Strictly

45[Note by WW:] In fact if r is the radius of a winding, x is the distance of its midpoint from the midpoint
of the spiral, rdϕ the length of a current element and i the current intensity, it is well-known that ir2dϕ/(r2+

x2)
3

2 is the expression for the force due to the current element in the midpoint of the spiral in direction of

the axis. It follows from this that the expression of the force due to the whole winding is 2πr2i/(r2 + x2)
3

2 ,

and the expression for n windings of the spiral whose length is 2a becomes 2πr2i · n
2a

∫ +a

−a
dx

(r2+x2) , i.e., if one

sets
√
a2 + r2 = d one obtains 2πni

d .
46[Note by AKTA:] [Web52c, p. 321 of Weber’s Werke] with English translation in [Web21b].
47[Note by AKTA:] Gauss’ work on the intensity of the Earth’s magnetic force reduced to absolute measure

was announced at the Königlichen Societät der Wissenschaften zu Göttingen in December 1832, [Gau32] with
English translation in [Gau33a] and [Gau37a], see also [Rei02, pp. 138-150].
The original paper in Latin was published only in 1841, although a preprint appeared already in 1833

in small edition, [Gau41b] and [Rei19]. Several translations have been published. There are two German
versions, one by J. C. Poggendorff in 1833 and another one in 1894 translated by A. Kiel with notes by E.
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speaking the stated value of the electromagnetic separating force is valid only for the midpoint
of the spiral. In most cases this value can be used with sufficient accuracy for a very large part
of the space surrounded by the spiral, in particular, if the diameter of the spiral compared
to its length is very small. For example if one considers a point on the axis which has the
distance b to the midpoint of the spiral one obtains for this point

X =
πni

a

[(

1 +
r2

(a− b)2

)− 1
2

+

(

1 +
r2

(a + b)2

)− 1
2
]

,

or if one replaces a by
√
d2 − r2 and r/d by ρ

X =
2πni

d

[

1− 3d2 − b2

2(d2 − b2)2
· ρ2b2 + . . .

]

.

If the difference of the electromagnetic separating force and its maximal value at the midpoint
shall be less than a small fraction m times the maximal value one sets

3d2 − b2

2(d2 − b2)2
· ρ2b2 = m

or
b2

d2
= 1 +

ρ2

4m+ 2ρ2

(

1±
√

16m

ρ2
+ 9

)

.

Hence if the diameter is for example the 40th part of length, then in more than 7
8
of the

whole from the spiral enclosed space the electromagnetic separating force is up to 1 percent
constant and in almost 2

3
of this space it is constant up to 1

10
percent.

Therefore such spirals can be used to provide in an easy way an arbitrarily long space
in which the electromagnetic separating force has an exactly known, arbitrarily big and
everywhere constant magnitude. The representation of such a space is however of great
importance for many studies and the experiments described in the previous two Sections can
serve as examples for this. In fact without using spirals it would have not been possible to
carry out these experiments.

Strictly speaking the discussion above deals only with the points laying on the axis of the
spiral. However, the result found can easily be extended to the remaining space enclosed by
the spiral using a general theorem of Gauss in the “General theory of terrestrial magnetism”
(Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838), article 38.48,49

2.19 Determination of Electrodiamagnetism Using the

Electromagnetic Separating Force

The integral value of the electromotive force on a circle of radius r for the time needed to
move the circle from the perpendicular position with respect to the separating force to a

Dorn; a French version by Arago in 1834; two Russian versions, one by A. N. Drašusov of 1836 and another
one by A. N. Krylov in 1952; an Italian version by P. Frisiani in 1837; an English extract was published in
1935, while a complete English translation by S. P. Johnson was published in 2003; and a Portuguese version
by A. K. T. Assis in 2003: [Gau33b], [Gau34], [Gau36], [Gau37b], [Gau94], [Gau35], [Gau52], [Gau75],
[Gau03] and [Ass03b].

48[Note by HW:] Gauss’ Werke, Volume 5, p. 170.
49[Note by AKTA:] See footnote 7 on page 11.
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parallel one was determined in the previous paper on Electrodynamic Measurements (page
323 of this Volume).50 For the electromagnetic separating force given by X = 2πni/d one
obtains

= πr2X .

This integral is the product of the intensity with the element of time during which the force
with this intensity is acting.

The expression is unchanged if instead of turning the circle by 90◦ the electromagnetic
separating force X = 2πni/d vanishes. On the other hand if this separating force is increased
from X = 0 to X = 2πni/d (by closing the current), then the expression becomes

−πr2X = −2π2nr2i

d
.

The negative sign means, that the induced current has such a direction, that the poles of a
molecular magnet equivalent to it get an opposite orientation than the poles of a compass
under the influence of the same force X .

For the determination of the integral value of the electromotive force we used the measure
of electromotive forces deduced from the absolute measure of magnetism as explained in the
previous paper, page 321.51 For the purely electrodynamic measure this expression has to be

multiplied by a factor
√

1
2
, page 361 ibid., hence

− π√
2
· r2X = −π

2
√
2 · nr2i
d

.

According to the previous paper this expression has to be multiplied (page 367 ibid.) by
4/c (where c denotes the constant value of the relative velocity for which two electric masses
do not influence each other), if one wants to express the electromotive force in terms of the
absolute measure of forces utilized generally in mechanics, hence

−2
√
2

c
· πr2X = −4

√
2 · π2nr2i

cd
.

This expression gives the electromotive force for the length of the circular path under the
assumption that in each unit of length of this path the unit of electric fluid is located. One
obtains from this the electromotive force acting on each unit of mass of the electric fluid by
division of the circumference of the circle 2πr

= −
√
2

c
· rX = −2

√
2 · πnri
cd

,

i.e., the integral value of the acceleration for the interval of time in which the electromagnetic
separating force grew from X = 0 to X = 2πni/d, if to each unit of the electric fluid
a ponderable unit of mass were attached. If ε denotes the unknown little fraction which
expresses the mass belonging to the unit of electric fluid in terms of the ponderable mass
measure, we obtain by dividing the above expression by ε the drift velocity52 u produced by

50[Note by AKTA:] [Web52c, p. 323 of Weber’s Werke] with English translation in [Web21b].
51[Note by AKTA:] [Web52c, p. 321 of Weber’s Werke] with English translation in [Web21b].
52[Note by AKTA:] In German: Stromgeschwindigkeit. This expression can also be translated as current

velocity of velocity of the current. Weber is referring here to the velocity of each electrified particle relative
to the matter of the conductor.
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the increase of the electromagnetic separating force. If one multiplies this expression of the
drift velocity u by ae = 4e/c (see page 367 ibid.),53 where e is the amount of the electric fluid
expressed in terms of electric measure which is located in each unit of length of the circular
path, one obtains the intensity of the induced circular current according to the measure
derived according to purely electrodynamic principles (see page 359 ibid.). If one multiplies
further this formula by

√
2 one obtains this intensity in terms of the measure according to

which a current of intensity = 1 acts identically with the unit of magnetism54 according to
absolute measure if it circulates around the unit of area, namely

− 8e

c2ε
· rX = −16πnrei

c2dε
.

Here i denotes the intensity of the induced current according to the same measure.
The electromagnetic moment of this induced circular current (molecular current) is found

by multiplying the intensity of the current stated above by the area πr2 enclosed by the
circular orbit

= − 8e

c2ε
· πr3X = −16π2nr3ei

c2dε
.

Here one assumes that the normal of the plane containing the circular orbit is parallel to the
direction of the electromagnetic separating force. This can happen for all circular orbits only
for a particular arrangement of the molecules. In case of bismuth we do not assume such an
arrangement, but instead suppose according to the notion of homogeneity that the normals
of the circular orbits do not have a prevailing direction. Hence the number of circular orbits
whose normals have an angle ϕ with respect to the direction of the electromagnetic separating
force is proportional to sinϕ. Therefore the intensity of the current is proportional to cosϕ
and the component parallel to the separating force to cos2 ϕ. It follows that multiplying the
expression above by sinϕ cos2 ϕ one obtains an expression proportional to the part of the
electrodiamagnetic moment of bismuth coming from all circular currents (molecular currents)
whose normals have an angle ϕ to the direction of the separating force, namely

− 8e

c2ε
· πr3X · sinϕ cos2 ϕ = −16π2nr3ei

c2dε
· sinϕ cos2 ϕ .

Integrating first this expression from ϕ = 0 to ϕ = 1
2
π with respect to dϕ and multiplying

the obtained integral value with the number of molecular currents m, one gets the whole
electrodiamagnetic moment of bismuth expressed by

=
8e

3c2ε
· πmr3X = −16π2mnr3ei

3c2dε
.

If v denotes the volume of bismuth and a the distance of the midpoints of its molecular
currents whose radius is = r, the number of its molecular currents is m = v/a3. Under the
assumption that the size of molecular currents is proportional to the supply of molecules,
i.e., a/r = κ is constant, the sum of the areas orbited by all molecular currents is mπr2 =
πv/κ3r. Substituting this value in the above expression of the electrodiamagnetic moment,
one obtains

− 8π

3c2ε
· e

κ
3
· vX = −16π2ni

3c2dε
· e

κ
3
· v .

53[Note by AKTA:] [Web52c, p. 367 of Weber’s Werke] with English translation in [Web21b].
54[Note by AKTA:] A needle with one unit of magnetism has one unit of magnetic moment.
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Hence the electrodiamagnetic moment of a mass of bismuth is proportional to the electro-
magnetic separation moment X and the volume v and can be found by multiplication of
the constant factor 8π/3c2ε extractable from the general theory of electricity and the con-
stant factor −e/κ3 depending on the nature of bismuth. This last factor one can call the
diamagnetic constant of bismuth.

2.20 Comparison of the Interaction of Diamagnetic Mol-

ecules with the Interaction of Magnetic Molecules

In the previous Section the induction of molecular currents in the circular orbits of molecules
was considered individually to determine the electrodiamagnetic moment, as if on each
molecule just the electromotive force acted determined by the existing electromagnetic sep-
arating force. Strictly speaking this is not the case, but instead in each circular current in
addition acted the electromotive forces coming from the interaction of diamagnetic molecules,
likewise as if on the particles of an iron bar not just the external separating force due to
terrestrial magnetism acted but as well the separating forces coming from the interaction of
the particles in the bar.

If one wants to take account of this interaction although it is so small that its influence is
hardly noticeable, it is worthwhile to stress a remarkable contrast which takes place between
the interaction of diamagnetic and magnetic molecules.

Namely, if two iron particles lay on a line parallel to the direction of the magnetic
separating force acting on them and if one denotes by m the magnetic moment which was
produced by the separating force in each of the iron particles individually, the new separating
force resulting from the interaction of the particles increases the moment m. This new
separating force due to the interaction of the two particles is expressed according to known
laws by 2m/r3, when r denotes the distance of the particles. The total separating force (X+
2m/r3) produces now in the particle under examination a larger moment = (1+2m/Xr3)M .
On the other hand if two particles of bismuth lay on a line parallel to the electromagnetic
separating force acting on them, and if one denotes the diamagnetic moment corresponding
to this separating force by −µ (the negative sign means that for separating forces acting in
the same direction the diamagnetic moment is opposite to the magnetic one), the resulting
separating force due to the interaction between the particles is = −2µ/r3 if r is the distance
between the two particles. Therefore to the total separating force = (X−2µ/r3) corresponds
the decreased moment −(1 − 2µ/Xr3)µ. Hence the contrast is that magnetism for iron
particles laying in the direction of the separating force gets intensified by interaction, while
diamagnetism for particles of bismuth laying in this direction gets weakened by interaction.

The opposite phenomenon occurs if the particles of iron and bismuth lay on a line perpen-
dicular to the direction of the separating force. In this case the magnetism of iron particles
gets weakened by interaction while diamagnetism of particles of bismuth gets intensified by
interaction. In fact by using the same notation the weakened magnetism of iron particles
results in = +(1 − m/Xr3)m, while the intensified diamagnetism of particles of bismuth
results in = −(1 + µ/Xr3)µ.

It follows from this, that to endow a given mass of iron for a given separating force with
the strongest magnetism one brings it in the form of a long and thin bar or a prolate ellipsoid
whose major axis is parallel to the direction of the separating force, whereas on the other hand
one has to bring a mass of bismuth to endow it with the strongest diamagnetism to the form
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of a plate as thin as possible or in the form of an oblate ellipsoid whose minor axis is parallel
to the direction of the separating force. This conclusion could be checked experimentally,
but one has to take account that in case of bismuth the influence of the interaction of the
particles is very small due to the weakness of the diamagnetism corresponding to a given
separating force. However, if one applies the result found to the verification of the theorem
first mentioned by Faraday that bismuth under the influence of magnetic separating forces
behaves exactly as iron with the only difference that the two magnetic fluids seem to be
interchanged,55 it turns out that this theorem is not completely true. In fact according
to Faraday’s theorem the prolate elliptic form would be for bismuth as for iron the most
favorable one to get the strongest diamagnetism respectively the strongest magnetism, what
is not the case. The deduction of these laws of interaction of diamagnetic molecules compared
to the interaction of magnetic molecules leads to a simple distinction between magnetic and
diamagnetic materials which is the topic of the following Section.

2.21 Distinction of Magnetic and Diamagnetic Materi-

als with the Help of Positive and Negative Values

of a Constant

Instead of the not completely accurate distinction between magnetic and diamagnetic mate-
rials, where for the same separating force the two magnetic fluids are just interchanged, it is
possible to give an alternative correct and equally simple distinction which takes advantage
of the difference of the values of a constant derived from the nature of each material.

In fact if one considers for simplicity just a rotationally invariant ellipsoid of iron or
bismuth whose major axis is parallel to the direction of the separating force it was proved
by Neumann in Crelle’s “Journal für die reine und angewandte Mathematik”, volume 37,56

that in case of iron for the given separating force X the magnetic moment of the ellipsoid
is given by the expression

kvX

1 + 4πkS

where v is the volume of the ellipsoid and S is a quantity determined by the ratio of the
axes. Namely,

S = σ(σ2 − 1)

{

1

2
log

σ + 1

σ − 1
− 1

σ

}

and

σ =

√

1− r2

λ2
.

Here r and
√
r2 − λ2 are the axes of the ellipsoid. The finite number k has for iron a constant

value depending on its nature which Neumann denotes as the magnetic constant of iron. This
value is for iron and all magnetic materials necessarily positive.

The value of S for an infinitely long ellipsoid is S = 0. Consequently the magnetic
moment is

= kvX ,

55[Note by AKTA:] [Far46a, § 2429].
56[Note by AKTA:] [Neu48b].
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hence for v = 1 and X = 1 the magnetic moment = k. Therefore the magnetic constant k
can be defined as the limit which the magnetic moment approaches under the unit of the
magnetic separating force, if the ellipsoid of volume one gets more and more prolate. Since
the constant k for all magnetic materials is positive, the magnetic moment is positive or
negative, depending if the separating force is positive or negative.

For a ball one obtains the value S = 1
3
, consequently the magnetic moment is

=
kvX

1 + 4
3
πk

.

This formula implies, using that k is positive for a piece of iron in form of a ball, there is
less magnetism as for a prolate ellipsoid in case the volume is fixed.

For an infinitely thin disklike plate the value of S equals one, consequently the magnetic
moment is

=
kvX

1 + 4πk
.

The quantity k can now be used to distinguish different magnetic substances. According to
the difference of the substances its value can decrease to zero, but, according to the nature
of magnetism it always remains positive. However, one can generalize the applicability
of the quantity k as a mean to distinguish substances by not restricting it to magnetic
materials but extending it to all materials, by assigning a negative value of k which has
the physical significance that a material having such a negative value of k is not magnetic
but diamagnetic. Instead of introducing negative values of k we will write for diamagnetic
materials −k. The diamagnetic moment of an ellipsoid of bismuth whose volume = v and
on which the electromagnetic separating force X acts parallel to direction of the main axis
can therefore be expressed as

− kvX

1 − 4πkS
,

where S has the same meaning as above. For infinitely long ellipsoids, where S = 0, the
diamagnetic moment is

= −kvX ,

for a ball where S = 1
3
it becomes

= − kvX

1− 4
3
πk

,

and for an infinitely thin ellipsoid where S = 1 it is

= − kvX

1− 4πk
.

Hence if one fixes the volume for the most prolate form there is the least diamagnetism,
where for the most oblate form there is the most diamagnetism, precisely opposite as in the
case of magnetism, which was already proved in the previous Section.

However, since −k has a very small value even in case of bismuth which is the most
diamagnetic one, it follows that the diamagnetism of bismuth always is almost proportional
to the product of the volume with the separating force and can be considered as roughly
independent of the shape. Therefore the meaning of −k can be directly compared with the
one of the diamagnetic constant which we discussed at the end of Section 2.19. There as
well the diamagnetic moment was expressed as the product of the volume and the separating
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force with a constant coefficient which decomposed into two factors, namely a factor 8π/3c2ε
obtained from the general theory of electricity and a factor −e/κ3 depending on the nature
of bismuth which was referred to as the diamagnetic constant of bismuth. One easily sees
that these two factors are not separated here in −k and that −k has precisely the meaning
of the product of these two factors.57

2.22 On the Existence of Magnetic Fluids

When a certain class of effects of a material on an other material is such that it can be
explained in terms of an ideal distribution of magnetic fluids on its surface, one can think of
different possibilities for the true causes of all those effects which lay in the interior of the
material and one can distinguish four different cases, which were mentioned in Section 2.14
and discussed in more detail in the following Sections. Two of these cases assume that
there exist two magnetic fluids to which in the molecules of the material either a constant
or variable separation is assigned. The other two cases have as hypothesis, that the two
according to the theory of electricity existing electric fluids are in a certain circular orbit
around each of the molecules of the material either in a constant or variable current. As
one easily sees these four different cases are not mutually exclusive at all. Indeed, a part of
the magnetic fluids in the molecules can be separated constantly whereas the separation of
another part is variable. In the same way a part of the electric current for the circular orbits
of each molecule can be constant while the intensity of another part varies. In fact without
a variable part the constant currents cannot exist in view of the many existing electromotive
forces. Namely the electric fluids if they are actually freely movable in certain circular orbits
around the molecules as is shown by the existence of persistent currents, they need to follow
necessarily the impetus of the electromotive forces decomposed according to the direction of
the circular orbits. Therefore the first and second case can occur either individually or in
combination. The third and fourth case however are in a necessary relation to each other so
that either none of these cases or both together have to occur. It follows that the four cases
mutually combined can be distinguished into two main cases. Namely, in the first place that
two separated or separable magnetic fluids exist in the molecules of the material. Secondly
that the according to the theory of electricity everywhere existing electric fluids are freely
movable in certain circular orbits around the molecules. These two main cases however can
be considered as mutually exclusive as far as the actual proof of existence of one case leaves
the other as a superfluous hypothesis.58

For each of the main cases a theory can be developed and each of the theories can be split
into two parts, namely a part where both theories agree in their results and into one where
they contradict each other. The same happened in optics concerning the theory of emission
and the wave theory which in their results in many aspects agreed with each other until the

57[Note by WW:] We would like to mention that the magnetic coefficient k is only constant according to
the theory of separable magnetic fluids (Section 2.15, number 1), but according to the theory of rotatable
molecular magnets (Section 2.15, number 2) has to be a function of the separating force. On the other
hand, the diamagnetic coefficient −k according to the theory of diamagnetoelectric induction (Section 2.15,
number 4) by its nature is constant, as shown in Section 2.19. In Sections 2.23-2.26 we will prove that in
connection with magnetism, experience is in contradiction to the theory of separable magnetic fluids and
decides in favor of rotatable molecular magnets (or molecular currents Section 2.15, number 3), since the
value of k for iron is in reality not constant, but depends on the size of the separating force X .

58[Note by AKTA:] Ampère had already argued against the existence of magnetic poles in his masterpiece,
see Section 19 (The Magnetic Poles and Dipoles are Disposable Hypotheses) of [AC11] and [AC15].
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discovery of interference phenomena led to a closer discussion of that part for which the two
theories contradict each other in their results. Although until now the two theories based
respectively on the existence of magnetic fluids and on the existence of electric molecular
currents agreed admirably in many respects in their results, it is fair to expect here as
in optics that finally the discovery of a new class of phenomena leads as well to a closer
discussion of that part in which the two theories disagree in their results so that the newly
discovered phenomena decide between the two theories.59,60

The two optical theories disagreed in their conclusions concerning the coincidence of two
homogeneous rays of light. According to one theory amplification should always occur while
according to the other theory sometimes amplification and sometimes cancellation takes
place. The phenomena of interference confirmed the results of the wave theory. In a similar
way the crossroad of our theories can be decided. In fact both agree firstly in all results
concerning the phenomena of permanent magnets. Secondly they agree as well concerning
variable magnets, insofar as each of them leads to a distinction of them into two classes,
namely into the class of that magnets whose magnetism is due to the mere orientation of
already existing movable molecules (molecular magnets or molecular currents) and into the
class of magnets whose magnetism is due to the separation and movement of imponderable
fluids in molecules at rest (the separation of magnetic fluids in the molecules or the induction
of electric currents in certain circular orbits around the molecules). Finally the two theories
agree in their results thirdly concerning the first class of variable magnets. However, they
contradict each other in their results concerning the second class. Namely for this second
class an opposite position of the poles follows from the two theories. According to one of the
theories the position of the poles for the second class should coincide with the one of the
first class, while for the other theory the position of the poles for the second class should be
opposite compared to the first class.

As long as one knew just such variable magnets where the position of the poles (for
separating forces pointing in the same direction) coincided, both theories explained these
magnets and only according to the second theory the assumption was necessary that magnets
of the second class do not exist at all or are always connected to magnets of the first class in
such a way that the effect of the latter one is always dominating. Since the first theory did
not require such a hypothesis, it seemed even to be the preferred theory as long as one just
knew magnets with the same position of the poles for separating forces pointing in the same
direction. As soon as variable magnets (diamagnets) were discovered, where the position of
the poles (for separating forces pointing in the same direction) was opposite, there was no
choice anymore between the two theories. In fact only the second theory could be used since
only it explains the formation of two classes of magnets with opposite position of the poles
for separating forces pointing in the same direction.

59[Note by WW:] Before in the “Resultate aus den Beobachtungen des magnetischen Vereins im Jahre
1839”, [Wilhelm Weber’s Werke, Vol. II, p. 171], I tried to justify the conjecture that the phenomenon
described by the name “unipolar polarity” could lead to such a decision. However, this is not the case, since
there can be given a different explanation for the phenomena described there, as soon as such a connection
takes place between the electric fluids moving in the interior of the conductor and the ponderable parts of the
conductor, that each force acting on the electric fluids completely or nearly is transferred to the ponderable
parts, as I explained in more detail in the “Electrodynamic Measurements” (Abhandlungen bei Begründung

der Königlichen Sächsischen Gesellschaft der Wissenschaften edited by v. d. F. Jabl. Ges.Art. 19, p. 309),
[Wilhelm Weber’s Werke, Vol. III, p. 134].

60[Note by AKTA:] See [Web40, p. 171 of Weber’s Werke], and [Web46, Section 19, p. 134 of Weber’s
Werke] with English translation in [Web07, Section 19].
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The diamagnetic phenomena discovered by Faraday decide between these two theories in
the same way as the phenomena of interference decided between the emission and wave theory
in optics. This is the most essential and important meaning associated to this discovery.
Thanks to the discovery of diamagnetism the hypothesis of electric molecular currents in the
interior of materials gets affirmed and the hypothesis of magnetic fluids in the interior of
materials gets disproved.

All our hypotheses and notions of materials can always just be applied to a limited range
of phenomena and they can be distinguished by the size of their range of applications. We
associate reality to them as long as we do not know any phenomena outside of the range of
their application. In the opposite case we denote them as ideal. Even if the magnetic fluids
have to be treated in the future as ideal notions, they nevertheless keep the same importance
and meaning they had before as long as one applies them to the range where they are valid.
And even if we now associate to the electric molecular currents in the interior of materials
reality, same as to the ether in optics responsible for the propagation of waves, it can happen
in the future by further development of science that they have to be transferred to the class
of ideal notions.
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V - On the Dependence of the Magnetic and Diamag-

netic Moment on the Size of the Separating Force

2.23 From the Hypothesis of Actually Existing Mag-

netic Fluids, Based on the Analogy with the The-

ory of Electricity, and From the Law Given There-

by of the Dependence of the Magnetic Moment on

the Magnitude of the Separating Force

The exactness of the result that there do not exist magnetic but just electric fluids for
which however in ponderable materials two kinds of orbits exist on which they can move,
namely those on which their movement is subject to resistance proportional to their velocity
and those were there is no resistance at all (molecular currents), according to the previous
discussions is mainly due of the opposite position of the poles or their opposite direction. In
virtue of this consideration one distinguishes between magnetic and diamagnetic materials.
However, there is another way how to check the correctness of this result if one examines in
addition the strength of this separation more closely. In fact there is not such a big difference
between the two theories in connection with the strength of this separation as in connection
with the direction. The final decision between the two theories requires the development of
these differences which occur in both theories in connection with the strength of the ideal
separation and checking them with experience.

According to the theory of actually existing magnetic fluids, the magnetic moments are
proportional to the separating forces as mentioned in the footnote at the end of Section 2.21,
contradicting experience in view of the experiments by Müller. If on the other hand the
theory of molecular currents did not lead to such a contradiction with experience, the va-
lidity of the latter theory could be shown in this way without reference to the diamagnetic
phenomena and the wrong position of the poles as we did in the previous Sections. How-
ever, one has to consider a crucial circumstance which shows that this proof alone just using
magnetic experiments without reference to the diamagnetic ones is not completely decisive.
As already discussed in Section 2.14, under the hypothesis of the actual existence of mag-
netic fluids there are two ways how magnets come into existence, namely by separation of
magnetic fluids in molecules at rest or through rotation of molecules in which the magnetic
fluids are separated permanently. The already mentioned theory developed by Poisson and
Neumann explaining that magnetic moments are proportional to the separating forces, is
only concerned with the laws to determine the magnetism of magnets originating according
to the first kind. It has to be examined more closely if the same laws without modification
can be applied to the determination of the magnetism of magnets of the second kind. This
is not the case, but for magnets of the second kind other laws hold and in fact the same
ones as for magnets whose magnetism is due to rotatable molecular currents. Hence when
the laws of the latter magnets coincide with experience, it follows immediately that experi-
ence has to coincide as well with the laws of magnets, whose magnetism is due to rotatable
molecules with permanently separated magnetic fluids. Therefore these laws alone cannot
lead to a general disproof of the actual existence of magnetic fluids, but just to a disproof
of the origin of these magnets by separation of magnetic fluids, as assumed in the theory
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developed by Poisson and Neumann.

But even this partial disproof gains a larger meaning by considering the reasons which
justified Poisson and Neumann to assume a separation of magnetic fluids into molecules
at rest and no rotation of the molecules with permanently separated magnetic fluids. By
examining more closely how the hypothesis of the existence of magnetic fluids was proposed
one sees easily that it mainly originates by its analogy with the theory of static electricity.
This analogy consists mainly in the fact that if iron gets magnetized, a similar separation
of magnetic fluids takes place in the iron molecules as the one of electric fluids when little
conductors get electrified. However, this analogy is completely lost, when the magnetization
of iron is not due to a separation of magnetic fluids in the iron molecules but due to a
rotation of the iron molecules themselves. It follows from this that the hypothesis of the
existence of two magnetic fluids lose their original foundation based on analogy with the
theory of electricity by disproving the theory of Poisson and Neumann. Instead of that it
has to be considered like a completely new hypothesis. This can be seen as well by the fact
that in this case even the name of magnetic fluids is not suitable anymore. Indeed, when
these substances in the iron molecules are permanently separated and always fixed in the
same way to the iron particles and are only movable together with the iron particles, it does
not make sense to talk of a liquid state of matter. It is even debatable to consider these
substances as separated from iron if they are in reality always fixed to the iron particles.
Instead of that it were sufficient to distinguish two kinds of iron particles.

The mentioned partial disproof also gains a deeper significance in that it destroys each
analogy one tried to establish before between the hypotheses of magnetic and electric fluids.
This analogy gained a certain likelihood by the hypothesis whose actual value is difficult to
determine exactly and therefore can be easily rated too high. In view of the above mentioned
disproof of the separation theory it disappears completely.

In the same ratio a theory, namely the one built on the actual existence of magnetic
fluids, loses on likelihood, the other one, namely the one built on the existence of molecular
currents, gains, in particular, if it can be proved that the strength of the magnetic moments
of different separating forces behaves precisely as predicted by this theory. The theory so
far just checked by the observed direction of the separation could be checked and confirmed
by observing the strength of the separation. It follows from this that this second checking
is a crucial supplement and completion of the first one which therefore will be discussed in
detail in the following Sections.

2.24 Connection Between the Existence of a Maximal

Value of the Magnetic Moment and the Assump-

tion that the Molecules Are Rotatable

Although the assumption of rotatable molecular magnets agrees in the determination of
the location of the poles with the assumption of separable magnetic fluids for nonmovable
molecules as explained in Section 2.16, the two disagree however in an essential way con-
cerning the law saying that the strength of the magnetism of a bar of iron varies according
to the size of the magnetic force acting on the iron as discussed in the previous Section.
It is not difficult to understand that according to the first assumption there is a limit for
the strength of the magnetism which cannot be exceeded and which corresponds to the case
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where the axes of the molecules attained a parallel position by rotation. But such a limit
for the strength of magnetism does not exist according to the second assumption building
the foundation of the theory due to Coulomb, Poisson and Neumann, since then there exists
in the molecules an inexhaustable amount of separable magnetic fluids in analogy with the
theory of electricity.61 Even if one wanted to modify this last assumption a bit and assumed
that due to the strengthening of the force acting on the iron the whole neutral magnetic fluid
existing in the molecules gets separated, there still would be a crucial difference between the
two assumptions. This difference is that the growth of magnetism for a growing force acting
on the iron is subject according to the latter assumption to a quite different law before the
exhaustion of the neutral magnetic fluid than after the exhaustion. Namely until the mo-
ment where the last bits of the neutral fluid were separated, the ratio of the strength of the
force acting on the iron had to be constant. For that reason this ratio is referred to as the
magnetic constant of iron. However, after this moment this ratio has to decrease rapidly. On
the other hand according to the first assumption it follows that this ratio is always variable
and has to decrease continuously from the start to the end according to the same law.

In view of this, one obtains the possibility to decide directly from the phenomena of iron
magnetism if the magnetization of iron has to be associated according to the hypothesis of
actually existing magnetic fluids either to a rotation of its molecules or the separation of
the magnetic fluids inside its molecules. In the first case the rotatable molecules can be as
well carriers of molecular currents as of permanently separated magnetic fluids, while in the
latter case the existence of magnetic fluids has to be considered as for sure. Indeed, only
the rotation of molecules but not the separation of magnetic fluids in the molecules (due to
a given magnetic or electromagnetic separating force) can be a possible substitute for the
magnetic fluids due to electric currents.

In view of the above mentioned experiments by Müller one has to consider the latter
assumption of separable magnetic fluids in non-rotatable molecules as disproved. It was
only left to check if the continuous decrease of the ratio of the strength of the magnetism
of iron with respect to the size of the separating force acting on the iron as determined by
Müller in his experiments is in agreement with the law derived from a certain rotatability of
the molecules according to the first assumption. It can be left undecided if these molecules
are the carriers of separated magnetic fluids or of molecular currents. In the mean time
the experiments of Müller were repeated by Buff and Zamminer (Annalen der Chemie und
Pharmacie of Liebig, Wöhler and Kopp Vol. 75, p. 83).62 The results found by Müller were not
confirmed. Instead of that Buff and Zamminer believe to have proved with their experiments
that the ratio of the strength of the magnetism of iron compared to the size of the force acting
on the iron is actually constant as far as it is possible to check with the means currently at
our disposal (here they did not take into account the influence of the force due to coercivity if
the iron is not completely soft). This result would only be possible under the assumption of
separable magnetic fluids in non-rotatable molecules. The assumption of rotatable molecular
magnets and therefore as well of rotatable molecular currents were disproved in this way and
the actual existence of magnetic fluids would appear to be on a sound foundation.

61[Note by WW:] Namely according to this assumption the magnetic state of equilibrium is defined that
on the surface of all molecular conductors there is a distribution of the two magnetic fluids acting on all
points in the interior in such a way that the effect of the external separating forces gets cancelled. It follows
easily from this that if one doubles the external separating forces the amount of the magnetic fluid at the
surface of all molecules has to be doubled as well, etc.

62[Note by AKTA:] [BZ50].
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It therefore seemed to be mainly necessary to repeat the same experiments once more
in order to decide the contradiction at hand. Hence in the following Section, I describe
the experiments carried out by me and the special equipments which I made to get a safe
result. The results by Müller were confirmed in this way which is in agreement with some
experiments made by Joule, already before Müller, reported in The Annals of Electricity etc.
by W. Sturgeon Vol.V, p. 472.63

2.25 Experiments to Prove the Existence of a Maximal

Value of the Magnetic Moment

It followed from the experiments carried out by Müller that in case of the same forces acting
on iron, the decrease of the ratio between the strength of the iron magnetism and the size of
the force acting on iron is smaller for thin iron bars than for thick ones. Therefore for the
comparison between the experiments carried out by Müller and the ones carried out by Buff
and Zamminer it is important to note that the thinnest bar used by Müller had a thickness
of only 6 millimeters where the thinnest one used by Buff and Zamminer had a thickness
of 9 millimeters. This difference in thickness becomes even more influential since the bar of
Müller was 330 millimeters long where the one of Buff and Zamminer only 200 millimeters. I
used for the following experiments an even thinner bar than Müller, namely one which had a
thickness of 3.6 millimeters, a length of 100.2 millimeters and a weight of 8190 milligrams. It
turned out that the magnetism of such a thin bar could be measured with high precision by
the displacement at a distance of a little mirror magnetometer. The only difficulty which the
use of such a thin bar had was the precise separation of the influences on the magnetometer
due to iron magnetism and the ones due to the galvanic current. It is clear that if one
uses the same galvanic spiral in order to magnetize thick as well as thin bars as was done
by Müller, Buff, and Zamminer, this separation is less precise for thin bars since the effect
of the spiral remains the same and therefore is for thin bars comparatively bigger than for
thick ones. Therefore for the following experiments a spiral was used which was not wider
as needed to put in a thin bar. Even with that I was not satisfied but twisted the end of the
spiral wire two times in opposite direction around the middle of the spiral in a much bigger
circle such that the area enclosed by these two twists coincided with the area enclosed by
all twists of the narrow spiral. According to the known laws of electromagnetism it follows
from this that the current has no effect on the magnetometer at a distance which can easily
be checked and confirmed by experiment. The whole effect observable at the magnetometer
is than just due to the magnetism of iron which can be determined by the same acuteness
and exactness from the known intensity of terrestrial magnetism as the magnetism of hard
steel magnets according to absolute measure. In the Intensitas etc. Gauss has given a precise
instruction how this is done by using deflection experiments.64

Moreover, it should be stressed that the spirals used by Müller, Buff, and Zamminer
were shorter than the magnetized bars of iron. In Müller’s case this difference was small
since the iron bars on both ends only protruded 15 millimeters from the spiral. In the
case of Buff and Zamminer this difference was much bigger since the ends of the longest
and thinnest bars protruded 45 millimeters from the spiral. Moreover, this influence got in
addition proportionally increased in the experiments by Buff and Zamminer since the length

63[Note by AKTA:] [Jou40].
64[Note by AKTA:] See footnote 47 on page 59.
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of the part enclosed in the spiral was only 110 millimeters compared to the 300 millimeters
in Müller’s case. Probably this circumstance is the main reason for the apparent difference of
the results the observers obtained. Obviously the effect of the spiral on the iron is strongest
in the middle of the spiral but decreasing at its ends and this decrease is exceptionally large
outside the spiral. It follows from this that even if by increasing current intensity the effect
in the middle part of the bar approached a limit, such an approach could not be felt at
all for the parts outside the spiral. For the following experiments a spiral was used which
was considerably longer than the iron bar such that according to the laws developed in
Section 2.18 the force acting on the ends of the bar does not noticeable differ from the one
on the middle. Only through such a set-up one can obtain a reliable result.

I content myself with briefly compiling the results obtained in this way in the following
Table. I do not describe the experiments in detail, which does not seem necessary since up
to the just mentioned differences they almost coincide with the description given by Müller,
Buff, and Zamminer. I only mention that each single measurement is based on changing the
direction of the current four times. In this way the closest agreement was obtained showing
that the coercivity of iron did not affect the accuracy of the results. It would have been easy
to consider the influence of the temperature of the bar of iron by keeping it constant with
the help of a water current. However it turned out that the influence of moderate changes
of the temperature was so small that to take it into account one needed much more accurate
measurements requiring new equipments which one could not obtain immediately. It is not
necessary to explain here how to express the magnetism of iron using absolute measure
which was carried out in the Table according to known rules. The intensity of the current
was determined with the help of a tangent galvanometer according to absolute measure.
The correction already mentioned by Müller to obtain higher precision which depends on
the ratio between the length of the needle and the diameter of the galvanic ring was identified
precisely and taken into account since this was easy to do. The knowledge of the intensity
of the current according to absolute measure was further used in order to determine the size
of the force acting on the iron according to absolute measure through which one expresses
terrestrial magnetism. This was done using the number of windings of the spiral through
which the current moved and its dimensions. Thanks to this procedure one could compare
that force with the known intensity of the force due to terrestrial magnetism. In the following
Table this force is denoted by X . The iron magnetismM one found was divided by the mass
of iron expressed in milligrams p = 8190 and the magnetism reduced to unit mass is denoted
by m.
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No. X m
1. 658.9 911.1
2. 1 381.5 1 424.0
3. 1 792.0 1 547.9
4. 2 151.0 1 627.3
5. 2 432.8 1 680.7
6. 2 757.0 1 722.7
7. 3 090.6 1 767.3
8. 3 186.0 1 787.7
9. 2 645.6 1 707.9
10. 2 232.1 1 654.0
11. 1 918.7 1 584.1
12. 1 551.2 1 488.9
13. 1 133.1 1 327.9
14. 670.3 952.0

As one sees, the Table decomposes into two parts, namely one where the size of the force
acting on the iron is increasing and one where it is decreasing. In the graphical representation
in the Figure 7 one sees that the experiments of the second part which were denoted by no. 8
until no. 14 correspond very well to the experiments of the first part denoted by no. 1 until
no. 7.65

65[Note by AKTA:] Text inside Figure 7: Graphical representation of the dependence of the strength of
iron magnetism on the strength of the force acting on the iron.
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For the last experiment of the first part the iron bar attained a higher temperature
and one waited before the start of the following experiments until it cooled down again.
Nevertheless one sees that both experiments fit well with the other ones proving that the
influence of the difference in temperature had to be very small.

From these experiments the result seems to follow that the ratio between the strength
of the magnetism of iron and the size of the force acting on iron is variable. Therefore it
is to be expected that the magnetism of iron approaches a limit which it can never exceed.
Obviously it is impossible to continue with the experiments so far that this limit can be
obtained and determined directly by the observations. Such a direct determination of the
limit is however not necessary since it suffices that the continuous variation of that ratio is
proven. The same experiments were repeated by other observers with the same outcome and
I believe that there is no doubt on the obtained results. Mainly the result found by Müller
is confirmed in this way.

2.26 The Law of the Dependence of the Magnetic Mo-

ment on the Size of the Separating Force Accord-

ing to the Assumption of Rotatable Molecules

and Its Comparison with Experiments

It remains to discuss more closely if the variation of the strength of iron magnetism with
the size of the forces acting on the iron found by the above experiments coincides with the
law deduced from the hypothesis of a certain rotatability of the molecules. If this is the case
it is clear that one can assume according to Ampère as well that these molecules are the
carriers of molecular currents. This means that the emergence and transformation of iron
magnetism as well as its effects can be explained without the hypothesis of magnetic fluids
and can be derived merely from the hypothesis of electric fluids.

In Figure 8 NS is a molecular magnet rotatable around its midpoint C. ND is the
direction to which its magnetic axis is parallel in case of equilibrium when the external force
X = 0.

The fact that for soft iron the magnetism due to an external force vanishes again as
soon as the external force disappears, proves that the molecular magnet whose rotation is
responsible for the generated magnetism is driven back in its original position parallel to
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ND. The repulsive force due to the interaction of the molecules has to increase according
to the deflection AND = ϕ and can be expressed by

D sinϕ ,

where D is a constant magnitude referred to asmolecular directive force.66 In case in addition
to the molecular directive force an external force X is acting whose angle with respect to the
direction of the directive force is XND = u, the molecular magnet is rotated or deflected
by the angle AND = ϕ and for the determination of the new equilibrium position one has
the following equation

X sin u cosϕ = (D +X cosu) sinϕ

or

tanϕ =
X sin u

D +X cosu
.

From this deflection ϕ the increase of the magnetic moment of the molecule decomposed in
the direction of the force X can be determined. Namely if one denotes the whole magnetic
moment of the molecule by µ then before deflection its component in direction of the force
X was

= µ cosu ,

and after deflection

= µ cos(u− ϕ) ,

hence the increase x

x = µ(cos(u− ϕ)− cosu) .

Substituting in this formula for ϕ the value obtained from the above equation tanϕ =
X sin u/(D +X cosu) one obtains

x = µ

{

X +D cosu√
X2 +D2 + 2XD cosu

− cosu

}

.

For a system of molecules whose distribution of the axes in the original equilibrium was
homogeneous, the number of molecules whose magnetic axis has the angle u with respect
to the direction NX of the force X is proportional to sin u. Our task is to determine the
magnetic moment y resulting from the rotation of all molecules of the system due to the
force X .

For this purpose one multiplies the value found above for x by sin udu and integrates
from u = 0 until u = π. This integral value multiplied with the number of molecules n and
divided by

∫ π

0
sin udu = 2 gives the moment y

y =
n

2

∫ π

0

x sin udu .

66[Note by AKTA:] In German: Molekulare Direktionskraft. Alternative translations: molecular directional
force, molecular directing force or molecular force of direction. The concept of “Direktionskraft” (directive
force) was introduced by Gauss in 1838, [Gau38, p. 4] with English translation in [Gau41c, p. 254].

77



Carrying out the integration one obtains for y the following expression67 ,68

y = nµ
X√

X2 +D2
· X

4 + 7
6
X2D2 + 2

3
D4

X4 +X2D2 +D4
.

The force acting on the iron which caused this moment was = X . If one denotes by n the
number of molecules in the volume unit, then the ratio between the moment y and the forceX
has in the rotation theory the same meaning as the magnitude in the separation theory which
Neumann denoted by k when he determined the magnetic state of an ellipsoid of revolution
in Crelle’s Journal für die reine und angewandte Mathematik, Vol. 37.69 Substituting the
variable value y/X for k in Neumann’s computation, it follows that, if n is the number of
molecules in the volume or mass unit, that the magnetism reduced to the volume or mass
unit of iron m is given by the following equation

m =
y

1 + 4πS y
X

for the volume unit ,

m =
y

1 + 4πSρ y
X

for the mass unit .

Here ρ denotes the density of iron and S a factor depending on the form, see Section 2.21.

After this the strength of iron magnetism m can be computed from the force X acting
on the iron if one knows the constants nµ and D for iron as well as its density ρ for the
reduction to the unit of mass. Setting

nµ = 2 324.68 ,

D = 276.39 ,

one obtains since the density of iron is ρ = 7.78 the following comparison between compu-
tation and experiment. Here one has to point out however that to determine the factor S
instead of the cylindrical shape of iron an approximating ellipsoidal form was substituted
giving S = 1/249.

67[Note by HW:] [This value for y is an approximate value, the actual expression is for X < D given by

y = 2
3nµ

X
D and for X > D given by y = nµ

(

1− 1
3
D2

X2

)

.

Wilhelm Weber indicated the change in his Note Verbesserung einer Formel in den elektrodynamische

Maassbestimmungen which appeared in the Berichte der Königl. Sächs. Gesellschaft der Wissenschaften zu

Leipzig, mathematisch-physische Klasse 1852 where he writes:]

On p. 572, line 22 of the previous article on Electrodynamic Measurements in the first volume of

the Abhandlungen der mathematisch-physischen Klasse der Königl. Sächs. Gesellschaft der

Wissenschaften was used for y instead of the accurate expression an approximation. I correct this

mistake by pointing out that this has no sensible influence on the numerical values deduced from

it. In fact the accurate value for y for all values of X , which are smaller than D is y = 2
3nµ

X
D , and

for all values of X which are larger than D one obtains y = nµ
(

1− 1
3
D2

X2

)

.

68[Note by AKTA:] [Web53d]. See also [Web57].
69[Note by AKTA:] See footnote 56 on page 64.

78



No. X m m difference
observed computed

1. 658.9 911.1 948.4 −37.3
2. 1 381.5 1 424.0 1 387.0 +37.0
3. 1 792.0 1 547.9 1 533.0 +14.9
4. 2 151.0 1 627.3 1 623.5 +3.8
5. 2 432.8 1 680.7 1 685.0 −4.3
6. 2 757.0 1 722.7 1 742.2 −19.5
7. 3 090.6 1 767.3 1 791.2 −23.9
8. 3 186.0 1 787.7 1 803.4 −15.7
9. 2 645.6 1 707.9 1 723.6 −15.7
10. 2 232.1 1 654.0 1 644.8 +9.2
11. 1 918.7 1 584.1 1 568.9 +15.2
12. 1 551.2 1 488.9 1 452.9 +36.0
13. 1 133.1 1 327.9 1 276.8 +51.1
14. 670.3 952.0 957.5 −5.5

Noting that in these experiments for the measurement of the intensity of the currents one
used as tangent galvanometer a usual compass only 60 millimeters long where the fractions
of a degree could not be observed with certainty, the intensity could easily be found 1
percent too small or too large. Therefore one could not expect a closer agreement between
computation and observation as the one found in the Table. In the graphical representation
in Figure 7 the computed values are connected by a thick line, the observed ones by a thin
line. It seems that thanks to this there is no doubt on the rotatability of the iron molecules.
And since one can consider these iron molecules according to Ampère as the carriers of
molecular currents, a complete accordance of all magnetic phenomena even the ones observed
on variable magnets with the theory of molecular currents is proved. Through this we found
an important confirmation of this theory through magnetic phenomena to guarantee the
explanation given before for diamagnetic phenomena.

2.27 Application Made to the Comparison in Section

10

In the previous Section we derived the law to determine the strength of iron magnetism
in terms of its dependence on the magnetic and electromagnetic separating force using the
theory of rotatable molecules. Its most important application concerns the construction of
stronger electromagnets, as actually all electromagnetic instruments, whose action depends
on the strength of iron magnetism. Since this application which was stressed by Joule and
Müller is not directly related to the topic discussed (diamagnetism), I restrict myself to add
just the application of this law on the comparison of the strength of an electrodiamagnet
from its magnetic and magnetoelectric effects, since I referred to this in Section 2.10, page 50.

In fact in Section 2.10 the magnetism of bismuth was compared to the magnetism of
iron in two ways. First by examining the deflection of the needle of a magnet and second
by the electric currents in a closed conductor induced by the same movement from both
materials. From the two comparisons the strength of the diamagnetism of bismuth can be
determined according to absolute measure as soon as one knows the strength of the mag-
netism of iron according to absolute measure. Hence one just has to apply the law above to
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the determination of iron magnetism, in order to obtain two independent determinations for
the diamagnetism of bismuth, which in view of their agreement confirm the law of diamag-
netic polarity. Although already in Section 2.10 under the conditions there the law derived
from the experiments of Müller was applied to the determination of iron magnetism, we
remarked, that the result found there is not completely sure and exact at all. Therefore it
will give us more certainty and exactness, if we apply the more precisely determined law
from the previous Section.

According to the first footnote in Section 2.10, the diamagnetism induced in bismuth by
an electromagnetic force X = 629.9 was compared to the magnetism induced in iron by the
same force by examining the torques exerted on a magnetic needle. Its ratio was found to be

1 : 1 470 000 .

Using this ratio, the diamagnetism can be determined according to absolute measure if
one knows the magnetism of iron according to absolute measure. According to the previous
Section, one has for X = 629.9

y

X
= 3.395 9 .

If one substitutes as in the previous Section for the cylindrical shape of the little iron bar,
which was 92 millimeters long and 0.1016 millimeters thick, a closely approximating form of
an ellipsoid, one obtains according to Neumann

S =
1

138 780
.

Using that value one finds by putting ρ = 7.78

logm = log
yT

X
− log

(

1 + 4πSρ
y

X

)

= 3.329 19 ,

hence for iron magnetism according to absolute measure

m = 2 134 .

For this value of iron magnetism one obtains according to the ratio quoted above for the
diamagnetism of bismuth according to absolute measure corresponding to the same force
X = 629.9

=
1

1 470 000
· 2 134 =

1

689
.

Furthermore in footnote 24 in Section 2.10, the diamagnetism produced in bismuth by an
electromagnetic force X = 3 012 was compared to the magnetism produced in iron by the
same force by looking at the intensity of the through their motion induced electric currents
in a closed conductor. Their ratio was found to be 1 : 456 700 or after the reduction for
bismuth stated in Section 2.10

1 : 360 740 .

With the help of this ratio the diamagnetism according to absolute measure can be deter-
mined, when one knows the iron magnetism according to absolute measure. According to
the previous Section for X = 3 012 one has

y

X
= 0.771 33 .
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If one substitutes here as well for the cylindrical form of the little iron bar, which was 186
millimeters long and 0.8342 millimeters thick, a closely approximating form of an ellipsoid,
one obtains according to Neumann

S =
1

9 747
,

and therefore, for ρ = 7.78,

logm = log
yT

X
− log

(

1 + 4πSρ
y

X

)

= 3.362 74 ,

hence for iron magnetism according to absolute measure

m = 2 305.4 .

For this value of iron magnetism one obtains from the above mentioned ratio the diamag-
netism of bismuth according to absolute measure corresponding to the same force X = 3 012

=
1

360 740
· 2 305.4 =

1

156.5
.

Finally, reducing this strength of diamagnetism obtained for different values of the force X
by division by X one obtains according to the first comparison (by magnetic effects) for the
strength of the diamagnetism of bismuth with respect to the unit of force and the unit of mass
according to absolute measure the value

1

629.9
· 1

689
=

1

434 000
.

On the other hand from the latter comparison (by electric effects) one obtains

1

2 301
· 1

156.5
=

1

471 300
.70

Averaging one obtains for the strength of the diamagnetism of bismuth with respect to the
unit of force and the unit of mass according to absolute measure the value

=
1

452 000
.

According to the formulas stated in the previous Section, however, one finds a limit value of
the magnetism produced by the unit of force in the unit of mass of iron, according to absolute
measure, the value

= 5.6074

which is 2 540 000 times bigger as the diamagnetism.
For small separating forces and thin iron bars for which the magnetism of iron is almost in

a constant ratio to the diamagnetism of bismuth, it follows that the diamagnetism of bismuth
is about 21

2
millions times smaller than the magnetism of iron. The larger the separating

forces and the thicker the iron bars become, the more the diamagnetism of bismuth is
increasing with respect to the magnetism of iron, so that according to the case stated in
Section 2.10, it increased up to the 360740th part of the iron magnetism, which is the largest
value occurring in the experiments above.

70[Note by WW:] According to this ratio it follows easily, by assuming the result obtained from the
magnetic effect of bismuth = 1

1 470 000 found at the beginning of Section 2.10 on page 46, that the result
= 4340

4713 · 1
1 470 000 = 1

1 596 000 deduced from the magnetoelectric, has to be put instead of = 1
1 731 560 , which was

found in Section 2.10 on page 50 based on the experiments by Müller. Incidentally, the more precise result
found here has already been mentioned with reference to this Note.
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Chapter 3

[Weber, 1852c] On the Connexion of
Diamagnetism with Magnetism and
Electricity

Wilhelm Weber71,72,73

From Poggendorff’s Annalen, vol. lxxxvii. p. 145. Extracted from the Memoirs of
the Royal Society of Sciences of Saxony, p. 483 to 578; also in a separate work,
“Memoirs on Electro-dynamic Measurements,” by M. Weber. Leipzig: Wiedemann,
1852.74

3.1 Theory

In treating of magnetism, a distinction is made between permanent and variable magnets;
we regard, for example, a magnet of hard steel as a permanent magnet, and a magnet of soft
iron as a variable one. Were the antithesis between both classes perfect (which, however, is
as little the case as that between conductors and insulators in electricity), the magnetism
of the permanent magnet could only be investigated through its effects, while that of the
variable magnet might be investigated through its causes as well as through its effects. At
all events, even though the antithesis be not perfect, the variable magnet is more favourable
to a complete examination of the nature of magnetism than the permanent one.

In the same manner, in treating of diamagnetism, it might be attempted to classify
diamagnets under the two heads permanent and variable; but then we should have no mark
by which a permanent magnet could be distinguished from a permanent diamagnet, and thus
the classification would lose all practical significance. In the investigation of diamagnetism,

71[Web52f] with English translation in [Web53b] and [Web66b].
72Wilhelm Weber’s Notes are represented by [Note by WW:]; the Notes by H. Weber, the editor of the

third volume of Weber’s Werke, are represented by [Note by HW:]; the Notes by John Tyndall, the editor of
the Scientific Memoirs where the English translation of this paper was published, are represented by [Note
by JT:]; while the Notes by A. K. T. Assis are represented by [Note by AKTA:].

73[Note by AKTA:] This work is an abridged version of Weber’s Third major Memoir on Electrodynamic
Measurements, [Web52b] with English translation in [Web21a], see Chapter 2.

74[Note by AKTA:] This text appeared on page 163 of [Web53b] and [Web66b]. It refers to [Web52f] and
[Web52a].
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therefore, variable diamagnets only are to be considered, which permit of examination partly
through their causes and partly through their effects.

Now it is known that the investigation of the magnetism of a magnet through its effects
(produced on other bodies) leads us to the knowledge of the ideal distribution of the magnetic
fluid on the surface of a magnet, regarding which Gauss has proved,75 that as far as the
explanation of phenomena is concerned, it answers completely to the true internal condition
of the magnet. In many investigations it is a great advantage to find a way furnished by
the ideal distribution towards the simple and complete union of all the observed actions,76

without the necessity of making any hypothesis regarding the interior of the body; more
particularly when the causes of these effects remain unknown, and are still to be investigated.
From the fact itself, however, that the knowledge of this ideal distribution, derived from
observation, affords a satisfactory and complete view of the phenomena, it evidently follows
that from the observed phenomena alone we cannot proceed further than to the knowledge of
this ideal distribution, which however must of necessity be distinguished from the knowledge
of the true internal state of the magnet; or, in other words, that proceeding from the observed
actions, we are not in a condition to pronounce upon the actual distribution of the magnetic
fluid within a magnet, or upon the actual number, strength, and arrangement of the electric
currents contained within it.

The same holds good for the actions of a diamagnet; from the observation of its actions
we might arrive at a knowledge of the ideal distribution of the magnetic fluid on the surface
of the diamagnet, and thus find a substitute for the knowledge of its true internal state; but
we could thus obtain no information regarding the true internal condition, or the real nature
of diamagnetism itself, its generation and modifications. To come upon the trace of these,
we must not limit ourselves to the consideration of the actions, and the ideal distribution
which depends upon them; but it is necessary to call in the aid of some other consideration
which is based upon a foundation independent of these actions.

All the possible causes of diamagnetism (like those of magnetism) may be divided in a
general manner into internal and external. The external cause (like the effects) is given
by observation, it is the same for magnetism and diamagnetism, namely, a magnetizing or
electro-magnetizing force, determinate in magnitude and direction.77 If, besides this external
cause, that which lies within the magnet itself were known, by the union of both diamag-
netism itself would be completely accounted for; and, inversely, we find a way open to the
determination of the true internal cause, where, besides the known external cause, we be-
come (through its actions) acquainted with the diamagnetism which is the resultant of both
causes. Following up the way here indicated, and combining the known magnetizing force
of separation with the ideal distribution deduced from the observed actions, for iron as well
as for bismuth, we learn that the same force of magnetization causes opposite ideal distri-
butions in the cases of iron and bismuth; or, inversely, the same ideal distribution in iron
and bismuth corresponds to oppositely directed magnetizing forces. The reason why opposed
external causes produce the same effect in iron and bismuth must be referred to different
internal causes within the iron and the bismuth themselves. To determine more accurately

75[Note by AKTA:] See footnote 7 on page 11.
76[Note by AKTA:] Wirkungen in German. Alternative translation: effects.
77[Note by AKTA:] In German: eine ihrer Grösse und Richtung nach bestimmte magnetische oder elektro-

magnetische Scheidungskraft. An alternative translation might be “a magnetic or electromagnetic separating
force, determinate in magnitude and direction”. The expression Scheidungskraft can be translated as “sepa-
rating force” or “force of separation”, see also footnote 23 on page 47. An example of the action of this force
might be the magnetization of a piece of soft iron due to a magnet or due to a current-carrying circuit.
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the difference between the internal causes of iron and bismuth, it is necessary to classify all
possible internal causes which can produce effects explainable by the ideal distribution, and
then to ascertain whether, among all that we can reckon, such are embraced as will enable
us to render an account of the above antithesis between magnetic and diamagnetic bodies,
subjected to the same external influences.

3.1.1 Classification of the Internal Causes which may be Assumed
as the Sources of the Effects Explainable by an Ideal Distri-

bution

We can adduce four essentially different kinds of internal causes which are capable of pro-
ducing effects explainable by an ideal distribution:

1. The internal cause of such effects may be referred to the existence of two magnetic
fluids, which are more or less movable independent of the ponderable matter which
carries them.

2. They may be due to the existence of two magnetic fluids, which are only capable of
moving in connexion with their ponderable carriers (rotatory molecular magnets).

3. They may be due to the existence of permanent molecular currents formed by the
electric fluids, and which can rotate with the molecules.

4. They may be due to the existence of electric fluids which can be thrown into molecular
currents.

These four possible internal causes of the actions explainable by an ideal distribution on
the surface are the only ones which are known, and which can be submitted to examination.
The first case forms the basis of the magnetic theory of Coulomb and Poisson.78 The third
case forms the basis of the theory of Ampère on the connexion of magnetism with electro-
dynamics.79 The second case may be reduced to the third, inasmuch as Ampère has proved
that molecular magnets and molecular currents are alike in all their actions, and hence the
latter may be substituted for the former. The fourth case, therefore, which has heretofore
been unattended to, is the only one that remains to be considered.

For each of these four cases there exists a definite connexion between the character of
the ideal distribution and the direction of the magnetizing force of separation to which it
corresponds. Calling that direction along the line of magnetization in which the north pole
of a magnetic needle is driven the positive, and determining the centre of gravity of the north
and south fluids from their ideal distribution, then for the first case, according to the theory of
Poisson, we find that the former of these two centres of gravity, as compared with the latter,
is situated in the positive direction. For the third case this connexion has been developed by
Ampère, and it has been found that the same dependence of the ideal distribution upon the
magnetizing force of separation exists here also. From the reduction of the second case to the
third, already mentioned, it is evident that the same dependence exists in the second case.
Hence, in regard to this dependence, the fourth case alone remains open to consideration.

78[Note by AKTA:] See footnote 43 on page 56.
79[Note by AKTA:] See footnote 44 on page 57.
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This fourth case assumes the existence of electric fluids which can be thrown into molec-
ular currents. But the possibility of being thrown into molecular currents necessitates the
inference, that in the single molecules, or around them, closed paths exist in which the said
fluids can move without resistance; from which it follows that a current-exciting force (a force
which acts upon the positive and negative fluids in opposite directions) in the direction of
the path is necessary to cause the fluids actually to move along it. Now the facts of magneto-
electricity prove that by the increase or diminution of a magnetizing force, a current exciting
force (electromotive) is obtained, which acts upon the electric fluids in opposite directions,
and hence must throw them into current motion. By the fundamental law of magnetic in-
duction the direction of this molecular current80 is given, in its dependence on the increase
or diminution of the magnetizing force; and by the connexion of electro-dynamics and mag-
netism developed by Ampère for the third case, the ideal distribution is, in its turn, given
in its dependence upon the molecular current. We thus obtain, mediately, the connexion
between the ideal distribution and the increase or diminution of the magnetizing force to
which it corresponds.

But it is evident from the above, that at every moment when an increase or diminution
of the magnetizing force takes place, such a molecular current must be generated, and that
these currents thus successively excited, if they do not of themselves again disappear, must
sum themselves up. These currents however do not vanish of themselves, for Ampère has
proved that persistency must be ascribed to molecular currents; that is, the electric fluids,
in their circular motions around the ponderable molecules, suffer no such resistance as that
encountered when the fluids traverse a ponderable conductor, to which resistance is to be
attributed the speedy disappearance of the electric currents in these conductors. (From
this persistency, which belongs of necessity to the molecular currents, it is manifest that
the possibility of throwing the electric fluids into molecular currents is to be referred to the
fact, that in the molecules, or around them, closed paths exist in which the said fluids move
without resistance.) From this it follows, that a continuous increase of the magnetizing force
is accompanied by a continuous accumulation of the magnetic fluids, according to the ideal
distribution; and hence we infer that every given strength of the magnetizing force has a def-
inite moment of ideal distribution corresponding to it. This summation however takes place
only in the case of molecular currents, for in this case alone the electric fluids move without
resistance. Other currents, which are excited by the same force at a greater distance, but
which, on account of the resistance experienced, quickly disappear, produce magnetic effects
on other bodies only during the moment of their excitation (through increased or diminished
magnetizing force). These effects immediately vanish as soon as the force has become con-
stant, and hence stand in no relation whatever to the magnitude of the existing magnetizing
force; a relation however must exist if the effects of variable magnets or diamagnets are to
be accounted for, and hence molecular currents alone are available here. Developing with
regard to these molecular currents, in accordance with the laws of magnetic induction, the
dependence of the moment of ideal distribution upon the magnitude of the magnetizing force
in operation, we find, that if in the line of magnetization the direction in which the north
pole of a magnetic needle is driven be called the positive, and the centres of gravity of the
north and south fluids, according to the ideal distribution dependent on the magnetizing
force, be determined, the former of these in comparison with the latter is situated in the

80[Note by AKTA:] In German: Molekularströmung. In [Web53b] and [Web66b] this expression was
sometimes translated as “molecular current” and other times as “molecular flux”. I utilized “molecular
current” is all places.

88



negative direction, which is exactly the reverse of what takes place in the other three cases.
This enables us to render an account of the inner cause of diamagnetism.

3.1.2 Internal Cause of Diamagnetism

This remarkable result may be applied to the founding of a theory of diamagnetic phenomena,
which shall assign an origin to the forces which produce them, a subject hitherto unexplained.
For such a theory it is not sufficient that the diamagnetic state of a body may be conveniently
represented by an ideal distribution of the magnetic fluids over its surface, but it is essential
that it shall render an account of the forces which produce the diamagnetic state, and also
of the laws according to which these forces act.

From the above statement and consideration of the different possible ways in which a
condition representable by an ideal distribution might be developed in a body, one case alone
was found from which a law coinciding with the fundamental phenomena of diamagnetism
resulted. It follows from this, that an explanation of the development of the diamagnetic
state can only be given when this case is regarded as actually existing; according to it
the increase of the diamagnetism of a body is proportional to the inducing force acting
upon the electric fluids, causing them to move without resistance in definite circular paths
around the molecules, and accelerating the velocity of their movement in these paths. The
diamagnetism of bismuth, for example, is explained by the assumption that the molecules
of bismuth contain within them definite paths or canals, in which the electric fluids move
without resistance, while in all other paths these fluids can only be set in motion by first
overcoming a resistance proportional to their velocity. The generation of pure diamagnetism
(unmixed with magnetism) would further necessitate the assumption, that the molecules
which contain the above paths or canals are not capable of being rotated; for were the
contrary the case, rotatory molecular currents might be generated, of such a strength that
a portion of their intensity during the rotation might be regarded as constant, and hence,
according to Ampère, would produce the magnetic state as a consequence. Conformably to
this assumption, the diamagnetism or electro-diamagnetism of a body can be determined
from the magnetizing or electro-magnetizing force exerted upon it.
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3.1.3 Determination of the Diamagnetism or Electro-diamagne-

tism of a Body from the Magnetizing or Electro-magnetizing
Force Exerted upon It

The magnetizing or electro-magnetizing force expressed by X81 exerts upon a circle of the
radius r, electromotive forces whose integral value, for the time during which this circle
is moved out of a position perpendicular to the direction of the magnetizing force into a
position parallel with it, according to Section 11 of the measurements of resistance in my
Electro-dynamic Measurements,82,83 is

= πr2X .

This integral value is the sum of the products of the electromotive force, reduced to an
absolute unit in the Section 10 aforesaid,84 into the element of time during which the force
acts with this intensity. The expression of this integral value remains unchanged, if instead
of moving the circle through an arc of 90◦, the magnetizing force X disappears. If, on the
contrary, this magnetizing force increases from X = 0 to X = X (by closing the circuit), the
expression of this integral value is

−πr2X ,

where the negative sign intimates that the induced circular current has such a direction that
the poles of an equivalent molecular magnet are directed in an opposite manner to those of
a compass needle under the influence of the force X .

This determination of the integral value of the electromotive force refers to the unit de-
duced from the absolute measure of magnetism, as established in the place above cited, pages
338 and 339;85,86 it must be multiplied by

√

1/2 to render it true for the pure electrodynamic
unit of electromotive forces given in Section 26 of the work cited;87 hence

81[Note by WW:] Every magnetizing force may be compared with terrestrial magnetism, and reduced to
the same unit of measure. The electro-magnetizing force of a cylindrical spiral, [Note by AKTA: that is, a
finite solenoid] through which a current passes of the intensity i, in accordance with the fundamental laws
of electro-magnetism, is expressed by

2πni√
a2 + r2

,

where n signifies the number of coils, r the radius, and a the length of the axis. This value is true, in the first
place, for the magnetizing force in the middle of the cylinder, and approximates to that due to every other
point of the interior space of the cylinder, excepting those which lie near its end, the more closely as the
spiral increases in length and diminishes in radius. When, therefore, a bar of bismuth is situated in the centre
of such a spiral, nearly equal electro-magnetizing forces are exerted upon all its particles; and hence it can
be moved to or fro between certain limits within the spiral without any perceptible change of these forces.
Hence such a spiral is particularly suited to experiments in which it is required that the diamagnetism shall
remain unchanged. The above expression gives the electro-magnetizing force referred to the same unit as
that of magnetizing forces (namely, to the absolute unit used in the determination of terrestrial magnetism),
where i denotes the strength of the bar-magnetism, the action of which is equal to the action of the current
circulating round a unit of surface.

82[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 323.
83[Note by AKTA:] [Web52c, pp. 322-325 of Weber’s Werke] with English translation in [Web21b].
84[Note by AKTA:] [Web52c, pp. 321-322 of Weber’s Werke] with English translation in [Web21b].
85[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 321.
86[Note by AKTA:] [Web52c, pp. 321-322 of Weber’s Werke] with English translation in [Web21b].
87[Note by AKTA:] [Web52c, pp. 358-365 of Weber’s Werke] with English translation in [Web21b].
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− π√
2
· r2X .

This expression, multiplied by 4/c (where c denotes that constant value of the relative
velocity at which two electric masses exert no influence whatever upon each other), gives
the electromotive force in terms of the absolute unit of measure for all forces, established
generally in mechanics (see Section 27 of the work cited);88 hence

−2
√
2

c
· πr2X .

This is the value of the electromotive force for the length of the entire circular path, under
the assumption that in every unit of length of this path the unit of electric fluid exists.
Dividing by the circumference of the circle 2πr, we find the electromotive force exerted upon
each unit of electric fluid to be

= −
√
2

c
· rX .

This, according to the principles of mechanics, expresses the increase of velocity which would
be imparted to each ponderable unit of mass if it were connected with the unit of electricity, in
the time during which the magnetizing force increases from X = 0 to X = X . Let ε denote
the unknown small fraction of the mass of the ponderable unit which the unit of electricity
forms, then the above value divided by ε gives the drift velocity u originated by the given
increase of the magnetizing force.89 If this drift velocity u be multiplied by 4e/c, where e
denotes the quantity of electric fluid, referred to the electric unit of measure, which exists
in each unit of length of the circular path, we obtain the intensity of the induced circular
current according to the pure electro-dynamic unit of measure; and when multiplied by

√
2,

we obtain it in terms of that unit according to which a current of the intensity 1, while
passing round the unit of area,90 is equivalent to the unit of magnetism,91 namely,

− 8e

c2ε
· rX .

The electromagnetic moment of this induced circular current (molecular current) is found
by multiplying the intensity of the current by the area enclosed by the circular path, and is

= − 8e

c2ε
· πr3X .

We have here assumed that the normal to the plane of the circular path is parallel to the
direction of the magnetizing force, which can only be the case for all circular paths by one

88[Note by AKTA:] [Web52c, pp. 365-368 of Weber’s Werke] with English translation in [Web21b].
89[Note by AKTA:] In German: so giebt obiger Werth, mit ε dividirt, die Stromgeschwindigkeit u, welche

durch das angegebene Wachsthum der Scheidungskraft hervorgebracht worden ist. This expression was trans-
lated as, [Web52d, p. 171]: “the the above value divided by ε gives the velocity u of the current originated by
the given increase of the magnetizing force.” I translated Stromgeschwindigkeit as “drift velocity”, that is,
the velocity of the electrified particle relative to the mass of the conductor. The expression Scheidungskraft

which Tyndall translated as “magnetizing force” might also be translated as “separating force” or “force of
separation”, see footnotes 23 and 77 on pages 47 and 86.

90[Note by AKTA:] In German: Flächeneinheit. This expression was translated as “element of surface” in
[Web53b, 171] and [Web66b]. I replaced it by “unit of area”.

91[Note by AKTA:] See footnote 54 on page 62.
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particular arrangement of the molecules. In the case of bismuth we do not assume such an
arrangement, but simply, in accordance with the idea of homogeneity, that the normals to
the planes of the circular paths have no paramount direction. According to this, the number
of circular paths whose normals make an angle ϕ with the direction of the magnetizing force,
must be proportional to sinϕ. The intensity of the current will then be proportional to
cosϕ, and the component of the moment parallel to the magnetizing force, to cos2 ϕ. If,
therefore, we multiply the above value by sinϕ cos2 ϕ, we obtain an expression proportional
to the contribution of all circular currents (molecular currents) the normals of which form
an angle ϕ with the direction of the magnetizing force to the electro-diamagnetic moment of
the bismuth, namely,

− 8e

c2ε
· πr3X · sinϕ cos2 ϕ .

Multiplying this by dϕ, and then, further, the integral taken between the limits ϕ = 0
and ϕ = π/2 by the number of molecular currents, we obtain the total electro-diamagnetic
moment of the bismuth mass m, when µm denotes the number of molecular currents in the
mass,

= − 8π

3c2ε
· µr3e ·mX .

The electro-diamagnetic moment of a mass of bismuth is therefore proportional to the mag-
netizing force X and to the mass of the bismuth m, and is found by multiplication with a
constant factor 8π/3c2ε, taken from the general theory of electricity, and with a constant
factor µr3e dependent on the nature of the bismuth itself. This last factor we may call the
diamagnetic constant of bismuth.

In this determination of the electro-diamagnetic moment, the molecular currents induced
in the circular paths have been regarded singly, as if on each molecule the electromotive force
calculated from the force of magnetization X had alone acted. Strictly speaking, however,
this is not the case. In each circular path, on the contrary, electromotive forces, resulting
from the action of the molecules upon each other, come into play; just as the particle of an
iron bar is not affected by the external magnetizing force, for example, the magnetism of
the earth, alone, but also by such forces as result from the reciprocal actions among the iron
particles themselves. Although this mutual action of the diamagnetic molecules is so small
as scarcely to exert a sensible influence, still a remarkable antithesis between the mutual
action of magnetic and diamagnetic molecules deserves consideration here.

3.1.4 Comparison of the Mutual Actions of Diamagnetic and Mag-
netic Molecules

When two particles of iron are situated in a line parallel to the direction of a magnetizing
force X acting upon them, calling the magnetic moment produced by the magnetizing force
in each molecule regarded singly m, there results for each particle an additional magnetizing
force, due to the action of the other, by which the magnetic moment m is augmented. This
new magnetizing force, resulting from the reciprocal action of the particles, is expressed
according to known laws by 2m/r3, where r denotes the distance between the particles. The
total magnetizing force (X + 2m/r3) produces, therefore, in the particle under consideration,
the increased moment
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(

1 +
2m

Xr3

)

m .

When, on the contrary, two bismuth particles are situated in a line parallel to the direction
of the magnetizing force X , calling the diamagnetic moment corresponding to this force of
magnetization −µ (the negative sign signifies that for similarly directed magnetizing forces
the diamagnetic moment is opposed to the magnetic one), then for each particle there results,
from the action of the other, a new force −2µ/r3, where r denotes the distance between the
particles; consequently to the total force of magnetization

(

X − 2µ

r3

)

corresponds the diminished diamagnetic moment

−
(

1− 2µ

Xr3

)

µ .

Hence the antithesis, that the magnetism of the two iron particles in the line of magnetization
is increased by their reciprocal action; but that, on the contrary, the diamagnetism of the two
bismuth particles lying in this direction is diminished by their reciprocal action.

The result is the reverse when the iron and bismuth particles lie in a line perpendicular
to the direction of the magnetizing force; here the magnetism of the particles of iron is
weakened by their reciprocal action; the diamagnetism of the bismuth particles, on the
contrary, is strengthened through the same cause. We find, in fact, the weakened magnetism
of the iron particle

= +
(

1− m

Xr3

)

m ,

and the strengthened diamagnetism of the bismuth particle

= −
(

1 +
µ

Xr3

)

µ .

From this it follows, that while to impart by a given magnetizing force the strongest
magnetism to a given mass of iron, we must convert it into the form of a long thin bar, and
set its length parallel to the direction of magnetization; in order to impart the maximum
diamagnetism to a given mass of bismuth, we convert it into the thinnest plate possible, and
set its thickness parallel to the direction of the magnetizing force. The further development of
these laws of the reciprocal action of diamagnetic molecules, compared with that of magnetic
molecules, leads finally to a simple distinction of magnetic and diamagnetic substances, which
is worthy of more particular examination.

3.1.5 Distinction between Magnetic and Diamagnetic Bodies, through

the Positive and Negative Values of a Constant

For the sake of unity, let us limit ourselves to the consideration of an ellipsoid of revolution
of iron or of bismuth, the principal axis of which is parallel to the magnetizing force X ; for
the case of iron, Neumann92 has proved that the magnetic moment of the ellipsoid is

92[Note by AKTA:] See footnote 56 on page 64.
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=
kvX

1 + 4πkS
,

where v denotes the volume and S a quantity derived from the ratio of the axes of the
ellipsoid, namely,93

S = σ
(

σ2 − 1
)

{

1

2
log

σ + 1

σ − 1
− 1

σ

}

,

σ =

√

1− r2

λ2
,

r and
√
r2 − λ2 the axes of the ellipsoid. k is supposed here to possess a constant value for

iron, and to it Neumann has given the name of the magnetic constant of iron; this constant
quantity in the case of iron, as of all other magnetic bodies, is necessarily positive.

The quantity k serves, therefore, by the different positive values which it assumes, as
a mark of distinction of the various magnetic substances; but the use of the quantity k
as a means of distinction may be rendered more general by applying it to all bodies, and
permitting it to assume negative values, the physical explanation being attached, that a
body which gives a negative value for k is a diamagnetic body. (The name anti-magnetic or
negative-magnetic would, therefore, be more suitable to these bodies.) The negative value of
k found for a diamagnetic body may be called the magnetic constant of the diamagnetic body,
or we may call the positive value obtained by changing the sign, the diamagnetic constant of
the body. Denoting this always-positive diamagnetic constant by h, to distinguish it from the
likewise always-positive magnetic constant k, we obtain, in the same manner as Neumann
has determined the magnetic moment of a magnetic ellipsoid, the diamagnetic moment of a
diamagnetic ellipsoid,

= − hvX

1 − 4πhS
.

Now for an infinitely elongated ellipsoid, for a sphere, and for an infinitely flattened
ellipsoid, we obtain successively

S = 0 , S =
1

3
, S = 1 ;

hence the corresponding magnetic moments are, successively,

+kvX , +
kvX

1 + 4
3
πk

, +
kvX

1 + 4πk
;

the corresponding diamagnetic moments, on the contrary, are

−hvX , − hvX

1− 4
3
πh

, − hvX

1− 4πh
.

The most lengthened form corresponds, therefore, to the weakest, the most flattened form
to the strongest diamagnetism; exactly the reverse of what is true for magnetism, as above
proved. As, however, the diamagnetic constant h possesses in all known diamagnetic bodies

93[Note by AKTA:] What Weber represents by the symbol “log” in the next equation should be understood
as the natural logarithm represented nowadays as “ln”.
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a value which almost vanishes in comparison with the unit, the diamagnetic moment of all
these bodies may, without sensible error, be regarded as independent of their form; it may
be set

= −hvX ;

and this expression may be compared with that already obtained for the diamagnetic mo-
ment, where the reciprocal actions of the molecules were disregarded. Setting

v =
m

ρ
,

where m denotes the mass and ρ the density of the body, we obtain for the diamagnetic
moment the expression

−h
ρ
·mX ,

instead of the expression found above,

− 8π

3c2ε
· µr3e ·mX .

In both methods the diamagnetic moment is represented as the product of the mass m into
the magnetizing force X , multiplied with a constant coefficient, which in the last expression
consists of two factors, namely, the factor 8π/3c2ε, to be taken from the general theory
of electricity, and the factor µr3e dependent on the nature of the diamagnetic body; this
has been already named the diamagnetic constant of the body. These two factors are not
separated in h/ρ; [the magnitude] h/ρ, indeed, is nothing else than the product of the above
two factors.

The quantity k is here assumed as constant (that is, independent of the strength of the
magnetizing force X), because Neumann has proved from the theory of separable magnetic
fluids that it must be constant (that is, independent of the strength of the separating force
X). The results above stated are, however, independent of this assumption, and retain their
validity even should closer examination prove k to be a function of the magnetizing force X .
From this examination, however, it will follow of itself, that even if k changes with X , h will
nevertheless possess a constant value for every diamagnetic body.

By the theory of diamagnetism here developed, it is easy to show that the disputed
question, whether magnetic fluids actually exist, can be decided.

3.1.6 On the Existence of Magnetic Fluids

When a certain class of actions of one body upon other bodies is so characterized that
these actions may be explained by reference to an ideal distribution of magnetic fluids upon
the surface; then, for the true interior condition of the body, four different possibilities
may be thought of, and thus four different cases distinguished, which have been above
stated and discussed. Two of these cases rested on the assumption that two magnetic fluids
exist, either in the rotatory molecules of the body, immoveable, but in constant separation;
or in non-rotatory molecules, moveable, and in variable separation. The two other cases,
on the contrary, rested on the assumption that the two electric fluids existed either in a
definite circuit round each rotatory molecule of the body in constant motion, or round

95



each non-rotatory molecule in variable motion. These four cases do not by any means
reciprocally exclude each other; for it is easy to see that a portion of the magnetic fluids may
remain constantly separated in rotatory molecules, while the separation of another portion
is variable; and in the same way a portion of the electric flow in given circular paths round
rotatory molecules may be constant, while another portion in circular paths round non-
rotatory molecules varies in intensity. In the latter respect, indeed, when we consider the
numerous electromotive forces present, the existence of a constant flow without a variable
portion is perfectly inconceivable; for the electric fluids, if free to move in definite paths,
as the existence of constant currents proves, must necessarily obey the impulsion of the
electromotive forces decomposed in the direction of these paths. Nevertheless the above four
cases may be combined pair-wise to two principal cases, each of which, if actually established,
would leave the other in the position of a quite superfluous hypothesis, namely, — 1st, that
magnetic fluids exist, which with the molecules, or in them, are capable of motion; 2ndly,
that the electric fluids, which, according to the doctrine of electricity, are everywhere present,
move without resistance in definite circular paths around the molecules.94

For each of these two principal cases a theory may be developed, and each of these theories
may be divided into two portions, in one of which the results of both theories coincide, and in
the other of which they contradict each other; for these theories are similarly circumstanced
to the theories of emission and of undulation in optics, which likewise in many respects were
coincident, until the discovery of the phenomena of interference led to the more accurate
investigation of those points in which the theories contradicted each other. Now, although
the two theories resulting from the assumptions of magnetic fluids and of molecular currents
have heretofore exhibited a surprising coincidence in their results, it might, nevertheless, be
expected that here, as in optics, the discovery of a new class of phenomena would lead to a
closer discussion of the points wherein both theories differ. Both theories, indeed, coincide
— 1st, in all phenomena which relate to permanent magnets; 2ndly, in the circumstance that
each permits of a division of variable magnets into two classes, namely, into such as owe
their magnetism to the mere arrangement of already existing rotatory molecules (molecular
magnets or molecular currents), and into such as owe their magnetism to the excitation of
the motion of imponderable fluids in motionless molecules (the separation of magnetic fluids
in the molecules, or the excitation of electric currents in definite circular paths around the
molecules); 3rdly, both theories agree in their results with regard to the first class of variable
magnets. The theories, however, contradict each other in the results which have reference to
the second class of variable magnets, for their conclusions regarding the positions of the poles
are opposed to each other. In accordance with the one, the positions of the poles, in the
second class of variable magnets, must be the same as those in the first class; in accordance
with the other, the positions of the poles in the second class must be the reverse of those
in the first. So long, therefore, as variable magnets in which the positions of the poles (for
similarly directed magnetizing forces) were identical were the only ones known, both theories
might be applied; but as soon as variable magnets (diamagnets) were discovered, in which
the positions of the poles (for similarly directed magnetizing forces) were opposed to each
other, no further choice remained between both theories, for the second alone can render
an account of the generation of two classes of magnets with poles oppositely situated, the
directions of the magnetizing forces being the same.

The diamagnetic phenomena discovered by Faraday95 serve, therefore, to decide the al-

94[Note by AKTA:] See also footnote 58 on page 66.
95[Note by AKTA:] See footnote 6 on page 11.
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ternative between both theories, just as the phenomena of interference served to decide the
alternative between the theories of emission and of undulation; and this is the most essential
and important character that can be ascribed to the discovery of Faraday. Through the dis-
covery of diamagnetism the hypothesis of electric molecular currents in the interior of bodies
is corroborated; and the hypothesis of magnetic fluids in the interior of bodies is refuted, — a
result which also finds a corroboration in the closer and more direct examination of variable
magnetism, namely, in the law according to which the strength of the variable magnetism
is determined from the magnitude of the magnetic or electro-magnetic force; this, however,
deserves a closer discussion here.

3.1.7 Dependence of the Variable Magnetism upon the Magnitude
of the Magnetic or Electro-magnetic Separating Force

According to the foregoing theory of diamagnetism, the diamagnetic moment of a diamagnet
is proportional to the magnitude of the magnetic or electro-magnetic separating force. Ac-
cording to the notion heretofore entertained regarding the moveable magnetic fluids within
the molecules of iron, the same proportionality holds good for the magnetic moment of a
variable magnet. If, however, this notion, together with the hypothesis of magnetic fluids in
the interior of bodies, be rejected, and instead of it Ampère’s notion, that the molecules of
iron are the ponderable bearers of permanent molecular currents, be assumed, from it will
follow a different law of dependence between the variable magnetism and the magnitude of
the magnetic or electro-magnetic separating force.

In Plate I, Figure 1, let NS be the axis of an unchangeable molecular current, which
is capable of rotation around its centre C; when the magnetizing force X is = 0, let the
position of equilibrium for this axis be parallel to ND.

The fact that the magnetism excited in soft iron by the magnetizing force disappears
again of itself, as soon as the magnetizing force ceases to act, proves that the molecular
current, to the rotation of which the excited magnetism is due, recedes of itself to its original
position parallel with ND. This force of recession, which is to be referred to the reciprocal
actions of the iron particles, must increase with the deflection AND, and may be represented
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by

D sinϕ

where D is a constant quantity which may be named the molecular directive force.96 If, now,
besides this molecular force of direction, the magnetizing force X act upon the molecular
current in the direction NX , which encloses the angleXND = u with the line of the directive
force, the molecular current will by this be drawn or deflected through the angle AND = ϕ,
and for the determination of the new position of equilibrium we have the following equation,

X sin u cosϕ = (D +X cosu) sinϕ ,

or

tanϕ =
X sin u

D +X cosu
.

From the deflection ϕ the increase of the magnetic moment of the molecular current, de-
composed in the direction of the force X , may be determined. If the total unchangeable
magnetic moment of the molecular current be denoted by µ, then it was decomposed in the
direction of the force X before the deflection as

= µ cosu ,

after the deflection,

= µ cos(u− ϕ) ,

hence the required increase x

x = µ (cos(u− ϕ)− cosu) .

Substituting here for ϕ the value of it as given by the above equation,

tanϕ =
X sin u

D +X cosu
,

we obtain

x = µ

{

X +D cosu√
X2 +D2 + 2XD cosu

− cosu

}

.

For a system of molecular currents whose magnetic axes, in their original positions of equi-
librium, point in all directions without distinction, the number of molecular currents whose
axes form an angle u with the direction NX of the force X are to be set proportional to sin u.
Let it be required to determine the magnetic moment y which results from the rotation of
all molecular currents of the system, by the force X .

To this end let the value of x above found be multiplied by sin udu, and let the integral
be taken within the limits u = 0 and u = π. This integral value, multiplied by the number
n of the molecular currents and divided by

96[Note by AKTA:] See footnote 66 on page 77.
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∫ π

0

sin udu = 2 ,

gives the required moment y,

y =
n

2

∫ π

0

x sin udu .

By carrying out the integration we obtain for y the following expression,97

y = nµ
X√

X2 +D2
· X

4 + 7
6
X2D2 + 2

3
D4

X4 +X2D2 +D4
.

The force which acted upon the iron, and by which the moment y was generated, was = X .
Let n denote the number of molecular currents in the unit of volume, then the ratio of the
moment y to the force X , in the theory of molecular currents, has the same meaning as the
magnetic constant which Neumann has denoted by k, in the theory of separable magnetic
fluids. Substituting, therefore, for k in the formula of Neumann given above, kvX/(1+4πkS),
the variable value just found y/X , we obtain the sought magnetic moment of a variable
magnet of the form of an ellipsoid of revolution, to which the formula of Neumann refers,

=
vy

1 + 4πS y
X

,

where S denotes the factor already determined from the ratio of the axes of the ellipsoid.

This result, referring to the dependence of the variable magnetism on the strength of
the magnetizing or electro-magnetizing force derived from the view of Ampère in contradis-
tinction to that usually assumed, is actually corroborated by the experiments described by
Müller in Poggendorff’s Annalen,98,99 1851, vol. lxxxii. p. 181.

3.2 Experiments

Having in the foregoing pages, for the sake of obtaining a simpler general view, stated, under
the title of a theory, the results obtained with regard to the connexion of diamagnetism with
magnetism and electricity, we shall, in the present section, give a brief description of the
experiments by which the theory is established.

97[Note by HW:] W. Weber later on improved the following expression for y with the following words
(Berichte über die Verhandlungen der Königl. Gesellschaft der Wissenschaften zu Leipzig, mathematisch-
physische Klasse, year 1852, p. 164):

p. 572, line 22 of the last publication on electrodynamic measurements in the first volume of

the Abhandlungen der mathematisch-physischen Klasse der Königl. Sächs. Gesellschaft der Wis-

senschaften is for y, instead of the strict expression, replaced by an approximate value. I improve

this oversight, while I notice, that it has no noticeable influence to the derived numerical data.

There it follows in fact the precise integral value of y for all values of X , which are smaller than D,

y = 2
3nµX/D; for all values of X , which are greater than D, y = nµ(1− 1

3D
2/X2).

98[Note by HW:] Annalen der Physik und Chemie, edited by C. J. Poggendorff.
99[Note by AKTA:] [Mül51b].
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3.2.1 Electro-diamagnetism, and Measurement of the Moment of

an Electro-diamagnet

The most convenient arrangement of an electro-diamagnetic apparatus of measurement, for
the observation of diamagnetic polarity, consists in a galvanic spiral100 which is set vertical
and symmetrical between the two poles of a magnetic needle bent into the horseshoe form.
A (see Figure 2) represents the transverse section of the spiral, which lies symmetrically
between the poles N and S of the bent magnetic needle NBS.

This magnetic needle is held by the clamp DE, in the centre of which, C, the suspending
fibre is fixed. Figures 3 and 4 represent two side views of the instrument.

It is of advantage to give the spiral a considerable length, say from 400 to 500 millimetres;
this renders it easier to regulate the suspension of the needle so that it shall swing in the

100[Note by AKTA:] That is, a finite solenoid.
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horizontal plane which bisects the length of the needle,101 no moment of rotation being here
exerted upon the needle when the current passes through the spiral. If, however, a small
moment of rotation should exist, this is easily compensated by a multiplier M (Figure 4)
consisting of a few coils, through which the same current is conducted and brought within
a suitable distance of the magnetic needle. For the observation of the latter it is necessary
to furnish it with a mirror P (Figure 3), and to observe therein, by means of a telescope,
the image of a distant scale. The magnetic needle is further surrounded by a damper QQ,
(Figure 3). The bismuth bar aa (Figures 3 and 4) is suspended vertically from a fibre within
the spiral; it can be raised or sunk, so that either its under or its upper end shall lie between
the poles of the magnetic needle, as represented in Figures 3 and 4. The observations are
made most conveniently by means of an arrangement of pulleys or levers, which permits the
observer himself, while standing beside his telescope, to raise or sink the bar of bismuth.
When the circuit is established and the magnetic needle perfectly at rest, the bismuth bar is
raised and the consequent small motion of the needle is observed. As soon as the needle has
attained its maximum elongation the bismuth bar is again suffered to descend; the magnetic
needle then moves back with increased velocity. When the maximum elongation on this
side has been attained, the bismuth bar is again raised, and so on. Between every two
elongations let the position of the bismuth during the intervening time be noted. If the
bismuth bar be exchanged for an iron bar of equal length, but very thin, the experimenter
can convince himself that when the positions of the bars are the same, the deflections of the
needle produced by the iron and the bismuth are opposite in direction.

M. Leyser102 of Leipzig has constructed this instrument in the simplest and most con-
venient manner (for 25 thalers103 without the telescope); it deserves to be particularly rec-
ommended for its applicability to this fundamental experiment on diamagnetic polarity. In
connexion with the results of certain experiments made by him and Prof. Hankel,104 M.
Leyser communicates to me as follows:

“A current of four elements of Grove105 was made use of, and by means of a multiplier
the magnet was retained in its former position. The bismuth was chemically pure,
and was so suspended that it could be moved up and down by means of a string,
without shaking the magnet in the slightest degree.

Observations of Leyser:

Position of magnet without current 492.0.
With current, bismuth in the middle 493.5,

with current, bismuth above 490.8,
with current, bismuth below 499.8,
with current, bismuth above 491.1,

with current, bismuth in the middle 493.8.

We here observe, in coincidence with all other experiments executed in a similar
manner, that in drawing up the bismuth (from the middle to the top) the position

101[Note by AKTA:] In German: Nadel. John Tyndall translated this word as “needle,” [Web53b, p. 182].
However, probably Weber was referring to the galvanic spiral or finite solenoid. For this reason Tyndall
followed this word “neddle” with the following expression: (spiral? J. T.)
102[Note by AKTA:] Georg Moritz Ludwig Leyser (1816-1881).
103[Note by AKTA:] A former German silver coin.
104[Note by AKTA:] Wilhelm Gottlieb Hankel (1814-1899).
105[Note by AKTA:] See footnote 9 on page 15.
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of rest for the magnet moved to smaller numbers, and by permitting it to descend
(from the middle to the bottom) the position of rest moved to higher numbers. The
difference between top and bottom amounts to

+8.9 divisions of the scale.

Without current, bismuth in the middle 492.0,
without current, bismuth above 497.2,
without current, bismuth below 490.2,
without current, bismuth above 498.2,

without current, bismuth in the middle 490.0.

We here observe that without a current the action is opposed to that exhibited when
a current is present; the difference between top and bottom being

−7.5 divisions of the scale.

Observations of Prof. Hankel:

Position of magnet without current 496.5.
With current, bismuth above 492.1,
with current, bismuth below 500.7,
with current, bismuth above 491.6,

with current, bismuth in the middle 497.7.

The difference between top and bottom amounts therefore to

+8.9 divisions of the scale.

Without current, bismuth in the middle 497.5,
without current, bismuth above 503.5,
without current, bismuth below 498.0,
without current, bismuth above 502.6,

without current, bismuth in the middle 494.8.

The difference between top and bottom amounts here to

−5.0.

The bismuth bar was then reversed and the same action was exhibited, namely,

Position of magnet without current 500.0.
With current, bismuth above 497.3,
with current, bismuth below 507.1,
with current, bismuth above 498.0.

The difference between top and bottom being

+9.4.

When, instead of determining the position of rest, the elongations were observed,
while the arc of oscillation was multiplied by the alternate elevation and descent of
the bar of bismuth, the following results were obtained:
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Elongations Arc of
oscillation

With current, bismuth in the middle
500.0

With current, bismuth above 3.0
497.0

With current, bismuth below 16.0
513.0

With current, bismuth above 31.5
481.5

With current, bismuth below 34.0
515.5

With current, bismuth above 39.0
476.5

With current, bismuth below 43.8
520.3

With current, bismuth above 47.3
473.0

With current, bismuth below 49.0
522.0

With current, bismuth above 51.0
471.0

With current, bismuth below 55.0
526.0

With current, bismuth above 57.5
468.5

A little bar of iron, suspended instead of the bismuth, when situated above, caused
the magnet to move to higher numbers, and when below caused it to move to
smaller numbers; the same was observed when the little bar was reversed. The stand
of the instrument must be very heavy; a serpentine stone was found very suitable:
the bismuth must be capable of moving freely, and the copper wire pure. In all
observations it was found, that applying four of Grove’s elements, when the bismuth
was drawn up, the impulsion amounted to from 8.9 to 9.4 divisions of the scale,
the direction being towards smaller numbers, while a fine iron wire under the same
conditions caused the magnet to move towards higher numbers; further, that the
bismuth without a current acted as an iron wire, and caused a motion through 5 to
7.5 divisions of the scale. When the latter action is taken into account, the mean
diamagnetic impulsion of the bismuth by the application of four of Grove’s elements
is found = 15.4 divisions of the scale. By multiplication, the arc of oscillation could
be increased to 57.5 divisions, and retained at this magnitude, inasmuch as the action
of the copper damper which surrounded the magnet held the diamagnetic action in
equilibrium.”

The following series of experiments was made with an apparatus somewhat different
from that just described; a particular description is however unnecessary, as the difference
exercises no particular influence.
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Experiments with Bismuth

No. of Position of Position of Arc of Reduced Mean
oscillation bismuth needle at the oscillation arc of value

during the commencement of the oscillation
oscillation or end of each needle

oscillation
500.0

1 above −40.0 −63.4
467.0

2 below −50.4 −66.6
513.9

3 above −56.3 −67.1
459.9 −61.8

4 below −58.5 −65.5
518.5

5 above −55.2 −59.4
460.0

6 below −46.5 −48.8
512.0

7 ∓29.7
above 471.1

8 ±7.0
489.7

9 below −8.9
494.2

10 above −15.6
480.9

11 below −30.0 −47.5
498.9

12 above −50.4 −66.6
457.0 −59.8

13 below −57.8 −68.5
516.0

14 above −50.9 −56.8
459.3

15 ∓35.6
below 504.4

16 ±12.4
478.3

17 above −14.7
476.9

18 below −36.6
504.9

19 above −42.6 −67.5
459.6

20 below −39.6 −52.3
499.4

21 above −46.6 −55.5
460.1

22 below −51.7 −57.9 −56.1
513.9

23 above −45.9 −49.4
464.2

24 below −50.6 −53.1
506.2

25 above −55.2 −57.0
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Experiments with Bismuth
No. of Position of Position of Arc of Reduced Mean

oscillation bismuth needle at the oscillation arc of value
during the commencement of the oscillation
oscillation or end of each needle

oscillation
446.9

26 ∓44.5
below 498.0

27 ±15.5
460.0

28 above −16.8
453.1

29 below −29.8
479.8

30 above −40.3 −63.9
446.9

31 below −46.0 −60.2
494.6 −55.8

32 above −42.2 −50.0
450.4

33 below −44.0 −49.3
490.5

34 above
442.6

In the third column of this Table the positions of the needle observed at the beginning and
end of each oscillation are noted; in the fourth column the corresponding arcs of oscillation
(the mean of every two successive ones). A positive sign before the arc of oscillation denotes
that when the position of the bismuth was above, the needle proceeded from smaller to
larger numbers, or when the bismuth was below, from larger to smaller numbers; the reverse
applies to the negative sign. After the position of the bismuth had been several times
regularly changed at the end of each oscillation, and the limit of the arc of oscillation nearly
attained, an interruption was effected by permitting the bismuth to remain unmoved during
two oscillations, and then again regularly changed as before. The negative arc of oscillation
was thereby suddenly converted into a positive one, which, however, soon diminished to zero,
and very soon afterwards passed over into a negative; the deflection caused by the bismuth (in
its upper and lower positions) was here most clearly exhibited. When the arcs of oscillation
are counted from that which is nearest to zero, the arc nearest to the limit may, by means
of the known decrementum logarithmicum,106 be easily reduced to the limit-value, and thus
a more accurate mean value for the latter may be found. For this purpose we have only to
divide the observed value of the nth arc of oscillation in the above experiments, where the
decrementum logarithmicum was nearly = log 3

2
by (1− (2/3)n). We thus obtain the reduced

values exhibited in the fifth column, and the mean values derived from the latter in the sixth
column. From all the observations taken together, we find the limit-value to be

106[Note by AKTA:] That is, the logarithmic decrement.
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x = −58.4 .

From this limit-value of the arc of oscillation, the deflection E corresponding to the
needle’s position of equilibrium can be deduced, namely E = −5.93; or taking the mean of
several series of experiments made by different observers,

E = −5.17 ,

while for a bar of iron of 59200 times less weight, the same value, determined by similar
experiments, was found to be

E ′ = +128.4 .

From this we learn, by reduction to the same weight, that the diamagnetism of the bismuth
is 1 470 000 times less than the magnetism of the iron. The result, however, is only true for
a particular form of the iron bar and for a definite strength of the magnetizing force, namely
X = 629.9, a number obtained from the measured strength of current and from the coils of
the electro-magnetic spiral.

3.2.2 Diamagneto-electricity and Measurement of Electric Cur-

rents Diamagnetically Induced

The apparatus for diamagnetic induction to be first described is so arranged that the in-
duction is excited solely by the motion of the diamagnetic body, while the spiral remains at
rest, and the diamagnetism of the body remains unchanged; by this means the formation of
galvanic currents in the bismuth as a conductor is avoided, and with it a secondary induc-
tive action, easy to be mistaken for the diamagnetic induction. The practical construction
of such an apparatus consists in the application of a galvanic spiral, through whose electro-
magnetizing force a bar of bismuth placed in its centre may, as remarked above, be uniformly
diamagnetized and moved to and fro within certain limits, without suffering any change as
to the strength of its diamagnetism.

3.2.3 The Electro-diamagnet made use of for the Diamagnetic In-

duction

The electro-diamagnet made use of for diamagnetic induction consisted of a bar of bismuth,
a long wire spiral, Acccc, Figure 5, Plate I, through which a current from eight of Bunsen’s
couples107 was conducted. The bismuth bar was 186 millimetres in length, and weighed
339 300 milligrams. The spiral consisted of copper wire covered with wool, and afterwards
coated with gutta percha; the pure copper wire was 2.3 millimetres thick, and formed eight
layers one above the other, each of which was composed of 120 coils. The whole spiral was
383 millimetres in length, and had an interior diameter of 23.9 millimetres, and an exterior
diameter of 70 millimetres.

107[Note by AKTA:] In German: Bunsen’schen Kohlenzinkbechern. See also footnote 15 on page 26.
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3.2.4 The Induction-spiral

The induction-spiral, Abbbb, Figure 5, Plate I, is that in which a current is to be induced by
the motion of the electro-diamagnet. This spiral must be carefully insulated from that which
belongs to the electro-diamagnet, through which the current passes from the galvanic battery,
and connected with a multiplier, by which the induced current may be observed. This spiral
consisted of copper wire overspun with silk, and 1 millimetre thick, forming three layers,
each of which contained 294 coils; the length of the spiral was 383 millimetres, the interior
diameter was 19, and the exterior 23 millimetres. Surrounded with gutta percha for the sake
of better insulation, it was inclosed in the wider tube of the spiral of the electro-diamagnet,
or rather the latter spiral was coiled round it.

The most essential point relating to this spiral is, that its length must be divided into
two perfectly symmetrical and symmetrically coiled halves. The wire is not continuously
coiled throughout the entire length in the same direction, but the spiral divides itself into
two equal portions, which are coiled in opposite directions. This is necessary, if through the
motion of a diamagnetic bar of bismuth, or a magnetic one of iron, a current is to be induced
in the spiral; for when this inducing bar is placed in the centre of the spiral and moved there,
the force of induction exerted by its north end in one half of the spiral is exactly opposed to
that exerted by its south end in the other half, and the action of both would destroy each
other if the two halves of the spiral were coiled in the same direction. Through the opposed
coiling, the inductive forces, instead of destroying each other, are caused to exert a twofold
action.

This necessary arrangement, for the purposes of induction, presents an important advan-
tage as regards the practical carrying out of the experiments. It is manifest that the current
of the galvanic battery, as long as it is constant in the spiral of the electro-diamagnet, can
exert no inductive action on the induction-spiral; the slightest alteration of its intensity,
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however, would be sufficient to induce in the spiral a current much stronger than that dia-
magnetically induced, and which therefore would prevent the observation of the latter. It
is, however, manifest that the same arrangement of the induction-spiral by which we have
secured that the diamagnetic induction in both halves shall be a twofold power, also effects
the mutual destruction of the currents excited in the two halves of the induction-spiral by
the galvanic current; so that if the symmetry of the two halves be perfect, the greatest
changes of intensity on the part of the current can produce no effect. To this we may add,
— 1st, that it is very easy to prove if this compensation actually exists, by effecting, not
small changes of intensity, but by interrupting or commutating the entire current; 2nd, that
if it should appear that this compensation is not complete, it is very easily rendered so by
winding an end of the induction-spiral once or oftener round the end of the spiral of the
electro-diamagnet. In this way it is easy to rescue the diamagnetic induction from every
foreign influence.

3.2.5 The Remaining Portions of the Induction-apparatus

With regard to the arrangement of the remaining portions, which are more or less left to the
discretion of the observer, I would make the following remarks. To move the bar of bismuth
to and fro in the induction-spiral, I connect it with a crank, attached to the wheel B, Figure
5, Plate I. To cause the current excited in the induction-spiral by the forward motion of the
bismuth to have the same direction through the multiplier as that excited by its backward
motion, a commutator dd is attached to the wheel, which moves with the latter, and by which
the connexion of the ends of the spiral with the wire of the multiplier is reversed at the end of
every semi-revolution (at the moment when the bismuth attains the commencement or end
of its path). The uniform direction of all induced currents through the multiplier would be
followed by a uniform deflection of the needle towards the same side. To enable the observer
to produce a deflection towards the other side, a second commutator, ee, Figure 5, is placed
beside the telescope E, which can be changed by the observer himself, and which may be
called the subsidiary commutator. The following must be particularly attended to, — 1st,
that the induction must be increased by increasing the velocity of the wheel, rather than
by lengthening the path traversed by the bismuth; 2nd, that no thermo-magnetic current
shall be generated at the rotating commutator; it must be so arranged that metals of the
same kind only rub against each other. The influence of such currents, when very feeble,
may be readily eliminated by suitably combining the observations. Finally, to obtain an
approximate idea of the strength of the galvanic current, an ordinary compass is placed at
a proper distance from the spiral of the electro-diamagnet, so that the deflection produced
by the current passing through the spiral may be conveniently measured. The experiments
were carried out as follows:

1st. The direction of the current being normal, the commutator was caused to rotate,
and the bar of bismuth at the same time set in motion to and fro within the induction-
spiral. At each elongation of the galvanometric needle, the observer changed the subsidiary
commutator, until the arc of oscillation thus multiplied approached its limit-value; 2nd, the
same series of experiments was then made with the direction of the current reversed; 3rd,
with the current again in the normal direction; 4th, with the reversed current; and finally,
5th, once more with the normal current; 6th, the bismuth bar was exchanged for a thin bar
of iron, and its induction measured in the same manner, with the current normally directed.
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1. Induction of the Bismuth Bar with a Normal Current
No. of Position of Position of Arc of Reduced Mean Deflection

oscillation subsidiary needle at oscillation arc of value of
commutator beginning of the oscillation compass

and end needle
of each

oscillation
475.3

1 −
472.8 + 3.70

2 +
477.7 + 5.40

3 −
471.8 + 6.80

4 +
479.5 + 8.35

5 −
470.5 + 9.65

6 +
480.8 + 10.55

7 −
470.0 + 11.40 + 13.20

8 +
482.0 + 12.25 + 13.65

9 − + 13.60 30o 10′ W
469.5 + 12.70 + 13.75

10 +
482.4 + 13.00 + 13.80

11 −
469.3
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2. With a Reversed Current
No. of Position of Position of Arc of Reduced Mean Deflection

oscillation subsidiary needle at oscillation arc of value of
commutator beginning of the oscillation compass

and end needle
of each

oscillation
503.5

1 +
515.9 + 9.50

2 −
509.3 + 3.65

3 +
510.0 −1.25

4 −
513.2 −4.75

5 +
506.9 −7.35

6 −
515.3 −8.90

7 +
505.9 −9.60 −14.12

8 −
515.7 −9.95 −13.10 −13.08 31o 50′ E

9 +
505.6 −9.85 −12.02

10 −
515.2
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3. With a Normal Current
No. of Position of Position of Arc of Reduced Mean Deflection

oscillation subsidiary needle at oscillation arc of value of
commutator beginning of the oscillation compass

and end needle
of each

oscillation
480.5

1 +
471.0 −7.15

2 −
475.8 −2.80

3 +
475.0 + 0.85

4 −
472.5 + 3.80

5 +
477.6 + 6.25

6 −
470.2 + 8.05

7 +
478.9 + 9.25

8 −
469.1 + 10.00 + 13.17

9 +
479.3 + 10.75 + 13.12

10 − + 13.06 31o 48′ W
468.0 + 11.30 + 13.08

11 +
479.3 + 11.30 + 12.88

12 −
468.0
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4. With a Reversed Current
No. of Position of Position of Arc of Reduced Mean Deflection

oscillation subsidiary needle at oscillation arc of value of
commutator beginning of the oscillation compass

and end needle
of each

oscillation
501.5

1 +
515.0 + 10.15

2 −
508.2 + 4.30

3 +
510.0 −0.05

4 −
511.9 −3.40

5 +
507.0 −5.60

6 −
513.3 −7.25

7 +
505.1 −8.65

8 −
514.2 −9.65

9 +
504.0 −10.10 −12.33

10 −
514.0 −10.55 −12.21

11 +
502.9 −11.00 −12.25

12 − −12.16 32o 13′ E
513.8 −11.30 −12.24

13 +
502.1 −11.45 −12.15

14 −
513.3 −11.25 −11.76

15 +
502.0
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5. With a Normal Current
No. of Position of Position of Arc of Reduced Mean Deflection

oscillation subsidiary needle at oscillation arc of value of
commutator beginning of the oscillation compass

and end needle
of each

oscillation
486.0

1 +
461.0 −20.40

2 −
476.8 −12.40

3 +
467.8 −6.15

4 −
471.1 −1.25

5 +
471.9 + 2.75

6 −
467.2 + 5.75

7 +
474.0 + 7.10

8 −
466.6 + 7.30

9 +
473.8 + 7.75

10 −
465.5 + 8.90 + 10.86

11 +
475.0 + 9.70 + 11.23

12 −
465.1 + 10.05 + 11.20

13 + + 10.95 30o 39′ W
475.3 + 10.25 + 11.10

14 −
465.0 + 10.15 + 10.77

15 +
475.0 + 10.10 + 10.56

16 −
464.8
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6. Induction of the Iron Bar with a Normal Current
No. of Position of Position of Arc of Reduced Mean Deflection

oscillation subsidiary needle at oscillation arc of value of
commutator beginning of the oscillation compass

and end needle
of each

oscillation
461.0

1 +
457.2 −15.30

2 −
484.0 −33.65

3 +
443.5 −45.60

4 −
494.2 −54.95

5 +
435.0 −62.20

6 −
500.2 −67.45

7 +
430.5 −71.50 −84.98

8 −
503.8 −74.50 −84.60

9 +
428.1 −76.90 −84.47

10 −
506.2 −78.60 −84.28

11 +
427.1 −79.90 −84.16

12 − −83.876 31o 48′ W
507.8 −80.85 −84.04

13 +
426.8 −81.10 −83.50

14 −
508.0 −81.30 −83.10

15 +
426.6 −81.50 −82.85

16 −
508.2 −81.75 −82.78

17 +
426.3

If we denote the very trifling influence exerted by the thermomagnetic current upon the
result by x, xI , xII , xIII , xIV , and neglect the still smaller differences x − xI , xI − xII ,
xII − xIII , xIII − xIV , we obtain the following results for the limit-value corresponding to
the diamagnetic induction alone, reduced to the normal direction:
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from 1 +13.60 + x
+ 13.34

2 +13.08− xI

+ 13.07
3 +13.06 + xII Mean + 12.644.

+ 12.61
4 +12.16− xIII

+ 11.555
5 +10.95 + xIV

From this limit-value of the arc of oscillation produced by the uniform distribution of
the inductive shocks108 (by the motion of the bismuth to and fro) over the entire time of
oscillation, it is easy to deduce the limit-value which would correspond to a concentration
of all the inductive shocks during the oscillation, into a single moment. The value of the
arc of oscillation above found, = +12.644, must for this purpose be multiplied by π/2, or
more accurately, taking the influence of the damper into account, with 1.574235, by which
we obtain the sought limit-value

= +19.905 .

For the bar of iron (where all the inductive shocks were thus concentrated), the corre-
sponding limit-value is found to be

= −83.876 .

From a great number of similar experiments, executed by various observers, we find the
ratio of the limit-value for bismuth to that for iron to be

+16.956 : −83.49 .

Now the intensity of the currents induced by bismuth and by iron is directly proportional
to these limit-values, and inversely proportional to the number of inductive shocks during a
time of oscillation (that is, as

1 : 216.2 ,

because in the experiments with the bismuth bar 216.2 shocks, and with the iron bar only 1
shock, took place during a time of oscillation). Hence the currents induced by the diamagnetic
bar of bismuth were opposed in direction to those induced by the magnetic bar of iron, and
their intensities were in the ratio of 109

16.956 : 83.49 · 216.2 = 1 : 1064.5 ,

although the bismuth bar weighed 339 300 milligrammes, and the iron bar only 790.86. From
this we find by calculation, that a bar of bismuth of the same weight as a bar of iron would

108[Note by AKTA:] In German: Induktionsstösse. It can also be translated as inductive kicks, blows or
hits.
109[Note by AKTA:] That is, as

16.956 : (83.49× 216.2) = 1 : 1064.5 = 9.394× 10−4 .
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induce a current 456 700 times weaker than the latter. This result is only true however for
a definite form of the bar of iron, and for a definite amount of magnetizing force, namely
X = 3 012, which is determined from the measured strength of the current, and the number
of coils of the electro-magnetic spiral.

3.2.6 On the Dependence of the Strength of the Magnetism of

Changeable Magnets upon the Amount of the Magnetizing
or Electromagnetizing Force

From the theory of diamagnetism, in connexion with that of magnetism, discussed in the
foregoing pages, it follows, that the assumption of two magnetic fluids capable of free motion
in the molecules of iron, hitherto made in the case of magnetism, (and from which the
proportionality of the magnetism to the magnetizing force follows as a consequence) is not
admissible, and that hence the hypothesis of Ampère, according to which the molecules are
the rotatory bearers of permanent molecular currents, and no proportionality between the
magnetism and the magnetizing force exists, must be set in its place. This consequence of
the theory admits of being brought to the test of experiment, and with reference to it the
experiments of Müller have been already adduced. Other experiments have however been
made, particularly by Buff and Zamminer, which have led to different results.110 Before
repeating these experiments it will be first necessary to state the conditions upon which a
certain decision of the point depends.

From Müller’s experiments, it appeared that the divergence of the magnetism of iron from
a proportionality with the magnetizing force exhibited itself at much smaller intensities of the
latter in the case of thin bars than when thick bars were made use of. In the comparison of
Müller’s experiments with those of Buff and Zamminer, we must remember that the thinnest
bar made use of by Müller was only 6 millimetres thick, while the thinnest of those used by
Buff and Zamminer was 9 millimetres thick; and this difference was rendered more influential
by the relation of the length to the thickness; Müller’s thin bar was 330 millimetres long,
while that of Buff and Zamminer was only 200 millimetres. In the following experiments
a still thinner bar than that of Müller was made use of, namely, one 3.66 millimetres in
thickness, 100.2 in length, and 8190 milligrammes in weight. The magnetism of such a thin
bar may be measured with great exactness by the deflection which it is able to produce
upon a small magnetometer, placed at a distance, and observed by means of a telescope and
mirror. The only difficulty here is the proper separation of the action of the magnetized
iron from that of the galvanic current. It is manifest that when the same galvanic spiral is
applied to the magnetization of thick and thin bars, as has been the case with Müller, Buff
and Zamminer, the above separation admits of less accuracy in the case of thin bars; for here,
inasmuch as the action of the galvanic spiral remains the same, its comparative influence will
be greater than when thick bars are applied. In the following experiments, therefore, a spiral
was made use of which tightly embraced the thin bar; and besides this, it was arranged that
together with these narrow convolutions, each spiral formed two greater convolutions, which
were traversed by the current in an opposite direction, and which embraced an area equal to
that embraced by all the narrow convolutions taken together. In accordance with the known
laws of electro-magnetism, we could here have no immediate action exerted by the current
upon the magnetometer, a conclusion capable of easy proof. The entire action exhibited

110[Note by AKTA:] [BZ50].
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by the magnetometer was therefore due to the magnetism of the iron alone, and may be
determined with equal sharpness and exactitude as that of permanent magnets, according
to the directions given by Gauss in the Intensitas, etc.111 It is especially to be mentioned
that the spirals made use of by Müller, Buff and Zamminer were shorter than the bars of
iron which they were used to magnetize. With Müller this difference was but trifling, for
the iron bar projected only 15 millimetres beyond the ends of the spiral. With Buff and
Zamminer it was however much greater, for here the ends of the largest and thinnest bar
projected 45 millimetres beyond the two ends of the spiral. The injurious influence of this
was increased by the circumstance that the length embraced within the spiral amounted to
only 110 millimetres, whereas in the case of Müller the enclosed length was 300 millimetres.
This circumstance is probably the chief cause of the divergence in the results arrived at by
these observers; for it is manifest that the action of the spiral upon the iron is greatest at the
centre, decreasing towards the ends, and that this decrease must, beyond the limits of the
spiral, be exceedingly speedy. Hence, although the action produced by the galvanic current
upon the central portions of the bar may have nearly attained its limit-value, it by no means
follows that this is the case with the portions without the spiral. To effect this approximation
at all points of the iron bar simultaneously, in the following experiments a spiral was made
use of which was considerably longer than the bar of iron, so that the force exerted by the
spiral (whose diameter was very small in comparison to its length) upon the ends of the bar
did not differ sensibly from that exerted upon its centre, by which precaution alone secure
results could be obtained.

Without entering upon the details of these experiments, I will here limit myself to a tabu-
lar statement of the results obtained in this way, and merely remark that each determination
is the result of four changes of current in the spiral, the most exact coincidence being in all
cases exhibited, a proof that the coercive force of the iron did not operate to the prejudice of
the measurements. The reduction, according to known rules, of the magnetism of the iron to
an absolute unit, requires no further explanation. The strength of the current, measured by
means of a tangent galvanometer,112 is also reduced to an absolute unit, and the correction
depending upon the ratio of the length of the needle to the diameter of the ring is taken
into account. From the strength of the current thus determined, the number of convolutions
and the dimensions of the spiral, the magnetizing force operating upon the iron was finally
calculated, in terms of the same unit as that to which the terrestrial magnetic force is re-
ferred; it appears in the second column of the following Table under X . The magnetism of
the iron M , divided by the mass of the iron p = 8190, and thus reduced to the unit of mass,
is exhibited in the third column under m.

111[Note by AKTA:] See footnote 47 on page 59.
112[Note by AKTA:] See footnote 12 on page 22.
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No. X m
1 658.9 911.1
2 1 381.5 1 424.0
3 1 792.0 1 547.9
4 2 151.0 1 627.3
5 2 432.8 1 680.7
6 2 757.0 1 722.7
7 3 090.6 1 767.3
8 3 186.0 1 787.7
9 2 645.6 1 707.9
10 2 232.1 1 654.0
11 1 918.7 1 584.1
12 1 551.2 1 488.9
13 1 133.1 1 327.9
14 670.3 952.0

By these experiments the result obtained by Müller is confirmed, and it only remains to
ascertain whether the change in the strength of the magnetism of the iron effected by the
action of different forces of magnetization, here exhibited, coincides with the law deduced
at the end of the first Section, from the assumption of a definite capacity of rotation on
the part of the molecules. If this be the case, it evidently follows that we can assume, with
Ampère, that these molecules are the bearers of molecular currents, by which assumption
the generation and changes of the magnetism of iron are rendered quite independent of the
idea of magnetic fluids, and are reduced to the assumption of moveable electric fluids alone.

According to the assumption already made (at the end of the first Section) of a definite
capacity of rotation on the part of the molecules, the character of every body, in magnetical
respects, is determined by two distinctive marks, — 1st, by the product of the magnetic
moment of a molecule (in the direction of its magnetic axis) into the number of molecules of
the body; 2ndly, by the constant to which we have given the name of the molecular directive
force.113 The product is denoted above by nµ, the constant by D. Setting in the case of
iron,

nµ = 2324.68 ,

D = 276.39 ,

where the number of molecules n is referred to the unit of mass, we obtain from the formulae
given at the end of the first Section, reference being made to the unit of mass instead of
to the unit of volume, the density of iron being taken at 7.78, and the numerical factor S
referring to a bar 100.2 millimetres long and 3.66 millimetres thick, that is, S = 1/249 —
the following contemporaneous values of X and m:

113[Note by AKTA:] See footnote 66 on page 77.
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X m
658.9 948.4
1 381.5 1 387.0
1 792.0 1 533.0
2 151.0 1 623.5
2 432.8 1 685.0
2 757.0 1 742.2
3 090.6 1 791.2
3 186.0 1 803.4
2 645.6 1 723.6
2 232.1 1 644.8
1 918.7 1 568.9
1 551.2 1 452.9
1 133.1 1 276.8
670.3 957.5

It will be observed that these calculated values differ but little from those contained in
the foregoing Table, and which were derived from observation.

According to the same formulae, we obtain for the iron bar with which, by a comparison
of the magnetic actions, m was found to be 1 470 000 times greater than its value for bismuth,
X being = 629.9,

m = 2 134 ;

hence for bismuth, where X = 629.9,

m =
2 134

1 470 000
=

1

689
.

For the iron bar, on the contrary, with which, by a comparison of the inductive actions, m
was found to be 360 740 greater than for bismuth, X being = 3 012, we have

m = 2 305.4 ;

hence for bismuth, where X = 3 012,

m =
2 305.4

360 740
=

1

156.5
.

According to this it appears that when the magnetizing force is increased 4.8 times, the
diamagnetism of the bismuth increases 4.4 times; that is, nearly proportional, although
one determination is founded on a comparison of the magnetic actions, the other upon a
comparison of the inductive actions. We thus find the proposition confirmed, that

the relation of the inductive actions to the magnetic ones is the same in the case
of diamagnetic bismuth as in that of magnetic iron.

Reducing diamagnetism to the same absolute unit as magnetism, we obtain finally the
strength of the diamagnetism of 1 milligram of bismuth, operated upon by the magnetizing
force X = 1,

=
1

452 000
,
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and the strength of the magnetism of 1 milligram of iron, under the influence of the magne-
tizing force X = 1,

= 5.607 4 ,

that is, the magnetism of a thin bar of iron exceeds the diamagnetism of an equal mass of
bismuth, when small and equal magnetizing forces operate upon both, about 21

2
million times.

For thicker bars and greater magnetizing forces this number is found to be somewhat smaller.
[J. T.]114

114[Note by AKTA:] That is, John Tyndall (1820-1893), translator.
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Chapter 4

[Weber, 1855a] On the Theory of
Diamagnetism. Letter from Professor
Weber to Prof. Tyndall

Letter from Professor Weber to Prof. Tyndall115 ,116,117

Göttingen, Sept. 25, 1855.

My Dear Sir,

Accept my best thanks for your kind communication of the 3rd of September; I am grat-
ified to learn that the apparatus executed by M. Leyser118 in Leipzig for the demonstration
of diamagnetic polarity has so completely fulfilled your expectations. This intelligence is all
the more agreeable to me, inasmuch as before the apparatus was sent away, it was not in my
power to go to Leipzig and test the instrument myself.

It gave me great pleasure to learn that Mr. Faraday119 and M. De la Rive120 have had
an opportunity of witnessing the experiments, and of convincing themselves as to the facts
of the case.

It was also of peculiar interest to me to learn that you had succeeded in establishing the
polarity of the self-same heavy glass with which Faraday first discovered diamagnetism.121

This is the best proof that these experiments do not depend upon the conductive power of
bismuth for electricity.

I have read with great interest your memoir “On the Diamagnetic Force,” &c. contained
in the Philosophical Transactions, vol. cxlv.122 It has been your care to separate the fact of
diamagnetic polarity from the theory, and to place the former beyond the region of doubt.
Allow me, with reference to this subject, to direct your attention to a passage at page 39

115[Web55a].
116The Notes by A. K. T. Assis are represented by [Note by AKTA:].
117John Tyndall (1820-1893). For his works on diamagnetism see [Jac15].
118[Note by AKTA:] See footnote 102 on page 101.
119[Note by AKTA:] Michael Faraday (1791-1867).
120[Note by AKTA:] Auguste Arthur de la Rive (1801-1873).
121[Note by AKTA:] See footnote 6 on page 11.
122[Note by AKTA:] See [Tyn55b], [Tyn55a], [Tyn55c] and [Tyn88, pp. 111-192].

121



of your memoir, which you adduce as a conclusion from my theory; the passage runs as
follows:123

“The magnetism of two iron particles in the line of magnetization is increased by their
reciprocal action; but, on the contrary, the diamagnetism of two bismuth particles
lying in this direction is diminished by their reciprocal action.”

This proposition is by no means a necessary assumption of my theory, but is rather a
direct consequence of diamagnetic polarity, if the facts be such as both you and I affirm them
to be. What, therefore, you have adduced against the above conclusion must be regarded
as an argument against diamagnetic polarity itself. The diamagnetic reciprocal action of
the bismuth particles in the line of magnetization is necessarily opposed to the action of the
exciting magnetic force. The latter must be enfeebled, because the diamagnetic is opposed to
the magnetic reciprocal action of iron particles which lie in the line of magnetization, through
which latter it is known the action of the exciting magnetic force is increased. Hence also
the modification produced in bismuth by magnetic excitement, whatever it may be, must be
weakened, because the force of excitation is diminished.

(I believe, however, that this argument against diamagnetic polarity may also be sur-
mounted. The phænomenon which you have observed must be referred to other circum-
stances, also connected with the compression of the bismuth. For the diamagnetic reciprocal
action is, as I have shown, much too weak to produce an effect which could be compared in
point of magnitude with the reciprocal action produced in the case of iron.)

I take this opportunity of adding a few remarks for the purpose of setting my theory of
diamagnetic polarity in a more correct light.

My theory assumes: — 1, that the fact of diamagnetic polarity is granted; 2, that in
regard to magnetic phaenomena, Poisson’s theory of two magnetic fluids,124 and Ampère’s
theory of molecular currents,125 are equally admissible. Whoever denies the first fact, or
rejects the theory of Ampère, cannot, I am ready to confess, accept my theory.

But supposing that you do not reject Ampère’s theory of permanent molecular currents,
but are disposed to enter upon the inner connexion and true significance of the theory, you
will easily recognize that it is by no means an arbitrary assumption of mine, that in bismuth
molecular currents are excited, when the exciting magnetic force is augmented or diminished;
but that the excitation of such molecular currents is a necessary conclusion from the theory
of Ampère, which conclusion Ampère himself could not make, because the laws of voltaic
induction, discovered by Faraday,126 were unknown to him. In all cases where molecular
currents exist, by increase or diminution of the magnetic exciting force molecular currents
must be excited, which either add their action to, or subtract it from, the action of those
already present.

Finally, permit me to make a few remarks on the following words of your memoir:127

123[Note by AKTA:] [Tyn55b, p. 39]. Tyndall was quoting from Weber’s work of 1852, [Web52f, p. 158
of the Annalen der Physik und Chemie and p. 565 of Weber’s Werke] with English translation in [Web53b,
p. 173] and [Web66b, p. 173]. It is an abridged version of Weber’s Third major Memoir on Electrodynamic
measurements, [Web52b, p. 531 of Weber’s Werke] with English translation in [Web21a, p. 64]. See, in
particular, pages 63 and 93 on Subsection 3.1.4 and on Section 2.20, respectively.
124[Note by AKTA:] See footnote 43 on page 56.
125[Note by AKTA:] See footnote 44 on page 57.
126[Note by AKTA:] [Far32a] with German translation in [Far32b] and [Far89], and with a Portuguese

translation in [Far11].
127[Note by AKTA:] [Tyn55b, p. 39].
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“To carry out the assumption here made, M. Weber is obliged to suppose that the
molecules of diamagnetic bodies are surrounded by channels, in which the induced
currents, once excited, continue to flow without resistance.”

The assumption of channels which surround the molecules, and in which the electric
fluids move without resistance, is an assumption contained in the theory of Ampère, and is
by no means added by me for the purpose of explaining diamagnetic polarity. A permanent
molecular current without such a channel involves a manifest contradiction, according to the
law of Ohm.128

I may further observe, that I do not wonder that you regard a theory which is built upon
the assumption of such channels, as “so extremely artificial that you imagine the general
conviction of its truth cannot be very strong.” In a certain sense I quite agree with you,
but I only wish to convince you that this objection applies really to the theory of Ampère,
and only applies to mine in so far as it is built upon the former. (You may perhaps find
less ground for objecting to the speciality of such an assumption, if you separate the simple
fundamental conception, which recommends itself particularly by a certain analogy of the
molecules to the heavenly bodies in space, from those additions which Ampère was forced
to make, in order to apply the mathematical methods at his command, and to make the
subject one of strict calculation. He was necessitated to reduce the case to that of linear
currents, which necessarily demand channel-shaped bounds, if every possibility of a lateral
outspreading is to be avoided.)

To place my theory of diamagnetic polarity in a truer light, I am anxious also to convince
you that this theory is by no means based upon new assumptions (hypotheses); but that it
only rests upon such conclusions as may be drawn from the theory of Ampère, when the laws
of voltaic induction discovered by Faraday, and the laws of electric currents by Ohm, are
suitably connected with it. I affirm, that, even if Faraday had not discovered diamagnetism,
by the combination of Ampère’s theory with Faraday’s laws of voltaic induction, and Ohm’s
laws of the electric current, as shown in my memoir, the said discovery might possibly have
been made.

In respect, however, to the artificiality of the theory of Ampère, I hope that mathematical
methods may be found whereby the limitation before mentioned to the case of linear currents
may be set aside, and with it the objection against channel-form beds. All our molecular
theories are still very artificial. I for my part find less to object to in this respect in the
theory of Ampère than in other artificialities of our molecular theories; and for this reason,
that in Ampère’s case the nature of the artificiality is placed clearly in view, and hence also
a way opened towards its removal.

To Mr. Faraday I beg of you to present my sincerest respect.
Believe me, dear Sir,

Most sincerely yours,

Wilhelm Weber.

Professor Tyndall.

——————————————————————

128[Note by AKTA:] Georg Simon Ohm (1789-1854). Ohm’s law is from 1826: [Ohm26a], [Ohm26c],
[Ohm26d], [Ohm26b] and [Ohm27] with French translation in [Ohm60] and English translation in [Ohm66].
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The foregoing letter possesses more than a private interest, and I have therefore laid it
before the readers of the Philosophical Magazine. On one point in it only would I ask per-
mission to make a remark, and that is the proposition, that the diminution of the excitement
of a row of bismuth particles in the line of magnetization by their reciprocal action is “a
direct consequence of diamagnetic polarity.” M. Weber (I believe) founds this proposition on
the following considerations: — Let a series of bismuth particles lie in the axial line between
the magnetic poles N and S: the polarity excited in these particles by the direct action of
the poles will be that shown in the figure, being the reverse of that of iron particles under
the same circumstances.

But as the end n of the right-hand particle tends to excite a magnetism like its own in the
end s′ of the left-hand particle, and vice versa, this action is opposed to that of the magnet,
and hence the magnetism of such a row of particles is enfeebled by their reciprocal action.

Now it appears to me that there is more assumed in this ingenious argument than ex-
periment at present can bear out. There are no experimental grounds for the assumption,
that what we call the north pole of a bismuth particle exerts upon a second bismuth particle
precisely the same action that the north pole of an iron particle would exert. Magnetized
iron repels bismuth; but whatever the fact may be, the conclusion is scarcely warranted, that
thereforemagnetized bismuth will repel bismuth. Supposing it were asserted that magnetized
iron attracts iron and repels bismuth, while magnetized bismuth attracts bismuth and repels
iron, would there be anything essentially impossible, self-contradictory, or absurd involved
in the assertion? I think not. And yet if even the possible correctness of such an assertion
be granted, the proposition above referred to becomes untenable. It will be observed that it
is against a conclusion rather than a fact that I contend. With regard to the fact, I should
be sorry to express a positive opinion; for this is a subject on which I am at present seeking
instruction, which may lead me either to M. Weber’s view or the opposite. Be that as it
may, the result cannot materially affect the respect I entertain for every opinion emanating
from my distinguished correspondent on this and all other scientific subjects.

J. T.
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Chapter 5

[Weber, 1855b] Foreword to the
Submission of the Treatise:
Electrodynamic Measurements, specially
Attributing Mechanical Units to Measures
of Current Intensity

Wilhelm Weber129,130,131

Session on 20 October 1855.

I am submitting the aforementioned treatise, which was written by myself and Professor
Kohlrausch132 in Marburg, to the Royal Scientific Society. It consists of a continuation of
three treatises that were submitted previously, and which appeared under the same general
title.133

As was developed already in the first treatise, the general law of electrical action and the
fundamental laws that can be derived from it for various branches of the theory of electricity
(with the exception of the fundamental law of electrostatics) include a constant whose nu-
merical value, when expressed in terms of known units, has great importance for the whole
theory of electricity, both theoretically and practically. That is because although one can
make numerous applications of those laws to the determination of ratios or quotients in which
that constant cancels in the denominator and the numerator while having no knowledge of
the value of that constant, nonetheless there will be many other applications of the above
laws that are not possible without determining the values of the constants that are included

129[Web55b] with English translation in [Web21c]. Related to [KW57] with English translation in [KW21],
see Chapter 7.
130Translated by D. H. Delphenich, http://www.neo-classical-physics.info/index.html and e-mail:

feedback@neo-classical-physics.info. Edited by A. K. T. Assis.
131The Notes by A. K. T. Assis are represented by [Note by AKTA:].
132[Note by AKTA:] Rudolf Hermann Arndt Kohlrausch (1809-1858).
133[Note by AKTA:] [Web46] with partial French translation in [Web87] and English translation in [Web07];

[Web52c] with English translation in [Web21b]; and [Web52b] with English translation in [Web21a].
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in them. Up to now, the determination of that value has been lacking, and the closing of
that gap in the determination of electrodynamic measurements is the next objective of the
present treatise.

The simplest path to achieving that goal is to appeal to the measurements of current
intensity in absolute units, which was discussed in detail in the Second treatise,134 namely,
the ones that are based upon the magnetic or electrodynamic current effects, to which the
electrolytic current effects can be easily reduced with the help of corresponding observations.
That is because the current intensity, when expressed in terms of either units, is nothing but
the amount of positive electricity that flows through each cross-section of the conductor in
one second in the direction of the current, multiplied by either

√
8 or 4, and divided by that

constant, which explains the fact that when only that amount of electricity can be measured,
the measurement of the current intensity in one of the two absolute units will lead to the
determination of the value of that constant. However, that total positive electricity that
flows through the cross-section of the conductor in one second in the direction of the current
was referred to as the mechanical measure of the current intensity in the Second treatise,
from which, it emerged that the goal of that treatise — namely, determining the value of
the constant — would be achieved when one succeeded in reducing the measurements of the
current intensity that are obtained from both measurements to mechanical measures.

However, the total amount of electricity that flows through the cross-section of a con-
ductor in a certain time interval cannot be measured while it is flowing. It must then be
previously measured while it is found in a state of rest. One must then previously collect a
certain amount of electricity that one would like to have flow through a conducting wire —
e.g., in a Leyden jar — and one must then seek to measure it while it is found in a state
of rest according to electrostatic principles, and one must then determine the intensity and
duration of the current that is produced when that same amount of electricity flows (from
the Leyden jar to the Earth, for instance) through a conducting wire in absolute units.

Now, as far as that initial measurement of the total electricity that is collected in the
Leyden jar is concerned, the electrostatic principles that must be applied to that measurement
are indeed known, in general, but many difficulties have been found in regard to applying
those principles to the electricity that has been collected in a Leyden jar. Coulomb, whom
we have to thank for those principles, made applications to only very small amounts of
electricity with which the small spheres of his electrical [torsion] balance were charged.135

The solution of those difficulties was then the main problem that needed to be addressed as
the goal of this treatise. Several of those difficulties were eliminated by Professor Kohlrausch
in earlier investigations, and that fact was what led to the ambition for us to combine the
work that we had done, and it was only by such combined efforts that we could hope to
achieve satisfactory results.

As far as concerns the measurement of the intensity and duration of the electricity that
is stored in a Leyden jar from the current that is created by its discharge into the Earth,
it becomes clear that neither the measurement of that intensity nor that duration can be
performed directly, because the intensity is not constant and the duration of the current that
is created in that way is immeasurably small. The only thing that can be measured precisely
is the so-called integral value of the current that is created — i.e., the sum of the products
of each time element dt into the intensity i (expressed in absolute units) of the current that
is present in that time element (=

∫

idt), as calculated from the beginning to the end of the

134[Note by AKTA:] [Web52c] with English translation in [Web21b].
135[Note by AKTA:] See footnote 43 on page 56.
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current. However, that integral value is nothing but the total amount of electricity in the
Leyden jar that is discharged into the Earth, multiplied by either

√
8 or 4 and divided by the

desired constant. Meanwhile, it must be observed in all of this that not all of the electricity
that is stored in the Leyden jar flows from the jar to the Earth, but only half of it, while an
equal amount of negative electricity will simultaneously flow from the Earth to the jar, and
that will neutralize the other half of the electricity that is collected in it.

We must avoid going into the details of those measurements in this brief report, and
therefore refer to the treatise itself136 for the electrostatic measurement of the amount of
electricity stored in a Leyden jar, as well as all things concerned with the electrodynamic
measurement of the integral value of the current that is created when it is discharged into
the Earth. It might suffice here to briefly cite the results of those measurements.

The measurement of the total amount of electricity E stored in a Leyden jar for five
different charges gave the following results:

No. E
1. 35 786 000
2. 41 618 000
3. 49 313 000
4. 44 007 000
5. 49 276 000

The meaning of the numbers that are quoted under E is as follows: For the first charge,
an amount of positive electricity was stored in the jar such that if it had been concentrated
into a point then an equal amount of electricity that had been concentrated into a point
at a distance of 1 millimeter from it would repel it with a force that equals the weight of
(35 786 000)2 · 1/g milligrams, where g denotes the acceleration of ponderable bodies due to
gravity: i.e., g = 9 811 millimeters/(second)2. The measurement of the integral value

∫

idt
of the current that is created by removing the electricity E that is stored in the Leyden jar in
terms of the absolute units that are based upon magnetic current effects gave the following
results in those five cases:

No.
∫

idt
1. 0.000 119 4
2. 0.000 130 0
3. 0.000 156 8
4. 0.000 148 0
5. 0.000 158 9

However, from the above, when one observes that only half of the positive amount of
electricity E flows from the Leyden jar to the Earth, because the other half will be negative
electricity that flows from the Earth to the jar in the opposite direction, which will neutralize
the latter, one will have the quotient E/

∫

idt = c
√
2, in which c denotes the desired constant.

As a result, one gets the five following mutually-independent determinations of the value of
the unknown constant c from the five values of E above and the associated values of

∫

idt:

136[Note by AKTA:] [KW57] with English translation in [KW21], see Chapter 7.
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No. c
1. 423 870 · 106
2. 452 750 · 106
3. 444 760 · 106
4. 420 510 · 106
5. 438 560 · 106

The mean of those five measurements yields the value of the constant c = 436 090 · 106.
The meaning of the constant c is that of a well-defined velocity, and indeed the velocity

with which two electric masses must approach or separate from each other if neither attrac-
tion nor repulsion is to exist between them. Here, the velocity c is expressed by the number
of millimeters that will be traversed in one second at that velocity. With 7408 meters per
mile, that velocity is calculated to be 58 868 miles per second.

Finally, with the value of that constant, all of the current intensity measurements that
are quoted in absolute units (whether they are based upon magnetic, electrodynamic, or
electrolytic current effects) can be easily reduced to mechanical units, which might imply,
e.g., that a positive amount of electricity of 164

9
billion mass units and an equal amount of

negative electricity would be required in order to decompose 1 milligram of water. If that
positive amount of electricity were in a cloud and that negative electricity were concentrated
into a location on the surface of the Earth along a perpendicular beneath the cloud then that
would imply an attraction of the cloud to the Earth that would be equal to the weight of
27 545 kilograms, or almost 551 hundredweights, when the two are separated by 1000 meters.

The second part of the treatise is concerned with applications that can be made, in part
when one extends the laws that were developed in the previous treatises by the determination
that is thus obtained, and in part when one seeks to employ the newly-obtained determination
as the foundation for new investigations.

In all laws into which the constant c enters, it always appears as the denominator of the
velocity with which the bodies actually move relative to each other or as the denominator of
the velocity with which the bodies would move relative to each in the course of a unit time
(viz., second) when the acceleration that is present continues throughout that time interval.
It is therefore of practical interest that all actual velocities that we know — even those of
the planets — can be considered to be vanishingly small compared to the velocity c. That is
because the only velocity that is known to us, which comes close to the speed c, — namely,
the speed of the propagation of light — is not an actual velocity with which bodies can
move relative to each other. That yields some interesting applications: e.g., that one can
also adapt the extension that was made to the law of electrostatics to the law of gravitation,
since the change in the gravitational force that it would imply would vanish entirely for
all phenomena in which one might observe it. The fact that for electricity the change
in the electrostatic force (which corresponds to the gravitational force between ponderable
bodies) does not vanish everywhere when one adds the aforementioned extension is based
merely upon the total cancellations of the electrostatic forces that takes place under the
neutralization of positive and negative electricity. Where no such neutralization takes place,
but only free electricity is present, a consideration of the electrostatic force will always suffice
for the effects of that free electricity, because its change in accordance with that extension
can be likewise regarded as totally vanishing, which has great practical significance for the
consideration of free electricity in closed circuits.
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Finally, an important principle for new investigations is that all forces that act upon an
electric mass will also act immediately upon the ponderable masses that they pertain to and
from which they can be separated only by overcoming the resistance of the ponderable bodies.
Now, if those electrical forces can be determined by mechanical measures then one will learn
about the molecular forces that mediate the mechanical and chemical effects of electricity on
ponderable bodies in that way. That will show how the research into the galvanic resistance
of water can be employed to obtain a precise insight into and understanding of the chemical
affinity of oxygen and hydrogen in water. For instance, if one could rigidly couple all oxygen
particles to each other in the water in a mixture of water and sulfuric acid of specific weight
1.25 that occupies a column of arbitrary cross-section and one millimeter in height and move
them to one side by means of a tensed string, while all of the hydrogen particles were coupled
rigidly to each other and moved to the opposite side by means of a tensed string then the
tensions in those two strings would amount to 1478 hundredweights if the systems of oxygen
particles and hydrogen particles in 1 second were to move so far from each other that the
component of 1 milligram of water would be free at the two ends of the water column.

Most likely, similar applications can also be made in relation to the mechanical effects
of electricity when it jumps from one conductor to another while small ponderable particles
are torn from the one conductor by the electricity. If one were to possess a more precise
knowledge of all the relationships that come into play essentially in that phenomenon then
it would probably be possible to determine the mass of the neutral electric fluid that exists
in ponderable bodies, and under certain likely assumptions, it already seems that one can
deduce an exceptionally large magnitude for that mass. However, the larger that mass
becomes, the smaller the velocity would be with which it moves in galvanic currents,137 and
in that way, it already seems that one can assume with great likelihood that the actual
velocity with which electric masses displace in closed circuits is rather small, and in no
way to be confused with the large velocity with which galvanic currents propagate in closed
circuits, which is what Wheatstone sought to measure.138

137[Note by AKTA:] Weber is referring here to the drift velocity, that is, to the velocity of the electrified
particles relative to the matter of the conductor.
138[Note by AKTA:] Charles Wheatstone (1802-1875), see [Whe34]. In 1857 Weber and Kirchhoff deduced

independently from one another, although both works were based on Weber’s force of 1846, that an electric
wave propagates along a wire of negligible resistance with light velocity, see Chapters 8, 9, 10, 18 and 19.

129



130



Chapter 6

[Weber and Kohlrausch, 1856] On the
Amount of Electricity which Flows
Through the Cross-section of the
Circuit in Galvanic Currents

Wilhelm Weber and Rudolf Kohlrausch139,140

Prefatory Note by Rudolf Kohlrausch

The Editor desired for the Annalen141 a report on work carried out jointly by Prof. Weber
and myself, whose results were presented in a more fundamental and conclusive way by Prof.
Weber in Vol. 5 of the Treatises of the Royal Saxon Scientific Society in Leipzig, under the
title Elektrodynamische Maassbestimmungen, insbesondere Zurückführung der Strominten-
sitätsmessungen auf mechanisches Maass (Leipzig, S. Hirzel, 1856).142 Herewith I give a
short precis.

139[WK56]. The English version presented in this book is based on the translation by the late Susan P.
Johnson, [WK03], see also [Joh97]. It was edited by Laurence Hecht and A. K. T. Assis. A Portuguese
translation was published in 2008, [WK08].
140Wilhelm Weber and Rudolf Kohlrausch’s Notes are represented by [Note by WK:]; the Notes by H.

Weber, the editor of the third volume of Weber’s Werke, are represented by [Note by HW:]; while the Notes
by A. K. T. Assis are represented by [Note by AKTA:].
141[Note by AKTA:] Kohlrausch is referring to Johann Christian Poggendorff (1796-1877). He was the

Editor of the Annalen der Physik und Chemie from 1824 to 1876. The modern Annalen der Physik is the
successor to Poggendorff’s Annalen.
142[Note by AKTA:] [KW57] with English translation in [KW21], see Chapter 7.
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6.1 Problem

The comparison of the effects of a closed galvanic circuit with the effects of the discharge-
current of a collection of free electricity, has led to the assumption, that these effects proceed
from a movement of electricity in the circuit. We imagine that in the bodies constituting
the circuit, their neutral electricity is in motion, in the manner, that their entire positive
component pushes around in the one direction in closed, continuous circles, the negative in
the opposite direction. The fact that an accumulation of electricity never occurs by means
of this motion, requires the assumption, that the same amount of electricity flows through
each cross-section in the same time-interval.

It has been found suitable to make the magnitude of the flow, the so-called current
intensity, proportional to the amount of electricity which goes through the cross-section
of the circuit in the same time-interval. If, therefore, a certain current intensity is to be
expressed by a number, it must be stated, which current intensity is to serve as the measure,
i.e., which magnitude of flow will be designated as 1.

Here it would be simplest, as in general regarding such flows, to designate as 1 that
magnitude of flow which arises, when in the time-unit the unit of fluid goes through the
cross-section, thus defining the measure of current intensity from its cause. The unit of
electrical fluid is determined in electrostatics by means of the force, with which the free
electricities act on each other at a distance. If one imagines two equal amounts of electricity
of the same kind concentrated at two points, whose distance is the unit of length, and if
the force with which they act on each other repulsively, is equal to the unit of force, then
the amount of electricity found in each of the two points is the measure or the unit of free
electricity.

In so doing, that force is assumed as the unit of force, through which the unit of mass is
accelerated around the unit of length during the unit of time. According to the principles of
mechanics, by establishing the units of length, time, and mass, the measure for the force is
therefore given, and by joining to the latter the measure for free electricity, we have at the
same time a measure for the current intensity.

This measure, which will be called the mechanical measure of current intensity, thus sets
as the unit, the intensity of those currents which arise when, in the unit of time, the unit of
free positive electricity flows in the one direction, an equal amount of negative electricity in
the opposite direction, through that cross-section of the circuit.

Now, according to this measure, we can not carry out the measurement of an existing
current, for we know neither the amount of neutral electrical fluid which is present in the cubic
unit of the conductor, nor the velocity, with which the two electricities displace themselves
[sich verschieben] in the current. We can only compare the intensity of the currents by means
of the effects which they produce.

One of these effects is, e.g., the decomposition of water. Sufficient grounds converge, to
make the current intensity proportional to the amount of water, which is decomposed in the
same time-interval. Accordingly, that current intensity will be designated as 1, at which the
mass-unit of water is decomposed in the time-unit, thus, e.g., if seconds and milligrams are
taken as the measure of time and mass, that current intensity, at which in one second one
milligram of water is decomposed. This measure of current intensity is called the electrolytic
measure.

The natural question now arises, how this electrolytic measure of current intensity is
related to the previously established mechanical measure, thus the question, how many
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(electrostatically or mechanically measured) positive units of electricity flow through the
cross-section in one second, if a milligram of water is decomposed in this interval of time.

Another effect of the current is the rotational moment143 it exerts on a magnetic needle,
and which we likewise assume to be proportional to the current intensity, conditions being
otherwise equal. If a current intensity is to be measured by means of this kind of effect, then
the conditions must be established, under which the rotational moment is to be observed.
One could designate as 1 that current intensity which under arbitrarily established spatial
conditions exerts an arbitrarily established rotational moment on an arbitrarily chosen mag-
net. When, then, under the same conditions, an m-fold large rotational moment is observed,
the current intensity prevailing in this case would have to be designated as m. Precisely
the impracticability of such an arbitrary measure, however, has led to the absolute measure,
and thus in this case the electromagnetic measure of current intensity is to be joined to
the absolute measure for magnetism. This occurs by means of the following specification of
normal conditions for the observation of the magnetic effects of a current:

The current goes through a circular conductor, which circumscribes the unit of area, and
acts on a magnet, which possesses the unit of magnetism,144 at an arbitrary but large distance
= R; the center of the magnet lies in the plane of the conductor, and its magnetic axis is
directed toward the center of the circular conductor.

The rotational moment D, exerted by the current on the magnet, expressed according to
mechanical measure, is, under these conditions, different according to the difference in the
current intensity, and also according to the difference in the distance R; the product R3D
depends, however, simply on the current intensity, and is hence, under these conditions, the
measurable effect of the current, namely, that effect by means of which the current intensity
is to be measured, according to which one therefore obtains as magnetic measure of current
intensity the intensity of that current, for which R3D = 1.

The electromagnetic laws state, that this measure of current intensity is also the intensity
of that current which, if it circumscribes a plane of the size of the unit of area, everywhere
exerts at a distance the actions of a magnet located at the center of that plane, which
possesses the unit of magnetism and whose magnetic axis is perpendicular to the plane; —
or also, that it is the intensity of that current, by which a tangent galvanometer145 with simple
rings of radius = R is kept in equilibrium, given a deflection from the magnetic meridian

ϕ = arctan
2π

RT

if T denotes the horizontal intensity of the terrestrial magnetism.
Here, too, arises the natural question about the relation of the mechanical measure of

current intensity to this magnetic measure, thus the question, how many times the electro-
static unit of the amount of electricity must go through the cross-section of the circuit during
one second, in order to elicit that current intensity, of which the just-specified deflection, ϕ,
is effected by the needle of a tangent galvanometer.

The same question repeats itself in considering a third measure of current intensity,
which is derived from the electrodynamic effects of the current, and is therefore called the
electrodynamic measure of the current intensity.

The three measures drawn from the effect of the currents have already been compared

143[Note by AKTA:] See footnote 10 on page 18.
144[Note by AKTA:] See footnote 54 on page 62.
145[Note by AKTA:] See footnote 12 on page 22.
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with one another. It is known that the magnetic measure is
√
2 larger than the electrody-

namic, but 1062
3
times smaller than the electrolytic,146 and for that reason, in order to solve

the question of how these three measures relate to mechanical measure, it is merely necessary
to compare the later with one of the others.

This was the goal of the work undertaken, which goal was to be attained through the
solution of the following problem:

Given a constant current, by which a tangent galvanometer with a simple multi-
plier circle of radius = Rmm is kept in equilibrium at a deflection ϕ = arctan 2π/RT ,
if T is the intensity of the horizontal terrestrial magnetism affecting the compass:
it should be determined how the amount of electricity, which flows in such a
current in one second through the cross-section of the conductor, relates to the
amount of electricity on each of two equally charged (infinitesimally) small balls,
which repel one another at a distance of 1 millimeter with the unit of force. The
unit of force is taken as that force, which imparts 1 millimeter velocity to the
mass of 1 milligram in 1 second.

6.2 Solution of This Problem

If an amount E of free electricity is collected at an insulated conductor and allowed (by
inserting a column of water)147 to flow to earth through a multiplier, the magnetic needle
will be deflected. The magnitude of the first deflection depends, given the same multiplier
and the same needle, solely on the amount of discharged electricity, since the discharge
time is so short, compared with the oscillation period of the needle, that the effect must be
considered as an impulse.

If a constant current is put through a multiplier for a similarly short time, the needle
receives a similar impulse, and in this case as well, the magnitude of the first deflection
depends solely on the amount of electricity which moves through the cross-section of the
multiplier wire during the duration of the current.

Now, if in the same multiplier, exactly the same deflection were to occur, the one time,
when the known amount of free electricity E was discharged, the other time, when one let a
constant current act briefly, then, as can be proven, the amount of positive electricity, which
flows during this short time-interval in the constant current, in the direction of this current,
through the cross-section, equals E/2.

Accordingly, the problem posed requires the solution of the following two problems:

a) measuring the collected amount E of free electricity with the given electrostatic
measure, and observing the deflection of the magnetic needle when the electricity
is discharged;

b) determining the small time-interval τ , during which a constant current of
intensity = 1 (according to magnetic measure) has to flow through the multiplier
of the same galvanometer, in order to impart to the needle the same deflection.

146[Note by AKTA:] See [Web41b, p. 17 of Weber’s Werke] and [Web42] with English translation in
[Web20a]; [WK56, p. 600 of Weber’s Werke] with English translation in [WK03, p. 290] and Portuguese
translation in [WK08, p. 96]; [KW57, pp. 614, 649 and 650 of Weber’s Werke] with English translation
in [KW21, p. 8]; [Web62, p. 88 of Weber’s Werke]; and [Web64, p. 165 of Weber’s Werke] with English
translation in [Web21d].
147[Note by AKTA:] That is, by inserting a conducting column of water.
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If next we multiply E/2 by the number which shows how often τ is contained in the
second, then the number E/2τ expresses the amount of positive electricity, which, in a
current whose intensity = 1 according to magnetic measure, passes through the cross-section
of the conductor in the direction of the positive current in 1 second.

Problem a is treated in the following way.
First, with the help of the sine-electrometer,148 the conditions are determined with greater

precision, in which the charge of a small Leyden jar is divided between the jar itself and an
approximately 13-inch ball coated with tin foil, which was suspended, by a good insulator,
away from the walls of the room, so that from the amount of electricity flowing on the ball,149

as soon as it was able to be measured, the amount remaining in the little jar could also be
calculated down to a fraction of a percent.

The observation consisted of the following:
The jar was charged, the large ball put in contact with its knob; three seconds later,

the charge remaining in the jar was discharged through a multiplier150 consisting of 5635
windings, by the insertion of two long tubes filled with water, and the first deflection ϕ of
the magnetic needle, which was equipped with a mirror in the manner of the magnetometer,
was observed. At the same time, the large ball was now put in contact with the approximately
1-inch fixed ball of a torsion balance151 constructed on a very large scale. This fixed ball,
brought to the torsion balance, shared half of its received charge with152 the moveable ball,
which made it possible to measure the torsion which was required, to a decreasing extent
over time, in order to maintain the two balls at a fully determinate, pre-ascertained distance.

From the torsion coefficients of the wire, found in the manner well known from oscillations
experiments, and the precisely determined dimensions, the amount of electricity occurring
at each moment in the torsion balance could be measured in the required absolute measure,
taking into consideration the non-uniform distribution of electricity in the two balls (which
consideration was advisable because of the not insignificant size of the balls compared with
the distance between them). The observed decrease in torsion also yielded the loss of electric-
ity, so that it was possible, by means of this consideration, to state how large these amounts
would be, if they could already have been in the torsion balance at the moment at which
the large ball was charged by the Leyden jar.

This amount [of electricity] went from the large ball to the fixed ball. From the precisely
measured diameter of these balls, the proportion of the distribution of electricity between
them could be determined (according to Plana’s work),153 so that, by means of the measure-
ment in the torsion balance, without further ado, it was known what amount of electricity
remained in the Leyden jar after charging the large ball, and what amount was discharged

148[Note by AKTA:] In German: Sinus-Elektrometers. Instrument created by R. Kohlrausch, see [Koh53].
149[Note by AKTA:] In German: aus der auf die Kugel übergegangenen Elektricitätsmenge. Alternative

translation: from the amount of electricity passed to the ball.
150[Note by WK:] The mean diameter of the windings was 266 mm; the almost 2/3-mile-long wire, very

well coated with silk, was previously drawn through collodion along its entire length, while the sides of the
casing were strongly coated with sealing wax. A powerful copper damper moderated the oscillations.
151[Note by WK:] The frame of the torsion balance, in whose center the balls were located, was in the shape

of a parallelepiped 1.16 meters long, 0.81 meters wide, and 1.44 meters high. The long shellac pole [Stange],
to which the moveable ball was affixed by means of a shellac-arm, allowed the observation of the position
of the ball under a mirror, and then dipped into a container of oil, by means of which the oscillations were
very quickly halted.
152[Note by AKTA:] In German: halbirte ihre empfangene Ladung mit. Alternative translation: gave half

its received charge to.
153[Note by AKTA:] Giovanni Antonio Amedeo Plana (1781-1864), [Pla45] and [Pla54].

135



3 seconds later by the multiplier. Only one small correction was still required on account of
the loss of available charge, which occurred during these 3 seconds from leakage into the air
and through residue formation.

In the following Table are assembled the results of five successive experiments. The
column headed E contains the amounts of discharged electricity, the column headed s the
corresponding deflections of the magnetic needle in scale units, and the column headed ϕ
the same deflections, but in arcs for radius = 1.

Number E s ϕ
1 36 060 000 73.5 0.005 708 7
2 41 940 000 80.0 0.006 213 6
3 49 700 000 96.5 0.007 495 2
4 44 350 000 91.1 0.007 075 7
5 49 660 000 97.8 0.007 596 2

Problem b requires knowing the time-intervals τ , during which a current of that intensity
denoted 1 in magnetic current measure, must flow through the same multiplier, in order to
elicit the deflections ϕ observed in the five experiments.

The rotational moment, which is exerted by the just-designated currents on a magnetic
needle, which is parallel to the windings of the multiplier, is developed in the “second part
of the Electrodynamische Maassbestimmungen of W. Weber”.154 This rotational moment
is proportional to the magnetic moment of the needle and the number of windings, but
moreover is a function of the dimensions of the multiplier and the distribution of magnetic
fluids in the needle, for which it suffices, to determine the distance of the centers of gravity
of the two magnetic fluids, which, in lieu of the actual distribution of magnetism, can be
thought of as distributed on the surface of the needle. The needle always remaining small
compared with the diameter of the multiplier, for this distance a value derived from the size
of the needle could be posited with sufficient reliability, so that the designated rotational
moment D contains only the magnetic moment of the needle as an unknown.

If this rotational moment acts during a time-interval τ , which is very short compared
with the oscillation period t of the needle, then the angular velocity imparted to the needle
is expressed by

D

K
τ ,

where K signifies the moment of inertia.155 The relationship between this angular velocity
and the first deflection ϕ then leads to an equation between τ and ϕ,

τ = ϕ · A ,

in which A consists of magnitudes to be truly rigorously measured, thus signifies known
constants, namely A = 0.020 915 for the second as measure of time.

Thus, if it is asked how long a time-interval τ a constant current of magnetic current
intensity = 1 has to flow through the multiplier, in order to elicit the above-cited five observed
deflections, one need only insert their values for τ into this equation. In this way the values
in seconds result as
154[Note by AKTA:] [Web52c, footnotes on pages 360-365 and p. 454 of Weber’s Werke] with English

translation in [Web21b].
155[Note by AKTA:] In German: Trägheitsmoment.
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Number τ
1 0.000 119 4
2 0.000 130 0
3 0.000 156 8
4 0.000 148 0
5 0.000 158 9

If we now divide E/2 in the five experiments by the pertinent τ , we obtain

Number E/2τ
1 151 000 · 106
2 161 300 · 106
3 158 500 · 106
4 149 800 · 106
5 156 250 · 106

thus as a mean,

E

2τ
= 155 370 · 106 .

The mechanical measure of the current intensity is thus related

to the magnetic [measure of current intensity] as 1 : 155 370 · 106,
to the electrodynamic as 1 : 109 860 · 106

(

= 1 : 155 370 · 106 ·
√

1
2

)

,

to the electrolytic as 1 : 16 573 · 109
(

= 1 : 155 370 · 106 · 1062
3

)

.

6.3 Applications

Among the applications, which can be made by reducing the ordinary measure for current
intensity to mechanical measure, the most important is the determination of the constants
which appear in the fundamental electrical law, encompassing electrostatics, electrodynam-
ics, and induction. According to this fundamental law, the effect of the amount of electricity
e on the amount e′ at distance r with relative velocity dr/dt and relative acceleration d2r/dt2

equals156

ee′

r2

[

1− 1

c2

(

dr2

dt2
− 2r

d2r

dt2

)]

,

and the constant c represents that relative velocity, which the electrical masses e and e′ have
and must retain, if they are not to act on each other any longer at all.

In the preceding Section, the ratio of the magnetic measure to the mechanical measure
was found to be

156[Note by AKTA:] The next equation should be understood as:

ee′

r2

{

1− 1

c2

[

(

dr

dt

)2

− 2r
d2r

dt2

]}

.
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= 155 370 · 106 : 1 ;

in the Second treatise on Electrodynamic Measurements, the same proportion was found157

= c
√
2 : 4 ;

the equalization of these proportions results in

c = 439 450 · 106

units of length, namely, millimeters, thus a velocity of 59 320 miles per second.
The insertion of the values of c into the foregoing fundamental electrical law makes it

possible to grasp, why the electrodynamic effect of electrical masses, namely

ee′

r2
1

c2

(

dr2

dt2
− 2r

d2r

dt2

)

,

compared with the electrostatic

ee′

r2

always seems infinitesimally small, so that in general the former only remains significant,
when, as in galvanic currents, the electrostatic forces completely cancel each other in virtue
of the neutralization of the positive and negative electricity.

Of the remaining applications, only the application to electrolysis will be briefly described
here.

It was stated above, that in a current, which decomposes 1 milligram of water in 1 second,

106
2

3
· 155 370 · 106

positive units of electricity go in the direction of the positive current in that second through
the cross-section of the circuit, and the same amount of negative electricity in the opposite
direction.

The fact that in electrolysis, ponderable masses are moved, that this motion is elicited
by electrical forces, which only act on electricity, not directly on the water, leads to the
conception, that in the atom of water, the hydrogen atom possesses free positive electricity,
the oxygen atom free negative electricity. Many reasons converge, why we do not want to
think of an electrical motion in water without electrolysis, and why we assume that water is
not in a state of allow electricity to flow through it in the manner of a conductor. Therefore,
if we see in the one electrode just as much positive electricity coming from the water, as
is delivered to the other electrode during the same time-interval by the current, then this
positive electricity which manifests itself is that which belonged to the separated hydrogen
particles.

If we take this standpoint, so that we thus link the entire electrical motion in electrolytes
to the motion of the ponderable atoms, then it additionally emerges from the numbers
obtained above, that the hydrogen atoms in 1 milligram of water possess

106
2

3
· 155 370 · 106

157[Note by AKTA:] [Web52c, p. 367 of Weber’s Werke] with English translation in [Web21b].
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units of free positive electricity, the oxygen atoms an equal amount of negative electricity.
From this it follows, secondly, that these amounts of electricity together signify the min-

imum of neutral electricity, which is contained in a milligram of water. Namely, if the atoms
of water were still to possess neutral electricity beyond their free electricity, then the mass
of neutral electricity in a milligram of water would be still greater.

Under the foregoing assumptions, we are also in a position to state the force with which
the totality of the hydrogen particles of a mass of water is acted upon in the one direction,
the totality of the oxygen particles in the opposite direction.

Imagine, for example, a cylindrical tube of 10/9 square millimeter cross-section, which
is to serve as a decomposition cell, filled with a mixture of water and sulphuric acid of
specific gravity 1.25, which thus contains in each 1-millimeter segment a milligram of water.
Through Horsford,158 we know the proportional relation of the specific resistance of this
mixture to that of silver, and through Lenz,159 the proportional relation of the resistance of
silver to that of copper. In the treatises of the Königliche Gesellschaft der Wissenschaften
in Göttingen (Vol. 5, “Ueber die Anwendung der magnetischen Induction auf Messung der
Inklination mit dem Magnetometer”),160,161 the resistance of copper is determined according
to the absolute measure of the magnetic system. This makes it possible to additionally
state, in absolute magnetic measure, the resistance which the water (under the influence of the
admixed sulphuric acid) exerts in a 1-mm long segment of that cylindrical decomposition cell.
This resistance, multiplied by the current intensity, the latter being expressed in magnetic
measure, yields the electromotive force in relation to this small cell, likewise in the magnetic
system of measure. However, the magnetic measure of the electromotive force is as many
times smaller than the mechanical, as the magnetic measure of the current intensity is greater
than the mechanical, and since this latter proportion is now known, that electromotive force
calculated in magnetic measure can be transformed into mechanical measure simply by
division by 155 370 · 106. The number which results, then signifies the difference between the
two forces, of which in the direction of the current, the one acts to move each single unit
of the free positive electricity in the hydrogen particles, the other to move each single unit
of the free negative electricity in the oxygen particles, and therefore, in order to obtain the
entire force at work, this number must still be multiplied by the total of units of the free
positive or negative electricity, which is contained in the 1 millimeter-long water column,
that is, in 1 milligram of water, namely, by

106
2

3
· 155 370 · 106 .

If one carries out the calculation and presupposes that current intensity, at which 1
milligram of water is decomposed in 1 second, then one obtains a force difference

= 2 ·
(

106
2

3

)2

· 127 476 · 106 ,

in which the unit of force is that force, which imparts to the unit of mass of 1 milligram a
velocity of 1 millimeter in 1 second. Thus, if one divides by the intensity of gravity = 9811,
one obtains this force difference, expressed in weight162

158[Note by AKTA:] Eben Norton Horsford (1818-1893), see [Hor47] and [Sto88].
159[Note by AKTA:] Heinrich Friedrich Emil Lenz (1804-1865), see [Len38, p. 119].
160[Note by HW:] Wilhelm Weber’s Werke, Vol. 2, p. 319.
161[Note by AKTA:] [Web53e, p. 319 of Weber’s Werke], [Web53a] and [Web53c].
162[Note by AKTA:] The German Zentner since metrification is defined as 50 kg.

139



= 2 · 147 830 · 106 milligrams = 2 · 147 830 kg = 2 · 2956 centner

under the influence of gravity.
This result can be expressed in the following way: If all hydrogen particles in 1 milligram

of water were linked in a 1 millimeter-long string, and all oxygen particles in another string,
then both strings would have to be stretched in opposite directions with the weight of 2956
centners, in order to produce a decomposition of the water at a rate such that 1 milligram of
water would be decomposed in 1 second.

One easily convinces oneself, that this stretching remains the same for a cell of 1 mm
length but a different cross-section, but that it must be proportional to the length of the
cell, and also proportional to the current intensity, that is, to the velocity of the electrolytic
separation.

If, in the wet cell described above, we now see a pressure on the totality of hydrogen
particles of the weight of 2956 centners, and if no acceleration of motion occurs, which
motion must, however, amount to 1759 million miles per second, but rather the hydrogen
continues with the constant velocity of 1/2 millimeter per second, then we are compelled
to assume, that a force would be acting counter to the decomposition of the water, a force
which increases with the velocity of the decomposition, so that in general, only that velocity
of decomposition remains, at which the force of resistance is equal to the electromotive
force, so that its effect on the totality of hydrogen particles in the milligram of water in the
foregoing case likewise would equal the weight of 2956 centners. Namely, in that case, the
ponderable particles would uniformly flow forth with the velocity attained.

It is natural, to seek the basis for this force of resistance in the chemical forces of affinity.
Even though the concept of “chemical affinity” remains too indeterminate, for us to be able
to derive from it, how the forces proceeding from this affinity increase with the velocity of the
separation, nevertheless, it is interesting to see what enormous forces enter into operation in
a chemical decomposition, as are easily elicited by electrolysis.
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Chapter 7

[Kohlrausch and Weber, 1857, EM4]
Electrodynamic Measurements,
Fourth Memoir, specially Attributing
Mechanical Units to Measures of
Current Intensity

Rudolf Kohlrausch and Wilhelm Weber163,164,165

7.1 Measure of Current Intensity Based on Observed

Magnetic, Electrodynamic and Electrolytic Effects

The intensity of an electric current can be usually determined by observing either its mag-
netic, electrodynamic, or finally, its electrolytic effects. However, those effects can be observed
under very different situations, and it is the task of the observer to choose those situations
in such a manner as to give his observations the greatest completeness, while appealing to
the electromagnetic, electrodynamic, and electrolytic laws, which can reduce the effects that
are observed in the various situations to each other. That is because it is only by reduc-
ing the observations under the same conditions that one can achieve a comparison of the
current intensities. Now, one calls those common conditions, to which all observations that
were made under different circumstances should be reduced, normal conditions, and the unit
of current intensity will be established by defining those normal conditions according the
following rule:

163[KW57] with English translation in [KW21]. See also [WK68].
164Translated by D. H. Delphenich, feedback@neo-classical-physics.info and http://www.neo-classical-

physics.info/index.html. Edited by A. K. T. Assis.
165The Notes by Kohlrausch and Weber are represented by [Note by KW:]; the Notes by H. Weber, the

Editor of Volume 3 of Weber’s Werke, are represented by [Note by HW:]; D. H. Delphenich’s Notes are
represented by [Note by DHD:]; while the Notes by A. K. T. Assis are represented by [Note by AKTA:].
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The unit of current intensity is the intensity of the current that will produce one
unit of measurable effect under normal conditions.

The normal conditions for the observation of the magnetic effects of a current are the
following: The current goes through a circular conductor that encircles a unit area and acts
upon a magnet that possesses one unit of magnetism166 at an arbitrary, but large, distance
equal to R. The center of the magnet lies in the plane of the conductor, and its magnetic axis
points towards the center of the circular conductor. Under those conditions, the rotational
moment D that is exerted on the magnet by the current will vary with current intensity,
as well as with distance R. However, the product R3D depends upon merely the current
intensity, and is therefore the measurable effect of the current under those conditions, from
which one will then get the unit of the current intensity from the intensity of the current
whose measurable effect under the conditions that were just described will be:

R3D = 1 .

That unit of current intensity, which is then obtained from electromagnetic laws, is at
the same time also the intensity of that current that flows around a planar region of size one
unit of area, producing the same effect everywhere at a distance as a magnet that is found
at the center of that region that possesses one unit of magnetism and whose magnetic axis
is perpendicular to the plane. Alternatively, it is also the intensity of the current that will
equilibrate a tangent galvanometer167 with a single multiplier loop of radius equal to R when
it deviates from the magnetic meridian by:

ϕ = arctan
2π

RT
,

if T denotes the horizontal component of the Earth’s magnetism.
The normal conditions for the observation of the electrodynamic effects of a current are

as follows: The same current goes through two circular conductors, each of which encircles
a unit area and lie at an arbitrary, but large, distance equal to R from each other: The
line of intersection of the two perpendicular planes of the circles bisects the first circular
conductor. — Under those conditions, the rotational moment D that the current in the first
conductor exerts upon the current that flows in the second conductor will vary with the
current intensity, as well as with the distance R. However, the product R3D depends upon
merely the current intensity and is therefore the measurable effect of the current under those
conditions, from which one will then get the unit of the current intensity from the intensity
of the current whose measurable effect will be:

R3D = 1

under those conditions.
The normal conditions for the observation of electrolytic effects are the following ones:

The current goes through water during a time interval T that can be measured with arbitrary
precision without suffering any change in intensity. — Under those conditions, the mass of
water M that is decomposed by the current, when expressed per assumed unit of mass (e.g.,
milligrams), will vary with current intensity, as well as with the time interval T (expressed

166[Note by AKTA:] See footnote 54 on page 62.
167[Note by AKTA:] See footnote 12 on page 22.
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in seconds). However, the quotient M/T will depend upon merely the current intensity, and
is therefore the measurable effect of the current under those conditions, from which one will
then get the unit of the current intensity from the current whose measurable effect is:

M

T
= 1

under those conditions.
All that remains for one to be able to compare the intensities of all currents whose

magnetic, electrodynamic, or electrolytic effects were observed is to relate the three units
that were given under the aforementioned normal conditions to each other.

One infers the relationship between the first two units from the fundamental electrody-
namic law, which include the laws of magnetism and electromagnetism, as Ampère exhibited
them,168 namely, as was proved before in the Second treatise on Electrodynamic Measure-
ments, p. 261,169,170 one infers that the first unit relates to the second one like:171

168[Note by AKTA:] See footnote 44 on page 57.
169[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 360.
170[Note by AKTA:] [Web52c, p. 360 of Weber’s Werke] with English translation in [Web21b].
171[Note by KW:] It is therefore interesting to point out that one can exhibit a complete identity between

those two units when one, under the aforementioned normal conditions, defines the electrodynamic effect

to be the rotational moment that the current in the second circle exerts upon the current in the first one,
instead of the rotational moment that the first one exerts upon the second. The reason why that is not
done is found merely in the fact that the expression that Ampère gave for the force of repulsion between two
current elements would remain unchanged, so if α and α′ are the lengths of both elements, i and i′ are the
current intensities, r is the distance between them, ε is the angle between α and α′, ϑ is the angle between
α and r, and ϑ′ is the angle between α′ and the extension of r, then that force will be represented by:

−αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)

,

or

1

2
· αα

′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) .

However, all that generally follows from Ampère’s fundamental law of electrodynamics is that that force is
proportional to that expression, and therefore when one leaves the measure of the current intensity undeter-
mined, the force itself will be represented by the product of that expression with an arbitrary constant, and
so by:

−C · αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)

,

or by

D · αα
′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) ,

in which C or D refer to the aforementioned constant. Now, Ampère assigned the value C = 1 to the
constant C or the value D = 1/2 to the constant D in order to establish a well-defined unit for the current
intensity, and in that way, he obtained the aforementioned expression for the force of repulsion between two
current elements:

−αα
′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)

=
1

2
· αα

′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) ,

which reduces to:

−αα
′

r2
ii′
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√
2 : 1 .

The third unit will imply the reduction to the first, and therefore also the second one
immediately, by simultaneous observations of the magnetic and electrolytic effects that are
produced by one and the same current. Namely, one will find upon comparing the reduced
observations, under the aforementioned normal conditions, that the third unit of current
intensity, or the intensity of the current that will decompose 1 milligram of water in 1
second, is 1062

3
times larger than the first unit,172 or than the intensity of the current that,

when it flows around a plane of size one unit area, will produce the same effects everywhere
at great distances as a magnet at the center of that planar region that possesses one unit
of magnetism and whose magnetic axis is perpendicular to the plane. See “Resultate aus
der Beobachtungen des magnetischen Vereins in Jahre 1840,” p. 96,173,174 and Casselmann
“Über die galvanische Kohlenzinkkette. Marburg 1844,” p. 70.175

7.2 Mechanical Measure of Current Intensity Based on

the Following Causes — Drift Velocity and Elec-

tricity Content of the Conductor

However, the intensity of an electric current can be determined not only by its effects, but
also by its origins. Nonetheless, the deepest roots of an electric current lie in the mass of
neutral electric fluid that is contained in a closed conductor, and in the velocity with which its
two components, namely, the masses of the positive and negative fluids, move simultaneously
in opposite directions. On the basis of this origin, the unit of the current intensity will be
established from the following measures:

The unit of the current intensity is the intensity of the current that is produced by
such a velocity for the two electric fluids, for which the mass of each fluid that flows

for two parallel current elements that are perpendicular to r and for which ε = 0 and ϑ = ϑ′ = 90o. However,
for the sake of agreement with the electromagnetic measurements, it would be preferable to set D = 1 or
C = 2, which would then make the expression for the force of repulsion between two current elements equal
to:

αα′

r2
ii′ (3 cosϑ cosϑ′ − 2 cos ε) = −2

αα′

r2
ii′
(

cos ε− 3

2
cosϑ cosϑ′

)

,

and for two current elements that coincide with r, [that is, for two current elements parallel to one another
and pointing along the direction r,] for which ϑ = ϑ′ = ε = 0, that will reduce to:

αα′

r2
ii′ .

The cited change in the normal conditions for the electrodynamic current effects will agree with that, and
in that way, one will arrive at a complete identity between the electrodynamic unit of the current intensity
and the magnetic one.
172[Note by AKTA:] See footnote 146 on page 134.
173[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 17.
174[Note by AKTA:] [Web41b, p. 96 of the Resultate] and [Web42, p. 17 of Weber’s Werke], with English

translation in [Web20a].
175[Note by AKTA:] [Cas43, p. 70].
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through the cross-section of the conductor divided by the time during which it flows
through it is equal to 1.

This unit is the mechanical unit of the current intensity, and the problem that is being
addressed in this treatise is to reduce the units that were described in the previous Section
to this unit, which is most simply based in the essence of the current, and will therefore have
an advantage over the other measures for the fundamental determination of that current
intensity.
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I - Reducing the Magnetic, Electrodynamic, and Elec-

trolytic Units for the Current Intensity to Mechanical

Units

7.3 Lack of Electrostatics Measurement of an Accumu-

lated Amount of Electricity to Be Set in Motion

Up to now, no attempt has been made to determine current intensities from a mechanical
unit, and even less, to reduce the current intensities that were determined from the other
units to the latter. One merely knows that the amount of electricity that flows in the form
of weak currents through the cross-section of the closed circuit, which can be produced by
the most humble galvanic processes, must also be very large for a very brief time, since the
most powerful electrification machine (whose conductor is coupled with the site of friction
by a conducting wire) will give a much weaker current than a single galvanic element that
is closed by a conducting wire of very large resistance.

The lack of any way of determining current intensities by mechanical measurements is
based upon the difficulties that one finds in their implementation, while the determination
of current intensities in the other aforementioned units is very easy to do, and thus allows
for a much higher degree of precision. The last units will always be the first choice to be
applied in practice, and one will essentially deal with the fact that a current intensity that is
known in one of the latter units can only once be measured as precisely as possible in order
to ascertain the ratio of the magnitude of the mechanical unit to that of the latter unit, and
in that way, to find oneself in a position to reduce all of the determinations that were made
in those units to mechanical units.

For such a measurement, one lacks, above all, any knowledge of the amount of electricity
in a closed conductor that carries current, or rather, since that knowledge while the current
is flowing can not be obtained, [one lacks] a knowledge of the amount of electricity that is
transferred by the current, and which is found to have been accumulated previously — e.g., in
a Leyden jar. In order to do that, one possesses excellent means and methods for measuring
electricity that go back to Coulomb,176 but which are never used to measure the electricity
that is collected in a charged Leyden jar.177,178

The question of the amount of electricity that is found to be collected in a Leyden jar is

176[Note by AKTA:] See footnote 43 on page 56.
177[Note by KW:] In the Annalen der Chemie und Physik, Vol. 86, p. 33, Buff found, with the help of

his tangent galvanometer and long conducting wires, that the amount of electricity that would be sufficient
to liberate 1 milligram of hydrogen from 9 milligrams of water electrically, when one possesses the means
to condense it, was to charge a battery of 45,480 Leyden jars that were each 480 millimeters in height and
160 millimeters in diameter up to a spark gap of 100 millimeter. Buff’s determination is the best and most
precise one that exists, but it still does not suffice to determine the amount of electricity that is included in
that jar, for which, from mechanical principles, one requires a knowledge of the force of repulsion that this
amount of electricity, when concentrated into a point, would exert upon an equal amount of electricity that
is also concentrated into a point at a large distance from the latter. However, knowledge of that force of

repulsion is still lacking, and up to now, no attempts have been made to measure such forces by the various
means and methods that were given by Coulomb and others, or even to gain a better knowledge of it.
178[Note by AKTA:] As a matter of fact, this paper was published in the Annalen der Chemie und Pharmacie

edited by J. F. v. Liebig (1803-1873), F. Wöhler (1800-1882) and H. F. M. Kopp (1817-1892) and not in the
Annalen der Chemie und Physik edited by J. C. Poggendorff (1824-1876): [Buf53, p. 33].
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often raised: Once it has been answered, and the amount of electricity has been determined
by the forces that it might exert, it is in no way merely a question of curiosity, but is linked
with important determinations that are presently still lacking in the theory of electricity,
and might lead the way to interesting investigations.179

This question in regard to the amount of electricity in a Leyden jar has a special rela-
tionship to electrodynamic units that deserves a closer look, in any event. A fundamental
law of electrical action was presented in the first part of this series of articles on determina-
tions of units that simultaneously included electrostatics, electrodynamics, and induction.180

According to that fundamental law, the force that the electrical mass e exerts upon the
electrical mass e′ at a distance r is not merely a function of that distance, but at the same
time, a function of the relative state of motion of the two electrical masses that is given by
the relative velocity dr/dt and acceleration d2r/dt2 with which they pass to the distance r.
That fundamental law of the electrical action is:

ee′

r2

[

1− 1

c2

(

dr2

dt2
− 2r

d2r

dt2

)]

in which the constant c means the relative velocity at which the electrical masses would exert
no effect at all on each other, as long as it remained unchanged. In the second article in
this series,181 it was then shown how the determination of the value of that constant c might
provide the possibility of reducing not merely the units of the electromotive forces, but also
the units of the current intensities, to the units of mechanics, and that in itself will give the
relationship by which the constant c will allow one to determine the amount of electricity
that passes through a cross-section of the conductor in a unit of time in terms of the unit of
measurement of current intensity that is based in the magnetic and electrodynamic effects of
the current. Conversely, the knowledge of that amount of electricity that is acquired in other
ways would also lead to a determination of the value of the constant c, which is brought to
our attention by the fundamental law above. The determination of such a constant of nature
is a topic that is especially appropriate for a finer measurement. In the foregoing case, that
determination can be reduced to the following problem.

179[Note by KW:] When one observes that most of the applications of the laws of nature depend upon
determining the values of certain constants, that fact is based upon the determination of the unknown
constants in the theory of electricity, which depend upon answering the question above. — Moreover, it is
very likely that determining the electricity required to decompose water by the forces that it might exert
could be used to investigate the forces that are active in the decomposition of water, and that in the same
way, a determination of the amount of electricity by which a wire would be made to glow within a certain
period of time from the forces that it might exert would lead to a deeper insight into the forces at work
during the generation of heat, etc. Some of those applications will be discussed in more detail in Part Two.
180[Note by AKTA:] [Web46] with partial French translation in [Web87] and a complete English translation

in [Web07].
181[Note by AKTA:] [Web52c] with English translation in [Web21b].
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7.4 Problem. To Determine Electrostatically the A-

mount of Electricity Which Flows Through the

Cross-Section of the Conductor in 1 Second Ac-

cording to the Magnetic Measure of Current In-

tensity

Determine the amount of electricity that passes through the cross-section of a conductor
in unit of time for a current whose intensity has a unit of measurement that is based in its
magnetic or electrodynamic or electrolytic effects, and indeed, that amount of electricity shall
be determined from the magnitude of the fundamental electrostatic force that it exerts; or,
more especially:

Let a constant current be given,182 under which a tangent galvanometer with
a simple multiplier circle of radius equal to R would take on a deflection of
ϕ = arctan 2π/RT in equilibrium, where T means the intensity of the horizon-
tal component of the Earth’s magnetism that directs the compass. It should be
determined how the amount of electricity that flows through the cross-section of
the conductor in one second under such a current, relates itself to the amount of
electricity that is contained on each of two small equally-charged balls that repel
each other with a unit force at a unit distance. In that way, the unit of force shall
be taken to be the force that would accelerate a mass of one milligram to one unit
of velocity in one second.

From our previous determination, the given current is one that will exert entirely the
same effects at a distance as a magnet that possesses one unit of magnetic moment when it
flows around a planar region of magnitude one unit of area; i.e., the current whose strength
is ordinarily chosen the be the unit of the strength of all other currents by observing it with
the tangent galvanometer, and the amount of electricity that is present on each of the small
balls is the amount that one is accustomed to assign as the basis for the unit of measurement
for electrostatic measurements with the Coulomb torsion balance.183

7.5 Plan for Solving the Problem — Electrostatic Mea-

surement of the Amount of Electricity Accumu-

lated in a Leyden Jar — Electromagnetic Measure-

ment of the Electricity Generated by the Discharge

of the Jar

If the amount of electricity E that is collected on an isolated conductor is discharged to
Earth through the multiplier of a galvanometer, then it will exert a rotational moment on
the magnetic needle of the galvanometer as it flows through it. Now, if one also extends the
discharge time as much as needed by inserting a column of water into the path of the current

182[Note by AKTA:] Current of intensity = i.
183[Note by AKTA:] See footnote 43 on page 56.
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in order for no spark to jump between the windings of the multiplier, then that discharge time
will still define only an extremely small fraction of the period of oscillation of the magnetic
needle, such that the part of the path that the needle covers during that discharge time (that
is during the action of the discharge current) will be vanishingly small in comparison to the
entire path of the needle; i.e., in comparison to the magnitude of the elongation that the
needle attains over the course of one-half an oscillation period. The effect of the discharge
current can then be considered to be an impulse that the needle would experience in its rest
position, after which the angular velocity that the needle acquired could be calculated from
known laws of oscillation by observing the initial elongation of the needle after the discharge
at the moment of the impulse itself.

Furthermore, everything behaves exactly like an induction impulse, and also insofar as
the nature of the discharge current is entirely indifferent to whether it consists of many
separate partial discharges that rapidly follow each other or whether it is continuous with
an intensity that decreases to zero rapidly according to some law. The angular velocity that
the needle acquires in that way will always depend upon the amount of electricity E.184

We can give the needle of the galvanometer a similar impulse by means of a constant
current when we let the current act for only a very short time, and indeed the initial elon-
gation will be the same whether the current has an intensity i during the time t or with the
greater intensity ni during the shorter time t/n . Namely, if the duration t of the current is
very small compared to the period of oscillation of the needle, then the angular velocity will
always be found to be the same.185 However, precisely the same amount of electricity will
flow through the cross-section of the conductor in time t with an intensity of i that flows
through it in time t/n with an intensity of ni.

Hence, when we impart an impulse to the needle by a constant current of short duration,
the angular velocity of the needle (and as a result, its elongation as well) will also depend
solely upon the amount of electricity that has moved through the cross-section of the multiplier
during the duration of the current in this case.

Now, if we have discharged a known amount E of positive electricity through the same
multiplier in one case and produced the same elongation of the magnetic needle by means
of a constant current of very short duration in the other case, then we can conclude that the
positive amount of electricity x that flows through the cross-section of the conductor during
the short duration of the constant current is:

x =
1

2
E ,

which is a result of whose validity one can easily convince oneself, and which one might
have to envision in terms of the processes that take place inside of the conductor during the

184[Note by KW:] One finds that fact confirmed in all experiments. As is shown in the experiment in
Appendix II (among other things), the elongation is not only proportional to the amount of discharged
electricity, but it is also independent of the discharge time, within wide limits; because it does not matter
how long or short the water column that one inserts is, provided the windings of the multiplier are not
jumped over or the discharge time is extended in such a way that the effect of the discharge current will still
continue when the needle has already moved noticeably from the rest position.
185[Note by KW:] As long as the direction of its magnetic axis deviates only slightly from the plane of

the multiplier windings, the acceleration that a needle whose magnetic moment is M and whose moment
of inertia is K will acquire from a constant current of intensity i will be equal to AMi/K, where A means
a constant that depends upon the dimensions of the multiplier and the distribution of magnetism in the
needle. It follows from this that the angular velocity that it acquires during time t will be equal to AMit/K,
whose value will remain unchanged when i is replaced with ni and at the same time t is replaced with t/n.
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discharge.
If one would like to assume of the discharge, e.g., that all of the accumulated positive

amount of electricity E flows through the entire multiplier in only the direction of the Earth,
or that an equal amount of negative electricity flows in the opposite direction from the Earth,
then the magnetic effect of such a discharge current would be precisely the same as the effect
of a current for which only one-half of that positive amount of electricity flowed through the
cross-section of the conductor in the given direction, but at the same time, an equal negative
amount of electricity flowed in the opposite direction, which is a process that is assumed
to take place at constant current. — However, should one be of the opposite opinion,
namely, that absolutely none of the amount of electricity E that is collected in the isolated
conductor (and just as little of the amount that is found in the Earth) will flow through
the total windings of the multipliers, but that it will merely give rise to a double current in
the wire that will include masses of neutral fluids that are large enough that a very small
change in those masses will suffice to supply the isolated conductor with so much negative
electricity that the positive electricity E that is collected in it will be neutralized, then one
would also arrive at the same result in that way, since the whole discharge wire could be
divided into a very large number of small pieces such that the amount of electricity +1

2
E

would flow from each piece into the following one, while −1
2
E would flow into the preceding

one, and as a result, an amount of electricity +1
2
E would flow from the last piece into the

Earth, which would replace the first piece of the wire with the isolated conductor, while
the amount of electricity −1

2
E would flow out of the first piece into the isolated conductor

and neutralize the electricity that remains in it, but which will replace the last piece of the
wire with the Earth. Finally, if one were also required to assume that somewhat more than
one-half of the positive amount of electricity E went from the isolated conductor to the wire,
while somewhat less than −1

2
E of negative electricity went in the opposite direction from the

wire to the isolated conductor, then nothing would change in the result, since the magnetic
effect will be determined by the sum of the two moving charges.

The impulse that the needle feels when the accumulated amount of electricity E discharges
through the multiplier will be just the same as when a constant current goes through the
multiplier during a time interval τ such that precisely one-half of E goes through the cross-
section in the direction of the current as positive electricity and just as much goes in the
opposite direction as negative electricity, assuming that the time interval τ represents only
a very small part of the period of oscillation of the needle.

The solution to the problem will then emerge from taking the following two steps:

1. Measure the amount of electricity E in the given electrostatic units and observe the
elongation of the magnetic needle of a galvanometer under its discharge.

2. Determine the small time τ during which a constant current of intensity equal to 1 (in
magnetic units) must go through the multiplier of that galvanometer in order for the
needle to acquire the same elongation.

If one then multiplies 1
2
E by the number that shows how often t is included in one second,

then E/2τ will express the amount of positive electricity that passes through the cross-section
of the conductor during one second in the direction of a current whose intensity is equal to
1 in magnetic units. In other words:

1

2τ
·E : 1
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is the ratio of the amount of positive electricity that passes through that cross-section, to
the one whose unit is based upon measuring the accumulated amount of electricity E in the
isolated conductor, namely, the amount that must be found on each of two small balls for
them to repel each other with a force equal to 1 at a distance equal to 1.

As far as the second step is concerned, the determination of τ requires no special experi-
ment, since the value of τ can be determined by calculation from the number and dimensions
of the windings of the multiplier, the elongation of the tangent galvanometer that is observed
under the discharge, and the intensity of Earth magnetism much more precisely than would
be possible by direct experiment, as one will see in Section 7.13.

However, the first step, which is concerned with determining the amount of electricity E,
requires a combination of several experiments, which shall be described in Sections 7.6 up
to 7.12. Namely, it is important that, first of all, a still-unknown, but greater, amount of
electricity is split into two parts in a previously-determined ratio, and then that the greater
part E is discharged through the tangent galvanometer in order to observe its magnetic
effect, but finally, the smaller part is measured by the electric force that it exerts upon the
Coulomb torsion balance in order for the discharged part E to also get measured by the
same measurement.

A Leyden jar whose external coating is connected to the Earth in a well-conducting way
seems to be most suitable as a vessel for that amount of electricity whose part E should not
be insignificant if its discharge were to produce a precisely-measurable effect on the needle
of the tangent galvanometer. Hence (Section 6), that would next require the ratio by which
the positive charge in that jar is divided between it and a large isolated ball, the latter of
which contacts the knob on the jar. The ratio n : 1, by which the charge in the jar before
contact with the large ball to its charge afterwards is determined with the help of the sine
electrometer,186 which will yield the ratio 1 : (n − 1) of the amount of electricity E to the
amount that goes over to the ball.

After this ratio has been determined precisely by several repetitions, the measurement of
the amount of electricity that would go over to the large ball after such a division would be
continued, to which end, the large ball, likewise after a charge that results from contact with
the Leyden jar, would itself once more contact the 1 inch large fixed ball of a Coulomb torsion
balance that is equipped with a large measuring scale. As Poisson and Plana have shown,187

the ratio by which the electricity is divided between those two balls can be calculated from
the ratio of their radii. That will be done in Section 7.8, from which, the charge that the
large ball has received from the Leyden jar can be found from the amount of electricity e that
is transferred to the fixed ball of the torsion balance, and then also the amount that remains
in the Leyden jar, which will be employed to find the discharge current whose magnetic effect
is to be observed.

The amount of electricity e would be measured after the fixed ball of the Coulomb torsion
balance in which it is contained contacts the equally large moving ball, and in that way, e
would be divided equally between those two balls. Namely (Section 7), from observing the
gradual decrease in the torsion that would be necessary in order to keep the two balls at a
well-defined distance from each other, the torsion would then be calculated that would, on
first glance, be required if the charge in it were likewise to be able to go from the large ball
through the Leyden jar, the fixed ball through the large one, and the moving one though the
fixed ball while one observes the torsion. — In Section 7.9, one will find the calculation of the

186[Note by AKTA:] See [Koh53].
187[Note by AKTA:] See footnotes 43 and 153 on pages 56 and 135.
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amount of electricity ε that would exert a unit rotational moment on the balance at the same
distance when it is divided equally between the two balls of the torsion balance, in which
one must take into account the non-uniform distribution of electricity on the surface of the
ball. — In Section 7.10, one will find the determination of the torsion that would likewise
exert a unit rotational moment on the balance from various observations. — With the help
of the determinations that are contained in Sections 7.9 and 7.10, the amount of electricity e
itself can be determined easily from the torsion that was found in Section 7.7, and then also
the amount that remains in the Leyden jar, which will be done in Section 7.11, where the
latter will be denoted by E ′, in order to distinguish it from the amount of electricity E that
is employed by the discharge current whose magnetic effect is to be determined. — In the
brief intervening time between the moment of the division to the moment of the discharge,
the electricity that remains in the Leyden jar will change, namely, a small part of the charge
in the jar will be lost to the air, and part of it will be lost to a change in the residue in the
jar, and although that change during such a brief intermediate time of — say — only three
seconds would be extremely negligible, from the superb quality of the jar that was selected
for that experiment, it will still be included in the calculation in Section 7.12, from which,
one will at least see how the change E − E ′ would be determined for other jars and longer
intermediate times.

Finally, with the help of the determination of τ that is contained Section 7.13 and men-
tioned on page 233,188,189 the quantity 1

2τ
·E will be calculated in Section 7.14, and with that,

the problem that was posed above will be solved. The Section that follows it will include
applications, for the most part, to which the determination of the constant c, which has been
mentioned several times, belongs.

The two Appendixes include more precise descriptions of the torsion balance and the tan-
gent galvanometer; for that of the sine electrometer, see Poggendorf’s Annalen 88 (1853).190

It can be inferred from the satisfying agreement, without exception, between all published
experiments (of which ones that were analyzed in Sections 7.6 and 7.7 were the most difficult)
that the result can be considered to be accurate to within 1 to 2 percent. The calculation
was performed with a precision of an even smaller fraction in order for the determination
of the uncertainty in the results to depend upon merely the magnitude of the unavoidable
observation error.

7.6 Determining the Conditions under which Electric-

ity will be Divided between the Interior of a Ley-

den Jar and a Large Ball while the Exterior of the

Jar is Connected to the Earth

The following Table gives the results of two series of observations that were performed with
the sine electrometer of the decrease in charge in a Leyden jar by transferring it to a large
uncharged ball that contacted the knob on the jar, while the exterior of the jar was connected
to the Earth by a good conductor.

188[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 621.
189[Note by AKTA:] [KW57, p. 621 of Weber’s Werke], see also page 150 on Section 7.5.
190[Note by AKTA:] See footnote 186 on page 151.
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The Leyden jar was previously connected to the sine electrometer with a conducting wire
whose end was placed in a small indentation into the knob on the jar. Once the position of
the sine electrometer had been observed, that end of the conducting wire was raised with a
silk thread, and then the large ball contacted the knob of the jar, whereupon the exterior
of the jar was connected to the Earth by a conductor. With double, triple and quadruple
contacts, the individual contacts followed as quickly in succession as would permit the large
ball to discharge completely in between them. If the sine electrometer, which suffered only a
negligible loss to the air in between contacts, was then once more connected with the jar by a
connecting wire that was kept insulated by a silk thread, then the needle of the electrometer,
which was initially at rest, would be deflected only slightly in that way, since the jar had lost
relatively little of its charge by contact with the ball, and since that loss was compensated
approximately by the relatively smaller loss to the air that the jar suffered in comparison to
the sine electrometer, which explained the shortness of the time during which the individual
measurements could be performed in comparison to the end of each series of experiments.

Precise time measurements of the moment at which each individual contact was made
could not be carried out, and the data that is contained in the following Table is based upon
mere estimates, which can, however, be considered to be admissible to within 1-2 seconds,
which is a precision that suffices completely for this. Both series were made on 2 April 1854
in the Physics Institute at Göttingen.

First Series
No. Time Needle deflection on n

the sine electrometer
1. 8h49′54′′ 32o36.2′

2. 50′0′′ (quadruple contact) 1.032 4
3. 51′25′′ 24o13.7′

4. 53′46′′ 23o31.3′

5. 53′52′′ (quadruple contact) 1.0299
6. 54′42′′ 17o45.6′

7. 58′56′′ 14o49.3′

8. 59′2′′ (quadruple contact) 1.0167
9. 59′55′′ 12o47.6′

10. 9h2′7′′ 12o34.3′

11. 2′13′′ (quadruple contact) 1.032 5
12. 2′50′′ 9o41.7′

13. 4′12′′ 9o41.7′

14. 4′18′′ (quadruple contact) 1.0355
15. 4′53′′ 7o21.3′

16. 7′22′′ 7o30.2′

17. 7′28′′ (quadruple contact) 1.0311
18. 8′9′′ 5o51.2′

19. 10′7′′ 4o48.3′

20. 10′13′′ (quadruple contact) 1.0305
21. 10′51′′ 4o32.9′
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Second Series
No. Time Needle deflection on n

the sine electrometer
1. 9h40′7′′ 46o30.5′

2. 41′57′′ 44o9.0′

3. 42′0′′ (single contact) 1.0330
4. 42′23′′ 40o23.9′

5. 44′0′′ 39o10.5′

6. 44′3′′ (single contact) 1.0308
7. 44′23′′ 36o15.7′

8. 46′24′′ 35o11.7′

9. 46′27′′ (single contact) 1.0379
10. 46′51′′ 32o24.6′

11. 48′24′′ 32o46.6′

12. 48′27′′ (single contact) 1.0490
13. 48′51′′ 29o21.1′

14. 51′41′′ 28o31.0′

15. 51′44′′ (single contact) 1.0390
16. 52′9′′ 26o14.2′

17. 52′52′′ 26o14.2′

18. 52′55′′ (single contact) 1.0375
19. 53′25′′ 24o14.7′

20. 58′30′′ 19o41.9′

21. 9h58′33′′ (single contact) 1.0303
22. 59′1′′ 18o27.6′

23. 10h5′52′′ 17o42.6′

24. 5′56′′ (double contact) 1.032 8
25. 6′28′′ 15o30.1′

26. 7′14′′ 15o30.1′

27. 7′19′′ (triple contact) 1.0338
28. 7′45′′ 12o38.7′

29. 10′13′′ 12o38.7′

30. 10′19′′ (quadruple contact) 1.0315
31. 11′27′′ 9o50.0′

32. 12′44′′ 9o50.0′

33. 12′50′′ (quadruple contact) 1.0292
34. 13′27′′ 7o47.8′

The last column in this Table, under n, gives the ratio of the charge in the jar before
contact with the ball to the charge after contact, which is always made immediately before
and after the moment of contact between the two. The second and third columns contain
observations that are reckoned according to the following rule:

• q2′′ and q ′
2 denote the sines of the observed deflections for the two previous times of

observation,

• q
′2

and q
′′2

denote the sines of the observed deflections for the two following times of
observation,
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• −t ′′ , −t ′ , t′, t′′ are the associated observation times, measured from the moment of
contact,

• m is the number of times the contact was repeated.

Hence:191

n = m

√

t′′ − t′

t ′′ − t ′

· t ′′q ′ − t ′q ′′

t′′q′ − t′q′′
.

Indeed, some of the observations in these two series of observations are less definitive
(which is almost unavoidable when three observers collaborate), and in that way one can
find that is permissible to discard some values of n completely: for example, the one that

191[Note by KW:] The observations of the deflection of the needle in the third column and the time in the
second column will immediately give the values of q ′′ , q ′ , q

′

, q
′′

and the associated values of −t ′′ , −t ′ , t′, t′′

at which the values of q0 and q0 should be calculated, which are true for the moments immediately before
and after the contact. The cited rule will then be implied in the following way:
1) For the brief time duration of the experiment, it suffices to assume that the charge lost to the air

over time and the charge at the moment of observation are proportional, from which, one will then get the
following four values for the reduced observations at the moment of contact:

(1− αt ′′ ) q ′′ , (1− αt ′ ) q ′ , (1 + αt′) q
′

, (1 + αt′′) q
′′

.

2) If one adds each of these values to the residue in the jar at the time in question then the first two, which
represent the total charge before contact, must be equal, and similarly for the last two, which represent the
total charge after contact. When one denotes the residue at time t by rt, one will then get the equations:

(1− αt ′′ ) q ′′ + r−t ′′
= (1− αt ′) q ′ + r−t ′

= q0 + r0 ,

(1 + αt′) q
′

+ rt′ = (1 + αt′′) q
′′

+ rt′′ = q0 + r0 .

However, the residue before and after contact (see Section 7.12) can be represented by:

rt = β
(

1− e−γ(ϑ+t)δ
)

· (q0 + r0) , rt = β
(

1− e−γ(ϑ′+t)δ
)

·
(

q0 + r0
)

.

The residue remains unchanged at the moment of contact, so r0 = r0. That easily implies that for small

values of t before and after contact, rt can be set to:

rt = r0 + at , rt = r0 + a′t ,

where a and a′ denote two coefficients that are determined from the observations. — By substituting those
values in the equations above, in which one might likewise replace αq ′′ and αq ′ with αq0, and similarly
replace αq

′

and αq
′′

with αq0, one will get:

q0 = q ′ − (a+ αq0) t ′ = q ′′ − (a+ αq0) t ′′ ,

q0 = q
′

+
(

a′ + αq0
)

t′ = q
′′

+
(

a′ + αq0
)

t′′ ;

and as a result:

q0 =
t ′′q ′ − t ′q ′′

t ′′ − t ′

, q0 =
t′′q

′ − t′q
′′

t′′ − t′
,

n = m

√

q0
q0

= m

√

t′′ − t′

t ′′ − t ′

· t ′′q ′ − t ′q ′′

t′′q′ − t′q′′
.

155



is cited in no. 8 in the first column and the ones in nos. 12, 15, 33 in the second column.
However, it will follow that the removal of those values will have no appreciable effect on the
determination of the mean value of n, since one finds that the mean values with and without
removal are:

n = 1.032 82 , n = 1.032 97 ,

respectively.
A similar series of observations with the same jar and ball that was carried out earlier in

Marburg yielded the following mean value for the ratio n:

n = 1.032 63 .

Hence, the desired ratio will be henceforth assumed to be:

n = 1.032 76 .

Finally, this ratio of the charge in the jar before and after contact with the large ball also
yields the ratio of the distribution of the electricity between the jar and the large ball at the
moment of contact; namely it is equal to:

1 : 0.032 76 .

7.7 Corresponding Observations of the Deflection of

the Tangent Galvanometer that is Produced by the

Amount of Electricity E that Flows Through the

Multiplier, and the Torsion in the Coulomb Tor-

sion Balance Through which the Two Balls Charged

with the Amount of Electricity e will be Main-

tained at the Same Distance as the Uncharged

Ones
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The arrangement of the instruments that were used in the experiment that was mentioned
before in Section 7.5 is depicted in Figure 1, which will serve to make it more intuitive.192

The tangent galvanometer is denoted by m, whose multiplier wire is connected to the
Earth at its one end by a conducting wire l that is soldered to a plate E that is buried in wet
soil, while the other end of the wire leads through the air to the long U -shaped glass tubes

192[Note by AKTA:] An improved version of Figure 1 has been prepared by D. H. Delphenich, namely:
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g and g′, which are filled with water. m′ represents the scale and telescope for observing the
needle of the tangent galvanometer, which is provided with a mirror.

d refers to the Coulomb torsion balance, which will be described in more detail at the
end of this treatise in Appendix I. d′ represents the scale and telescope for observing the
state of the torsion balance. Namely, a long hanging shellac rod is fixed to the torsion wire
under the arm that carries the moving ball, and it carries a mirror at its end, to which the
telescope points. — The large ball hangs from the ceiling of the room by a silk thread at
k. l′ is a fork in the conducting wire l so one can connect the exterior of the jar f to the
Earth. — u is a clock, and a is a hole in the ceiling of the room through which a wire from
the conductor of an electrification machine that was found in the upper room was led to the
small conductor c in order to charge the jar f .

Once the jar f was charged, and a clamping screw was fixed to the wire l′, the jar was
then contacted by the large ball k. The amount of electricity that remained in the jar after
that contact will be denoted by E ′. After three seconds, during which E ′ went to E by losing
electricity to the air and the formation of a residue, the knob on the jar f , as is suggested
in Figure 1, was contacted by a metal knob that stuck out of the U -shaped tube g, and the
observer at the telescope m watched the elongation of the magnetic needle of the tangent
galvanometer that was produced by the discharge current of the amount of electricity E that
went through the multiplier.

Immediately after the jar f was discharged, the fixed ball on the Coulomb torsion balance,
which had been kept on standby, was charged by the ball k and quickly placed into the torsion
balance; however, the ball k itself was likewise discharged in that way.

Thereupon, the torsion was measured several times in brief intermediate times, which
was necessary in order to keep the two balls in their positions, in which, the two radii that
pointed from the rotational axis to center of the ball would define a right angle. The torsion
that would exist at the moment when the large ball k was charged by the jar f (so the
two balls in the torsion balance had also been charged and could be inserted) could then be
calculated from the gradual decrease in that torsion according to Coulomb’s law, which says
that the charge decreases geometrically when time increases arithmetically.193 The torsion
that was first noticed for each number is calculated in that way in the following Table. The
amount of electricity e that went from the large ball k to the fixed ball of the torsion balance
at the moment of contact will be determined from it in Section 7.11.

The last column of the following Table, which is labeled with A/
√
T , contains the quo-

tients that take the form of the deflection of the magnetic needle in the tangent galvanometer,
expressed in scale divisions, divided by the square root of the torsion in the torsion balance,
expressed in minutes. — The distance from the mirror to the scale of the tangent galvanome-
ter was equal to:

6437
1

2
scale divisions .

193[Note by KW:] By a series of experiments in which the fixed ball was sometimes found to be outside the
case of the torsion balance and sometimes inside of it between the individual determinations of torsion, it
was confirmed that the loss of electricity to the air when it was inside the case was the same as the loss to
the air when it was outside of it, which might have been expected from the size of the case. If that were not
the case then the aforementioned application of Coulomb’s law would not be directly applicable, since the
fixed ball would be found outside of the case for some moments before it could be placed inside the torsion
balance.

158



No. Time Deflection of the Torsion of the
tangent galvanometer torsion balance A√

T

in scale divisions in minutes
= A = T

1. 8h11′8′′ 73.5 175.3′ 5.55
16′13′′ 152.4′

21′16′′ 136.1′

26′35′′ 118.3′

32′32′′ 99.9′

2. 8h37′8′′ 80.0 237.1′ 5.20
42′4′′ 208.4′

45′14′′ 189.1′

50′10′′ 165.3′

54′40′′ 148.1′

3. 9h0′37′′ 96.5 332.9′ 5.29
5′14′′ 297.5′

9′19′′ 270.6′

14′11′′ 238.5′

18′10′′ 218.3′

4. 9h31′14′′ 91.1 265.1′ 5.59
35′17′′ 249.2′

41′1′′ 226.2′

47′43′′ 201.1′

55′0′′ 178.0′

5. 10h1′46′′ 97.8 332.4′ 5.36
6′24′′ 306.0′

10′54′′ 280.4′

16′31′′ 251.1′

22′4′′ 228.6′

7.8 Calculating the Ratio of the Two Amounts of Charge

E′
: e

The radius of the large ball was:

a = 159.46 millimeters ,

and the radius of the fixed ball in the Coulomb torsion balance was:

ba = 11.537 millimeters .

If one now sets the ratio by which the electricity equal to 0.032 76E ′ that is transferred from
the jar to the first ball by contact with the latter equal to:

(0.032 76E ′ − e) : e = A : b2B ,
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as in Section 7.6, then, from Plana (“Mémoire sur la distribution de l’électricité à la surface
de deux sphères conductrices,” Turin, 1845, pages 64, 66):194

B

h
=

1

1 + b
+

1

(1 + b)2

{

k2 +
b

1 + b
k3 +

b2

(1 + b)2
k4 +

b3

(1 + b)3
k5 ...

}

,

and when one sets b/(1 + b) = a:

A

h
=

1

2
+

a3

1− a2
+
πa

2
cot πa+ a3k3 + a5k5 + a7k7 ... ,

where:

kn =
1

2n
+

1

3n
+

1

4n
+

1

5n
+ ...

That yields the cited value for the desired ratio:

(0.032 76E ′ − e) : e = A : b2B = 1 : 0.007 937 7 ;

as a result:

E ′ : e = 3 876 : 1 .

7.9 Calculating the Amount of Electricity ε with which

the Two Balls in the Coulomb Torsion Balance

Must be Charged in Order for Their Repulsion to

Exert One Unit of Rotational Moment on the Tor-

sion Balance

The radius of the fixed ball on the Coulomb torsion balance was equal to 11.537 millimeters,
and the radius of the moving ball was equal to 11.597 millimeters, so one can then assume to
no detriment that the mean radius of the two almost-equal balls in the following calculation
is:

a = 11.567 millimeters .

Furthermore, the distance from the rotational axis to the center of the fixed ball was
equal to 93.53 millimeters, the distance from the rotational axis to the center of the moving
ball was equal to 61.7 millimeters, and both centers defined a right angle with the axis of
rotation. That yielded the distance between the centers as being equal to:

112.05 millimeters ,

which was also confirmed by direct measurement of that distance.
Now, if each of the two balls contains one-half of the amount of electricity to be deter-

mined ε, then if one assumes that this electricity is distributed uniformly on the surface of
each ball then, from known laws, that:

194[Note by AKTA:] See footnote 153 on page 135.
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1. A uniformly distributed amount of electricity on the surface of the ball will act upon
all points in external space just as if it were concentrated at the center of the ball.

2. The force of repulsion that the amount of electricity that is concentrated at a point
exerts upon another [amount of electricity] concentrated at a point, is equal to the
quotient of the product of both amounts of electricity divided by the square of the
distance between them,

one would obtain immediately the force of repulsion between both balls, namely:

1

4
· ε2

112.052
=

ε2

502 21
.

However, if that force of repulsion were to be found precisely, then the assumption above
would be inadmissible, and one would have to determine the non-uniformity of the distribu-
tion of electricity on the surface of every ball precisely from the given magnitude and distance
and include it in the calculation.

In Poisson’s “Mémoire sur la distribution de l’éléctricité à la surface des corps conduc-
teurs” (Mèmoires de l’Institut. Année 1811. Première partie, page 88),195 one finds the
following expression for the density z of the electricity on the surface of a small ball at a
great distance from another ball when the mean density on the first ball is given to be equal
to B and is equal to A on the latter:

z = B − 3a2A

c2
· µ| +

5a2bA

2c3
(

1− 3µ2
|
)

,

in which b and a are the radii of the two balls, c is the distance between their centers, and
µ| means the cosine of the angle ϕ that the radius of the first ball defines with the direction
of c at the location in question. — If one wishes to apply that general rule to the foregoing
case, then one must set:

A = B ,

a = b ,

and when one writes the value cosϕ for µ|, it will follow that the density is:

z = A

[

1− 3a2

c2
cosϕ+

5

2

a3

c3
(

1− 3 cos2 ϕ
)

]

.

Furthermore, that density implies the outward-pointing electric pressure perpendicular to the
surface of the ball at the location in question from the known law that was proved by Poisson
in the cited treatise, according to which, the pressure is proportional to the square of the
density, or more precisely, it is equal to the square of the density z2 multiplied by the number
2π:

2π · z2 .
If one then decomposes that pressure in the direction of the extended line c and a direction

that is perpendicular to it, then one will get that the component parallel to the extended line
c is equal to:

195[Note by AKTA:] See footnote 43 on page 56.
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−2πz2 · cosϕ .

Finally, if one substitutes the value of z above in this [expression], then one will get the
decomposed pressure for two equal elements of the surface of the ball whose connecting line
is parallel to the line c, for which the value of ϕ between them is then extended to π, and
collected along the direction of the extended line c from:

24
πa2

c2
A2

[

1 +
5

2

a3

c3
(

1− 3 cos2 ϕ
)

]

cos2 ϕ ,

from which, one will find the force of pressure that is parallel to the extended line c, first of
all, for the two zones of width adϕ, which both include the elements of the surface of the ball
that belong to the values of ϕ, extended to π, upon multiplying by the area 2πa2 sinϕdϕ:

48
π2a4

c2
A2

[

1 +
5

2

a3

c3
(

1− 3 cos2 ϕ
)

]

cos2 ϕ sinϕdϕ ,

and secondly, for the total surface of the ball, by integration:

48
π2a4

c2
A2

∫ π/2

0

[

1 +
5

2

a3

c3
(

1− 3 cos2 ϕ
)

]

cos2 ϕ sinϕdϕ

= 16
π2a4

c2

(

1− 2
a3

c3

)

A2 ,

in which A is the mean density of the electricity on the surface of each of the two balls of
radius a, and as a result:

4πa2 · A
will represent the amount of electricity that is distributed on the surface of each ball.

However, the desired amount of electricity that is distributed on both surfaces collectively
(whose force of repulsion should exert a unit of rotational moment on the torsion balance)
was denoted by ε above; as a result, one has:

1

2
ε = 4πa2 · A ,

from which:

A =
ε

8πa2
.

If one substitutes this value of A, one will get the force of pressure parallel to the direction
of the extended line c; i.e., the force of pressure on the two balls:

1

4

(

1− 2
a3

c3

)

ε2

c2
,

or when one substitutes the aforementioned values for a and c in this [expression], namely:

a = 11.567 ,
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c = 112.05 ,

one will get:196

ε2

50 331
.

Finally, the product of the force of repulsion between the two balls in the direction from
the rotational axis to the direction of that force — i.e., along the perpendicular dropped
from the line c— gives the value of the rotational moment that this force of repulsion exerts
upon the torsion balance, which should be equal to 1.

However, since the line c that connects the centers of both balls defines a right triangle at
the rotational axis with the horizontals that are drawn from both centers to the rotational
axis, the perpendicular that is dropped from the rotational axis to the hypotenuse of the
rectangular triangle c will be equal to the product of the two catheti197 divided by the
hypotenuse, or since the two catheti are 93.53 and 61.7 millimeters long, and c = 112.05
millimeters, that expression will be equal to:

61.7× 93.53

112.05
= 51.502 5 millimeters .

Now, it follows from this that the rotational moment that is exerted by the electric force
of repulsion on the two balls of the torsion balance will be equal to:

51.502 5 · ε2

50 331
=

ε2

977
.

The requirement that the rotational moment that originates in the electric force of repulsion
on the two balls should be equal to 1 will be satisfied in such a way that the amount of
electricity that is contained in the two balls collectively will be:

ε =
√
977 = 31.25 .

This determination of ε bases the unit for the amount of electricity as the amount that will
make two equal amounts of electricity exert a unit force of repulsion when they are at a unit
of distance and in a state of relative rest.

196[Note by KW:] That implies that, due to its non-uniform distribution on the outer surface, the electricity
that is contained in each ball cannot be thought of as concentrated at the center of the ball. — However,
one has:

ε2

50 331
=

1

4
· ε2

112.17432
,

which then implies that the force of repulsion between the two balls is the same as if the two halves of the
total amount of electricity that is contained in them were concentrated at two points that are separated by
112.1734 millimeters, that is, since that distance is 0.1234 millimeters greater than the distance between the
centers, at two points that lie at a distance of 0.0617 millimeters from the two centers.
197[Note by DHD:] Viz., shorter sides.
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7.10 Calculating the Torsion θ that the Wire from

which the Coulomb Torsion Balance Hangs Must

Possess in Order to Exert One Unit of Rotational

Moment on the Torsion Balance by Its Force of

Torsion

The rotational moment that is exerted upon the torsion balance by the torsion in the wire
to which it [that is, the balance] hangs is known to be proportional to the torsion and the
torsion coefficient of the wire — or more precisely — it is equal to the product of the torsion
angle, expressed in units of radii, with the directive force198 that the wire exerts upon the
torsion balance. One therefore needs only to determine that directive force in order to infer
from it the torsion angle ϑ for which the rotational moment that is exerted upon the torsion
balance is equal to one unit.

From the known laws of the elasticity of solid bodies, the magnitude of the directive force
that is exerted upon the wire is independent of the size and weight of the body that hangs
from the wire, and other bodies, instead of the torsion balance, can therefore be hung from
the wire and observed in order to determine the directive force of the wire.

First of all, one might hang a circular brass plate horizontally at its center from the wire,
instead of the torsion balance. That brass plate has:

a mass of 191 112.4 milligrams,
a radius of 63.95 millimeters.

A small vertical cylinder with:
a mass of 2626.0 milligrams,
a radius of 3.25 millimeters,

will serve to connect the wire with the disc. The period t of the torsion oscillations of the
plate was then observed and found to be:199

t = 47.139 seconds.
However, from the foregoing data, the moment of inertia of the oscillating plate was:

K1 =
1

2
· 63.952 · 191112.4 = 390 790 000 ,

and the moment of inertia of the small cylinder was:

K2 =
1

2
· 3.252 · 2626 = 13 868 ,

so when they are combined:

198[Note by AKTA:] See footnote 66 on page 77.
Representing the rotational moment by τ , the torsion angle by ϑ and the directive force (or torsion

coefficient) by D we have

τ = −Dϑ .

199[Note by AKTA:] J. C. F. Gauss (1777-1855) and W. E. Weber utilized the French definition of the
period of oscillation t which is half of the English definition of the period of oscillation T , that is, t = T/2,
[Gil71a, pp. 154 and 180]. For instance, the period of oscillation for small oscillations of a simple pendulum
of length ℓ is T = 2π

√

ℓ/g, where g is the local free fall acceleration due to the gravity of the Earth, while

t = T/2 = π
√

ℓ/g.

164



K = K1 +K2 = 390 603 868 .

Now, from the known laws of such oscillations, one will get the value of the directive force
D from that moment of inertia K and the observed period of oscillation t:200

D =
π2K

t2
= 1 735 800 .

Secondly, a brass cylinder was hung horizontally by its center from the same wire. That
cylinder had:

a mass of 58 897.1 milligrams,
a length of 269.7 millimeters,
a radius of 2.865 millimeters.

That same small vertical cylinder served to connect it with the wire, as it did in the
foregoing experiment. The period t′ of the torsional oscillation of that rod was then observed
and found to be:

t′ = 44.9537 seconds.

From the foregoing data, the moment of inertia of the oscillating rod was:

K ′
1 =

1

12

(

269.72 + 3 · 2.8652
)

58 897.1 = 357 130 000 ,

and then the total moment of inertia, including the small vertical cylinder was:

K ′ = 357 143 868 .

Those observations then yielded the value of the directive force D as:

D =
π2K ′

t′2
= 1 744 200 .

As a result, the mean of the two series of observations was:

D = 1 740 000 .

Now, should the product of this value of D with the torsion angle, expressed in units of
the radius — i.e., the rotational moment that the wire exerts upon the torsion balance —
be equal to 1, then that would imply that the value of the angle of rotation or the desired
torsion in the wire ϑ would be equal to the angle whose arc is equal to 1/1740000 of the
radius, or:

ϑ = 0.001 975 7 arcminutes .

200[Note by AKTA:] Weber is utilizing the equation of motion of the rigid body with moment of inertia K
given by τ = −Dϑ = Kϑ̈. Here τ = −Dϑ is the torque or rotational moment acting on it due to the wire from
which it hangs, when the lower portion of this wire undergoes a deflection ϑ relative to the upper portion,
D being the torsion coefficient or directive force of this wire. The known solution of this equation yields
a sinusoidal periodic motion with angular frequency ω =

√

D/K. The period T of a complete oscillation

is given by T = 2π/ω = 2π
√

K/D. Gauss and Weber’s period of oscillation discussed in footnote 199 on

page 164 is then given by t = T/2 = π
√

K/D, such that D = π2K/t2.
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7.11 Calculating the Amounts of Electricity E′ and e in
the Observations that were Described in Section

7

In the experiments that were described in Section 7.7, the following values were found for the
torsion angle in the Coulomb torsion balance when it was in equilibrium, where the various
experiments are distinguished by numbers:

No. Torsion angle
in minutes

1. 175.3
2. 237.1
3. 332.9
4. 265.1
5. 332.4

However, the equilibrium of the torsion balance shows that the rotational moment that
is exerted on the torsion balance by the wire is equal and opposite to the rotational moment
of the force of repulsion between the two balls. — Nonetheless, the first rotational moment
was found by dividing the observed torsion angle by the angle ϑ = 0.0019757 arc minutes
that was determined in the previous Section, which was the angle through which the wire
would have to be rotated in order to exert one unit of rotational moment on the torsion
balance. One then gets the rotational moment that the wire exerts on the torsion balance in
the experiments that were described.

No. Rotational moment
of the wire

1. 88 728
2. 120 010
3. 168 500
4. 134 180
5. 168 240

From Section 7.9, the last of the rotational moments that originates in the electric repul-
sive forces between the two balls is:

e2

ε2
=

e2

977
,

where e denotes the amount of electricity with which the two balls of the torsion balance
are collectively charged, which one can then calculate in the five cited experiments from the
equality of the two rotational moments, which is done in the following Table. In addition,
the values of E ′ that are calculated from the proportion:

E ′ : e = 3 876 : 1

that was found in Section 7.8 are entered the last column of that Table.
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No. e E ′

1. 9 310 36 086 000
2. 10 828 41 970 000
3. 12 830 49 730 000
4. 11 450 44 379 000
5. 12 821 49 593 000

7.12 Calculating the Correction that is Required by

the Loss of Electricity and the Residue in the Ley-

den Jar During the Transfer of Electricity up to

the Elapsed Time when the Jar is Discharged,

which Equals E′ − E

The amount of electricity E ′ that remains in the Leyden jar after the charging of the large ball
will experience a small change during the time interval of three seconds up to its discharge,
partly by loss to the air and partly by the formation of residue. The amount E that is still
present in the jar can then be determined from E ′ in the following way:

In Poggendorf’s Annalen 91 (1854), one will find a method given for determining the
formation of the residue in a Leyden jar.201 In accordance with it, if Q is an amount of
electricity that is suddenly transferred to the jar, Qt of which is lost to the air in t seconds,
then a residue of rt will have formed at time t whose equation is:

rt = p
(

Qt −Qe−
b

m+1
·tm+1

)

. (I)

From the previous investigation, the constants of the jar that is used have the values:

p = 0.044 94 , b = 0.183 4 ,

while m+ 1 possesses a magnitude equal to 0.4255, which is the same for all jars.
If those constants are determined for a jar, then the constant α that refers to the electricity

lost to air can also be easily found. One suddenly transfers to the end an unknown charge
Q from the jar to another jar and at the times:

t1, t2, ..., tn ,

one observes the available charges:

Lt1 , Lt2 , ..., Ltn

with the sine electrometer. Now, if νt denotes the amount of electricity that has leaked to
the air up to time t then:

Lt = Q− rt − νt . (II)

However, for small values of t, one can set:

201[Note by AKTA:] [Koh54a] and [Koh54b].
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νt = α · tQ+ Lt

2
,

and if Q− νt is written for Qt in equation (I), in addition, then one will get:

Lt = Q(1− ρt)− α(1− p)t
Q + Lt

2
,

in which p
(

1− e−
b

m+1
·tm+1

)

has been replaced with ρt.

Now, that equation shall suffice for all observations. If one calculates ρt for the times of
the first and last observations and substitutes those values in the equation, along with the
observed values of Lt and t, then one will get two equations in the two unknown quantities
Q and α.

Now, once a charge was suddenly imparted to the Leyden jar in the location where the
previous experiments were carried out, the following results for the determination of α would
be obtained from the observations:

t Lt ρt
23 0.667 6 0.036 19
65 0.657 6 0.041 42
128 0.648 3 0.043 44
226 0.638 9 0.044 35

One has Lt =
√
sinϕ in this, and ϕ is the deflection that is observed in the sine elec-

trometer. However, ρt is calculated from t and the constants of the jar. — Upon combining
the first and last observations, one finds that:

Q = 0.695 6 , α = 0.000 179 35 .

Equation (III) then yields the following associated values for t and Lt with those values:

t Lt

23 0.6676
65 0.6592
128 0.6506
226 0.6389

which deviate from the observed values so slightly that the values that were found for α can
be employed precisely in order to find the correction to E ′. In three seconds then, the loss
of electricity to the air will amount to:

0.000538
times the total charge E ′.

The residue that is created in the same time will be found in the following way:
Immediately before contact with the large ball, which results t seconds after the jar

is charged, the latter will have an available charge of Lt and residue rt that cannot be
discharged. If one writes Q − νt in place of Qt in equation (I), sets νt equal to its value of
α · tQ+Lt

2
, and sets Q equal to the value that is implied by equation (III), then one will get

the residue at the time t, expressed in terms of the available charge that is present at that
time:
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rt =
ρt − αt

(

p− 1
2
ρt
)

1− ρt − 1
2
αt(1− p)

· Lt = βLt . (IV )

After the ball has been charged, only an available charge of Lt/n will remain in the
jar (Section 6), so an amount of electricity

(

1
n
+ β

)

Lt. Now, the form that the ratio of the
residue will take after that partial discharge will depend upon whether the residue that forms
βLt is less than, equal to, or greater than the limiting value:

p

(

1

n
+ β

)

Lt

of the residue for the charge that is still present in the jar, which will, in turn, depend upon
whether n is less than, equal to, or greater than p/[β(1− p)], respectively.

In the present experiments, t was close to 60 seconds, in the mean. If one substitutes
that value in equation (IV), then that will imply that:

β = 0.042 86 ,
p

β(1− p)
= 1.097 8 .

Since it was found in Section 7.6 that n = 1.032 76, so it is less than p/[β(1− p)], it emerges
that the residue will continue to increase. However, its growth will be slower than before
the partial discharge, since the present limiting value of the residue that has already formed
lies closer than it did before, and indeed the further formation will proceed as if the residue
that is present βLt were generated by the present charge (1/n+ β)Lt. However, that would
have required a time that follows from the equation:202

rt = βLt =

(

1

n
+ β

)

Lt · p
(

1− e−
b

m+1
tm+1

)

,

from which, it will follow that:

log t =
1

m+ 1
log

[

−m+ 1

b
ln

(

1− β
(

1
n
+ β

)

p

)]

,

which yields 85.9 seconds.
From the charge E ′ = Lt/n that is present the moment after contact with the large ball,

the resulting growth in the residue will then get lost in the three seconds up to the discharge
of the jar, which is determined from:

[(

1

n
+ β

)

p
(

1− e−
b

m+1
88.9m+1

)

− β

]

Lt = 0.00010Lt ,

or since Lt = nE ′:

0.000 103 · E ′ .

That finally gives the desired correction:

E ′ −E = (0.000 538 + 0.000 103)E ′ = 0.000 641E ′ ,

202[Note by KW:] That equation is formed according to the residue equation (I), in which one must now
set Q = (1/n+ β) in place of Qt.
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and one will then get the corrected values E for the values of E ′ that were given in the
previous Section, which will give the amount of electricity that is actually discharged to the
multiplier, as follows:

No. E
1. 36 060 000
2. 41 940 000
3. 49 700 000
4. 44 350 000
5. 49 660 000

7.13 Calculating the Time Duration that a Current

with the Normal Strength that was Described in

Section 4 Must Have in Order to Produce the De-

flections of the Tangent Galvanometer that were

Observed in Section 7

The deflections of the tangent galvanometer that were cited in Section 7.7 were observed in
scale divisions. One will obtain those deflections in arc values for a radius of 1 by dividing
them by the radius (or twice the distance from the mirror to the scale), expressed in scale
divisions, which equals 12875.

No. Deflection in Deflection in arc values
scale divisions for radius = 1

ϕ
1. 73.5 0.005 708 7
2. 80.0 0.006 213 6
3. 96.5 0.007 495 2
4. 91.1 0.007 075 7
5. 97.8 0.007 596 2

In the Second treatise on Electrodynamic Measurements, p. 363,203,204 it was proved that
a current of strength 1 that goes through a winding of a multiplier whose radius is a will exert
a force F on a particle of the North magnetic fluid +µ or a particle of the South magnetic
fluid −µ that is found at a distance of b from the plane of the multiplier winding, and whose
projection onto that plane lies at a distance of x from the center, perpendicular to the plane
of the winding of the multiplier:

F = ± 2πa2µ

(a2 + b2 + x2)3/2
·
{

1 +
3

4

(

3a2 − 2b2 − 2x2
) x2

(a2 + b2 + x2)2
+ ...

}

,

from which, it will follow that the same current will exert a rotational moment D on a needle
that contains the particles +µ and −µ at a very small distance of 2ε apart that is parallel
to the plane of the multiplier:

203[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 454.
204[Note by AKTA:] [Web52c, p. 454 of Weber’s Werke] with English translation in [Web21b].
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D =
4πa2µε

(a2 + b2 + x2)3/2
·
{

1 +
3

4

(

3a2 − 2b2 − 2x2
) x2

(a2 + b2 + x2)2
+ ...

}

,

where 2µε denotes the magnetic moment of the needle or the needle magnetism.
Now, three different applications can be made of this equation: First of all, to the normal

conditions that were assumed for the magnetic effects in the Section 7.1, next, to the tangent
galvanometer with a single multiplier loop, and finally, to the tangent galvanometer with
multiple multiplier loops that was used in the present experiments. The first two applications
show only that, as was pointed out before in loc. cit. in relation to the current strengths,
this equation is actually the basis for the current intensity unit that is derived from magnetic
effects. The last application leads to the calculation of the desired time interval τ .

If one applies this equation first of all to the normal conditions that were assumed for
the magnetic effects of a current in Section 7.1, then one will have πa2 = 1, b = 0, 2µε = 1,
x = R, and that a/R is a vanishingly-small fraction. The equation above will then yield the
rotational moment D (without the sign, which depends upon the direction of the current):

D =
1

R3
or R3D = 1 ,

which then agrees with the magnetic current effect that was established for a current intensity
of 1 in Section 7.1. It follows from this that the equation above is the basis for the unit of
current intensity that was derived from magnetic effects in Section 7.1.

Secondly, if one applies that equation to a tangent galvanometer with a single multiplier
loop of radius R, where a small magnetic needle is in the center of loop, parallel to the plane
of the loop, pointing to the magnetic meridian, then a = R, b = 0, x = 0. The equation
above then yields the rotational moment that the current exerts on the needle when it is
found along the magnetic meridian:

D =
4πµε

R
.

For a deflection of the needle from the magnetic meridian that equals ϕ, that will go to:

D cosϕ =
4πµε

R
· cosϕ .

If T denotes the horizontal component of the Earth magnetism, then −2πεT sinϕ will be the
rotational moment that the Earth exerts upon the needle. The sum of these two moments
is equal to 0 when the needle persists at rest for the deflection ϕ; as a result:

2π

R
= T tanϕ or ϕ = arctan

2π

RT
.

However, this deflection is the same as the [deflection which a] normal current that was
described in Section 7.4 should produce in a tangent galvanometer with a single loop.

Third, and finally, that same equation shall be applied to the tangent galvanometer with
multiple multiplier loops that is used in the present experiment, and the rotational moment
shall be determined that the aforementioned normal current that was described in Section 7.4
exerts upon the needle when it goes through all windings of the multiplier.

We next consider one winding of the multiplier that has radius a and whose plane is
separated from the meridian plane of the needle by b. The rotational moment D′ that this
winding exerts upon the needle will be determined from the equation above:
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D′ =
4πa2µε

(a2 + b2 + x2)3/2
·
{

1 +
3

4

(

3a2 − 2b2 − 2x2
) x2

(a2 + b2 + x2)2
+ ...

}

,

in which one can set x = 0, as in the previous application, if the length of the needle is a very
small fraction of the diameter of the multiplier winding. Now, the length of the needle in our
tangent galvanometer was, in fact, merely 60 millimeters, while the mean diameter of the
multiplier windings amounted to 267 millimeters, which was, however, still not enough to be
able to neglect x entirely. However, it sufficed to set x equal to an approximate value that
suggested itself when one understood the +µ and −µ in the needle magnetism, [that is, in
the magnetic moment of the needle,] which is equal to 2µε, to mean the combination of the
north-magnetic and south-magnetic fluids that are distributed on the surface of the needle
according to the ideal distribution, and accordingly determined 2ε, which then meant the
distance from the center of mass of the north-magnetic fluid to that of the south-magnetic
fluid, such that one would set x = ε. From the length and nature of the needle that was
used, 2ε could not be very far from 40 millimeters, and one could then set:

x = ε = 20 millimeters

with sufficient accuracy.
If one then lets a′ and a′′ denote the inner and outer radii of the multiplier ring and lets

2b′ denote its width, then the cross-section of the entire ring will be equal to:

2(a′′ − a′)b′ .

If one further denotes the part of the cross-section that the multiplier winding in question
occupies (whose radius was equal to a, and whose plane was separated from the common
center of the needle and the multiplier ring by b) by da·db then the product of those elements
of the cross-section in the multiplier winding under consideration with the rotational moment
that is exerted upon the galvanometer will be equal to:

4πa2µε

(a2 + b2 + ε2)3/2
· dadb

{

1 +
3

4

(

3a2 − 2b2 − 2ε2
) ε2

(a2 + b2 + ε2)2
+ ...

}

,

or since the terms that include the fourth and higher powers of the fraction ε/a can be
neglected, due to the smallness of that fraction:

4πa2µε

(a2 + b2)3/2
· dadb

{

1 +
3

4

a2 − 4b2

(a2 + b2)2
· ε2
}

.

It then follows from this that the sum of the products of the cross-section of each winding
with the rotational moment that is exerted upon it will be:

4πµε

∫ a′′

a′
a2da

∫ +b′

−b′

db

(a2 + b2)3/2
·
{

1 +
3

4

a2 − 4b2

(a2 + b2)2
· ε2
}

= 8πµεb′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2
+

1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

· ε
2

b′2

}

.

Upon dividing this value by the cross-section of the entire ring, which is equal to 2(a′′−a′)b′,
one will get the rotational moment that is exerted upon the needle in the center of one
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multiplier winding, from which, after multiplying by the number of windings n, one will get
the total rotational moment that the multiplier exerts upon the needle due to the normal
current that flows through it, namely:

D =
4πnµε

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2
+

1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

· ε
2

b′2

}

.

That rotational moment D, when divided by the moment of inertia of the needle K,
which is then equal to:

D

K
,

will give the angular acceleration of the needle in terms of the given normal current, and
when that acceleration is multiplied by the duration of the current τ , which is very brief in
comparison to the period oscillation, which equals t, will give the angular velocity that is
given to the needle by the normal current during its brief duration, which equals:

Dτ

K
.

Finally, the deflection — i.e., the initial elongation width ϕ — of the needle that is set
into oscillation can be calculated from that angular velocity that is suddenly given to the
needle at rest by known rules (see the Second treatise on Electrodynamic Measurements, p.
348),205,206 namely, when the decrease in the arc of oscillation of the needle is given by the
ratio of two successive oscillation arcs eλ : 1:

ϕ =
Dτ

K
· t
π
· e

− λ
π
arctan π

λ

√

1 + λ2

π2

.

In order to not have to determine the value of the moment of inertia of the needle K and
its magnetic moment 2µε from special observations, one can eliminate both of them by
consulting the known equation for the period of oscillation, but in which one must account
for the force of torsion207 of the wire. If 1 : ϑ denotes the ratio of the geomagnetic directive
force that acts upon the needle, which equals 2µεT , to the one that is exerted by the wire,
then the equations for the period of oscillation t will be:

2µε · T
K

=
π2

t2
· 1 +

λ2

π2

1 + ϑ
,

and a result, if one sets:

d =
D

2µε
=

2πn

a′′ − a′

{

log
a′′ +

√

a′′2 + b′2

a′ +
√

a′2 + b′2

+
1

4

(

a′′3

(a′′2 + b′2)3/2
− a′3

(a′2 + b′2)3/2

)

· ε
2

b′2

}

205[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 440.
206[Note by AKTA:] [Web52c, p. 440 of Weber’s Werke] with English translation in [Web21b].
207[Note by AKTA:] In German: Torsionskraft.
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and multiplies the foregoing equation by D
2µε·T = d

T
then:

D

K
=
d

T
· π

2

t2
· 1 +

λ2

π2

1 + ϑ
.

If one substitutes that value in the equation for ϕ then one will get:

ϕ = π
d

T
· τ
t
·

√

1 + λ2

π2

1 + ϑ
· e− λ

π
arctan π

λ ,

and that will give the desired duration of the normal current:

τ = t · ϕ
π
· T
d
· 1 + ϑ
√

1 + λ2

π2

· eλ
π
arctan π

λ .

However, it was determined by measurement that for the multiplier of the tangent gal-
vanometer that was used here:

2πa′ = 709.0 millimeters,
2πa′′ = 965.35 millimeters,
2b′ = 72.04 millimeters,

n = 5635,
from which, with the aforementioned value of ε = 20 millimeters, one will get the value of d:

d = 262.1 .

If the value of ε also has an uncertainty of 1 millimeter, then that will imply the uncertainty
in d, which only amounts to 0.4, out of 262, however (i.e., only 1/657), which is not worth
considering.

In addition, the period of oscillation of the needle t, the horizontal component of the
Earth’s magnetism at the location of the tangent galvanometer T , the logarithmic decrement
in the decrease of the arc of oscillation λ, and the ratio ϑ of the directive force of the wire
to the one that is due to geomagnetism T were found in the usual way:

t = 9.244 seconds ,

T = 1.798 3 seconds ,

λ = 0.070 seconds ,

ϑ =
1

691
.

If one substitutes these values in the equation for τ then one will get:

τ = 0.020 921 · ϕ .

The values of ϕ that were obtained from the five experiments that were described in
Section 7.7 were collected at the beginning of this Section. If one substitutes them in the
equation for τ then one will get the following five results for the cited experiments:
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No. τ
1. 0.000 119 4
2. 0.000 130 0
3. 0.000 156 8
4. 0.000 148 0
5. 0.000 158 9

7.14 Calculating the Quantity 1
2τ

· E
Finally, it still remains for us to calculate the value of 1

2τ
· E from the values of E and τ

that were found. Namely, if we summarize the corresponding values of E and τ from the
previous two Sections in the following Table:

No. E τ
1. 36 060 000 0.000 119 4
2. 41 940 000 0.000 130 0
3. 49 700 000 0.000 156 8
4. 44 350 000 0.000 148 0
5. 49 660 000 0.000 158 9

then that will yield the following five values of 1
2τ

·E that result from the five measurements
that were described in Section 7.7:

No. (1/2τ) · E
1. 151 000 · 106
2. 161 300 · 106
3. 158 500 · 106
4. 149 800 · 106
5. 156 250 · 106

All of the measurement collectively then give the mean value:

1

2τ
· E = 155 370 · 106 .

However, from Section 7.5:

1

2τ
·E : 1

denotes the ratio of the amount of positive electricity that passes through the cross-section of
the conductor in one second for a constant current that is composed of equally-large masses
of positive and negative electricity that flow in opposite directions and whose intensity is
equal to the magnetic measure of current intensity, to the amount that would exert a force
at a distance of one millimeter that would impart a velocity of one millimeter per second to a
mass of one milligram during one second, if an equal amount of electricity were concentrated
into a point. That ratio was determined in the problem in Section 7.4 that remains to be
solved, which shall now be done.
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7.15 Reducing the Magnetic, Electrodynamic, and Elec-

trolytic Units of the Current Intensity to Mechan-

ical Units

However, the solution of the problem that was posed in Section 7.4 shall now be used to reduce
the magnetic, electrodynamic, and electrolytic units of the current intensity to mechanical
units.

From Section 7.2, for a constant current that is composed of equally-large masses of
positive and negative electricity that flow in opposite directions whose intensity is equal to
themechanical unit of current intensity, the amount of positive electricity that passes through
the cross-section of the conductor in one second shall be equal to one; i.e., it is equal to the
amount of electricity concentrated into a point that would exert a force at another equal
amount of electricity concentrated into another point at a distance of one millimeter that
would impart a velocity of one millimeter per second to a mass of one milligram in one
second.

However, from the foregoing Section, that unit amount of positive electricity has a ratio
with the amount of positive electricity that passes through the cross-section in one second
for a current whose intensity is given by the magnetic current unit of:

155 370 · 106 : 1 .
Now, since the current intensities are proportional to the amounts of electricity that pass
through the cross-section in equal time intervals, that will immediately imply the reduction
of the magnetic unit for current intensity to the mechanical unit, since the magnetic current
unit of the amount of electricity that passes through the cross-section in the same time
interval will then be:

155 370 · 106

times greater than the amount in the mechanical unit of current. As a result, from the cited
proportion, the magnetic unit of the current intensity will itself also be 155 370 · 106 times
larger than the mechanical unit.

Furthermore, since, from Section 7.1, page 223,208,209 the magnetic unit of current inten-
sity has a ratio of

√
2 : 1 with the electrodynamic one, the electrodynamic unit of current

intensity will be 109 860 · 106(= 155 370 · 106 ·
√

1
2
) times greater than the mechanical unit.

Finally, since, from Section 7.1, page 224,210,211 the mechanical unit of current intensity
has a ratio of 1 : 1062

3
with the electrolytic one, the electrolytic unit of current intensity will

be 16 573 · 109(= 1062
3
· 155 370 · 106) greater than the mechanical unit.

The problem in this treatise, as it was expressed in Section 7.2, of reducing those three
units of current intensity to the mechanical unit, is then solved, and all that remains is to
discuss the applications that can be made of the result that was found.

208[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 613.
209[Note by AKTA:] See page 144 of Section 7.1, or [KW57, p. 613 of Weber’s Werke].
210[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.
211[Note by AKTA:] See page 144 of Section 7.1, or [KW57, p. 614 of Weber’s Werke]. See also footnote 146

on page 134.
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II - Applications

7.16 Determining the Amount of Electricity that is Re-

quired to Liberate 1 Milligram of Hydrogen from

9 Milligrams of Water

The first application that we shall make of the results that were found is to the precise
determination of the amount of electricity that is required to liberate 1 milligram of hydrogen
from 9 milligrams of water, over which the determination that Buff found with the help of
his tangent galvanometer and a long conducting wire and published in Annalen der Chemie
und Physik, Vol. 86, p. 33 was referred to already in the footnote to Section 7.3, page
226.212,213,214

According to Buff, that amount of electricity was sufficient to charge a battery of 45480
Leyden jars, each of which were 480 millimeters high and 160 millimeters in diameter, up to
a spark gap of 100 millimeters. That determination that Buff made lacked only more precise
data on the amount of electricity that a Leyden jar contained when it had been charged as
described.

Now, the results that were found in the present treatise imply that the amount of electric-
ity that is required to liberate 1/9 milligram of hydrogen from 1 milligram of water is equal
to the amount of positive electricity that passes through the cross-section of the conductor
in one second for a constant current whose intensity has the electrolytic unit. However, the
latter is, in proportion to the current intensities that correspond to the electrolytic and mag-
netic current units (see Section 7.1, page 224),215,216 1062

3
times greater than the amount of

positive electricity that passes through the cross-section in one second for a constant current
whose intensity has the magnetic current unit, and from Section 7.14, that is:

155 370 · 106

times greater than the unit amount of electricity concentrated into a point that would exert
a force at a distance of one millimeter, that would impart a velocity of one millimeter per
second on a mass of one milligram during one second if an equal amount were concentrated
into a point.

It follows form this that:

9 · 1062
3
· 155 370 · 106 = 149 157 · 109 units, as it was just determined, are required

to liberate 1 milligram of hydrogen from 9 milligrams of water.

If such an amount of positive electricity were concentrated into a cloud and an equal
amount of negative electricity were concentrated on the surface of the Earth at the location
that is directly below it, then that would yield an attraction of the cloud to the Earth that
would be equal to a weight of 45 000 hundredweights (= 2 268 000 kilograms) if they were at
a distance of 1000 meters from each other.

212[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 616.
213[Note by AKTA:] See page 146 of Section 7.3, or [KW57, p. 616 of Weber’s Werke].
214[Note by AKTA:] See footnote 178 on page 146.
215[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 616.
216[Note by AKTA:] See page 144 of Section 7.1, or [KW57, p. 614 of Weber’s Werke].
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If one divides that number of units by the number of Leyden jars in the battery that Buff
described (viz., 45 480), then one will get the precise data for the amount of electricity that
is contained in the charge in one Leyden jar as described by Buff, namely:

3 280 · 106 units .

However, from Buff’s description, the charged surface of such a jar has an area of:

480 · 160 · π = 241 300 square millimeters

and as a result, each square millimeter will be charged with:

13 600 units ,

from which, one can determine the compression or condensation of electricity in the jar that
is required for a spark gap of 100 millimeters.

7.17 Determining the Constant c

From the fundamental law of electrical action that was established in the first treatise on
Electrodynamic Measurements,217 which encompassed electrostatics, electrodynamics, and
induction, the force that an amount of electricity e exerts upon an amount of electricity e′

at a distance of r with a relative velocity of dr/dt and an acceleration of d2r/dt2 is expressed
by:

ee′

r2

[

1− 1

c2

(

dr2

dt2
− 2r

d2r

dt2

)]

.

That force splits into two parts, the first of which, which is equal to ee′/r2, can be called
the electrostatic force, and the second of which, which is equal to −(ee′/c2r2)(dr2/dt2 −
2rd2r/dt2), can be called the electrodynamic force. The ratio of those two forces is determined
from the constant c. c means the value of relative velocity (assumed uniform) at which
the electrostatic force would cancel the electrodynamic force. That constant c will now be
determined in the following way:

In Section 7.14, the ratio 1
2τ
E : 1 (that is, the ratio of the magnetic unit of current

intensity to the mechanical one) was found to be:

155 370 · 106 : 1 .

In Section 26, page 261 of the Second treatise on Electrodynamic Measurements,218,219 the
ratio of the magnetic unit of current intensity to the electrodynamic one was given as:

√
2 : 1 ,

217[Note by AKTA:] [Web46] with partial French translation in [Web87] and a complete English translation
in [Web07].
218[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 360.
219[Note by AKTA:] [Web52c, p. 360 of Weber’s Werke] with English translation in [Web21b].
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and in Section 27, page 269,220,221 the ratio of the electrodynamic unit for the current intensity
to the mechanical one was given as:

c : 4 ,

from which, the ratio of the magnetic unit of current intensity to the mechanical one would
follow:

c
√
2 : 4 .

Setting this ratio equal to the one that was found in Section 7.14 of the treatise will then
give:

c = 4 · 155 370 · 106 ·
√

1

2
= 439 450 · 106 .

From this determination of the constant c, one then sees that two electrical masses must
move with a very large velocity with respect to each other if the electrodynamic force were
to cancel the electrostatic one, namely, with a velocity of 439 million meters or 59 320 miles
per second, which exceeds the speed of light significantly.

However, the speed of light is not the speed of motion of a body, but of a wave, while all
of the speeds of actual motions of bodies that are known to us, even those of the celestial
bodies, constitute only very small fractions of it. Now, if one observes that the ratio of
the electrodynamic force to the electrostatic one corresponds to the square of that fraction,
then that will imply that the electrodynamic force can always be considered to be vanishingly
small in comparison to the electrostatic one. Indeed, we still have no knowledge of the speeds
at which electric fluids move in metallic conductors.222 However, in various situations, one
can assume that the amount of neutral electricity that is contained in those conductors is
exceptionally large. Nonetheless, the greater the latter gets, the less the speed of the actual
motion will be, which is then implied by the unit of current intensity that is present. The
speed of those motions probably defines only a very small fraction of the speed c then.

Furthermore, the large value of the constant c that was found implies the interesting
consequence that such a dynamical part could also be attached to the gravitational force on
ponderable bodies (which would exhibit a great analogy between the interactions of ponderable
and imponderable bodies) without that dynamical part of the force having the slightest
observable influence of the motions of the celestial bodies.

The fact that the effect of the electrodynamic force does not always vanish for electricity,
but can emerge very apparently for galvanic currents, has its basis in merely the complete
cancellation of all electrostatic forces that takes place during the neutralization of positive
and negative electricity, against which those [electrostatic] forces would disappear. Wherever
no such neutralization takes place, but free electricity is present, only the electrostatic force
would come under consideration in the effect of free electricity. That explains why not all
experiments that were intended to establish the fundamental laws of electrical action could
be performed with merely two masses of free electricity, but some experiments had to be

220[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 367.
221[Note by AKTA:] [Web52c, p. 367 of Weber’s Werke] with English translation in [Web21b].
222[Note by AKTA:] Weber is referring here to the drift velocities of the electrified particles relative to the

matter of the conductor.
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performed with two pairs of electrical masses (viz., current elements) that were neutralized
electrostatically.

For ponderable masses, for which the law of indifferent attraction is true, one can speak
of no neutralization of the masses.

Remark. — At the beginning of this Section, the following equation for the determination
of the constant c was presented:

c =
E

τ
·
√
2 ,

in which 1
2τ

·E : 1 denoted the ratio that was found in Section 7.14 of the amount of positive
electricity that passes through the cross-section of a conductor in one second for a constant
current whose intensity is measured magnetically to the amount of electricity concentrated
into a point that would exert at an equal amount of electricity concentrated into a point
a force at a distance of one millimeter that would impart a velocity of one millimeter per
second on a mass of one milligram in one second. — The Second treatise on Electrodynamic
Measurements223 was referred to in order to prove that equation. However, the validity of
that equation can also be inferred directly from the fundamental law of electrical action and
the definition of the magnetic current measure. To that end, one merely needs to consider
the interaction of two equal current elements α and α of a current flowing along a straight
line separated by a distance of r, about which, as it was already mentioned in the footnote
on p. 224224,225 that they repel each other with a force equal to:

α2

r2
i2 ,

if i is expressed in terms of the magnetic current unit. As is known, that follows from
Ampère’s fundamental law and the relationship between electromagnetism and electrody-
namics that it gives.

Assuming that, one proposes that the rectilinear conductor of our current should contain
one unit of positive and negative electricity in each piece of it that is one millimeter long.
(From Section 7.14), 1

2τ
· E then denotes the number of millimeters that both electrical

currents must traverse in the opposite directions in order to make:

i = 1 .

Those simple relationships give not only the amounts of electricity in the two current elements
α and α, whose distance and the remaining relationship depends upon their force of repulsion
(according to the fundamental law of electrical action), but also the magnitude of that force
of repulsion itself; namely, since i = 1:

α2

r2
.

That merely depends upon the fact that this force of repulsion, which is known already,
can be derived from the fundamental law of electrical action, so since c is contained in that

223[Note by AKTA:] [Web52c] with English translation in [Web21b].
224[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.
225[Note by AKTA:] See page 144 on Section 7.1, or [KW57, p. 614 of Weber’s Werke].
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fundamental law, it will contain an expression for that force that depends upon c, and one
needs only to set [the repulsive force] equal to the value that is known already in order to find
c. However, the force of repulsion between the two current elements α and α can be derived
very easily from the fundamental law of electrical action with the simple relationships that
were described. We then decompose the total force that is given by the fundamental law
into two parts, namely, into the electrostatic and electrodynamic forces. That will shed light
upon the fact that the sum of the electrostatic forces between the two current elements is
zero (due to the electrostatic neutralization that is present in both current elements). It will
likewise illuminate the fact that no acceleration exists between the electrical masses in both
current elements, so d2r/dt2 = 0. With that, the general expression for the electrical action:

ee′

r2

[

1− 1

c2

(

dr2

dt2
− 2r

d2r

dt2

)]

will reduce to:

− 1

c2
ee′

r2
dr2

dt2

in our case. Now, when that expression is applied:

1) to the two positive masses in the two current elements e = +α and e′ = +α, it will give
a force of repulsion that is equal to zero, since the relative velocity of the masses dr/dt = 0
(because both of them move in the same direction with equal velocities);

2) the same thing will be true for two negative masses e = −α and e′ = −α;
3) however, when the same expression is applied to a positive mass e = +α and a negative

one e′ = −α, it will give a force of repulsion that is equal to + 1
c2

ee′

r2
· 1
τ2
·E2, since the relative

velocity of those masses is dr/dt = E/τ (because they both move in opposite directions with
the velocity 1

2τ
· E);

4) the same thing will be true for a negative mass e = −α and a positive one e′ = +α.

It then follows from this that the sum of all forces of repulsion between the electrical
masses that are contained in the two current elements is equal to:

2 · 1

c2
α2

r2
· 1

τ 2
· E2 ,

and if that sum is set equal to its value α2/r2 that is known already, then that will imply
the following equation for the determination of c:

α2

r2
= 2 · 1

c2
· α

2

r2
· 1

τ 2
·E2 ,

or

c =
E

τ
·
√
2 ,

which was to be proved.
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7.18 The Electrical Laws, with the Numerical Deter-

mination of Their Constants

The electrical laws that were developed in the first and Second treatise on Electrodynamic
Measurements are the following:

1) The fundamental law of electrical action. — According to it, the force the electrical
mass e exerts upon the electrical mass e′ at a distance of r with a relative velocity of dr/dt
and an acceleration of d2r/dt2 is expressed by:

ee′

r2

[

1− 1

c2

(

dr2

dt2
− 2r

d2r

dt2

)]

.

2) The fundamental law of electrodynamics. — According it, the force that an unchanging
and motionless current element of length α and current intensity i will exert upon an equal
current element of length α′ and current intensity i′ at a distance of r when α makes an
angle of ϑ with r, α′ makes an angle of ϑ′ with the extension of r, and α makes an angle of
ε with α′ is expressed by:

αα′

r2
ii′(3 cosϑ cosϑ′ − 2 cos ε) .

3) The law of voltaic induction for an unchanging current element that moves with respect
to a conductor. — According to it, the electromotive force that a current element of length
α and current intensity i exerts upon an element of a conductor of length α′ that moves with
a velocity u at a distance of r when α makes an angle of ϑ with r, α′ makes an angle of ϕ
with r, u makes an angle of ϑ′ with the extension of r, and α makes an angle of ε with u is
expressed by:

2
√
2

c
· αα

′

r2
· ui cosϕ(3 cosϑ cosϑ′ − 2 cos ε) .

4) The law of voltaic induction for a variable current element that does not move with
respect to a conductor. — According to it, the electromotive force that a current element
of length α whose current intensity grows uniformly by i in a time interval t exerts upon a
conductor element of length α at a distance of r when α makes an angle of ϑ with r and α′

makes an angle of ϑ′ with the extension of r is expressed by:

−2
√
2

c
· αα

′

r
· i
t
cosϑ cosϑ′ .

5) The law of voltaic induction for a location where there is sliding. — According to it,
the electromotive force that a current of intensity i and sliding velocity v that goes through
the sliding location exerts upon a conducting element of length α′ at a distance of r when v
makes an angle of ϑ with r, and α′ makes an angle of ϑ′ with the extension of r is expressed
by:

−2
√
2

c
· α

′

r
vi cosϑ cosϑ′ .

A positive value in the expressions (1) and (2) means a force of repulsion, while a negative
value means a force of attraction. The numerical values of our measurements give the
magnitudes of the forces as ratios with the force that would impart a velocity of one millimeter
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per second on a mass of one milligram during one second. In the expression (2), as well as
in all of the following ones, the current intensities i and i′ are assumed to be measured in
magnetic units, which can always be easily done with the tangent galvanometer. If one lets ε′

denotes the electrical capacity of the conductor α′ — i.e., the ratio of the amount of positive
electricity that it contains (which is equal to that of the negative) to its length, — then for
ε′ = 1 the expressions (3), (4), (5) will give the difference between the two forces that act
in the direction of α′ on the amounts of positive and negative electricity that are contained
in α′, and in fact, they will give that force difference as a ratio with the force that would
impart a velocity of one millimeter per second on a mass of one milligram during one second.
— If ε′ is not equal to 1, then the expressions (3), (4), (5) must be multiplied by ε′ in order
to get the given force difference.

A complete determination of all forces by means of the given laws requires that the
constant c must be set equal to the numerical value that was found in the previous Section
in all of the expressions above. One will then get:

ee′

r2

[

1− 1

c2

(

dr2

dt2
− 2r

d2r

dt2

)]

=
ee′

r2

[

1− 1

193 120 · 1018
(

dr2

dt2
− 2r

d2r

dt2

)]

, (1.)

αα′

r2
ii′(3 cosϑ cosϑ′ − 2 cos ε) , (2.)

2
√
2

c
· αα

′

r2
· ui cosϕ(3 cosϑ cosϑ′ − 2 cos ε)

=
1

155 370 · 106 · αα
′

r2
· ui cosϕ(3 cosϑ cosϑ′ − 2 cos ε) , (3.)

−2
√
2

c
· αα

′

r
· i
t
cosϑ cos ϑ′ = − 1

155 370 · 106 · αα
′

r
· i
t
cos ϑ cosϑ′ , (4.)

−2
√
2

c
· α

′

r
· vi cosϑ cosϑ′ = − 1

155 370 · 106 · α
′

r
· vi cosϑ cosϑ′ . (5.)

When all constants have been determined numerically, the law of electricity, in the last
form, will satisfy all requirements in practice. However, for theoretical investigations, it can
be necessary in many cases to substitute the values of i and i′ that are derived from the
causes of the current intensities (see Section 7.2) in the expressions above, instead of the
current intensities i and i′ that are measured in magnetic units. Namely, if +αε and −αε
denote the amounts of positive and negative electricity, respectively, that are contained in
the conductor α, and +u and −u, respectively, are the velocities with which they move in
the conductor, and if +α′ε′, −α′ε′, +u′, and −u′, respectively, denote the same things for the
conductor α′, then εu and ε′u′, respectively, will be the values of the current intensities, when
determined in mechanical units, and from the relationships that were found in Section 7.15,
those values must be divided by 155 370 ·106 in order to obtain the values of the same current
intensities, when expressed in magnetic units. As a result, one will have:

i =
εu

155 370 · 106 , i′ =
ε′u′

155 370 · 106 ,
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in the expressions above, and those values can be substituted for i and i′ in the expressions
above, if that should be necessary.

7.19 Application to Electrolysis — Measurement of a

Chemical Affinity Force

All electrical forces that are determined by means of the laws that were cited in the foregoing
Section are forces that act directly upon only electrical masses. However, all forces that act
directly upon only electrical masses will also act indirectly upon the ponderable carriers of
those electrical masses. In that way, the application of electrical laws to the investigation
of ponderable bodies opens up a broad field, since electricity will, in that way, become an
instrument for us, with whose help we can make known forces act upon ponderable bodies
by means of relationships for which no other known forces act.

When electrical masses are coupled with their ponderable carriers, the law above explains
why the electrical masses cannot move without their carriers. However, even in metallic
conductors, in which the electricity can move, while their ponderable carrier (the metal)
remains at rest, so the electrical masses go from one metallic particle to another, one still
finds a coupling between the electrical masses and the metallic particles that must be resolved
before the electrical mass can go from one metallic particle to another. As long as that
coupling exists, all forces that act upon only the electrical masses will, however, carry over
directly to the metallic particles that they are coupled with, and only those forces that act
upon the electrical masses, once they have been liberated from the metallic particles, will
no longer carry over to those metallic particles, but will impart a certain velocity on those
electrical masses until they arrive at the next metallic particle, but due to the coupling
between those electrical masses and the next metallic particle, it will again be cancelled,
which would have the same effect as if the electrical forces that produced that velocity were
carried over to that next metallic particle. One calls all of those forces that emerge from
the coupling of electrical masses with individual metallic particles forces of resistance, by
which the metal opposes the motion of electricity in its interior, from which Ohm’s law
follows,226 that the electricity in the metallic conductor can persist in a uniform motion
only when it is driven forward continually by an equally-large force, and that current will
momentarily vanish as soon as the driving force ceases. — It will then follow from this that,
even in conductors, all forces that act upon the electricity in the conductor directly, will be
transferred indirectly to the conductor itself due to the resistance of the conductor.

In electrolysis, one does not deal with a metallic conductor that remains at rest while
the electrical fluid moves in it, but with a body (e.g., water) that is composed of various
kinds of ponderable particles, of which, the one kind (viz., hydrogen particles) follows the
motion of the positive electricity, while the other (viz., oxygen particles) follows the negative
electricity. That then raises the question: What is the origin of the forces that produce
the various motions of the two components of the water? The laws of electrolysis show
that these motions must be an indirect effect of the electrical forces, if not also a direct
one. Now, if the electrical forces act directly upon only the electrical masses that are bound
to the hydrogen and oxygen particles, then the fact that the hydrogen particles follow the
motion of the positive electricity and the oxygen particles follow the motion of the negative
electricity shows that the one must be bound to positive electricity in water, and the other,

226[Note by AKTA:] See footnote 128 on page 123.
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with negative electricity, so it will remain in the water, regardless of whether it contains a
quantity of neutral fluid, in addition to the free electricity. The strength of that coupling
of the hydrogen particles with free positive electricity and the oxygen particles with the
negative electricity might also go unmentioned, such as whether it is so strong that they
cannot be separated at all, so the electricity will only move with its ponderable carrier under
electrolysis, or if it behaves as it does in metallic conductors, such that the electricity will
take on a motion that is independent of the motion of the ponderable carrier, in addition
to the latter motion. However, in the latter case, the law that the decomposition of the
different combined bodies that is due to that current will be proportional to the chemical
equivalent will not be strictly valid, which has been shown by the most recent investigations
of that case.

Now, if the electrical forces, which only seek to separate the electrical fluid directly, are
transmitted to the components of the water by whatever bond that couples the fluid to the
components, then one can achieve a closer determination of the chemical separating forces227

that produce the separation of the ponderable components from a more precise knowledge of
the electrical separating forces, and that is the reason for the special interest that electrolysis
enjoys in comparison to the other methods of chemical separation. Namely, electricity can
be used as an instrument by which we link each hydrogen and oxygen particle in the water
by a thread and we can stretch both threads in opposite directions with known forces until
the hydrogen and oxygen particles are torn from each other.

In order to employ that instrument, and in that way to actually determine the forces that
are required to separate the chemically bound parts in terms of known measurements, we
must give the electrical law, along with the numerical determination of its constants. Once
that has been done, we would also like to attempt to apply that to the known results.

The forces that put the electrical fluid into current motion will be called electromotive
forces. That special terminology (which will be used to distinguish that type of force, and
not merely its effects) is merely based upon the fact that up to now those forces cannot
be measured with known units, but can be determined only indirectly by the effects of the
currents that they produce (e.g., thermal, chemical, and magnetic effects), by which they
can indeed be compared to each other, but absolutely cannot be expressed in terms of known
units, and therefore they also cannot be compared with other known forces. That argument
breaks down when one determines those forces from the laws that were given in the foregoing
Section, by which they will be expressed in terms of known units. One can also express the
forces that one cannot calculate directly from the laws above in terms of known units by
comparison them with the ones that can. — Finally, since one can determine the resistance
in a closed circuit precisely, and for a constant current the electromotive force and resistance
must always have the same ratio to each other, according to Ohm’s law, one also learns
how the electromotive forces are distributed over the various parts of the circuit. Thus, if
a voltmeter is introduced into a circuit, then the electrical separating forces that act in the
water can be ascertained precisely.

However, with water, one encounters the special circumstance that it defines a very bad
conductor in its pure state and is very difficult to decompose. All electrolytic measurements
then relate to water that has been mixed with sulfuric acid or other chemicals: One obtains
different results in regard to decomposability for different mixtures. It is necessary to initially
restrict oneself to a particular mixture then, and here we shall choose a mixture of water
and sulfuric acid with a specific gravity of 1.25, following the investigations that Horsford

227[Note by AKTA:] In German: Chemischen Scheidungskräfte, see also footnote 23 on page 47.
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published in Poggendorf’s Annalen, Vol. 70 (1847), p. 238, which is the easiest of all mixtures
of water and sulfuric acid to decompose.228

For equal lengths and cross-sections, the resistance by which that mixture opposes the
current that Horsford gave was found to be:

696 700
times larger than the resistance of silver, or when one sets the ratio of the resistance of silver
to that of copper equal to 1 : 0.7417, following Lenz (Poggendorf’s Annalen, Vol. 34, p. 418,
Vol. 45, p. 105):229

516 750
times larger than the resistance of the copper that Lenz used. — From the measurements
that were communicated in the Abhandlungen der K. Gesellschaft der Wissenschaften in
Göttingen, Vol. 5 (“Über die Anwendung der magnetischen Induktion auf Messung der
Inklination mit dem Magnetometer”),230 the resistance of a copper wire of length one mil-
limeter and a mass of one milligram (= 1/8.427 square millimeters of cross-section) was
found to be equal to:231,232

2 310 000
in absolute units of the magnetic system; i.e., for a copper wire of length one millimeter and
a cross-section of 1 square millimeter, it will be equal to:

274 100.
That yields the resistance of the mixture above when it is one millimeter long and one square
millimeter in cross-section as being:

141 640 · 106

in magnetic resistance units. However, that mixture contained about nine parts water to one
part sulfuric acid by volume, and the pure water would then amount to only 9/10 of the total
cross-section. If one assumes that the total current goes merely through the water (because if
a part of the current were conducted by the sulfuric acid then that would define an auxiliary
current, which would have to be excluded from any consideration of the decomposition of
water) then the resistance would refer to just the water, and one would have to set it equal
to:

127 476 · 106

for one millimeter of length and one square millimeter of cross-section.
Now, should this resistance to the current intensity in magnetic units be equal to 1062

3
—

namely, strong enough that, from Section 7.1, page 224,233,234 one milligram of water would
decompose in one second — then the electromotive force for each millimeter in magnetic
units would have to amount to:

228[Note by AKTA:] Eben Norton Horsford (1818-1893), see [Hor47] and [Sto88].
229[Note by AKTA:] [Len35] and [Len38].
230[Note by AKTA:] [Web53e], [Web53a] and [Web53c].
231[Note by KW:] In the cited place, [Wilhelm Weber’s Werke, Vol. II, p. 319], one finds the resistances

given for various types of copper, among which, one finds the one above, which corresponds to the copper
that Jacobi used for his standard resistance (Widerstands-Etalon), which is the largest of them. That value
was chosen because Lenz often referred to the same papers as Jacobi, so he probably appealed to the same
types of copper as Jacobi in his experiments.
232[Note by AKTA:] See [Web53e, p. 319 of Weber’s Werke] and [Jac51].
233[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.
234[Note by AKTA:] See page 144 of Section 7.1, or [KW57, p. 614 of Weber’s Werke].
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106
2

3
· 127 476 · 106 ,

which must be multiplied by 2
√
2

c
= 1

155 370·106 in order to obtain its expression in mechanical
units.

However, from the foregoing Section, that number means the difference between the forces
that act in each direction of the current on each unit of free positive electricity (in the
hydrogen particles) in a column of water that is one millimeter long and on each unit of the
free negative electricity (in the sulfuric acid that is found in it), and that number must then
be multiplied by n in order to obtain the total force that acts, if n is the number of units of
free positive or free negative electricity that is contained in the hydrogen or oxygen particles,
respectively, in a water column that is one millimeter long.

However, the hydrogen in one milligram of decomposed water gives up its free positive
electricity to the electrode where it develops, which will then flow through the electrode (or,
what amounts to the same thing, in effect, it will be neutralized by the supply of negative
electricity in it) and will flow through the cross-section in one second. However, since the
current intensity in electrolytic units is equal to 1, and from Section 7.15, with that current
intensity, 1062

3
·155 370 ·106 units of positive electricity and just as much negative electricity

will go through the cross-section in one second (when one-half of the free positive electricity
that is on the electrode flows through the electrode, while the other half is neutralized by
the negative electricity that the electrode supplies), which will yield:

1

2
n = 106

2

3
· 155 370 · 106 .

If one then multiplies that number by:

2
√
2

c
· n = 2 · 1062

3

then the product

2 ·
(

106
2

3

)2

· 127 476 · 106

will give the difference between the forces that must act in the direction of the current on the
hydrogen particles in one milligram of water that defines a column that is one millimeter long,
which contain free positive electricity, and on the negative electricity that is contained in the
oxygen particles (under the influence of the neighboring sulfuric acid) if the decomposition of
the water is to result with a velocity of one millimeter per second, and indeed that difference
in forces is determined from the number above as a ratio to the force that would impart a
velocity of one millimeter per second on a mass of one milligram during one second.

The weight of one milligram is a force that will impart a velocity of 9 811 millimeters per
second on a mass of one milligram in one second. Therefore, if one divides the given number
by 9 811, then one will get that force difference, as expressed in milligram weights:

2

9 811
·
(

106
2

3

)2

· 127 476 · 106 = 2 · 147 830 · 106 .

One can express that result in the following way: If all of the hydrogen particles in one
milligram of water in a column one millimeter long were coupled by one thread and all of
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the oxygen particles were coupled with another thread, then both threads would each have to
be tensed in opposite directions with a weight of:

147 830 kilograms,

or about 2956 hundredweights, in order to produce a decomposition of the water with such a
rate that one milligram of water would decompose in one second. The tension would remain
the same for columns of different cross-sections but would increase in proportion to the length
of the column.

Should the water decompose at a small rate under the same conditions — e.g., with a rate
of one milligram per 2956 seconds — then the tension above would have to be proportionally
smaller; viz., only one hundredweight. Above all, the tension could then be arbitrarily small,
and decomposition would always result, but only at a lower rate as the tension become
smaller. However, that is true only under the assumption that the force of resistance by
which the water opposes its decomposition (the motion of the hydrogen and the oxygen in
opposite directions), which is analogous to the force of resistance that opposes the motion
of positive and negative electricity inside of a metallic conductor according to Ohm’s law,
is proportional to the rate of decomposition.235 However, for metallic conductors, it is very
likely that Ohm’s law does not correspond to reality precisely, but that, strictly speaking,
the force of resistance consists of two parts, one of which is proportional to the rate, while
the other is constant, since it is only in that way that the better conductors (e.g., metals)
can be included in the same law as the worse ones (e.g., insulators). The same thing is
also probably true for the force of resistance by which the water opposes the motion of the
hydrogen and oxygen in opposite directions in its interior. The resistance (viz., the force of
resistance divided by the drift velocity)236 will then be represented by the sum of a constant
w and a part k/i that is inversely proportional to the drift velocity. Now, if one substitutes
that sum for the resistance in Ohm’s law then one will get the current intensity i, expressed
in terms of the electromotive force E and the given sum, in the following way:

i =
E

w + k/i
,

or

E = k + wi .

For metallic conductors, k is very small compared to the value of wi that comes from the
measurements; for insulators, wi vanishes in comparison to k.

Now, no precise experiments involving water exist from which the value of the constant
k could be measured. However, there do exist experiments in which it was shown that this
constant does not vanish completely, although it is still very small. Namely, if one conducts
magnetically induced currents through water, then one can infer from the measurable current
effects that this induction would decompose more or less water according to whether it
happened faster or slower, respectively, which would not be the case if one had k = 0. — For
electrolytic measurements, wi is typically so large that k will not come under consideration
in comparison to it.

235[Note by KW:] From Ohm’s law, the ratio of the force of resistance by which a conductor opposes the
motion of the electricity inside of it to the velocity of that motion is a constant that is called the resistance

of the conductor.
236[Note by AKTA:] In German: Stromgeschwindigkeit. See footnote 52 on page 61.
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One refers to the forces that define the resistance to the decomposition of the hydrogen
and oxygen in water as forces of chemical affinity, which one is not, however, in a position
to express in known units. In this Section, it will be shown in an example how the results of
the foregoing investigation can actually be employed to implement such a determination. In
that way, the path to a more detailed exploration of the laws of forces of chemical affinity
will be blazed, but numerous measurements of those forces would be necessary for that, of
which, only one measurement shall be given as an example.

7.20 Electricity Content in a Conductor

The intensity of the current that goes through a conductor is proportional to the velocity with
which the positive and negative electricity flows through the cross-section of the conductor
and therefore depends upon two factors:

1. The amount of electricity that is contained in each element of length of the conductor
(which can be called the capacity of the conductor).

2. The velocity with which that amount of electricity (viz., positive and negative moving
in opposite directions) advances in the conductor.

The intensity of the current that flows through the cross-section of the conductor — that
is, the amount of positive and negative electricity — can be measured in known units, but
neither the amount of electricity that is contained in an element of length in the conductor
nor the velocity with which it advances in that conductor can be determined individually:
That could happen only in those cases where the one kind of electricity does not move by
itself, but the particles of the conductor in which it is contained move with it.

Now, whether that case comes about when the electricity jumps from one conductor to
another (through a layer of air), whereby small particles of the one conductor break away and
go over to the other conductor, has not, in fact, been ascertained experimentally, and it also
cannot be ascertained completely and with certainty. However, it seems that under certain
conditions, it can be established factually that small particles can break away from only the
positively charged conductor and go over to the negative conductor. There is also no doubt
that these small particles that break away are charged with free positive electricity and that
the transfer of a well-defined amount of electricity from one conductor to another will be
mediated by them. However, whether the transfer of only part of the positive electricity
or all of it from one conductor to the other will be mediated in that way, and furthermore
whether those small breakaway particles contain merely free positive electricity or also a well-
defined amount of negative electricity, in addition, and finally, how the negative electricity on
the other conductor behaves during the process, has not been subjected to a more detailed
discussion up to now.

As far as the behavior of the electricity on the negatively-charged conductor is concerned,
of which, no particles will break away and move to the positive conductor under the afore-
mentioned conditions, it would seem to emerge from this that the negative charge on the
conductor suffers some sort of deceleration under those conditions and therefore that before
that charge has attained the strength that is required for the liberation of small particles,
the particles that break away from the positively-charged conductor have already arrived at
the negative one and hinder the growth in negative charge by transmitting their positive
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charge. Hence, no electricity at all would go from the negatively charged conductor to the
positively charged one under those conditions.

As far as the other question is concerned, of whether the liberated particles contain
merely positive electricity or whether they carry a well-defined quantity of neutral fluid with
them, in addition, a definite opinion on that could only be based upon some fact about the
liberated particles at the highest level of detail.

Namely, it is known that when a larger ball is separated from a smaller one after contact,
the free electricity that is contained in both of them will split between them in a well-defined
ratio, and indeed in such a way that the mean densities of the layers of electricity that are
found on the surface of each ball will not be equal, but the mean density that is found on
the surface of the smaller ball will be larger than the density that is found on the surface of
the larger ball, and in fact that ratio will approach:

1.6449 : 1

as the two balls become the more unequal.

Now, a particle that breaks away can be considered to be only an extremely-small ball,
and therefore when one denotes the density of amount of electricity that is present on the
surface of the positively-charged conductor by ε, the density of liberated particles that are
present on the surface will be set equal to 1.6449 ·ε. Now, it is known that whereas ε vanishes
in comparison to the radius of curvature of the surface of the positively-charged conductor,
1.6449 · ε will also vanish in comparison to the radius of the smallest liberated particle, but
in contrast, due to the extreme smallness of that particle, one must assume that its radius
is smaller than 1.6449 · ε, or at least no larger than it. However, it would then follow that
this layer of positive electricity would fill up the entire positive particle, and therefore no
space would be left in that layer that might contain a well-defined amount of neutral fluid.
The small liberated particle would then contain merely free positive electricity. Finally,
in regard to the question of whether the free electricity goes from the positively-charged
conductor to the negative conductor only by means of the liberated particles or if another
quantity of positive electricity without ponderable carriers finds a path to the negatively-
charged conductor by itself, as well, one can only assert that given the lack of any physical
basis upon which it would depend, under exactly the same conditions, the one part of the
electricity should move independently of its ponderable carrier, while the other part must
move with its ponderable carrier. Since that would then actually establish that part of the
transferred electricity was drawn along by its ponderable carrier, that must be assumed of
all the transferred electricity until the contrary has been proved.

The case of a current for which the conducting particles, which contain only positive
electricity, would advance would then actually exist. The amount of advancing electricity
that goes from the one conductor to the other can now be determined precisely from the
measurements that are obtained (by measuring the current intensity). As a result, all that
remains is to measure precisely the amount of ponderable mass that simultaneously breaks
away from the positive conductor and lands on the negative conductor. Although that
ponderable mass might also be so small, nonetheless, it can still be clearly observed, and
from that, one can assume that its weight can also be determined with the most accurate
balance that we possess.

In any event, that implies that even for very large amounts of electricity that go from
the positively-charged conductor to the negatively-charged one, the ponderable mass of the
conducting particles that break away is very small, and as a result, the amount of electricity
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that is contained in each element of length in the conductor is exceptionally large. However,
the larger that amount of electricity gets, the smaller that the velocity with which that
amount of electricity advances in the conductor will be,237 and that smaller velocity with
which the electrical fluid moves in its conductor can then by no means be confused with
the extremely large velocity with which the perturbation of the equilibrium in the electrical
fluid propagates through the metallic conductor, to which the well-known experiment of
Wheatstone referred.238

The facts that the amount of electricity that is contained in one element of length in a
metallic conductor is very large and that the velocity with which the amount of electricity
moves in the conductor is very small for all currents that are presented in reality, could have
been expected beforehand by analogy with the results that were found in Section 7.15 for
a wet conductor (e.g., water), because it was found there that for a current whose intensity
is equal to 1 in electrolytic units, an amount of positive electricity of 1062

3
· 155 370 · 106

units, together with 1/3 milligram of hydrogen, will move in one direction, while an equally-
large amount of negative electricity that is bound to 8/9 milligram of oxygen will move
in the opposite direction through the cross-section of the conductor in one second, from
which, it would follow that 1062

3
· 155 370 · 106 units of positive electricity and equally-much

negative electricity must be contained in one milligram of water, but they (together with
their ponderable carriers) advance only with the very small velocity of 1/2 millimeter in one
second when the area of the cross-section of the wet conductor is only 1 square millimeter.
If the cross-section were larger, then the velocity would be proportionally smaller.

7.21 Applying This to Units — Derivation of All Units

from the Spatial Unit

The units that are useful in physics are divided into the fundamental units and the derived
units. In general mechanics, where all forces are considered to be given individually, all units
can be reduced to the known fundamental units of space, time, and mass. — In all of those
branches of physics where the law of gravitation must be assumed to apply, all units can
be reduced to merely the two fundamental units of space and time, since the units of mass
can also be derived with the help of the law of gravitation. Namely, one can take the unit
of mass to be the mass that would, if it were concentrated at a point, exert a force upon
another mass at a unit distance that would impart a velocity to the latter that would equal
one unit length per unit time according to the law of gravitation.

Now, it is interesting to note that this system of units is capable of being simplified even
further, and that it is possible to derive all of the units that are used in physics from the single
basic unit of space when one assumes two fundamental laws of nature to that end, namely,
in addition to the law of gravitation of ponderable masses, one assumes the fundamental law
of electrical action, since one can also derive the unit of time from the unit of space with the
help of the latter. Namely, one can take that unit of time to be the time during which two
electrical masses that move with uniform relative velocity must move towards or away from
each other if they are to have no influence on each other according to that law.

If one chooses the millimeter to be the spatial unit, then the unit of time could be derived

237[Note by AKTA:] Weber is referring here to the drift velocity, that is, the velocity of the electrified
particle relative to the matter of the conductor.
238[Note by AKTA:] See footnote 138 on page 129.
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from it under the assumption of the fundamental law of electrical action, and it would be
the:

439 450 millionth part of a second,
since when two electrical masses that move with uniform relative velocity approach or move
apart from each other [the distance] of 1 millimeter in that small time interval, they will
exert no effect on each other according to the fundamental law of electrical action.

Once the time unit has been derived from the spatial unit in that way, the unit of mass
can also be derived from those two units under the assumption of the law of gravitation.
Namely, from the law of gravitation, the Earth is a mass that, if it were concentrated into
a point, would impart an acceleration equal to 9 811 upon another mass at a distance equal
to the Earth radius if the millimeter were used as the spatial unit and the second were used
as the unit of time. If one were to take the unit of time that was just derived instead of the
second, which is 439 450 million times smaller, then the derived unit of acceleration would
be 4 394 502 billion times larger, and the acceleration would be equal to:

9 811

439 4502 · 1012
in that larger unit. Now, if one sets the radius of the Earth equal to 6 370 · 106 (millimeter),
then according to the law of gravitation, if the mass of the Earth were concentrated into a
point, then it would impart an acceleration upon another mass at a unit of distance that
would equal:

9 811 · 6 3702 · 1012
439 4502 · 1012 ,

and as a result, a mass that amounts to 439 4502

9 811·6 3702 , or almost one-half the mass of the Earth,
which is the mass that one will get as the derived mass unit from the law of gravitation,
under the assumption that the millimeter is the spatial unit and with the help of the time
unit that was derived from it before.

Finally, all of the remaining units that are used in physics can be derived from the
millimeter as the spatial unit and the units of time and mass that were just derived from it
in known ways.

According to this system, in which all units can be derived from the single fundamental
unit of distance, the force of attraction between two masses m and m′ at a distance of r
will be equal to mm′/r2, and the force of repulsion of two amounts of electricity e and e′

at a distance of r will be equal to (ee′/r2)(1− dr2/dt2 + 2rd2r/dt2), without having to add
constant factors to these expressions or individual terms.
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Appendices

I. Description of the Torsion Balance

In order to avoid, as much as possible, an unequal reaction of the charged balls on the
moving ball of the torsion balance due to the electrostatic induction of its electrified walls,
the balance is usually associated with a very large scale. The case in which the balls were
hung was a parallelepiped that was 1.16 meters long, 0.87 meter wide, and 1.44 meter high.
The twelve edges of the parallelepiped were constructed from square posts (with a thickness
of 80 mm) of hard wood. Once the framework was established on a large stone foundation,
a heavy sheet of wood was laid upon it as a lid, but the side walls were draped with a
tightly-stretched oilcloth in such a way that the edges of the posts would not protrude into
the interior of the space. After that draping, which left merely the upper fourth of a wall
open for one to hang the apparatus, the rigidity of the case was increased appreciably by
bolted struts. For the measurement itself, once the fixed ball was introduced, the opening
was closed with a slide. However, in addition, the entire case was covered with multiple
layers of towels and blankets that rested upon the stone in order to keep the draft off of it.
Nevertheless, it was necessary to make the observations at night in an unheated room, since
the opening and closing of the doors in other parts of the building and the uneven warming
of the floor by the Sun would give rise to air currents that would produce an occasional
oscillation of the moving ball of up to one-half of a degree. However, at night, when the
outside air was not too agitated, the ball did not oscillate by even one minute.
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The torsion circle T was fixed over the center of the lid, whose cross-section is denoted
by D in Figure 2, whose alidade AA′ allowed one to read off the individual minutes from its
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vernier scale239 and would lead to a finer adjustment of the torsion with a Hooke’s joint240

H or also by freely loosening it by hand. Furthermore, the definitions of the symbols in the
Figure are:

• a the hard-drawn brass wire (no. 12), which is 398 mm long and fixed in the axis of
the alidade;

• b a small brass cylinder with a side screw for clamping it fast to the lower end of a.
Under it, is

• c a 5 mm protruding threaded spindle, in order to attach either the body whose period
of oscillation is to be determined from the torsion coefficient, or the brass wire

• d, to which the 5 mm thick, 450 mm long, cylindrical rod ef of pure shellac was
fused.241

• hi means the shellac lever for the moving ball, which was tapered on both sides with
a length of about 60 mm up to 2.5 mm in thickness.

• fg is a wire that is immersed an inch deep in olive oil with a mirror s on it that is
attached to wood. The oil has the effect of damping out not only the oscillation of the
moving ball, but also the pendulum motions that arise from vibrations, in the shortest
time, while on the other hand, it is no impediment that the lever follows the most
imperceptible changes in torsion.

The two balls of the torsion balance consist of very thin Argentan sheet metal that were
finely polished and gold-plated, and merely heat-glued to the shellac.

The long vertical shellac rod for the fixed ball, which was tapered below, was glued to a
curved brass rod mn. A horizontal axis pq with two steel tips was solidly fixed to it, and
at right angles to it, a brass rod rt with a running weight. The running weight pushed the
upper end of the brass rod mn against an adjusting screw, such that precisely the same
position of the torsion balance would result whenever the fixed ball was taken out or put in.
If one pushed the brass rod mn forward in order to charge the moving ball until the rod tr
joined up with an adjustment screw, then the charged fixed ball would be found to be near
the moving one, so the former could attract and charge the latter without the latter needing
to describe a large path.

Opposite to the mirror s, there was an opening in the wall of the torsion balance that was
closed with flat glass. Outside at some distance, one found a horizontal scale whose mirror
image could be observed in a telescope. The distance to the scale was chosen such that when
the rotation of the level in the torsion balance amounted to one minute, the scale in the
telescope would move by one scale division. At the same time, the scale was positioned such
that when the centers of the two balls defined precisely a right angle with the axis of rotation,

239[Note by AKTA:] In German: Dessen Alhidade AA′ die einzelne Minute durch ihre Nonien ablesen

liess. The measuring device “nonius” was named after its inventor, the Portuguese mathematician and
cosmographer Pedro Nunes (Latin: Petrus Nonius) (1502-1578). The Vernier scale was derived from it,
being due to the French mathematician and instrument maker Pierre Vernier (1580-1637).
240[Note by DHD and AKTA:] In German: Hook’schen Schlüssel. It is also called a universal joint or

universal coupling. It is named after Robert Hooke (1635-1703).
241[Note by KW:] The length ef , and above all, the length Tg, are too negligible in comparison to the size

of the upper part of the figure to be indicated. The balls were further away from the lid.
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its zero-point, which was placed in the center and from which the scale was numbered on
both sides outward, would appear in the crosshair of the telescope.

That was the position of the balls in which they should be observed, which could always
be known with great accuracy in that way. Had the moving ball moved further from the
fixed ball after they were electrified, then the observer who was found at the telescope could
likewise read off how many degrees or minutes would be needed to correct the state of
the moving ball by torsion. On the other hand, a disc was installed on the Hooke’s joint
that allowed one to see the rotation of that joint in minutes of the rotation of the alidade,
and the torsion-adjusting second observer could bring about the correction on command242

without needing to look at the vernier scale. Some practice with the timely assignment and
performance of that command and the excellent effect of the oil soon brought one to the
point that the moving ball, which was thought to be put into a state of violent motion by
the charging, could be brought to rest completely in a relatively short time in such a way
that the centers of the two balls would define an angle with the axis of rotation that was
larger than a right angle by only a few minutes; i.e., such that the zero-point of the scale in
the telescope would be at a distance of a few tick marks on the crosshair of the telescope.
The loss of electricity would then bring the ball gradually closer to the fixed ball due to
the torsion on it that was present, such that the time-point at which the zero-point of the
slowly-drifting scale passed the crosshair of the telescope would be determined accurately.
The torsion could be read off from that.

The state in which the centers of the two balls define precisely a right angle with the
rotational axis of the torsion balance is found in the following way:

242[Note by KW:] If one wished to bring the lever in an uncharged torsion balance from one position to
another without producing long-lasting oscillations, then one would make one-half the correction suddenly
when the lever was still at rest and the other half just as suddenly at the moment when attained its greatest
elongation and began to reverse. It would then become more still the less the air resistance came into
consideration in comparison to its moment of inertia. One will achieve the goal approximately for the
charged torsion balance in that way.
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Once a fine filament that was weighted down (whose projection m represents the axis
of rotation in Figure 3), was fixed to the small cylinder on the torsion wire in place of the
shellac rod, a theodolite T was placed at a distance of a few meters, and the distance Tm
was measured precisely. From there, an ivory yardstick that was divided into millimeters
was brought into the positions MN and M ′N ′ horizontally, such that it stood parallel to
md each time and was tangent to the fixed ball at one-half its height. The vertical crosshair
in the telescope of the theodolite allowed one to estimate the lengths ab, ac, a′b′, and a′c′ to
one tenth of a millimeter due to its higher magnification. One then had:

md =
1

4
(ab+ ac + a′b′ + a′c′) .

After that, a second theodolite was placed at a point T ′ such that the vertical line in its
telescope covered the rotational axis m and was tangent to the fixed ball. Once T ′m was
measured, the telescope was rotated into the position T ′n such that the line was tangent to
the other side of the fixed ball, and it then remained unperturbed.

One then hung the shellac rod with the moving ball from the torsion wire again and
measured the angle pTq with the theodolite T . The moving ball, which was protected from
light reflection, stood out very sharply from the white background, and the theodolite pointed
to the tangent to the circle inside of which it moved by slow rotation. The distance from the
center of the moving ball to the axis of rotation was then:
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me = Tm sin
1

2
pTq − r′ ,

in which r′ is the previously measured radius of the moving ball.
The fixed ball was now taken out, and in order to avoid air currents, the case of the

torsion balance was closed completely, except for two small openings in the already-known
direction T ′n′, and the moving ball was placed in such a way that it would be tangent to
the direction T ′n′ by means of the torsion wire.

It would then be necessary to rotate the moving ball through 90o+dme in order to make
its center come to the position e′, in which it would describe a right angle with m and d.
Now, the angle:

dme = mfT ′ +mT ′f − nmd ,

while:243

mfT ′ = arcsin
T ′m sinmT ′n′ − r′

me
,

mT ′f = 2 · arcsin r

T ′m+md cosnmd
,

nmd = arcsin
r

md
.

Since everything in that has been given, dme could be easily calculated, and the rotation
of the moving ball through 90o + dme was accomplished by means of the torsion circle, so
the zero-point of the observer scale was located correctly.

II. Description of the Tangent Galvanometer

The copper wire that was employed for the multiplier was wound quite tightly with silk, and
then almost 2/3 of a mile of collodion was pulled along its entire length.244 From the large
roll on which it was then found, with the help of a very uniformly tensed pulley, it would
be wound around the circular ring of the tangent galvanometer with 5635 windings. That
metal ring, which defined a channel of rectangular cross-section, was previously given a thick
coating of heated sealing wax everywhere that the wire was laid in it. After that, a 20 pound
copper weight was placed into the ring as a damper. All of the remaining procedures are
known.

The main idea was to confirm one’s belief that all windings of the tangent galvanometer
would actually be traversed by the discharge current, and that it would not perhaps jump
over some of them by a spark that occurred deep within the windings, but perhaps not
visibly. Now, a small multiplier of 1000 windings that had been used often at Marburg was

243[Note by KW:] The multiplicity of these possibilities was due to the opacity of the hanging shellac rod.
244[Note by KW:] Experiments concerned with whether the degree of insulation would actually increase in

that way have not been performed, but one should, nonetheless, assume that is so. In any event, in that
way, one will arrange that the silk not only adheres to the wire very firmly, but also that it does not become
slightly rough on the surface. The process is simple: One leads the wire from the original roll to a small
fixed roll with a horizontal axis, and from there, to a larger roll at a greater distance, around which it will
be temporarily wound. The small fixed roll is immersed halfway in a container of collodion.
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on hand, and it could be predicted from the dimensions of the two instruments that they
would have roughly the same sensitivity to the discharge of a Leyden jar. Both multipliers
were coupled in such a way that the same discharge from a larger Leyden jar, when retarded
by a column of water, would have to flow through the windings in both of them. Now, since
not only the predicted behavior of the sensitivity occurred, but upon raising the charge,
the data from both galvanometers remained proportional to each other, as well as the data
that corresponded to a sine electrometer, which allowed one to compare the charge on the
Leyden jar in isolation when coupled to it, one could convince oneself that the large tangent
galvanometer would serve its purpose. For all discharges that would be regulated by a
specially-constructed pendulum, the knob on the jar remained coupled with the multiplier
for the same time (and in fact, only 2/3 of a second) in order to allow only a very small (and
in fact proportional) part of the residue to appear again. The results are as follows:

No. a. b. c. d.
Deflection ϕ

√
sinϕ Small multiplier. Tangent- d/c d/b

of the sine Elongation in galvanometer.
electrometer scale divisions Elongation in

scale divisions
1. 9o31′ 0.4078 41.75 170.40 4.1060 417.85
2. 19o59′ 0.5845 59.50 244.85 4.1151 418.91
3. 34o57′ 0.7569 76.95 316.10 4.1078 417.62
4. 49o54′ 0.8746 88.97 365.45 4.1076 417.85

Each of the numbers under c and d is the mean of 2 to 3 measurements that differed from
each other by at most one scale division. The desired proportionality then emerged from this
completely. Now, the distance from the mirror to the scale was 1633 for the small multiplier
and 6437.6 scale divisions for the large one, and their sensitivities then had roughly the ratio
that was required above, namely, 1 : 1.042 3.

Those measurements, the second of which could obviously be assumed to include an
observation error in the tangent galvanometer, showed an extraordinary accuracy in the
comparison of the available charge in a Leyden jar for all three instruments.
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Chapter 8

[Kirchhoff, 1857a] On the Motion of
Electricity in Wires

Gustav Kirchhoff245,246

I have attempted to establish a general theory of the motion of electricity in an infinitely
thin wire, by assuming certain facts which are observed in constant currents, and in currents
whose intensity alters but slowly, to be universally valid. I will here develope this theory,
and show its application to some cases of a simple nature.

I picture to myself a homogeneous wire possessing the same thickness throughout and of
circular cross section. In the axis of this wire I take a fixed point and a variable one; the
portion of the axis between both points I call s. Through the changeable point I permit
a transverse section to pass, and call the polar coordinates of a point of this section, with
reference to a system of ordinates whose origin is the centre, ρ and ψ.247 I will calculate the
electromotive force which tends to separate, in the direction of the length of the wire, the
two electricities in the vicinity of the point determined by s, ρ and ψ. This force is partly
derived from free electricity, partly from the induction which takes place in consequence of
the alteration of the strength of the current in all parts of the wire. With regard to the first

245[Kir57b] with English translation in [Kir57a].
246Gustav Kirchhoff’s Notes are represented by [Note by GK:], while the Notes by A. K. T. Assis are

represented by [Note by AKTA:].
247[Note by AKTA:] The Figure of this footnote shows my representation of this configuration. Figure (a)

shows a fixed point 0 at the left extremity of the wire and a variable point of length s along the curved axis
of the wire of total length l. Figure (b) shows the circular cross section of the wire of radius α and the polar
coordinates (ρ, ψ) of a point inside the wire.

s
0

l

r
y

a

(a) (b)
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portion, we may make use of the electrostatic law of Coulomb.248 Let V be the potential of
the free electricity with reference to the point under consideration; that is to say, the sum of
all the single quantities of free electricity, each divided by its distance from the point. The
quantities of electricity are here to be referred to a mechanical unit; the unit of electricity
shall be that which, acting upon an equal quantity at the unit of distance, produces the unit
of force. In general, all quantities which appear in this investigation — strength of current,
resistance, etc. — shall be regarded as measured by a mechanical unit, in the manner often
described by W. Weber in his “Electrodynamic Determinations”.249 We have there −∂V/∂s
as the force with which the free electricity strives to move the unit of positive electricity at
the point under consideration in the direction in which s increases. An equal force tends to
move the negative electricity in the opposite direction. Therefore we have −2∂V/∂s as the
electromotive force derived from the free electricity, and acting at the point in question.

In developing the value of V , I will assume that no other free electricity acts upon the
wire than that which is in the wire itself. The quantity of free electricity which, at the time t,
is contained in the element of the wire which corresponds to the element ds of the axis I will
denote by eds;250 let ds′ be a second element of the axis, and e′ds′ the quantity of electricity
contained in the corresponding element of the wire. I picture to myself a portion of the wire,
whose centre lies in ds and the length of which is 2ε, where ε denotes a quantity which is
to be regarded as infinitely small in comparison with the length of the whole wire, but as
infinitely great in comparison with the radius of its cross section. When the element of the
wire in which the quantity of electricity e′ds′ is contained lies outside the above portion, we
can imagine, in the calculation of V , its electricity to be concentrated in the line ds′, and
the point to which V refers situated in the line ds. Hence the portion of V derived from the
whole wire, with the exception of the portion alluded to, is

=

∫

e′ds′

r
,

where r denotes the distance of the elements ds and ds′, the integration being extended over
the whole of the central line, with the exception of the length 2ε.

With regard to the portion of V derived from the part separated, this can only be
calculated when the distribution of the electricity within a cross section is known. I will
assume that here, as in the case of a constant current, and of electricity in equilibrium, free
electricity is to be found upon the surface only, and besides that its density is the same at
all points of the periphery of a cross section. Denoting by α the radius of the cross section,
we have, according to this, the density of the free electricity at any point of the surface of
the portion of wire under consideration = e

2πα
; hence, as on account of its infinitely small

length it may be regarded as straight, the quantity of V derived from it is

=
e

2π

∫ +ε

−ε

∫ 2π

0

dx′dψ′
√

x′2 + α2 + ρ2 − 2αρ cos(ψ′ − ψ)
.

In this expression x′ has been written for s′ − s, and ψ′ denotes the angle between the

248[Note by AKTA:] See footnote 43 on page 56.
249[Note by AKTA:] In German: elektrodynamischen Maassbestimmungen. Kirchhoff is here referring to

Wilhelm Weber’s major Memoirs on Electrodynamic Measurements: [Web46] with partial French translation
in [Web87] and complete English translation in [Web07]; [Web52c] with English translation in [Web21b];
[Web52b] with English translation in [Web21a]; and [KW57] with English translation in [KW21].
250[Note by AKTA:] Therefore e means linear charge density.
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radius drawn to an element of the surface of the wire and the line from which the angle ψ
is reckoned. When the integration, according to x′, is carried out, ε, in comparison with α
and ρ, being regarded as infinitely great, we have the following expression:251

=
e

π

∫ 2π

0

dψ′
(

ln 2ε− ln
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)
)

,

that is,

= 2e

(

ln 2ε− 1

2π

∫ 2π

0

dψ′ ln
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)

)

.

Setting

∫ 2π

0

dψ′ ln
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ) = U ,

the differential equation

∂2U

∂ρ2
+

1

ρ

∂U

∂ρ
+

1

ρ2
∂2U

∂ψ2
= 0

must be satisfied, because the quantity under the sign of integration multiplied by dψ′ satisfies
this equation for all the values of ψ′; but it is easily seen, by setting ψ′ − ψ instead of ψ′ as
the variable according to which the integration is to be carried out, that U is independent
of ψ; hence we must have

d2U

dρ2
+

1

ρ

dU

dρ
= 0 ;

but from this it follows that

U = C1 ln ρ+ C2 ,

where C1 and C2 denote two unknown constants. These may be easily determined by as-
suming ρ as infinitely small in comparison with α; the carrying out of the integration in the
expression for U gives then

251[Note by AKTA:] In Kirchhoff’s original paper, [Kir57b, p. 196 of the Annalen der Physik und Chemie

or p. 134 of his Gesammelte Abhandlungen], this equation was written as:

=
e

π

∫ 2π

0

dψ′
(

lg 2ε− lg
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)
)

.

In the English translation of this paper, [Kir57a, p. 395 of the Philosophical Magazine], this equation was
written as:

=
e

π

∫ 2π

0

dψ′
(

log 2ε− log
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)
)

.

This last expression gives the impression that Kirchhoff’s logarithm of a magnitude m, which he wrote
as lgm, should be understood as the common logarithm base 10, log10m = logm. However, this is not
the case. What Kirchhoff wrote as lgm should be understood as the natural logarithm which has Euler’s
number e ≈ 2.718... as its base, namely, lgm = logem = lnm.
In the translation presented in this book I am utilizing the modern symbol, ln, instead of Kirchhoff’s

original symbol, lg. In this way his original mathematical reasoning can be better understood, avoiding
misunderstandings. In Section 9.1 of Chapter 9, page 221, I present a modern solution of this integral.
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U = 2π lnα ,

from which it follows that C1 is = 0, and U has this constant value for all the values of ρ.
Consequently the portion of V derived from the piece 2ε of the wire is

= 2e ln
2ε

α
,

and hence

V = 2e ln
2ε

α
+

∫

e′ds′

r
, (1)

where the integration is to be extended to the whole wire, with the exception of the portion
2ε.

We have now to form the expression for the electromotive force induced in the point
under consideration, by the alteration of the intensity of the current in all portions of the
wire.

When in the element of a conductor, the length of which is l′, the intensity of the current
denoted by i′ changes, an electromotive force will be induced by this change in a second
element of the conductor, which, with reference to the unit of the quantity of electricity,
according to Weber,252,253 is equal to254

= − 8

c2
∂i′

∂t

l′

r
cos θ · cos θ′ ,

where θ and θ′ denote the angles formed by the two elements with the line drawn from the
first to the second, r the length of this line, and c the constant velocity with which two
particles of electricity must move towards each other, so that they may exercise no force
upon each other.

For all parts of the wire, excepting the piece of the length 2ε already alluded to, the
electric current may be regarded as concentrated in the central line: the portion of the
induced electromotive force now sought, which is derived from the wire, with the exception
of the piece already mentioned, is therefore

− 8

c2

∫

∂i′

∂t

ds′

r
cos θ · cos θ′ ,

where i′ is the intensity of the current which passes through the cross section of the wire at
the place ds′, θ and θ′ the angles which the elements ds and ds′ form with the line which is
drawn from the latter to the former, r the length of this line, and where the integration is to

252[Note by GK:] Elektrodynamische Maassbestimmungen, 1846, p. 354; and 1856, p. 268.
253[Note by AKTA:] [Web46, p. 354 of Weber’s original 1846 paper and pp. 187-188 of Weber’s Werke],

[Web07, pp. 121-122]; [KW57, p. 268 of the Abhandlungen der Königlich Sächsischen Gesellschaft der

Wissenschaften, mathematisch-physische Klasse or pp. 655-656 of Weber’s Werke] and [KW21, pp. 55-56].
See also item (4) of page 182 on Section 7.18.
254[Note by AKTA:] In German: “so wird dadurch in einem zweiten Leiterelemente eine elektromotorische

Kraft inducirt, die bezogen auf die Einheit der Elektricitätsmenge, nach Weber ist = ...”. This expression
was translated as, [Kir57a, p. 396]: “an electromotive force will be induced by this change in a second
element of the conductor, which, with reference to the unit of electricty of Weber, is = ...”. I modified a
little this translation.

204



be extended throughout the whole wire, with the exception of the portion already referred
to.

In this portion the current must not be regarded as concentrated in the central line, but
in lieu of this it may be regarded as straight and parallel to ds. Through the first point of ds′

let a transverse plane be placed cutting the wire, and let ρ′ and ψ′ be the polar coordinates
of a point of the plane, with reference to a system of coordinates whose origin is the centre,
and whose axis is parallel to the line from which the angle ψ is reckoned: if then the density
of the current in the points determined by ρ′ and ψ′ be J ′, we obtain for the portion of the
induced electromotive force due to the portion of wire 2ε, the expression

− 8

c2

∫ α

0

∫ 2π

0

∫ +ε

−ε

∂J ′

∂t
· ρ′dρ′dψ′x′2dx′
(

x′2 + ρ2 + ρ′2 − 2ρρ′ cos(ψ′ − ψ)
)3/2

.

As J ′ may be regarded as independent of x′, the integration according to x′ may be easily
accomplished: making use of the fact that ε is infinitely great in comparison with all values
of ρ and ρ′, we obtain255

−16

c2

∫ α

0

∫ 2π

0

∂J ′

∂t
ρ′dρ′dψ′

[

ln 2ε− 1− ln
√

ρ2 + ρ′2 − 2ρρ′ cos(ψ′ − ψ)

]

.

But as

∫ α

0

∫ 2π

0

J ′ρ′dρ′dψ = i ,

this expression is

= −16

c2

[

(ln 2ε− 1)
∂i

∂t
−
∫ α

0

∫ 2π

0

∂J ′

∂t
ρ′dρ′dψ′ ln

√

ρ2 + ρ′2 − 2ρρ′ cos(ψ′ − ψ)

]

.

Hence the entire induced electromotive force is

= − 8

c2
∂W

∂t
,

where

W =

∫

i′
ds′

r
cos θ cos θ′ + 2i (ln 2ε− 1)

− 2

∫ α

0

∫ 2π

0

J ′ρ′dρ′dψ′ ln
√

ρ2 + ρ′2 − 2ρρ′ cos(ψ′ − ψ) .

In the case of a stationary electric current,256 the density of the current is equal to the
product of the electromotive force, referred to the unit of quantity of electricity, and the

255[Note by AKTA:] Due to a misprint, the original equation was written as:

−16

c2

∫ α

0

∫ 2π

0

∂J ′

∂t
ρ′dρ′dψ′

[

ln 2ε− 1− ln
√

ρ2 + ρ′2 − 2ρρ cos(ψ′ − ψ)
]

.

256[Note by AKTA:] That is, in the case of a constant or steady electric current which does not change in
time.
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conductivity; I will assume that the same also holds good when the current is not stationary.
This assumption will be fulfilled when the forces acting upon the electricity, and which
constitute the resistance, are so powerful that the time during which a particle of electricity
remains in motion after the cessation of the accelerating forces, and in virtue of its inertia,
may be regarded as infinitely small, even in comparison with the small space of time which
comes into consideration in the case of a non-stationary electric current. According to this
assumption, if k be the conductivity of the wire,257 J the density of the current at the point
determined by the values of s, ρ and ψ at the time t, we have the equation

J = −2k

(

∂V

∂s
+

4

c2
∂W

∂t

)

.

From this expression for the density J , I deduce an expression for the strength i of the
current, by multiplying the above with ρdρdψ, and integrating the expression with reference
to ρ from 0 to α, and in reference to ψ from 0 to 2π; as V is independent of ρ and ψ, when
I make

w =
1

πα2

∫ α

0

∫ 2π

0

Wρdρdψ ,

I obtain

i = −2πkα2

(

∂V

∂s
+

4

c2
∂w

∂t

)

. (2)

We have here258

w =

∫

i′
ds′

r
cos θ cos θ′ + 2i (ln 2ε− 1)

− 2

πα2

∫ α

0

∫ 2π

0

∫ α

0

∫ 2π

0

J ′ρ′dρ′dψ′ρdρdψ ln
√

ρ2 + ρ′2 − 2ρρ′ cos(ψ′ − ψ) .

The integral

∫ 2π

0

dψ ln
√

ρ2 + ρ′2 − 2ρρ′ cos(ψ′ − ψ)

is of the same form as that already considered and denoted by U : from the conclusions there
stated, it follows that the integral is = 2π ln ρ′, when ρ′ > ρ, and = 2π ln ρ when ρ′ < ρ.
Multiplied by ρdρ, and integrated from 0 to α, it therefore gives this expression:

πα2

(

lnα− α2 − ρ′2

2α2

)

.

As we may set

∫ α

0

∫ 2π

0

J ′ρ′dρ′dψ′ = i ,

257[Note by AKTA:] In German: Leitungsfähigkeit. This expression was translated as “conductive capacity”
in [Kir57a]. I preferred the translation “conductivity”.
258[Note by AKTA:] Due to a misprint, the first expression in the parenthesis was written as (ln 2r − 1).

206



the third member in the expression for w will be

= −2i lnα +

∫ α

0

∫ 2π

0

α2 − ρ′2

α2
J ′ρ′dρ′dψ′ ;

and hence we obtain

w =

∫

i′
ds′

r
cos θ cos θ′ + 2i

(

ln
2ε

α
− 1

)

+

∫ α

0

∫ 2π

0

α2 − ρ′2

α2
J ′ρ′dρ′dψ′ .

The remaining double integral cannot be reduced to a simple form, as J ′ is an un-
known function of ρ′; its value, however, can be neglected in comparison with the member
2i
(

ln 2ε
α
− 1
)

, and for this we may set 2i ln 2ε
α
, if the thickness of the wire be only small

enough in comparison with the dimensions of the figure formed by its axis; for then ε can
be so chosen that ln 2ε

α
shall be a number infinitely great, and ε notwithstanding infinitely

small in comparison with the dimensions of the figure alluded to. In accordance with this
supposition we have

w = 2i ln
2ε

α
+

∫

i′
ds′

r
cos θ cos θ′ , (3)

where the integration is to be extended over the whole wire, with the exception of the length
2ε.

To the equations (1), (2) and (3), between the four quantities i, e, V , w, a fourth may
be added.

Let two transverse sections be supposed to pass through the commencing and terminal
points of ds; through the first point passes in the time dt into the element of the wire bounded
by both, the quantity idt of positive electricity; through the second point passes in the same
time out of the element of the wire the quantity of positive electricity

(

i+ ∂i
∂s
ds
)

dt; the
element loses, therefore, in the time dt the quantity ∂i

∂s
dsdt of positive electricity; the negative

electricity flows in equal quantity and in the opposite direction through both cross sections;
the element of the wire gains, therefore, in the time dt as much of negative electricity as it
loses of positive; its free electricity, that is, the difference between its negative and positive,
diminishes therefore in the element of time by 2 ∂i

∂s
dsdt: this free electricity is, however, eds,

and hence we have

2
∂i

∂s
= −∂e

∂t
.259 (4)

I will now develope further the theory contained in the four equations distinguished by
numbers, under the supposition that the form of the central line of the wire is such, that
the distance between two of its points, between which a finite portion of the wire lies, is
never infinitely small. By this supposition the case is excluded, that induction spirals are
contained in the circuit. In this way we greatly simplify the equations (1) and (3).

259[Note by GK:] The deduction of this equation is based on the supposition, that in the case of a non-
stationary current equal quantities of the opposite electricities pass through every cross section of the con-
ductor in equal times. If this supposition be, however, rejected, the equations would nevertheless hold good;
it would then be merely necessary to define the intensity of the current as the arithmetic mean of the two
quantities of electricity, which in the unit of time move in opposite directions through the cross section of
the conductor.
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Let A denote the position of the element ds, and B and C two points upon the wire, at
both sides of A and at a finite distance from it; then the integral

∫

e′ds′

r
,

extended over the whole wire, with the exception of the piece BAC, is a finite quantity, hence
infinitely small in comparison with 2e ln 2ε

α
; hence in the equation (1) this integral must only

be extended over the portionBAC, with the exception of the portion 2ε. Denoting, therefore,
by σ the arc between A and a variable point of the wire, the integral mentioned may be set

=

∫ AB

ε

e′dσ

r
+

∫ AC

ε

e′dσ

r
.

The quantity e′/r is a function of σ, which approximates to the value e/σ when σ approaches
0; the integrals260

∫ AB

ε

(

e′

r
− e

σ

)

dσ and

∫ AC

ε

(

e′

r
− e

σ

)

dσ

have therefore finite values, for the function to be integrated will never be infinitely large;
hence instead of the integral in equation (1) we may set

∫ AB

ε

edσ

σ
+

∫ AC

ε

edσ

σ
;

that is,

e ln
AB

ε
+ e ln

AC

ε
.

The choice of the lengths AB and AC is arbitrary, only they must be finite in comparison
to the length of the wire; for both we may set the half of this length: denoting the whole
length by l, the equation (1) will be

V = 2e ln
2ε

α
+ 2e ln

l

2ε
,

that is,

V = 2e ln
l

α
.

Through considerations of the same kind it will be seen that the equation (3) receives a
similar form; thus we have

w = 2i ln
l

α
.

These values of V and w are to be substituted in equation (2); when this is done, setting,
for the sake of brevity,

260[Note by AKTA:] Due to a misprint, the last integral appeared in the original paper as:

∫ AC

ε

(e|

r
− e

σ

)

dσ .
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ln
l

α
= γ ,

and denoting the resistance of the entire wire, that is, the quantity

l

kπα2
,

by r, we obtain

i = −4γ
l

r

(

∂e

∂s
+

4

c2
∂i

∂t

)

.

From this equation, in connexion with equation (4), viz.

2
∂i

∂s
= −∂e

∂t
,

we have to determine i and e as functions of s and t.261

A particular solution of the differential equation is found by setting

e = X sinns ,

i = Y cosns ,

where n denotes an arbitrary constant, and X and Y are unknown functions of t. By this
the equations become

Y = −4γ
l

r

(

nX +
4

c2
dY

dt

)

,

2nY =
dX

dt
.

From this we obtain, by eliminating Y ,

d2X

dt2
+

c2r

16γl

dX

dt
+
c2n2

2
X = 0 .

The general integral of this differential equation is

X = C1e
−λ1t + C2e

−λ2t ,

where C1 and C2 are two arbitrary constants, e the basis of the hyperbolic logarithms,262

and λ1 and λ2 the roots of the quadratic equation

λ2 − c2r

16γl
λ+

c2n2

2
= 0 .

According to this the values of λ1 and λ2 are

261[Note by AKTA:] In Section 9.2 of Chapter 9, page 222, I discuss the telegraph equation obtained by
Kirchhoff.
262[Note by AKTA:] That is, e = 2.718... is the basis of the natural logarithm.
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c2r

32γl



1±

√

1−
(

32γ

cr
√
2
nl

)2


 .

In order to form an idea as to whether these roots are real or imaginary, a particular case
shall be considered. Let the wire be of the standard wire of Jacobi,263 the resistance of which
has been measured by Weber.264 This is a copper wire of 7.620 metres in length265 and 0.333
millimetres radius. The value of γ is, according to this, very nearly = 10. Weber266,267 found
its resistance according to the electro-magnetic unit as268

= 598 · 107 ,
regarding the millimetre and second as units of length and time. To find the resistance
according to the mechanical unit, that is, the value of r, we must multiply the above value
by 8/c2. Now, as according to the same units we have269,270

c = 4.39 · 1011 ,
we obtain

r = 2.482 · 10−13 ,

and from this we obtain

32γ

rc
√
2
= 2 070 .

The quantity n, which is still left undetermined, shall subsequently be so chosen that nl
may be a multiple of π. The negative member under the vinculum in the expressions for
λ1 and λ2 will then be so large in comparison with 1 that it may be regarded as infinitely
great. This circumstance carries with it a considerable simplification of the question. In the
following we shall only investigate the case in which the same circumstance takes place, viz.
where

32γ

rc
√
2

263[Note by AKTA:] Moritz Hermann von Jacobi (1801-1874). See [Jac51].
264[Note by AKTA:] [Web51] with English translation in [Web61a].
265[Note by AKTA:] In the original German paper we have the length as 7m, 620. In the English translation

this length was incorrectly expressed as 7.620 inches.
266[Note by GK:] Elektrodynamische Massbestimmungen, 1850, p. 252.
267[Note by AKTA:] Maybe Kirchhoff was referring to Weber’s paper of 1851, [Web51, p. 262 of the Annalen

der Physik or p. 292 of Weber’s Werke] with English translation in [Web61a, p. 262]; or to Weber’s paper
of 1852, [Web52c, p. 252 of the Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften,

mathematisch-physische Klasse or p. 351 of Weber’s Werke] with English translation in [Web21b].
268[Note by AKTA:] In German: “Den Widerstand desselben nach elektromagnetischem Maasse hat Weber

= 598·107 gefunden ...”. This expression was translated as: “Its resistance, according to the electro-magnetic
unit of Weber, was found to be = 598 · 107, ...”, [Kir57a, p. 402]. I modified a little this translation.
269[Note by GK:] Ibid. (Weber and Kohlrausch) 1856, p. 264.
270[Note by AKTA:] Kirchhoff was referring to Kohlrausch and Weber’s work of 1857: [KW57, p. 264 of the

Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, mathematisch-physische Klasse

or p. 652 of Weber’s Werke] and [KW21, p. 52]. See also page 179 on Section 7.17.
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may be regarded as infinitely great in comparison to 1: this assumption will be the more
nearly fulfilled the smaller the resistance of the wire, while the ratio of its length to its radius
remains constant; this resistance, however, may be considerably greater than that of Jacobi’s
wire, without prejudicing the validity of the results which we shall obtain.

According to the above assumptions, the values of λ1 and λ2 will be

h± cn√
2

√
−1 ,

where, for the sake of brevity, we have placed

c2r

32γl
= h .

Introducing new constants in the place of C1 and C2, the expression for X may be brought
to the form

X = e−ht

(

A cos
cnt√
2
+B sin

cnt√
2

)

.

Hence we obtain

Y = −e−ht

2

{(

h

n
A− c√

2
B

)

cos
cnt√
2
+

(

c√
2
A +

h

n
B

)

sin
cnt√
2

}

.

I will assume that for t = 0, i is = 0, hence also Y = 0; this condition gives

B =
A
nc
h
√
2

;

The quantity n, as above remarked, shall be set equal to a multiple of π/l; hence the
denominator of the expression for B will be a multiple of

π · c

hl
√
2
;

but the quantity here multiplied by π is

=
32γ

rc
√
2
;

that is, the precise quantity which has been assumed to be infinitely great. Hence B will be
infinitely small in comparison with A, and we may set

X = A · e−ht · cos cnt√
2
,

Y = − c

2
√
2
Ae−ht sin

cnt√
2
.

Multiplying these expressions respectively by sinns and cos ns, and setting the products
equal to e and i, we obtain a particular solution of the differential equations for e and i.
This solution may be generalized by adding in it to s an arbitrary constant; we thus obtain

e = e−ht cos
cnt√
2
(A sinns+ A′ cos ns) ,
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i = − c

2
√
2
e−ht sin

cnt√
2
(A cosns− A′ sinns) .

A particular solution of another form, which also satisfies the condition that for t = 0, i
vanishes, is

e = a+ bs ,

i = − c2

8h
b
(

1− e−2ht
)

,

where a and b denote two arbitrary constants. That the two differential equations are satisfied
by this is easily seen, by observing that by introducing the quantity h, one of them assumes
the form271

2hi = −
(

c2

4

∂e

∂s
+
∂i

∂t

)

.

A solution is obtained which can be made to agree with the further conditions of the problem,
where e and i are made equal to the sums of particular solutions of the forms stated.

————————————————————–

We shall now examine more particularly the case in which the wire is one returning into
itself. In this case e and i must have equal values for s = 0 and for s = l; and this must
moreover take place whatever the origin of s may be; this requires that e and i are functions
of s, which are periodic with regard to l; for this it is necessary that

b = 0 and n = m
2π

l
,

where m denotes an integer. We have thus for e and i the following expressions:

e = e−ht

∞
∑

m=1

Am cosm
2π

l

c√
2
t · sinm2π

l
s

+ a+ e−ht

∞
∑

m=1

A′
m cosm

2π

l

c√
2
t · cosm2π

l
s ,

i = − c

2
√
2
e−ht

∞
∑

m=1

Am sinm
2π

l

c√
2
t · cosm2π

l
s

+
c

2
√
2
e−ht

∞
∑

m=1

A′
m sinm

2π

l

c√
2
t · sinm2π

l
s .

271[Note by AKTA:] In the Philosophical Magazine the next equation appeared as, [Kir57a, p. 404]:

2hi = −
(

c2

4

∂e

∂s
+
∂i

∂l

)

.
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The constants a, A, A′ may be determined by the proposition of Fourier,272 when for t = 0,
e is given as a function of s. The solution may, however, be reduced to another form, which
shows its characteristics more plainly.

For t = 0, let

e = f(s) .

Let the expressions under the sign of summation in e be modified according to the equations

cosx sin y =
1

2
sin(y + x) +

1

2
sin(y − x) ,

cos x cos y =
1

2
cos(y + x) +

1

2
cos(y − x) ,

sin x sin y = −1

2
cos(y + x) +

1

2
cos(y − x) .

When it is considered that the function f is necessarily periodic with regard to l, we see that
the expressions for e and i may be written as follows:

e = a+
1

2
e−ht

[

f

(

s+
c√
2
t

)

+ f

(

s− c√
2
t

)

− 2a

]

,

i = − c

4
√
2
e−ht

[

f

(

s+
c√
2
t

)

− f

(

s− c√
2
t

)]

.

The quantity a is here determined by the equation

a =
1

l

∫ l

0

f(s)ds ;

that is, la is the quantity of free electricity which the whole wire contains.
The expression for e shows a very remarkable analogy between the propagation of elec-

tricity in the wire, and the propagation of a wave in a tended wire or an elastic rod vibrating
longitudinally. When a = 0, that is, when the total quantity of electricity = 0, the elec-
tricity resolves itself, if I may use the expression, into two waves of equal strength, which
run in opposite directions through the wire with the velocity c/

√
2. Here the density of

the electricity diminishes everywhere proportionally with e−ht. This diminution, however, in
comparison with the velocity of the waves, is very slow. The time required by both waves
for a revolution is l

√
2/c, and hence the ratio of the electric densities at a point before and

after the revolution is that of273

1 : e−hl
√
2/c .

This ratio differs from 1 by an infinitely small quantity, as the exponent of e, according to
the assumption already made, is infinitely small. In comparison to velocities which come

272[Note by AKTA:] Jean-Baptiste Joseph Fourier (1768-1830), [Fou22] with English translation in [Fou52].
273[Note by AKTA:] Due to a misprint, the next equation appeared in the English translation as

1 : e− hl
√
2

c
.
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within the range of our conceptions, the diminution of the density of electricity will certainly
be always very speedy. If the wire were the standard wire of Jacobi, then 1/h would be
very nearly the 1

2 000
th of a second; and hence in this small time the electric density would

diminish in the ratio of e : 1, that is, of 2.7 : 1.
When a is not = 0, or when the mean density of the electricity is not = 0, the expression

for e shows that the excess of density over the average changes exactly as if the mean density
were equal 0.

The velocity of propagation of an electric wave is here found to be = c/
√
2, hence it is

independent of the cross section, of the conductivity of the wire, also, finally, of the density
of the electricity: its value is 41 950 German miles in a second, hence very nearly equal to
the velocity of light in vacuo.

When the wire is not one which returns into itself, the quantity b cannot be = 0, and
the quantities n may have other values than in the case just considered. As regards the ends
of the wire, certain equations are to be fulfilled according to the conditions to which the
ends are subjected. If one end be insulated, at this end i must always be = 0; if the end be
placed in complete connexion with the earth, the potential V , and also e for all values of t
must here vanish. There is no difficulty in forming the expressions for e and i for the cases
that both ends are insulated, both connected with the earth, or one of them insulated and
the other connected with the earth. In all cases a reflexion of the wave occurs at the end at
which it arrives. If the end is connected with the earth, a reversion of the wave accompanies
its reflexion, that is, negative electricity proceeds from the end after it has been struck by
positive; at an insulated end the reflexion takes place without reversion. Hence when the
end is connected with the earth, it corresponds in some measure to the fixed end of a rod
vibrating longitudinally; the insulated end, on the contrary, corresponds to the free end of
the rod.

We shall enter more fully here into the consideration of another case. We shall examine
how the electricity moves in the connecting wire of a galvanic battery before the current
has become stationary. I will assume that the resistance of the battery is infinitely small
in comparison with that of the wire connecting its poles, and that one of its poles stands
in perfect connexion with the earth. With this pole let the commencement of the wire be
connected, and with the other pole the end of the wire at the time t = 0. We may then
assume that at the commencement of the wire, or for s = 0, the potential is always = 0; and
at the end of the wire, or for s = l, it has a constant value depending upon the electromotive
force of the circuit. When K denotes the electromotive force, this value must be K/2. The
conditions to be satisfied by the expressions for e and i are therefore the following:

for s = 0 we must have e = 0 ,
for s = l we must have e = 1

4γ
K ,

for t = 0 we must have e = 0 .

On account of the first condition, we must have the quantities A′ = 0 and also a = 0. As
for s = l, e is to be independent of t, the quantities n must satisfy the condition

sin nl = 0 ;

that is, we must have

n = m
π

l
,
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where m denotes a whole number. Further, in order that for s = l, e shall have the required
value, we must make

b =
1

4γl
K .

Setting, for the sake of shortness,

π

l

c√
2
t = τ

and

π

l
s = ϕ ,

we obtain for e the equation

e =
K

4γl
s+ e−ht

∞
∑

m=1

Am cosmτ sinmϕ .

The constants A may be determined by the last condition: according to this, for all values
of ϕ between 0 and π we must have

K

4γπ
ϕ = −

∞
∑

m=1

Am sinmϕ .

But, by Fourier’s proposition, between the same limits we have the following equation:

ϕ = −2

∞
∑

m=1

(−1)m
1

m
sinmϕ .

Hence we have to set

Am = (−1)m
K

4γπ

1

m
;

and we thus obtain

e =
K

4γ

{

s

l
+

2

π
e−ht

∞
∑

m=1

(−1)m

m
cosmτ sinmϕ

}

.

If the corresponding expression be formed for i, remembering the equation by which it has
been defined, we obtain

i = −K
r

(

1− e−2ht
)

− cK

4
√
2γπ

e−ht

∞
∑

m=1

(−1)m

m
sinmτ cosmϕ .

The meaning of these expressions shall now be developed; in the first place that of the
expression for i. It is our chief object here to find the value of the summation which appears
in the expression. We are to regard ϕ as a constant, and as a function of τ ; this function
is periodic as regards 2π; it has further opposite values for τ and 2π − τ ; it is sufficient,
therefore, to find the values through which it passes when τ lies between 0 and π. We have
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∞
∑

m=1

(−1)m

m
sinmτ cosmϕ =

1

2

∞
∑

m=1

(−1)m

m
sinm(τ + ϕ) +

1

2

∞
∑

m=1

(−1)m

m
sinm(τ − ϕ) .

But when x lies between −π and +π we have the sum

∞
∑

m=1

(−1)m

m
sinmx = −x

2
;

and because it is periodic as regards 2π, it is in general

= −1

2
(x− 2pπ) ,

where p denotes that whole number, for which x − 2pπ lies between −π and +π. With the
limits which have been assumed for τ , τ −ϕ lies always between −π and +π, because for all
points of the wire the value of ϕ is between 0 and π. Hence we have

∑ (−1)m

m
· sinm(τ − ϕ) =

τ − ϕ

2
.

With regard to the value of τ + ϕ, this can be either greater or less than π. We have274

∑ (−1)m

m
sinm(τ + ϕ) = −τ + ϕ

2
, when ϕ < π − τ ,

= −τ + ϕ

2
+ π, when ϕ > π − τ .

From this it follows that

∑ (−1)m

m
cosmτ cosmϕ = −τ

2
, when ϕ < π − τ ,

= −τ
2
+
π

2
, when ϕ > π − τ .

It is here supposed that τ lies between 0 and π; if it lies between π and 2π, we have the same
sum,

= π − τ

2
, when ϕ < τ − π ,

and

=
π

2
− τ

2
, when ϕ > τ − π .

274[Note by AKTA:] Due to a misprint, the following equation appeared in the original text as:

∑ (−1)

m
sinm(τ + ψ) = −τ + ϕ

2
, when ϕ < π − τ ,

= −τ + ϕ

2
+ π, when ϕ > π − τ .
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To find the sum for greater values of τ , it is to be remembered that it is periodic as regards
2π.

From this it appears, that at every moment a point exists in the wire in which the intensity
of the current suffers a sudden change or break. This point, at the time t = 0, lies at the end
of the wire, but moves from this with the velocity c/

√
2 towards the commencement, after

reaching which it returns with the same velocity towards the end; turns here again, and thus
travels perpetually to and fro over the length of the wire. In each of the two portions into
which the wire is at each moment divided by this point, the same intensity exists everywhere
at that moment; so that if s and i be regarded as rectangular coordinates of a point, a line
is described of the form of Figure 1 .

The intensity before the point at which the break occurs, considered without regard to
its sign, is always the smaller, that behind the point the greater, the words before and behind
being used with reference to the direction in which the point moves. The Figure 1 is therefore
true only for a moment in which the point moves from the end towards the commencement
of the wire.

The Figure 2 refers to a moment in which the opposite takes place.275

The magnitude of the break is

275[Note by AKTA:] The arrow pointing to the right was not included in Figure 2 of the English translation
appearing in the Philosophical Magazine. The original Figure of the Annalen der Physik including the arrow
appears in this footnote.
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=
cK

8
√
2γ

e−ht ;

or if we denote by J the value to which i approximates as the time is increased, that is, the
value of K/r,

= J · cr

8
√
2γ

e−ht .

This quantity has its greatest value when t = 0; but this, in accordance with an assumption
already made, is also infinitely small in comparison to J . The expression for the magnitude
of the break may be more shortly written, when the time is introduced required by the point
at which it takes place, or the time required by an electric wave to move through the length
of the wire. Denoting this time by T , that is, setting

T =
l
√
2

c
,

the expression is easily found to be

= J · 2hT e−ht .

As the time increases, the magnitude of the break diminishes, but so slowly that during the
time T only an infinitely small diminution takes place.

To obtain a complete view of the process, it is now only necessary to examine the alter-
ations of the strength of the current at the commencement of the wire. Let this, that is to
say, the value of i for s = 0, be i0; then making use of the symbols J and T , we find

i0 = J
(

1− e−2ht
)

+
J4hT

π
e−ht

∞
∑

m=1

(−1)m

m
sinmτ .

Setting for the sum its value, and remembering that

τ

π
=

t

T
,

we obtain

i0 = J
(

1− e−2ht
)

+ J2he−ht(2pT − t) ,

where p denotes the whole number for which

t− 2pT

T

is a proper fraction, positive or negative. p may also be defined as the greatest integer which
is contained in the fraction

t + T

2T
.

For values of t, for which the number p is not very great, the expression for i0 is capable of
a considerable simplification. For such the quantity ht is infinitely small; and by neglecting
members of higher orders, the equation for i0 may be thus written:
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i0 = J · 2ht+ J2h(2pT − t) ,

that is,

i0 = pJ4hT .

This expression shows that the intensity at the commencement of the wire is 0 up to the
time when t = T ; here and at the times t = 3T , t = 5T , etc., it alters itself by jumps; and
moreover the jump is twice as great as at other points of the wire. During the intervening
times the intensity is constant.

In a similar manner the expression for e may be discussed. We have276

∞
∑

m=1

(−1)m

m
cosmτ sinmϕ =

1

2

∞
∑

m=1

(−1)m

m
sinm(τ + ϕ)− 1

2

∞
∑

m=1

(−1)

m
sinm(τ − ϕ) ;

or as soon as τ lies between 0 and π,

= −ϕ
2
, when ϕ < π − τ ,

= −ϕ
2
+
π

2
, when ϕ > π − τ ;

if τ lies between π and 2π, we have the same sum,

= −ϕ
2
, when ϕ < τ − π ,

= −ϕ
2
+
π

2
, when ϕ > τ − π .

The second fact follows from the first, when it is considered that the sum has the same value
for τ and for 2π−τ . For greater values of τ , the value of the sum is found when we remember
that it is periodic with reference to 2π.

From this it follows that at each moment at some one point of the wire, e also suffers a
break. This point always coincides with that in which the break for i takes place. e is always
greater on the side of this point on which the end of the wire lies, and smaller on the side of
the commencement. The magnitude of the break is

=
K

4γ
e−ht ;

or, denoting by E the constant value of e at the end of the wire,

= Ee−ht .

At that side of the break on which the commencement of the wire lies, we have

276[Note by AKTA:] In the Philosophical Transactions this equation appeared as

∞
∑

m=1

(−1)m

m
cosmτ sinmφ =

1

2

∞
∑

m=1

(−1)m

m
sinm(τ + φ) .
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e = E · s
l

(

1− e−ht
)

;

and on the side towards the end,

e = E
{s

l

(

1− e−ht
)

+ e−ht
}

.

If e and s be made the rectangular coordinates of a point, then for a certain value of t we
obtain a line of the form shown in Figure 3.

When t does not exceed a moderate multiple of T , the line has the form shown in Figure
4.

The more t increases, the more nearly does the Figure approximate to the straight line,
Figure 5.
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Chapter 9

Editor’s Comments on Kirchhoff’s
1857 Paper on the Motion of
Electricity in Wires

A. K. T. Assis277

9.1 Solution of an Integral Appearing in Kirchhoff’s

Paper

In this paper Kirchhoff arrived at the following Equation (see page 203):

e

2π

∫ +ε

−ε

∫ 2π

0

dx′dψ′
√

x′2 + α2 + ρ2 − 2αρ cos(ψ′ − ψ)
. (9.1)

He said (see page 203) that the integration in x′ of this Equation has the following solution
when ε≫ α > 0 and ε ≫ ρ ≥ 0:

e

π

∫ 2π

0

dψ′
(

lg 2ε− lg
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)
)

. (9.2)

Replacing Kirchhoff’s “lg” with the natural logarithm of base e = 2.718..., “ln”, yields:

e

π

∫ 2π

0

dψ′
(

ln 2ε− ln
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)
)

. (9.3)

Let me show in detail how to arrive at Kirchhoff’s result. I will call α2+ρ2−2αρ cos(ψ′−
ψ) = a2 ≥ 0. The following integral needs to be solved:

I =

∫ ε

−ε

dx′√
x′2 + a2

. (9.4)

To this end I utilize that

∫

dx′√
x′2 + a2

= ln |x′ +
√

x′2 + a2|+ C , (9.5)

277Homepage: www.ifi.unicamp.br/~assis
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where C is an arbitrary constant. I then obtain:

I = ln |ε+
√
ε2 + a2| − ln | − ε+

√
ε2 + a2| = ln

√
ε2 + a2 + ε√
ε2 + a2 − ε

. (9.6)

Multiplying the numerator and denominator by
√
ε2 + a2 + ε yields:

I = ln
(
√
ε2 + a2 + ε)2

a2
= ln

(
√
ε2 + a2 + ε)2

(
√
a2)2

= 2 ln

√
ε2 + a2 + ε√

a2
. (9.7)

Assuming that ε2 ≫ a2 yields

I = 2 ln
2ε√
a2

= 2
[

ln(2ε)− ln
√
a2
]

= 2
[

ln(2ε)− ln
√

α2 + ρ2 − 2αρ cos(ψ′ − ψ)
]

. (9.8)

This is the result presented by Kirchhoff. This deduction shows clearly that the symbol
“lg” which he presented in his original paper278 should be understood as the natural logarithm
represented in modern textbooks as “ln”.

9.2 The Telegraph Equation Obtained by Kirchhoff

In his work Kirchhoff arrived at his Equation (4) on page 207:

2
∂i

∂s
= −∂e

∂t
, (9.9)

He also arrived (see page 209) at another equation which he might have numbered as
Equation (5), namely:

i = −4γ
l

r

(

∂e

∂s
+

4

c2
∂i

∂t

)

. (9.10)

The partial derivative of Equation (9.9) with respect to t and the partial derivative of
equation (9.10) with respect to s yield, respectively:

2
∂2i

∂t∂s
= −∂

2e

∂t2
, (9.11)

and

∂i

∂s
= −4γ

l

r

(

∂2e

∂s2
+

4

c2
∂2i

∂s∂t

)

. (9.12)

I now assume well behaved functions such that

∂2i

∂t∂s
=

∂2i

∂s∂t
. (9.13)

Finally, by combining Equations (9.11), (9.12) and (9.13), the complete telegraph equa-
tion is obtained, namely:

278[Kir57b, p. 196 of the Annalen der Physik und Chemie or p. 134 of his Gesammelte Abhandlungen].
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∂2e

∂s2
− 2

c2
∂2e

∂t2
=

r

8γl

∂e

∂t
. (9.14)

By following the same procedure but now beginning with the partial derivative of Equa-
tion (9.9) with respect to s and the partial derivative of Equation (9.10) with respect to t
yields:

∂2i

∂s2
− 2

c2
∂2i

∂t2
=

r

8γl

∂i

∂t
. (9.15)

Kirchhoff also obtained that V = 2e ln l
α
. This means that the potential of the free

electricity, V , will also satisfy the same equation, namely:

∂2V

∂s2
− 2

c2
∂2V

∂t2
=

r

8γl

∂i

∂t
. (9.16)

Equations (9.14), (9.15) and (9.16) are the complete telegraph equations for the linear
charge density e, for the current intensity i and for the potential of the free electricity
V . These equations were obtained by taking into account the resistance of the wire, the
electromotive force due to the free electricity spread over the whole surface of the wire,
and the induction which takes place in consequence of the alteration of the strength of the
current in all parts of the wire. In modern terminology, Kirchhoff deduced the complete
telegraph equation by taking into account not only the resistance and capacitance of the
wire, but especially its self-inductance. All of this was accomplished beginning with Weber’s
electrodynamics.

For a wire of negligible resistance, that is, when the right side of Equations (9.14), (9.15)
and (9.16) go to zero, they reduce to the the wave equation with the signal propagating
along the wire with velocity c/

√
2:

∂2e

∂s2
− 1

(c/
√
2)2

∂2e

∂t2
=
∂2i

∂s2
− 1

(c/
√
2)2

∂2i

∂t2
=
∂2V

∂s2
− 1

(c/
√
2)2

∂2V

∂t2
= 0 . (9.17)

Weber’s constant c was first measured by Weber and Kohlrausch,279 namely, c = 4.39×
1011 mm/s. This yields:

c√
2
=

4.39× 1011 mm/s√
2

= 3.1× 108
m

s
. (9.18)

This number has the same value of light velocity in vacuum. For this reason Kirchhoff
concluded on page 214 that:

The velocity of propagation of an electric wave is here found to be = c/
√
2, hence

it is independent of the cross section, of the conductivity of the wire, also, finally,
of the density of the electricity: its value is 41 950 German miles in a second, hence
very nearly equal to the velocity of light in vacuo.

279[KW57, p. 264 of the Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften,

mathematisch-physische Klasse or p. 652 of Weber’s Werke] and [KW21, p. 52]. See also page 179 on
Section 7.17.
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Representing light velocity in vacuum by vL = c/
√
2, Equation (9.17) can then be written

as:

∂2e

∂s2
− 1

v2L

∂2e

∂t2
=
∂2i

∂s2
− 1

v2L

∂2i

∂t2
=
∂2V

∂s2
− 1

v2L

∂2V

∂t2
= 0 . (9.19)

This was a remarkable result indicating a deep connection between electrodynamics and
optics, as first obtained by Weber’s electrodynamics.

In the sequence of this first paper of 1857 Kirchhoff analysed the solutions of Equations
(9.14), (9.15) and (9.16) not only in this particular case of negligible resistance, but also
by taking into account the resistance of the wire. He considered open and closed wires, see
page 209 and the following.

A deduction of the complete telegraph equation fromWeber’s electrodynamics in different
geometries (cylindrical wire, coaxial cable etc.) utilizing the modern International System
of Units MKSA has been discussed elsewhere.280

280[Ass99], [Ass00], [HA00], [HA01], [Ass03a], [AH05], [AH07], [AH09], [AH13], [Ass14a] and [Ass19a].
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Chapter 10

[Poggendorff, 1857] Comment on the
Paper by Prof. Kirchhoff

Johann Christian Poggendorff281,282,283,284,285

Allow me to add the remark concerning the paper on page 193 of this issue,286 that
when I spoke to Professor W. Weber, during his recent stay in Berlin, about Professor
Kirchhoff’s investigations, Professor Weber showed me a complete treatise on the same
subject elaborated by him, which, however, he did not yet intend to submit for printing,
because he first wanted to have the results of an experimental investigation that he had
undertaken jointly with R. Kohlrausch on this subject.287 Professor Kirchhoff’s visit to
Berlin a few days later gave him the opportunity to comment on the coincidence of their
results — a coincidence which can be called a pleasant one, as both works, starting from
essentially the same basis, have led to identical results. This identity certainly deserves
special attention in the case of a subject so little researched as the laws of current formation
have been so far.

281[Pog57] with English translation in [Pog21].
282Translated and edited by A. K. T. Assis, www.ifi.unicamp.br/~assis. I thank Laurence Hecht for

relevant suggestions.
283The Notes by H. Weber, the Editor of the fourth volume of Wilhelm Weber’s Werke, are represented by

[Note by HW:], while the Notes by A. K. T. Assis are represented by [Note by AKTA:].
284[Note by HW:] The above remark by J. C. Poggendorff, to which W. Weber refers in the paper on page

130, has been included here because of its historical interest.
285[Note by AKTA:] Poggendorff’s paper is related to Kirchhoff’s paper of 1857 and to Weber’s work of

1864, see Chapters 8 and 18. Weber will mention Poggendorff’s paper on page 289, Section 18.6 of his Fifth
major Memoir on Electrodynamic Measurements, [Web64, p. 130 of Weber’s Werke].
286[Note by AKTA:] Poggendorff is referring to Kirchhoff’s paper of 1857 published in page 193 of Volume

100 of the Annalen der Physik und Chemie, [Kir57b], see Chapter 8.
287[Note by AKTA:] See footnote 132 on page 125.
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Chapter 11

Editor’s Comments on Poggendorff’s
1857 Paper

A. K. T. Assis288

Wilhelm Weber and Carl Friedrich Gauss (1777-1855) invented in 1833 the world’s
first operational electromagnetic telegraph.289 It was a 3 km long twin lead connecting
Göttingen University, where Weber was Professor of Physics, with the Astronomical Ob-
servatory (Sternwarte), directed by Gauss. This telegraph worked based on Faraday’s law
of induction discovered two years earlier.290 A representation of their telegraph appears in
Figure 11.1.

Twenty four years later, in 1857, Weber and Kirchhoff were the first to derive theoretically
the complete telegraph equation. As pointed out by Poggendorff in the present paper,
they worked independently from one another and arrived simultaneously at the same result.
Utilizing the modern concepts and usual terminology of circuit theory, we can say that they
were the first to take into account not only the capacitance and resistance of the wire, but
also its self-inductance. Both of them worked with Weber’s electrodynamics.

Johann Christian Poggendorff (1796-1877) edited the Annalen der Physik und Chemie
from 1824 to 1876, where many of Weber and Kirchhoff’s papers were published. The modern
Annalen der Physik is the successor to this Journal. Kirchhoff’s 1857 paper was published
in this Journal. Poggendoff’s comment on this paper was published in the same Volume of
Kirchhoff’s work.

Rudolf Kohlrausch (1809-1858) collaborated with Weber on the first measurement of
Weber’s fundamental constant c, which should not be confused with the modern constant
c appearing in the textbooks. Weber’s constant c is written in the modern International
System of Units MKSA as

√
2/
√
µoεo, while the modern constant c is written as 1/

√
µoεo.

Their experiment was performed in 1854-1855 and they published three works on this subject
in 1855, 1856 and 1857, see Chapters 5, 6 and 7. They obtained the value of Weber’s constant
c as given by 4.39450× 108 m/s, see page 179 on Section 7.17. Therefore

288Homepage: www.ifi.unicamp.br/~assis
289[LB67, Section 66: Gauss and Weber’s telegraph, pp. 41-42], [Ano89], [Fey33a], [Fey33b], [Wie60,

Chapter 5, pp. 17-20], [Wie67, pp. 85-90], [Tim05], [Wol05], [MRGL10] and https://www.uni-goettingen.

de/de/historische-sammlung/47114.html.
290[Far32a] with German translation in [Far32b] and [Far89], and with Portuguese translation in [Far11].
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Figure 11.1: The telegraph of Gauss and Weber.

c√
2
=

1√
µoεo

=
4.39450× 108 m/s√

2
= 3.1× 108 m/s = vL . (11.1)

That is, c/
√
2 has essentially the same value as light velocity in vacuum, vL.

Weber and Kirchhoff deduced the telegraph equation utilizing Weber’s 1846 force law
between electrified particles.291 They showed, in particular, that when the conductor had
negligible resistance, the velocity of propagation of an electric wave is very nearly equal
to the velocity of light in vacuum. This result indicated a direct connection between elec-
tromagnetism and optics, as Kirchhoff pointed out in the paper which is being discussed
here (see page 214). This result of Kirchhoff and Weber was obtained several years before
Maxwell (1831-1879).

Kohlrausch, who was collaborating with Weber on some experiments related with the
propagation of electromagnetic waves, died in 1858. Weber’s work has been delayed in
publication and appeared only in 1864. He compared his results with those of Kirchhoff and
mentioned Poggendorff’s paper on Section 6 of his paper.292

291[Web46] with English translation in [Web07].
292[Web64, Section 6, pp. 130-132 of Weber’s Werke] with English translation in [Web21d, Section 6]. See

page 289 of Section 18.6 of this book.
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Chapter 12

[Kirchhoff, 1857b] On the Motion of
Electricity in Conductors

Gustav Kirchhoff293,294

In an earlier paper295,296 I developed a theory of the motion of electricity in linear con-
ductors. I will now show how the former considerations can be generalized to conductors of
any form.

The Cartesian coordinates x, y, z locate a point in the conductor. The current which at
time t flows through this point we resolve along the three coordinate axes to give the current
density components u, v, w. These current densities have to be equal to the products of the
components of the electromotive force297 and electrical conductivity at point (x, y, z) and
are assumed to involve one unit of electrical charge. The electromotive force is partly due
to the presence of free electricity, and partly due to induction which arises in all parts of the
conductor because of changes in the current. If Ω represents the potential function of the
free electricity relative to the point (x, y, z), then the component of the first part of the
electromotive force are

−2
∂Ω

∂x
, −2

∂Ω

∂y
, −2

∂Ω

∂z
.

In order to derive the components of the second part, I denote the coordinates of a second
point of the conductor by x′, y′, z′, while u′, v′, w′ are the values of u, v, w for this point.
Let r be the distance between the points (x, y, z) and (x′, y′, z′) and write:

U =

∫ ∫ ∫

dx′dy′dz′

r3
(x− x′) [u′(x− x′) + v′(y − y′) + w′(z − z′)] ,

V =

∫ ∫ ∫

dx′dy′dz′

r3
(y − y′) [u′(x− x′) + v′(y − y′) + w′(z − z′)] ,

293[Kir57c] with English translation by the late Peter Graneau (1921-2014) in [GA94]. See also [Ass14b].
294Gustav Kirchhoff’s Notes are represented by [Note by GK:]; while the Notes by A. K. T. Assis are

represented by [Note by AKTA:].
295[Note by GK:] This Annalen Vol. 100, p. 193.
296[Note by AKTA:] [Kir57b] with English translation in [Kir57a]. See Chapter 8.
297[Note by AKTA:] In German: elektromotorischen Kraft. In English: “electromotive force,” abbreviated

emf.
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W =

∫ ∫ ∫

dx′dy′dz′

r3
(z − z′) [u′(x− x′) + v′(y − y′) + w′(z − z′)] ,

where the integrations extend over all of the volume of the conductor. According to Weber’s
law of induction,298 the components of the second part of the electromotive force under
consideration are:

− 8

c2
∂U

∂t
, − 8

c2
∂V

∂t
, − 8

c2
∂W

∂t
,

where c is the constant velocity with which two electric charges have to move toward each
other so that they will not exert a force on each other. If k is the conductivity of the
conductor, we have

u = −2k

(

∂Ω

∂x
+

4

c2
∂U

∂t

)

, (1)

v = −2k

(

∂Ω

∂y
+

4

c2
∂V

∂t

)

, (2)

w = −2k

(

∂Ω

∂z
+

4

c2
∂W

∂t

)

. (3)

It must not be assumed that the free electricity is confined to the surface of the conductor,
as in equilibrium cases or at constant current. In fact, it will be shown that, in general, the
opposite is true. I denote by ε the [volume] density of free electricity at point (x, y, z), by
ε′ the density at (x′, y′, z′), by e the [surface] density in a surface element dS, and by e′ the
same for a second surface element dS ′. Then we have:

Ω =

∫

dx′dy′dz′

r
ε′ +

∫

dS ′

r
e′ , (4)

where the first integration is over the volume, and the second over the surface of the con-
ductor.

To these equations we can add two more which deal with the time changes of the density
of free electricity. For every point inside the conductor we have therefore:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= −1

2

∂ε

∂t
; (5)

and if we denote the normal to element dS directed inward by N , then further for every
point of the surface:

u cos(N, x) + v cos(N, y) + w cos(N, z) = −1

2

∂e

∂t
. (6)

————————————————————–

From these equations we can derive a remarkable relationship between ε and Ω. Substi-
tuting the values of u, v, w from (1), (2), and (3) into (5), and using:

298[Note by AKTA:] [Web46, p. 354 of Weber’s original 1846 paper and pp. 185-189 of Weber’s Werke],
[Web07, pp. 120-122]; [KW57, p. 268 of the Abhandlungen der Königlich Sächsischen Gesellschaft der

Wissenschaften, mathematisch-physische Klasse or pp. 655-657 of Weber’s Werke] and [KW21, pp. 55-58].

230



∂2Ω

∂x2
+
∂2Ω

∂y2
+
∂2Ω

∂z2
= −4πε ,

one finds

∂ε

∂t
= −16k

[

πε− 1

c2
∂

∂t

(

∂U

∂x
+
∂V

∂y
+
∂W

∂z

)]

.

As the equation for U may be written:

U = −
∫

dx′dy′dz′
∂ 1

r

∂x
[u′(x− x′) + v′(y − y′) + w′(z − z′)] ,

it follows that:

∂U

∂x
= −

∫

dx′dy′dz′
∂ 1

r

∂x
u′ −

∫

dx′dy′dz′
∂2 1

r

∂x2
[u′(x− x′) + v′(y − y′) + w′(z − z′)] .

Forming the value of ∂V/∂y and ∂W/∂z in a similar manner, one obtains:

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= −

∫

dx′dy′dz′
(

u′
∂ 1

r

∂x
+ v′

∂ 1
r

∂y
+ w′∂

1
r

∂z

)

;

because of:

∂2 1
r

∂x2
+
∂2 1

r

∂y2
+
∂2 1

r

∂z2
= 0

for all points (x′, y′, z′) which do not coincide with point (x, y, z); and extend through
the infinitely small volume surrounding point (x, y, z), the integrals of the second parts of
∂U/∂x, ∂V/∂y, ∂W/∂z are infinitely small. It is easy to convince ourselves of the validity
of this last assumption by the method which Gauss used to prove that the contribution to
the potential at a point by masses infinitely near to the point is negligible compared to the
contribution from continuously distributed matter throughout space.299 ,300 If in the integral
on the right side of the equation the differential coefficients with respect to x, y, z, are
replaced with the negative coefficients with respect to x′, y′, z′ and the result is divided in
three partial differentials with respect to x′, y′ and z′, one obtains:

∂U

∂x
+
∂V

∂y
+
∂W

∂z

= −
∫

dS ′

r
[u′ cos(N ′, x) + v′ cos(N ′, y) + w′ cos(N ′, z)]−

∫

dx′dy′dz′

r

(

∂u′

∂x′
+
∂v′

∂y′
+
∂w′

∂z′

)

;

where N ′ is the inward directed normal of the surface element dS ′. In view of equations (6),
(5) and (4), this equation may be written:

∂U

∂x
+
∂V

∂y
+
∂W

∂z
=

1

2

∂Ω

∂t
.

299[Note by GK:] Resultate aus den Beobachtungen des magnetischen Vereins; 1839 p. 7.
300[Note by AKTA:] [Gau40, p. 7 of the Resultate] with English translation in [Gau43, pp. 158-159].
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From this it follows that:

∂ε

∂t
= −8k

(

2πε− 1

c2
∂2Ω

∂t2

)

. (7)

This equation shows clearly that ε = 0 is a special case, and in general we find free electricity
inside of conductors. It is probable that the so called mechanical actions of the discharge
current of a Leyden jar, as for example in the pulverization of a fine wire, the internal free
electricity plays an important role.

————————————————————–

I would like to apply the theory developed here to the case considered in the initially
mentioned paper, i.e. the case in which the conductor is an infinitely thin wire with no
electrical bodies in its vicinity. I will show that the theory furnishes the same results which
I obtained previously, and in addition it supplies answers to questions which so far remained
unanswered.

To begin with I will simplify the general equation by the assumption that the conductor
is cylindrical of circular cross-section, and that the current, as well the distribution of free
electricity, is symmetrical about the axis. I take the axis as the x-direction, and for y and z
I introduce the new coordinates ρ and ϕ, so that:

y = ρ cosϕ , z = ρ sinϕ ,

and correspondingly:

y′ = ρ′ cosϕ′ , z′ = ρ′ sinϕ′ .

Furthermore, I denote the current density, perpendicular to the current along the axis —
positive for the progressive direction of the axis — at point (x, y, z) by σ, and at point
(x′, y′, z′) by σ′. We then have:

v = σ cosϕ , w = σ sinϕ ,

v′ = σ′ cosϕ′ , w′ = σ′ sinϕ′ .

Hence:

u = −2k

(

∂Ω

∂x
+

4

c2
∂U

∂t

)

, (8)

where301

U =

∫

dx′ρ′dρ′dϕ′

r3
(x− x′) [u′(x− x′) + σ′ (ρ cos(ϕ− ϕ′)− ρ′)] . (9)

301[Note by AKTA:] Due to a misprint, the original text presented the following equation:

U =

∫

dx′ρ′dρ′dϕ′

r3
(x− x′) [u′(x− x′) + σ′ (ρ cosϕ− ϕ′ − ρ′)] . (9)
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If we ignore the action of the free electricity on the end-faces of the cylinder, then, with α
being the radius of the cylinder, equation (4) may be written:

Ω =

∫

dx′ρ′dρ′dϕ′

r
ε′ + α

∫

dx′dϕ′

r
e′ . (10)

Equation (5) becomes:

∂u

∂x
+

1

ρ

∂ρσ

∂ρ
= −1

2

∂ε

∂t
; (11)

and equation (6), which refers to the surface, becomes:

σ =
1

2

∂e

∂t
. (12)

The expressions for Ω and U are greatly simplified if it is assumed that the cross-section
of the cylinder is infinitely small, while the wire is of finite length. I call this length l, and
the origin of the coordinates is taken to be the middle of the cylinder. The limits of the
integrations in the x′-direction are then −l/2 and +l/2. For brevity I will take:

x′ − x = ξ ;

for dx′ the integrand may then be written dξ. The integration along ξ then has the limits
−l/2− x and l/2− x, of which the first one is always negative and the second one is always
positive. The quantity r of the integrals is determined by the equation:

r2 = ξ2 + β2 ,

where

β2 = ρ2 + ρ′
2 − 2ρρ′ cos(ϕ− ϕ′) .

For the transformation of the second part of Ω in the integral:302

∫ l
2
−x

− l
2
−x

dξe′
√

β2 + ξ2
,

I will develop e′ according to Taylor’s theorem303 in powers of ξ, that is:

e′ = e +
∂e

∂x
ξ +

∂2e

∂x2
ξ2

1 · 2 + ... ;

the individual terms into which the integral has been split then take the form:

1

1 · 2 · · · n
∂ne

∂xn

∫

ξndξ
√

β2 + ξ2
.

But we have:

302[Note by AKTA:] Due to a misprint, the original text presented the following equation:

∫ l

2
−x

− l

x
−2

dξe′
√

β2 + ξ2
.

303[Note by AKTA:] This theorem is named after the mathematician Brook Taylor (1685-1731).
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∫

ξndξ
√

β2 + ξ2
=

1

n
ξn−1

√

β2 + ξ2 − n− 1

n
β2

∫

ξn−2dξ
√

β2 + ξ2
,

and304

∫

dξ
√

β2 + ξ2
= ln

(

ξ +
√

β2 + ξ2
)

,

∫

ξdξ
√

β2 + ξ2
=
√

β2 + ξ2 .

When β is infinitely small, which occurs when α is infinitely small, the first — and only
the first — term becomes infinitely large. One may therefore neglect all following terms
compared to the first one, and write:

∫

e′dξ
√

β2 + ξ2
= 2e ln

√
l2 − 4x2

β
,

or also, by neglecting finite terms compared to the infinite term:

= 2e ln
l

β
.

Furthermore:

∫ 2π

0

ln βdϕ′ = 2π ln ρ′ , when ρ′ > ρ .

In the second part of Ω we have ρ′ = α. The second part therefore is:

α

∫

dx′dϕ′

r
e′ = 4παe ln

l

α
.

Similar considerations may be applied to the first part of Ω. Denoting the value of ε at the
point (x, ρ′, ϕ′) by ε′o, then these considerations lead to:

∫

ε′dx′

r
= 2ε′o ln

l

β
.

Furthermore:

∫

ln βdϕ′ = 2π ln ρ′ , when ρ′ > ρ

= 2π ln ρ , when ρ > ρ′ .

304[Note by AKTA:] The next equation appeared in the original text as:

∫

dξ
√

β2 + ξ2
= lg

(

ξ +
√

β2 + ξ2
)

.

What Kirchhoff represented as the logarithm of a magnitude m, lgm, will be replaced everywhere in this
translation by the natural logarithm which has Euler’s number e ≈ 2.718... as its base, namely, lgm =
logem = lnm. See also Section 9.1.
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For both of these expression we may write 2π lnα when ignoring finite quantities com-
pared to infinite quantities. Therefore:

∫

dx′ρ′dρ′dϕ′

r
ε′ = 4π ln

l

α

∫ α

0

ρ′dρ′ε′o .

Let:

2παe+ 2π

∫ α

0

ρ′dρ′ε′o = E ,

that is, if Edx is the amount of free electricity contained in the element dx of the wire,305,306

then we find:

Ω = 2E ln
l

α
. (13)

The expression of U in equation (9) can be treated in the same way. In this expression
I am thinking of u′ and σ′ to be developed in powers of ξ, and the values of u and σ at the
point (x, ρ′, ϕ′) to be denoted by u′o and σ

′
o. In the parts into which the expression can be

split we find integrals of the form:

∫

ξndξ

(β2 + ξ2)3/2
.307

We have:

∫

ξndξ

(β2 + ξ2)3/2
=

1

n− 2

ξn−1

√

β2 + ξ2
− n− 1

n− 2
β2

∫

ξn−2dξ

(β2 + ξ2)3/2
, 308

∫

ξdξ

(β2 + ξ2)3/2
= − 1

√

β2 + ξ2
,

∫

ξ2dξ

(β2 + ξ2)3/2
= − ξ

√

β2 + ξ2
+ ln

(

ξ +
√

β2 + ξ2
)

.309

Of the specified integrals taken from a negative to a positive finite limit, only for n = 2
do we obtain an infinity, provided β is infinitely small. All other integrals can be neglected

305[Note by GK:] E is the same quantity which in the former paper was denoted by e.
306[Note by AKTA:] E here is the linear charge density.
307[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

∫

ξndξ

(β2 + ξ)3/2
.

308[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

∫

ξndξ

(ξ2 + ξ2)3/2
=

1

n− 2

ξn−1

√

β2 + ξ2
− n− 1

n− 2
β2

∫

ξn−2dξ

(β2 + ξ2)3/2
,

309[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

∫

ξ2dξ

(β2 + ξ2)3/2
= − ξ

√

β2 + ξ2
+ ln

(

ξ +
√

β2 + ξ2) .
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compared with this, and the finite part of the infinite term can also be neglected. A factor
of it is:

u′o −
∂σ′

o

∂x
(ρ cos(ϕ− ϕ′)− ρ′) , 310

but, because of the smallness of ρ and ρ′, we can replace this by u′o. Using the same method
utilized before for the calculation of Ω, we obtain:

U = 4π ln
l

α

∫

ρ′dρ′u′o .

If we denote by i the quantity of electricity which in unit time passes through the cross-
section of the wire, i.e. the current intensity, the equation can be simplified to:

U = 2i ln
l

α
.

Substituting this value of U and the value of Ω from (13) into the equation (8), we obtain:

u = −4 ln
l

α
k

(

∂E

∂x
+

4

c2
∂i

∂t

)

.

The right-hand side of this equation is independent of ρ, and since u is independent of ρ we
have:

i = πα2u ;

hence:

i = −4πα2k ln
l

α

(

∂E

∂x
+

4

c2
∂i

∂t

)

. (14)

A second equation between the quantities E and i can be derived from equations (11)
and (12). If one multiplies the first one with ρdρdϕ, then integrates it over the cross-section
of the wire, and subtracts from the result the second equation, after having multiplied it by
2πα, one obtains:

∂i

∂x
= −1

2

∂E

∂t
. (15)

The derivation of equations (14) and (15) presupposes that the wire is straight. But since
these equations show that the electrical state at a point inside the wire is independent of
the electrical state at all other points at a finite distance from the former, the equations will
also be valid for bent wires. The radius of curvature, however, has to be everywhere finite,
so that the distance between two points, with a finite piece of wire between them, cannot
be infinitely close to each other. Equations (14) and (15) are the very same equations which
I derived for the same case in the earlier paper. The more general theory developed here,
therefore, leads to the same results obtained before, but it leads to further consequences. If,

310[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

u′o −
∂σ′

o

∂x
(ρ cosϕ− ϕ′ − ρ′) ,
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for example, (14) and (15) are used to determine E and (13) to determine Ω, it is possible to
calculate ε from (7), i.e. the density of free electricity inside the wire, so long as ε is given
for zero time. If the initial value of ε is independent of ρ, then ε remains independent of it,
that is the density of electricity is the same at all points of the cross-section, for according
to (13) Ω is independent of ρ, and ρ does not appear in equation (7). After calculating ε
one can find e. If the initial value of ε is independent of ρ, as has been assumed, we make
use of the equation:

E = 2παe+ πα2ε .

With the same assumption it is easy to calculate σ from ε because:

σ =
1

2

ρ

α

∂e

∂t
.

That this equation is valid for ρ = α we learn from equation (12), and that σ is propor-
tional to ρ from equation (11). If one multiplies it by ρdρ and integrates, remembering that
u and ε are independent of ρ, one finds:

σ = −ρ
2

(

∂u

∂x
+

1

2

∂ε

∂t

)

+
constant

ρ
.

The constant of integration has to be zero, because, for ρ = 0, σ must not be infinite. In
fact the opposite is true; it has to disappear, because along the axis of the wire the current
has to be in the direction of the axis.

————————————————————–

In the previous paper I discussed the solution of equations (14) and (15) for the special
case which is approached the smaller the resistance of the wire is made. I proved that in this
case the electricity in the wire progresses like a wave in a taut string311 with the velocity of
light in empty space. It is of interest to consider the opposite case which is approached the
greater the resistance of the wire is made. I will do this here on the assumption that the two
ends of the wire are connected with each other.

As in the previous paper, I let the resistance of the wire to be r, and write:

ln
l

α
= γ ;

then the solution of the differential equations (14) and (15), whatever the value of r, is as
follows:

E =
∑

(

C1e
−λ1t + C2e

−λ2t
)

sinnx+
(

C ′
1e

−λ1t + C ′
2e

−λ2t
)

cosnx ,

i =
∑

− 1

2n

(

λ1C1e
−λ1t + λ2C2e

−λ2t
)

cosnx+
1

2n

(

λ1C
′
1e

−λ1t + λ2C
′
2e

−λ2t
)

sinnx ,

where n is a multiple of 2π/l, and λ1 and λ2 have the values:

311[Note by AKTA:] In German: In einer gespannten Saite. This expression can also be translated as “in
a stretched string”.
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c2r

32γl



1±

√

1−
(

32γ

cr
√
2
nl

)2


 ,

and C1, C2, C
′
1, and C

′
2 are arbitrary constants. The summation is over all values of n. The

C-constants are easily determined if E and i are given for t = 0. If the functions of x, which
must transform to E and i for t = 0, have the form:

∑

(En sinnx+ E ′
n cosnx) ,

and

∑

(−in cos nx+ i′n sin nx) ,

one obtains the equations:

En = C1 + C2 ,

in =
1

2n
(λ1C1 + λ2C2) ; 312

and

E ′
n = C ′

1 + C ′
2 ,

i′n =
1

2n
(λ1C

′
1 + λ2C

′
2) ; 313

their solutions are:

C1 =
λ2En − 2nin
λ2 − λ1

,

C2 =
−λ1En + 2nin

λ2 − λ1
, 314

C ′
1 =

λ2E
′
n − 2ni′n
λ2 − λ1

,

312[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

in =
1

2n
(λ1C1 + λ2C2 ;

313[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

i′n =
1

2n
(λ1C

′
1 + λ′2C

′
2) ;

314[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

C′
2 =

−λ1En + 2nin
λ2 − λ1

,
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C ′
2 =

−λ1E ′
n + 2ni′n

λ2 − λ1
.

In the earlier paper we examined the case in which:

32γ

cr
√
2
,

can be treated as infinitely large. It will now be assumed that this quantity is infinitely
small. The two roots λ1 and λ2 are then real. If λ2 is the greater root, so by ignoring terms
of lower order:

λ2 =
c2r

16γl
, λ1 =

8γl

r
n2 .315

From this it follows:

λ1
λ2

=

(

16γ

cr
√
2
nl

)2

;

this expression is infinitely small, because nl is a multiple of 2π, which is finite. The expres-
sions of the C-coefficients may then be written:

C1 = En −
2n

λ2
in , C ′

1 = E ′
n −

2n

λ2
i′n ,

C2 = −λ1
λ2
En +

2n

λ2
in , C ′

2 = −λ1
λ2
E ′

n +
2n

λ2
i′n .

The coefficient of sin nx in the expression of E is therefore:

En

(

e−λ1t − λ1
λ2
e−λ2t

)

− 2n

λ2
in
(

e−λ1t − e−λ2t
)

, 316

or

Ene
−λ1t − 2n

λ2
in
(

e−λ1t − e−λ2t
)

, 317

and the coefficient of − cosnx in the expression of i:

315[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

λ2 =
c2r

16γl
, λ2 =

8γl

r
n2 .

316[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

En

(

e−λ1t − λ3
λ1
e−λ2t

)

− 2n

λ2
in
(

e−λ1t − e−λ2t
)

,

317[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

Ene
−λ1t − 2n

λ2
in
(

e−λ1t − e−λ1t
)

,
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En
λ1
2n

(

e−λ1t − e−λ2t
)

− in

(

λ1
λ2
e−λ1t − e−λ2t

)

.318

By setting E ′
n and i′n for En and in, one obtains the coefficients of cos nx in E, and of sinnx

in i. Excluding the case when the initial value of i is infinitely large, compared to the value
which i assumes for constant initial values of E, the expression can be simplified when the
initial value of i = 0. It can be seen that when i = 0 for t = 0, that is when in = 0, the value
of i is of the order of Eλ1/2n. Under the same circumstances in is of the order of Enλ1/2n.
The coefficients of sin nx in E and of − cosnx in i may be written

Ene
−λ1t ,

and

En
λ1
2n
e−λ1t +

(

in − En
λ1
2n

)

e−λ2t .

If one excludes from these considerations the values of t which are so small that λ1t becomes
infinitely small, then λ2t becomes infinitely large. Hence, the second term in the second
expression can be neglected compared with the first one. As the same considerations with
respect to the coefficients of cosnx and sinnx are valid in the expressions of E and i, then,
substituting for λ1 the previously obtained value, we have:

E =
∑

(En sinnx+ E ′
n cosnx)e

− 8γl

r
n2t , (16)

i =
4γl

r

∑

n (−En cos nx+ E ′
n sin nx) e

− 8γl

r
n2t . (17)

These expressions are independent of c. When one considers c infinitely large, the solu-
tions of the differential equations (14) and (15) become:

i = −4γl

r

∂E

∂x
,

∂i

∂x
= −1

2

∂E

∂t
.

Eliminating i, one obtains:

∂E

∂t
=

8γl

r

∂2E

∂x2
,

which is an equation of the same form as the one which determines the conduction of heat
in the conductor. Therefore, in the case considered here, the electricity propagates through
the metal like heat does.

With the assumptions made with regard to the resistance r in equations (16) and (17),
it is easily proved a posteriori that (16) and (17) are real solutions of (14) and (15). It is

318[Note by AKTA:] Due to a misprint, this equation appeared in the original text as:

En
λ1
2n

(

e−λ1t − e−λ2t
)

in

(

λ1
λ2
e−λ1t − e−λ2t

)

.
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possible to convince oneself without difficulty that (4/c2)(∂i/∂t) is infinitely small compared
with ∂E/∂x when i and E are taken from (17) and (16).

The case in which the ends of the wire are separated from each other, and are subject to
two potential values, can be treated in a similar manner as the case where the wire forms a
closed loop. In the open circuit, and provided the resistance of the wire is large enough, one
finds the same analogy between the conduction of electricity and heat.

With Jacobi’s resistance standard,319 a copper wire of 7.62 m length, 0.333 mm diameter,
as shown in the previous paper, is:

32γ

rc
√
2
= 2 070 .

For a wire of the same material, the same cross-section, and a length of 1 000 km this quantity
is 0.034. By way of an approximation, it can be treated as infinitely large in the first case,
and as infinitely small in the second case. In the first case the electricity propagates like a
wave in a taut string, and in the second case it travels like heat.

Thomson320,321 has examined the motion of electricity in an underwater telegraph wire.
He assumed — without checking the reliability of this assumption — that induction makes no
significant contribution to the phenomena. For this case he showed that electricity propagates
like heat. The present considerations have proved that this conclusion is also justified in the
case of a simple wire, provided it is long enough. It will be all the more correct in the
underwater telegraph wire, in which the motion of the electricity is considerably slowed
down on account of conduction in the seawater.

319[Note by AKTA:] See footnote 263 on page 210.
320[Note by GK:] Phil. Mag. Ser. IV, Vol. II, p. 157.
321[Note by AKTA:] See [Tho56a] and [Tho56b] with Portuguese translation in [TBA18].
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Chapter 13

[Weber, 1858] Report on Some
Experiments Made at the Physics
Institute in Göttingen

Wilhelm Weber322,323,324,325

Presented to the Königl. Societät on April 10, 1858.

In the Physics Institute of this University, in addition to the regular course of physics
lectures, practical physics exercises326 are held, in which the members of the mathematics-
physics seminar take part. Those who choose physics as their main subject and have acquired
greater practice will find the opportunity to do special work for themselves, such as for
example in last year was done by Dr. Arndtsen and Dr. Christie from Christiania,327 who
will make their carried out work known in more detail in Poggendorff’s Annalen.328 Their
results will be reported here briefly.

322[Web58] with English translation in [Web21e].
323Translated by Peyman Ghaffari, IMAAC-next, Tech Park of Fuerteventura, Puerto del Rosario, Las

Palmas 35600, Spain; Center for Research and Development in Mathematics and Applications (CIDMA),
Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; pgsaid@fc.ul.pt. Edited by
A. K. T. Assis.
324The Notes by H. Weber, the editor of the fourth volume of Weber’s Werke, are represented by [Note by

HW:]; the Notes by Peyman Ghaffari are represented by [Note by PG:]; while the Notes by A. K. T. Assis
are represented by [Note by AKTA:].
325[Note by HW:] Nachrichten von der G. A. Universität und der Königl. Gesellschaft der Wissenschaften

zu Göttingen. April 16. 1858. No. 6. p. 67-76.
326[Note by PG:] In German: praktische physikalische Uebungen. By “exercise” it is meant “practical

physics exercises” during studying physics at University. This system still exist in the German University
system.
327[Note by AKTA:] Hartvig Caspar Christie (1826-1873), a Norwegian mineralogist and physicist, who

studied in Göttingen under Weber from 1857 to 1859. He measured, for instance, diamagnetism in bismuth.
Adam Arndtsen (1829-1919), a Norwegian professor and physicist, who also studied in Göttingen under
Weber in 1857. Cristiania is the former name of Oslo, the capital of Norway.
328[Note by AKTA:] See, for instance, [Chr58]. Johann Christian Poggendorff (1796-1877) edited the

Annalen der Physik und Chemie from 1824 to 1876, where many of Weber’s papers were published. The
modern Annalen der Physik is the successor to this Journal.
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In view of the particular interest that diamagnetism still arouses as one of the latest
discoveries promising information about the inner nature and coherence of bodies,329 and
in the view of the still existing lack of quantitative determinations, the diamagnetometer330

manufactured by Mr. Leyser in Leipzig,331 according to specifications by Professor Weber,
with which Mr. John Tyndall made many interesting experiments in London and reported
them in the Philosophical Transactions for 1856 (Further Researches on the Polarity of the
Diamagnetic Force),332 and of which a second copy is in the local Physics Institute, was used
as a measuring device for some quantitative determinations on diamagnetism.

In his experiments, Mr. Tyndall had found an almost equal deflection of the astatic
magnetic needle333 by the diamagnetic body when the diamagnetism was excited by a cur-
rent from two, three or four cells,334 whereby the proportional growth of the diamagnetic
force with the force which excites diamagnetism has been questioned. This doubt does not
exist anymore due to more complete measurements of Dr. Christie performed with the same
instruments, in that Dr. Christie associated a determination of sensitivity335 of the astatic
needle with each observation of deflection, from which the sensitivity resulted variable with
the current intensity. From this it followed that the observed deflections first had to be
reduced to the same sensitivity, before they could serve as a measure of the excited dia-
magnetism. After this reduction and after precise measurements of the current intensities
(which, as is well known, must not be set proportional to the number of cells) with the
help of the tangent galvanometer,336 the law of the proportionality of the diamagnetic force
with the galvanic force that excites it has been carefully tested and confirmed. The current
intensity, determined according to known absolute measures, was increased from 16 to 44
units.

The same instrument now offered at the same time the opportunity, to measure more
accurately the constant relationship between the diamagnetic force and the galvanic force
that excites it. This ratio is called the diamagnetic constant,337 and was determined by
Professor Weber with an instrument which was constructed according to the mentioned
principles, but which had not received such a fine mechanical execution, for the first time in
the [paper] “Electrodynamic Measurements” (Abhandlungen der mathematisch-physischen
Klasse der Königl. Sächs. Gesellschaft der Wissenschaften, Vol. I, Leipzig 1852).338,339

329[Note by PG:] The German word “Körper” is translated as “body”.
330[Note by AKTA:] In German: Diamagnetometer.
331[Note by AKTA:] See footnote 102 on page 101.
332[Note by AKTA:] John Tyndall (1820-1893). See, for instance, [Tyn54], [Tyn55b], [Tyn55a], [Tyn55c]

and [Tyn56].
333[Note by AKTA:] The adjective “astatic” is used in physics with the meaning of something having no

tendency to take a definite position or direction. An astatic needle can be a combination of two parallel
magnetized needles having equal magnetic moments, but with their poles turned opposite ways, that is, in
antiparallel position. The arrangement protects the system from the influence of terrestrial magnetism. It
was invented by Ampère, [Amp21] and [LA98]. An earlier system composed of a single magnetized needle
had also been created by Ampère, [Amp20b, p. 198] with Portuguese translation in [CA09, p. 133], [Amp20a,
p. 239] and [Amp, p. 2], see also [AC15, p. 57].
334[Note by PG and AKTA:] In German: Becher. Weber is referring here to a voltaic cell, element, battery

or pile producing an electromotive force.
335[Note by PG:] In German: “Empfindlichkeit”.
336[Note by PG and AKTA:] See footnote 12 on page 22.
337[Note by PG:] In German: Diamagnetische Konstante.
338[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 473.
339[Note by PG and AKTA:] In German: Elektrodynamischen Maassbestimmungen. This work is the Third

of Weber’s 8 major Memoirs with the general title of Electrodynamic Measurements, [Web52b] with English
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A repetition of this measurement with a finer measuring instrument therefore seemed of
particular interest and was also carried out by Dr. Christie.340

This measurement was given a special sharpness341 by the fact that it was not based
on a comparison of the diamagnetic bismuth with magnetic iron, which apart from other
circumstances, is not capable of much sharpness because of the different distribution of
magnetism in iron and diamagnetism in the bismuth, but was based on a comparison of the
diamagnetic bismuth with a solenoid (a spiral-shaped wire), through which passes a weak
current precisely measured by the tangent galvanometer. This solenoid had a cylindrical
shape of the same diameter and height as the used bismuth-cylinder. From the number of
its spiral windings and the strength of the passing current, the torque342 could be determined,
with which it acted from the same place as the diamagnetic bismuth-cylinder on the astatic
needle; the current could also be easily regulated in such a way that this effect was close to
that of the bismuth-cylinder.

From these measurements it has been shown that one unit of the exciting force (according
to absolute measure, after which the horizontal earth magnetic force in Göttingen is at
present = 1.81) in 1 milligram bismuth produces a moment, which according to the Gaussian
absolute measure343 is = 0.000 001 488 5, while the same moment for iron was found by
Professor Weber = 5.6074.344 The diamagnetism of the bismuth is thus 3.8 million times
smaller than the magnetism of iron. This result is somewhat smaller than that found by
Weber, which, apart from the greater precision of the measurement which the instrument
used here permits, is explained by the difference in bismuth, which in both cases could not
have been obtained of absolute purity. — To give a clear idea of the size of these diamagnetic
forces, it should be noted that 1 milligram of steel from a strong magnetic needle has on
average about one moment = 400 according to the same units, which is 269 million times
greater than the aforementioned moment of bismuth.

Finally, in third place, Dr. Christie used the same instrument to investigate the polarity
of diamagnetic bodies, which Weber and Tyndall had put beyond doubt, by studying the
distribution of diamagnetism more closely. It has been shown that, according to Gauss’s
principle of the ideal distribution345 in a cylindrical bismuth rod, in which everywhere the
same exciting force acts parallel to its axis, almost all diamagnetism can be thought of as
being distributed over the two circular end faces, a result which is entirely in accordance
with what seems to be expected with the theory.

In all these experiments carried out with the mentioned diamagnetometer, only one cir-
cumstance remained in the dark, namely, from where the sensitivity of this instrument results
being so variable, which, according to its theory, if all the prescribed conditions were exactly
fulfilled in the construction and regulation,346 there would be no reason for it. It is now

translation in [Web21a], see Chapter 2.
340[Note by AKTA:] [Chr58].
341[Note by PG:] In German “Schärfe” meaning accuracy and sharpness.
342[Note by PG:] In German: “Moment”. That is, “torque” or “moment of force”.
343[Note by AKTA:] In German: Gauss’schen absoluten Maasse. That is, Gaussian absolute measure or

unit. In 1832-1833 Gauss introduced the absolute system of units for magnetism and obtained the intensity
of the horizontal component of terrestrial magnetic force in Göttingen in absolute measure as given by
T = 1.78. See footnote 47 on page 59.
344[Note by AKTA:] This value can be found in [Web52b, Section 27] with English translation in [Web21a,

Section 27]; and [Web52f] with English translation in [Web53b] and [Web66b]. See, in particular, page 81
and 120 on Section 2.27 and on Subsection 3.2.6, respectively.
345[Note by AKTA:] See footnote 7 on page 11.
346[Note by PG and AKTA:] In German: “Regulirung”. This word can also be translated as adjustment.

245



evident that by this construction and regulation of the instrument, a compensation of very
large forces, which excited diamagnetism, should be achieved in such a way that they have
no influence at all on the extremely sensitive astatic magnetic needle; while the forces then
to be measured with the instrument, namely the diamagnetic forces themselves, are very
small, accordingly it can be expected that the required compensation cannot be produced
practically with the required accuracy. More precisely, the production of the required com-
pensation breaks down into two different tasks, namely first in relation to the equilibrium
position of the astatic needle, and second in relation to its sensitivity. In relation to the
first, after both problems had been approximately solved, a finer correction had been made,
without which the astatic needle with telescope, mirror and scale could not have been ob-
served. As regards the sensitivity, however, a finer correction was dismissed in order not to
complicate the instrument too much, due to the fact that lack of the same does not make any
significant contribution to the measurements, if only the variation in sensitivity are precisely
determined and taken into account. However, since these variations in sensitivity were of an
unexpected size and importance, it was necessary, in order to fully control all the essential
elements in these fine measurements, to examine and investigate the causes of these varia-
tions more precisely. This actual fine examination has been carried out by Dr. Arndtsen
with the best results, and it has emerged from this, how these variations can be mastered
and, if found necessary, can be eliminated altogether. With the accuracy with which these
variations can be taken into account, there is usually no reason to avoid them, rather, since
it is entirely up to one to decide whether the sensitivity of the instrument is to be increased
or decreased by the variation, one can often benefit from this for the measurements them-
selves. Since here the description of the instrument has to be dispensed, so the theory of
these experiments cannot be discussed in more detail.

On the other hand, another investigation from Dr. Arndtsen made with the same instru-
ments should be mentioned. It is clear that the same instrument which is used to examine
the polarity of diamagnetic bismuth can also be used to examine the magnetic polarity of
those bodies which were previously thought to be non-magnetic or weakly magnetic, in or-
der to obtain quantitative determinations which are still completely lacking for those bodies.
In particular, it seemed important to investigate whether in these bodies, just as Joule,347

Müller348 and Weber have found in iron, a deviation of the magnetism from the propor-
tionality of the magnetizing force can be demonstrated with increasing magnetizing force,
as this circumstance is of great importance for the study of the inner causes of magnetism
and its variations. These tests were carried out by Dr Arndtsen with iron-sulfate,349 iron-
chloride solution, cyan-iron-potassium and nickel. It should be noted that the magnetizing
force that acted on these bodies, and which was not generated by electromagnets, but by
mere galvanic currents, could be brought only up to the strength = 600 by available means
according to absolute measure (after which the horizontal earth-magnetic force was presently
in Göttingen = 1.81), whereas in the carried-out experiments with iron by Weber it had been
driven up to over 3000. Add to this, that this measured magnetizing force can be described
as an external force, and that in pure iron also a significant inner force resulting from the
magnetic interaction applies on the individual particles, which disappears almost completely
in the above-mentioned bodies. According to this, it would therefore to be expected that in
the above-mentioned bodies the questioned deviation from proportionality usually under the

347[Note by AKTA:] [Jou40].
348[Note by AKTA:] [Mül51b] and [Mül51a].
349[Note by PG:] In German the word “Eisenvitriol” was used, i.e. iron-sulfate or FeSO4.
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same condition would be perceptible later than in the case of pure iron, namely only when
the external force alone acted just as strongly as the external and internal force combined in
the case of iron.

Under these circumstances it is not surprising that in several of the bodies examined
there was no deviation from the proportionality noticeable; it is more interesting however,
that with nickel it has emerged that this deviation from proportionality occurs much earlier
than with iron, so that the nickel-magnetism has almost reached its highest limiting value as
a result of magnetizing forces, at which the iron-magnetism hardly deviates noticeable from
the initial proportionality.

In addition to these experiments, Dr. Arndtsen also carried out a comprehensive inves-
tigation into the resistance350 of metals with special consideration of their temperature, of
which the following Table gives a brief overview of the results. Under the title Resistance,
the resistance of a cylinder with 1 millimetre in height and 1 millimetre in diameter at 0◦

temperature is given in absolute measure; under the title Correction due to the temperature,
the factor is given by which the resistance at 0◦ temperature must be multiplied in order to
obtain the resistance at t degrees on the scale divided by 100 parts.

Metal Resistance Correction due to the
temperature

Silver 241 190 1 + 0.003 414 20 · t
Copper 244 370 1 + 0.003 940 25 · t
Aluminum No. 1 476 218 1 + 0.003 407 90 · t
Aluminum No. 2 427 616 1 + 0.003 638 60 · t
Brass 949 086 1 + 0.001 661 9 · t

+ 0.000 002 734 · t2
Argentan 1 289 815 1 + 0.000 387 36 · t

+ 0.000 000 557 8 · t2
Iron 1 626 643 1 + 0.004 130 4 · t

+ 0.000 005 271 3 · t2
Lead 2 631 490 1 + 0.003 767 68 · t

Also Dr. Christie made a few more magnetic observations and experiments, which gave
interesting results. The local mechanic, Inspector Meyerstein,351 constructed the instru-
ments for two complete magnetic observatories on the order of the Brazilian government,
for scientific expeditions, tested by Dr. Christie. The set-up of the associated portable
magnetometer for measuring declination and intensity is described in detail elsewhere. Only
the induction-magnetometers for measuring the inclination, which, according to Professor
Weber, were made on a smaller scale in order to be used on the journey, should deserve
a mention, as the ones tested by Dr. Christie have shown that the same advantages are
achieved for measuring the inclination not only in fixed observatories, but also on a journey,
as the other magnetometer for declination and intensity. — The observations and experi-
ments made by these induction magnetometers have now also given cause for Dr. Christie to
determine anew the variability of needle magnetism, which is important for measuring the
intensity, with the needle in normal and transverse positions. This determination was made

350[Note by PG:] In German: “Leitungswiderstand”.
351[Note by AKTA:] Moritz Meyerstein (1808-1882). See [Hen04], [Hen05], [Hen07] and [Hen20].
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by Professor Weber with the help of magnetic induction for only smaller needles, in his trea-
tise in the 6th volume of the treatises of our society (Göttingen 1855);352,353 but it seemed
important that the same determination should be used again for the two larger needles with
which all measurements of the intensity in the local magnetic observatory since 1834 have
been carried out. These attempts have led to the results, which are given in the last column
under the title “Change”. There the factor is given by which the magnetic directive force,354

expressed in absolute units, must be multiplied in order to obtain the change in the magnetic
moment of the needle produced by it. Since now, during the transition from the transversal
position to the normal, the horizontal earth-magnetic force (presently = 1.81) begins to act
on the needle, it follows that one obtains the increase in needle magnetism associated with
that transition by multiplying the factor specified in the last column by 1.81.

Needle Weight Magnetic Change
number in gram moment

1 1 770 714 · 106 450 000
2 1 750 674 · 106 462 000

352[Note by HW:] Wilhelm Weber’s Werke, Vol. II, p. 333.
353[Note by AKTA:] [Web56], see also [Web54].
354[Note by AKTA:] See footnote 66 on page 77.
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Chapter 14

[Weber, 1861] On the Intended
Introduction of a Galvanic Resistance
Etalon or Standard

Wilhelm Weber355,356,357

I allow myself, to make a brief announcement to the [Göttingen] Royal Society regarding
the intended introduction of a galvanic resistance etalon or standard. The proposal is based
on reasons of practical need, which could be expected from the ever expanding technical
applications of galvanism. All galvanic piles358 used for chemical analysis, galvanoplastic
and other technical purposes, even if they are called constant, are continually subject to
minor and often major changes which one must be aware of in order to be able to control
them. But even if these columns were completely unchangeable, their effect would soon
be larger or smaller, according to the variety of applications. To master these effects does
not only require a knowledge of the pile itself, but also of all the objects through which
the current of the pile is supposed to pass, namely knowledge of their resistance. That is
why resistance measurements have become indispensable and indeed the need for them has
emerged most urgently for telegraphic use.

However, a resistance unit359 is required for resistance measurements. Without such a
unit, the objects through which the current is to be passed can only be described, while,
once a unit for resistance has been established, a number suffices to express everything that
is essential, and indeed much more precisely than is possible through all descriptions, since
very large differences in the resistance can still exist even though the descriptions of the
bodies may completely agree with one another.

Basically, to avoid descriptions, such unit was applied at an early stage by comparing
the various bodies through which currents were to be conducted with copper wires of known

355[Web61b] with English translation in [Web20b].
356Translated by H. Härtel, haertel@astrophysik.uni-kiel.de and http://www.astrophysik.uni-kiel.de/

~hhaertel/index_e.htm. Edited by A. K. T. Assis.
357The Notes by H. Weber, the editor of the fourth volume of Weber’s Werke, are represented by [Note by

HW:]; the Notes by Wilhelm Weber are represented by [Note by WW:]; while the Notes by A. K. T. Assis
are represented by [Note by AKTA:].
358[Note by AKTA:] In German: Alle galvanischen Säulen.
359[Note by AKTA:] In German: Ein Widerstandsmaass.
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length and cross-section. It is obvious that this implies, if only implicitly, that the resistance
of a copper wire of standard length and standard cross section is taken as basis for a resistance
unit. However the first who brought up the need for a specific resistance unit was Jacobi in
Petersburg in 1846.360

Jacobi himself said about this topic:361

“As important as the determination of the current, is that physicists are using a
common unit when expressing their resistance measurement. So far, however, no
absolute determination can take place because it seems that there are differences in
the resistances even of the chemically purest metals, which cannot be explained by
a difference in external dimensions alone. In case the physicist would have related
their ohmmeters and multipliers to a copper wire 1 meter long and 1 millimeter thick,
we would still not be convinced whether their copper wire and ours would have the
same resistance coefficient. All these difficulties could be solved if we let any chosen
copper or other wire send around the physicists and ask them to refer their resistance
measuring instruments to this wire as etalon and to publish their measurements only
according to this unit.”

Of such a resistance etalon chosen by Jacobi at will (a copper wire 25 feet long and
weighing 22 3375

10000
gram), a lot of copies have actually been made and used for resistance

measurements. But whether it is that the necessary care was not taken in making these
copies, regardless of the finest means of comparison by using Wheatstone bridges,362 or
whether these resistance etalons have undergone a change over time, later very important
differences showed up.

For this reason, Siemens in Berlin in 1860,363 with special consideration of the increasingly
urgent needs of technical physics, and due to various concerns raised about the Jacobian
resistance standard, proposed something that met all requirements, namely that it could
be represented by everyone with ease and with the necessary accuracy as a new unit of
resistance. This new standard is based on the resistance of mercury as that metal which
can be obtained everywhere or manufactured in sufficient, almost perfect purity. As long as
it is liquid, it has no different molecular properties modifying its conductivity, and is also
less dependent on temperature changes in its resistance than other metals. Finally it offers
particular convenience for the application through the size of its specific resistance.

With the establishment of this new resistance unit, Siemens has also pointed to the
importance of resistance scales as a necessary and indispensable mediator between the stan-
dard unit and the objects to be measured. He has constructed such scales in large numbers
and perfection in such a way that all resistances between (in whole numbers) 1 and 10 000
standard units can easily be formed.

Finally, in England, too, it is currently intended to set up a certain standard to the
measure of resistance, and it is hoped that this goal will best be achieved if the British
Association and the Royal Society adopt suitable measures to provide every experimenter

360[Note by AKTA:] See footnote 263 on page 210.
361[Note by AKTA:] A French version of Jabobi’s text can be found in [Jac51].
362[Note by AKTA:] In German: Wheatstone’schen Waage. The so-called Wheatstone bridge was invented

by S. H. Christie (1784-1865) in 1833 and popularized by C. Wheatstone (1802-1875) in 1843, [Chr33],
[Whe43, p. 325] with French translation in [Whe44b] and German translation in [Whe44a]. See also [Eke01].
363[Note by AKTA:] E. W. v. Siemens (1816-1892), [Sie60] with English translation in [Sie61]. See also

[GT19].
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in the whole world with such a standard, especially all who are occupied with investigations
and tests pertaining to the electrical telegraph. Such a standard should not only be valid
for a certain temperature, but should also provide an exact indication of its variation for a
certain temperature change, as well as, finally, to determine its galvanic significance, with a
precise indication of the force which is required to excite a certain current in it. — I owe
this communication to our correspondent, Professor W. Thomson in Glasgow,364 one of the
most thorough researchers in the field of electricity.

Some time ago I was occupied with a more precise determination of such a standard
under the title of absolute resistance measurements. I determined the galvanic meaning
of the Jacobian resistance etalon, for instance, by stating that an electromotive force of
5980 million is required in order to excite a current of the unit of intensity established by
Gauss.365,366,367 A similar determination of another copper circuit was presented by me to the
[Göttingen] Royal Society in 1853.368,369,370 The purpose of these previous determinations,
however, was more focussed on the method and the significance of the results which could
be obtained with it than about a quantitative execution. The latter were only achieved as a
test with the methods and instruments actually available for other investigations.

If, however, these absolute resistance measurements would find further applications,
namely to give all quantitative results of important galvanic observations and research a
lasting expression, then a similar case would arise as with the measurement of the seconds
pendulum length and other fundamental determinations: the need would arise for an ab-
solute resistance measurement to be carried out according to the strictest regulations, with
the most perfect instruments and with all the knowledge about most accurate observations.
This is a task which can only be solved by very skilful hands, with the most undisturbed
leisure and with more solid arrangements than are now available for physical research. But
if the British Association and the Royal Society really take the task into their own hands,
everything that is necessary will certainly be procured somehow and from somewhere.

This finest execution of an absolute resistance measurement must be preceded by various
investigations, some of which I present here.

A distinction is made between galvanometers and galvanoscopes. Those to which the
tangent galvanometer371 belongs are only used for stronger currents, the intensity of which is
obtained in terms of precisely determined units; these, on the other hand, serve to observe the
slightest traces of currents of which nothing else can be perceived. The highest sensitivity
of the latter, however, is only achieved by the closest encirclement of the needle with its
multiplier, whereby the more precise knowledge of the scale is lost, which in the case of
the tangent galvanometer resulted automatically from its construction. In order to use
such a galvanoscope anyway for real measurements, some kind of observation is necessary
as a measure of the sensitivity of the instrument, besides the observation of the deflection
produced by the current. As a rule, one seeks to establish this standard once and for all
by making corresponding observations on the galvanometer and galvanoscope beforehand.

364[Note by AKTA:] William Thomson (1824-1907).
365[Note by WW:] Abhandlung der Königl. Sächs. Gesellschaft der Wissenschaften, I, p. 252.
366[note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 351.
367[Note by AKTA:] [Web52c, p. 351 of Weber’s Werke] with English translation in [Web21b].
Weber is referring to the absolute system of units introduced by C. F. Gauss (1777-1855).

368[Note by WW:] Abhandlungen der Königl. Gesellschaft der Wissenschaften zu Göttingen, Vol. 5.
369[Note by HW:] Wilhelm Weber’s Werke, Vol. II, p. 277.
370[Note by AKTA:] [Web53e]. See also [Web53a] and [Web53c].
371[Note by AKTA:] See footnote 12 on page 22.
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Apart from the fact that such corresponding observations do not give an exact result because
of the very different sensitivities of the two instruments, that standard for very sensitive
galvanoscopes is by no means constant and can therefore not be determined in advance. On
the other hand, another observation can be combined with the observation of the deflection,
namely that of the damping of the oscillation, which directly gives that standard we are
looking for.

On this combination of these two observations rests the possibility of using the most
sensitive galvanoscope for the most precise measurements, which is the necessary condition
for the execution of absolute resistance measurements. The theory of such galvanoscopes,
which are suitable for precise measurements, requires a special development, since they
have to have a construction that is completely different from ordinary galvanoscopes. The
development of this theory offers particular interest because the use of galvanoscopes also
opens the way for many other more detailed investigations, where they were previously
unusable.

The construction of the galvanoscope must make it possible to observe the deflection
and attenuation simultaneously with the greatest possible accuracy, while with conventional
galvanoscopes only the magnification of the deflection was decisive for the construction.
However, what increases the deflection does not always increase the damping and vice versa.
In addition, there is a maximum deflection, which must not be exceeded, and there is as well
a certain level of damping which allows the most accurate determination, namely the level
of damping at which two consecutive oscillation maxima of the galvanometer needle behave
as 2.7182... : 1.

This results in several interesting tasks in the theory of magnetoscopes suitable for precise
measurements, which I will not discuss in detail here. I only note that the construction
of such galvanoscopes, which deviates from the usual ones, is mainly due to the need for
strong magnets as galvanoscope needles. For the sake of damping, and for the purpose of
measuring absolute resistance, the need for a longer period of oscillation and a galvanoscope
needle, whose zero point can be changed as little as possible should be added. The last
two requirements lead to the use of two equally strong magnets connected to an astatic
system and suspended on a metal wire,372 the strength of which can regulate the period of
oscillation. In the application of the astatic system this magnetoscope resembles the usual
one; only with the difference that what happens here with very small needles has to be done
there with larger and much stronger needles.

On the basis of these galvanoscopes, prepared for absolute resistance measurements, trial
tests were finally made to experimentally determine the extreme limit of accuracy that can
be achieved in absolute resistance measurements, the result of which can be expressed as
follows.

The absolute resistance measurement presupposes the knowledge of the intensity of the
terrestrial magnetism (measured in absolute units) at the place and at the time of the
absolute resistance measurement, which must be given all the more exactly, as the influence
of an error of this intensity is doubled in the resistance measurement. There is no need to
enter into a discussion of the accuracy that can be achieved for the intensity of terrestrial
magnetism, because this was done by Gauss in the “Intensitas”,373 ,374 according to which

372[Note by AKTA:] See footnote 333 on page 244.
373[Note by HW:] Gauss’ Werke, Vol. V, p. 79.
374[Note by AKTA:] For information on Gauss’ work on the intensity of the Earth’s magnetic force reduced

to absolute measure, see footnote 47 on page 59.
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these measurements belong to the fundamental determinations in this area of physics. If one
now, while taking absolute resistance measurements, distinguishes between the probable error
resulting from the measurement of the earth’s magnetism and the probable error resulting
from the rest of the measurement, it can always be achieved that the latter is, if not smaller,
by no means larger than the former. But it is easy to see that doing more would bring no
significant benefit since all observations in this area depend on the earth’s magnetism which
is influencing all needles and currents.

I conclude with a remark which was stimulated by the result of the absolute determination
of the Siemens resistance scale.

According to galvanic principles, the ratio of an electromotive force to an intensity of the
current determines a velocity, just as by the ratio of the length of a path to a time. The ratio
of the force which is required to excite a certain current in a given circuit to the intensity of
this current is thus also determined by a velocity. According to Ohm’s laws,375 the ratio of
that force to this current intensity for a given circuit is constant, and this gives immediately
the force which is required to excite a current of intensity = 1 in the given circuit.

An absolute resistance measurement is synonymous with determining this velocity. This
idea could now be supported by physically representing it, which can be done with the help
of the induction inclinatorium,376 described by me in the “Resultaten und den Beobachtun-
gen des magnetischen Vereins im Jahre 1837” (Results and Observations of the Magnetic
Association in 1837).377,378 The direct measurement of such a velocity, displayed in real, is
associated with great difficulties. Hence, preference is given to an indirect measurement
method such as that to which the above discussions relate. This makes the actual physical
representation of that velocity superfluous, which is of no importance to the matter. The
result found still remains a velocity.

The above-mentioned result of the absolute resistance measurement of the Jacobian resis-
tance etalon was therefore a certain velocity, whereby according to Gauss, millimeters were
the basis for length and seconds for time. The basis of this measure can be expressed by
adding the designation millimeter/(second) to the number 5 980 000 000 given there, which
is equivalent to 5 980 000 meters/(second).

Likewise, the result of the absolute resistance measurement for the unit of the Siemens’
resistance scale has now also been obtained expressed as a certain velocity, namely the number
of meters, which is close to 10 million, i.e. equal to the length of the earth’s quadrant (to be
divided with one second).

Even if it does not matter how large or small a resistance standard is chosen, it makes
sense that, according to the proposal of the British Association and Royal Society, this
standard should always be accompanied, in order to determine its galvanic significance, by
the exact specification of the force, which is required to excite a certain current in it. In
addition, it appears to be very useful to set up the otherwise completely arbitrary choice

375[Note by AKTA:] See footnote 128 on page 123.
376[Note by AKTA:] In German: Induktions-Inklinatorium.
The dip circle, dip needle, inclinometer or inclinatorium is an instrument used to measure the angle

between the horizon and terrestrial magnetism (the dip angle). It consists essentially of a magnetic needle
pivoted at the center of a vertical graduated circle.
Weber’s Induktions-Inklinatorium is a new instrument which he presented in 1837, [Web38b]. It offered

a novel way to circumvent the two main problems with dip circles: the effect of gravity, and the need to
reverse the polatiry of the needle, [WSH03].
377[Note by HW:] Wilhem Weber’s Werke, Vol. II, p. 75.
378[Note by AKTA:] [Web38b].
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in such a way that this information which should be added can briefly and succinctly be
expressed by the mere designation earth-quadrant/(second). — The fact that a resistance
that is, according to Siemens, very close to this standard can then be produced easily and
safely under all conditions by using a mercury pile with a cross section of 1 square millimeter
and a length of 1 meter would often be of practical use under conditions, where the true
standard is not available.
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Chapter 15

Translator’s Introduction to Weber’s
1863 Paper

Peter Marquardt379

Wilhelm Eduard Weber, his Time, his Research, and his German

Dear Readers,

In Weber’s time (he lived from 1804 till 1891), the conditions for a scientific publication
were considerably different from today’s: 1st scientists and science journals were scarce
then; 2nd the scientists could afford to write in a lengthy and, quite contrary to concise
writing, circumstantial style. The 19th century German language in particular lent itself
for “mile long” sentences, compilations of interwoven secondary clauses; the German term
is Schachtelsatz. “Involved period” sounds a bit too innocent, however; German is among
the world champions, maybe second only to Latin, when it comes to constructing a jungle of
ideas in one go. Such style may have been considered then as “elegant”. Scientists adapted
their writing to their thinking and they were cautious about the details of their publications.
Their extensive way of formulating may also be considered as trademark of honesty. We find
other German writers in that tradition, take Einstein or Woldemar Voigt, whose messages
are presented in an unusually rich bouquet of words. Reading Weber’s original, we meet
an exceptionally detailed writer with the knack of complicated formulations, often offering a
tedious text to his readers who have to struggle through the syntax. Weber was a meticulous
and cautious researcher, sticking to all (often unnecessary) details, thereby repeating quite
a few of them that burden the text. Nobody writes like that any more. In my high school
days, we were strictly advised not to overload our sentences. The German proverb “In der
Kürze liegt die Würze” (brevity is the soul of wit) is an official present day motto — it
certainly was not Weber’s.

The 19th century nomenclature, too, differs from what we are used to today. Some
examples: Elektricität is best understood as charge (Weber uses Ladung, too, but mostly
Elektricität); Kette (chain) is translated by circuit; current intensity (Intensität) and current
density (Dichte) occur interchangeably; we take density; the “encounter of waves” (Begeg-
nung von Luftwellen in Orgelpfeifen) is our interference; a “steady, or persistent, current”

379E-mail: marquardtp@gmail.com
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(beharrlicher Strom) is our direct current, DC; Weber’s title Maassbestimmungen is ambigu-
ous — it hints both at measurements and at his aim to establish “absolute units of measure”
by measurements. We chose “measurements”, always keeping in mind also the units of
measure so important for Weber.

To give you a taste of Weber, here is a single(!) sentence from his present introduction to
the treatise “Electrodynamic Measurements” followed by a “modernized” translation con-
taining the essential information. The version that tries to stay close to Weber makes part
of the whole translation.

Die Frage über die Fortpflanzungsgeschwindigkeit elektrischer Bewegungen in
Leitungsdrähten lässt sich danach überhaupt nicht so einfach beantworten und
noch weniger durch eine Messung, wie sie Wheatstone auszuführen versucht hat,
entscheiden, wie daraus ein leuchtet, dass sehr verschiedene Geschwindigkeiten
bei diesen Fortpflanzungen zu unterscheiden sind, und dass zumal bei längeren
Leitungs drähten, wie der Wheatstone’sche oder die zu Telegraphen gebrauchten,
die Fortpflanzungsgeschwindigkeit der grösseren Wellen, welche bei kürzeren Dräh-
ten der des Lichts nahe kommt oder sie noch übersteigt, sogar bis auf Null her-
absinken kann, und dass darüber hinaus, wo der Ausdruck der Fortpflanzungs-
geschwindigkeit imaginär wird, von Fortpflanzung der Bewegung durch Wellen
gar nicht mehr im gewöhnlichen Sinne die Rede sein kann, sondern blos von einer
asymptotischen Annäherung der Bewegung an ein bestimmtes Gleichgewicht, die
als reine Dämpfung oder Absorption betrachtet werden kann, und die bei der
Wichtigkeit, die sie für längere Leitungsdrähte, namentlich für Telegraphendrähte,
hat, noch nähere Untersuchung verdient.

The question concerning the velocity at which the motion of charges propaga-
tes in conductors is, thus, not at all an easy one to answer, let alone one to
be decided by a measurement like Wheatstone’s effort. Clearly very different
propagation velocities have to be distinguished. Above all, in quite long wires
as used by Wheatstone or in telegraphy, the velocity of long wavelengths may
even drop to zero, while in short wires it may approach or even surpass that
of light. Furthermore, when the expression for the velocity becomes imaginary,
ordinary wave propagation is out of the question, leaving only the approach to
an equilibrium, to be considered as pure damping or absorption. For long wires,
especially as in telegraphy, its importance deserves closer investigation.

Why then are we offering a tentative translation that tries to stay strangely literal at the
risk of looking like old fashioned “German-flavored English”? Staying closer to the original
may help to understand Weber better in the context of his time and of the spirit of 19th
century science. You may have to read sentences twice, likewise to rework the somewhat
complicated and circumstantial mathematical part that seems to fit the linguistic part. Any-
way, a tedious study may prove rewarding when it lets the reader pause to reconsider the
information contained in Weber’s honest and cautious way of presenting science. Enjoy!
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Chapter 16

[Weber, 1863] On the Treatise
“Electrodynamic Measurements,
relating specially to Electric
Oscillations”

Wilhelm Weber380,381,382

The task to examine more closely the forces mutually exerted by electric particles or
which are exerted on them by other bodies, which has been the main subject of the preceding
treatises on Electrodynamic Measurements,383 is closely followed by a second task, namely, to
examine carefully the motions performed by the electric particles driven by all these forces
or to establish the laws of the motion of electricity derived from the laws of those forces; for
the knowledge of these forces above all is to serve to gain a more exact knowledge of these
motions than is possible by direct observation.

This second far-reaching task of electrodynamics has found but little attention yet, and
it is justified to ask for the reason why it happened that it has been hardly tried to develop
further the foundation given by the knowledge of the forces. Obviously, the reason is that the
foundation itself has not yet been considered as completely finished and secured. That is to
say, it could be called into doubt whether all forces acting on the electric masses were indeed
already known, or whether besides the known electric forces acting at all distances, any yet
unknown electric molecular forces, limited to immeasurably small regions of influence, co-act
which should be investigated before one tried to develop the laws of motion of electric masses
depending on them. Even the reliability of the resistance law of ponderable conductors could
be called to doubt, at least when the same should be applied to the development of laws for

380[Web63] with English translation in [Web21f]. Related to [Web64] with English translation in [Web21d],
see Chapter 18.
381Translated by P. Marquardt, marquardtp@gmail.com. Edited by A. K. T. Assis. We thank Robert W.

Gray for relevant suggestions.
382The Notes by H. Weber, the editor of the fourth volume of Weber’s Werke, are represented by [Note by

HW:], while the Notes by A. K. T. Assis are represented by [Note by AKTA:].
383[Note by AKTA:] [Web46] with partial French translation in [Web87] and a complete English translation

in [Web07]; [Web52c] with English translation in [Web21b]; [Web52b] with English translation in [Web21a];
[KW57] with English translation in [KW21].
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non-uniform and rapidly increasing motions; because this law, first formulated by Ohm,384

can be considered as safely established only for steady currents.

The only effort to solve this task in a somewhat more general way has been reported by
Kirchhoff in Poggendorff’s Annals 1857, Vol. 100 and 102,385 but, as declared by Kirchhoff
himself, it is restricted to very thin conducting wires and to the assumption of a more general
validity of Ohm’s law than has been proven, namely, its validity also for non-uniform and
rapidly increasing currents. Furthermore, the development of the laws, as far as it has been
conducted up to now, does not allow a more detailed test by experience.

In particular, the following two objections against the existing development are in order,
namely, first that, should the requirements of the fineness of the conducting wire be merely
approximately fulfilled, the wire should be much finer than all wires available or producible
by existing means; second, that, apart from this, the assumption of a more general validity of
Ohm’s law would not be compatible with such a fineness of the conducting wire; because the
finer the wire, the more pronounced become the deviations from Ohm’s law for non-uniform
and rapidly changing currents.

The establishment of the laws of motion of electricity have therefore been tried in closed
conductors independent of those more or less unrealizable and dubious assumptions and as
far as necessary to develop the latter at least for the simplest case when the closed conductor
is a circle in order to test the theory by means of experience.

The result has been that, after each perturbation of the equilibrium of the electricity
in a closed conductor, indeed propagations of electric motions take place with determinable
velocities which could be called electric waves; but those electric waves are fundamentally
different from air or aether waves, through which sound and light are propagated, which for
example is evident from their velocity being dependent on the length of the path (the length
of the closed conducting wire) they have to pass through which completely contradicts the
laws of propagation of other waves. Likewise, the wavelength in each wave train to which a
certain velocity of propagation belongs, is in a certain ratio to the length of the path: namely,
it always represents an aliquot part of the total length of the closed conducting wire as is
usually assumed for those standing air oscillations that are produced by their interference
in organ pipes. But the laws of decomposition of those types of wave trains that are valid
in air are not applicable to electricity, because here wave trains with different wavelengths
have different propagation velocities.

Consequently, the question about the propagation velocity of electric motion in conduct-
ing wires is not at all an easy one to answer and even less to decide by a measurement,
like Wheatstone tried to perform,386 as is clear from the various velocities that have to be
distinguished for these propagation velocities, and in particular the propagation velocity of
the longer waves which may approach that of the light or may even surpass it in shorter
wires, may even decrease to zero especially in longer wires like those utilized by Wheatstone
or those used for telegraphs; and moreover from the propagation of motion [of electricity] by
means of waves in the usual sense which is out of the question when the expression for the
propagation velocity becomes imaginary, but is just an asymptotic approach of the motion
to a certain equilibrium which can be considered as pure damping or absorption and which
deserves closer investigation in view of its importance for longer conducting wires, namely,

384[Note by AKTA:] See footnote 128 on page 123.
385[Note by AKTA:] [Kir57b] and [Kir57c], with English translations in [Kir57a] and [GA94], respectively.

See Chapters 8 and 12.
386[Note by AKTA:] See footnote 138 on page 129.
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telegraph wires.
The case when the expression for the propagation velocity for the bigger wave trains

becomes imaginary (where for this part of the motion, as already noticed by Thomson
and Kirchhoff,387 similar laws like that for thermal conduction may hold) deserves special
attention when another part of the motion always remains which produces smaller wave
trains for which the expression for the propagation velocity stays real. Hence there are
indeed wave trains with certain propagation velocities in such a wire after each disturbance
of equilibrium, however, they do not constitute a pure wave motion but are mixed with
motions that are subject to other laws, namely, those analogous to heat conduction.

If one considers all relations that arise from such a mixture of motions which change
according to completely different laws, then it becomes self-evident that the non-simultaneity
of sparks at very distant ruptures of a long conducting wire observed by Wheatstone by no
means allows a conclusion of a definite propagation velocity, that Wheatstone’s method
of observation, be it as practical as is, is not suited at all for the present purpose, and
that one may succeed with difficulty to find other methods to determine the laws of all
changes of motion of the electricity in a conductor after a disturbed equilibrium by pure
experimentation. The purpose of the observation rather seems to be restricted to test the
laws obtained from otherwise acquired knowledge of electricity, for which purpose it is thus
necessary to place this derivation before the laws, all the more as the laws derived and to be
tested must themselves serve as guide in order to find the methods of observation that are
best suited for the test.

Such a test, if it is to be exact, will always demand fine-tuned measurements. If one
considers that the finest measurements in physics concern either equilibrium phenomena, or
steady motions, or periodically occurring motions (oscillations), it is manifest, apart from
constant currents, to establish a test method also for the observation of periodically regularly
occurring motions, or oscillations, of electricity in conductors, taking for granted that there
are means for the fine execution of such observations.

Periodically occurring motions of electricity in a conductor, however, cannot arise all by
themselves, but always by repeated excitation, and the quick rotation of a small magnet
around an axis perpendicular to its magnetic axis offers itself for their production as the
simplest and, for finer observations and measurements, most practicable method, as well as
for their observation the effects they bring about when the electrodynamometer is switched
on. In order to obtain a practicable guide for such observations, however, the laws of such
electric oscillations have to be developed first.

From this development it follows that, with the magnet in continuous rotation, the elec-
tricity in all parts of the closed conductor will be set in regular continuing oscillation which
is oppositely equal for positive and negative electricity. The period of an oscillation is equal
to the period of half a rotation of the magnet. However it also follows that the oscillation
amplitudes and the oscillation phases of the electricity at different positions of the closed
conductor have to coincide perfectly, not only when the electromotive forces simultaneously
exerted by the rotating magnet are equal everywhere, but that they should exhibit almost
unnoticeable differences even when these forces are quite randomly distributed in the cir-
cuit. Thus, in general, the oscillations may be considered completely equal and simultaneous
which extremely simplifies the observations of electrical oscillations in closed circuits which,
according to the theory, should prove almost correct also in very long circuits.

387[Note by AKTA:] [Tho56b] and [Tho56a] with Portuguese translation in [TBA18]; [Kir57b] and [Kir57c],
with English translations in [Kir57a] and [GA94], respectively. See Chapters 8 and 12.
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This remarkable result has been tested first by performing observations of oscillations
under conditions that are favorable for the comparison of the amplitude at various positions
of a long circuit which showed that the deflection of the switched-on dynamometer that is
proportional to the square of the oscillation amplitude deviated by less than 1/3 of a scale
unit out of 846 scale units as an average from six observations for two positions almost five
miles apart; with respect to unavoidable observational uncertainties, this means that there
was no difference of the oscillation amplitude.

Second, the oscillations have been observed under conditions favorable for the determi-
nation of the phase differences at different positions of a long circuit which resulted in the
difference between two observed deflections of the dynamometer, which should be closely
proportional to the phase difference at two positions of the circuit almost five miles apart,
was less than 3/5 scale units out of 844; with respect to unavoidable observational uncer-
tainties, this means that practically no phase difference at all could be detected. — In these
observations, the oscillation period corresponded to 1/520 second, or to 260 turns per second
of the little magnet.

Furthermore, from this theory, confirmed by practical tests, it follows that there is no
such velocity that would be as important and meaningful for this kind of propagation as
that claimed for the propagation velocities of sound and light in air and in the light aether,
the exact measurement of which is among the most important tasks in physics because they
have to be considered as true fundamental measurements for the exact knowledge of these
media.

Should there be no such velocity serving as fundamental determination also for the mo-
tions propagating through the electric medium, then this leads to the question whether the
theory would not offer another issue suited for a fundamental determination, leaving equi-
librium out of consideration, which would have a similar meaning for the knowledge about
the medium and replace that velocity in the present context.

According to the theory, such a topic should reveal certain deviations from Ohm’s law
which, with increasing refinement of the conducting wires, set in with very unsteady and
rapidly changing currents. According to the theory the validity of Ohm’s law, firmly estab-
lished by experiment for steady currents and indeed also for variable currents, should hold
only as far as a certain coefficient, c2/rE, depending on the nature of the electric fluid and of
the conducting wire, may be considered as vanishingly small. Whenever this coefficient, as
is the case when the conducting wire is made finer, increases above a value that cannot be
neglected compared with unity, then certain deviations of the manifestations of electric oscil-
lations from the determinations derived from Ohm’s law should become the more pronounced
the faster the electricity oscillates. If these deviations could be observed and measured, they
would lead to the knowledge of that coefficient which, depending on the nature of the electric
fluid and of the conducting wire, is of utmost importance for the science of electricity.

The physical meaning of this coefficient is that of a ratio of the square of the known
velocity c (which determines in the fundamental law the ratio of the static and the dynamic
part of the electric force) divided by the force that would be exerted by the total amount of
positive electricity contained in one length unit of the conducting wire, assumed as concen-
trated in a point, on 1 milligram of the electric fluid at the unit distance. Thus, this force
would be determined if the deviations from Ohm’s law, caused by the acceleration of the
oscillation and refinement of the conducting wire, could be exactly observed and measured.

On the other hand, this force may be expressed as the product rE of the amount of
positive electricity, E, contained in a unit length of the conductor, expressed in electrostatic
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units, times the amount of electrostatic units, r, contained in 1 milligram of the electric fluid,
which, if E and hence r were known, any electrostatically determined amount of electricity
and likewise the masses of ponderable bodies could be expressed in milligrams.

If, as shown in a former treatise (see Transactions of the Royal Saxonian Society of Sci-
ence, Vol. V, Sections 15 and 20),388,389 this amount of electricity, E, were determinable at
least for certain conductors, namely, electrolytes like water, then the observation of oscil-
lations would offer the possibility to determine the measure of electric masses like that of
ponderable masses, even if the execution requires various preparatory work. This knowledge
of the mass could never be obtained by means of electrostatic observations.

However, the execution of such a determination of the mass constitutes a new task that
had to be reserved for a special treatise, even if the method had been completely established.
This is a similar case like the magnetic measurements, the practicability of which in terms
of absolute measures was demonstrated theoretically by Poisson,390 which, however, would
have been fruitless without Gauss’ investigations which led to the control of all details.391

The same holds also for other applications allowed by the theory of electric motion in con-
ductors, for instance, of an exact determination of all processes in telegraphs or Rühmkorff’s
machines,392 because it is clear that the theory, first developed just for circular conductors,
even if it were impeccable, would not be sufficient with respect to telegraphs or Rühmkorff’s
machines with completely different shapes of conductors, and that various investigations will
be needed in order to control all details under such circumstances, necessary to successfully
perform such determinations.

388[Note by HW:] Wilhelm Weber’s Werke, Vol. III, pp. 648 and 664.
389[Note by AKTA:] [KW57, Sections 15 and 20, pp. 648 and 664 of Weber’s Werke] and [KW21, Sections

15 and 20, pp. 48 and 65]. See Sections 7.15 and 7.20 of this book.
390[Note by AKTA:] See footnote 43 on page 56.
391[Note by AKTA:] For information on Gauss’ work on the intensity of the Earth’s magnetic force reduced

to absolute measure, see footnote 47 on page 59.
392[Note by AKTA:] Rühmkorff’s machines or induction coils were named after Heinrich Daniel Rühmkorff

(1803-1877), a German instrument maker.
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Chapter 17

Translator’s Introduction to Weber’s
Fifth Memoir on Electrodynamic
Measurements

Peter Marquardt393

Dear Readers,

Who venture into studying the translation of Weber’s 1864 treatise “Electrodynamic Mea-
surements, Fifth Memoir, relating specially to Electric Oscillations” which makes part of his
“Electrodynamische Maassbestimmungen”:

If you have already studied Weber’s Introduction to this Treatise,394 you may be familiar
with some special aspects, hopefully encouraging you to go on.

The present work by Wilhelm Eduard Weber on oscillations in conductors is an exhaus-
tive and detailed description, in theory and practice, of a series of pioneering experiments
by one of the prominent researchers of his time. The copy of the German original used here,
accessible on internet, is from the library of the Deutsche Museum, München. The fron-
tispiece bears a hand-written personal dedication to Gustav Wiedemann, known from the
Wiedemann-Franz rule on the thermal conductivity of metals (“Herrn Professor G. Wiede-
mann vom Verf.” - to prof. G. Wiedemann by the author).

The Treatise on oscillations consists of two main parts: Laws of motion (an Introduc-
tion followed by Sections (Weber calls them “Artikel”) 1 through 24) and Observations of
Oscillations (Sections 25 through 36 followed by the list of contents).

Like its Introduction, the translated Treatise suggests some comments on Weber’s science,
language, and presentation. With respective changes, the following remarks may also apply
to other translated parts of his extensive work.

393E-mail: marquardtp@gmail.com
394Foreword in [Web63] with English translation in [Web21f], See Chapter 16.
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17.1 About Weber’s Science

Weber’s science rightfully receives revived attention. In the present Treatise Weber addresses
what he calls a “second task” following the previous work (“first task”) on various forces
investigated by Coulomb, Ampère, Faraday, Neumann for various experimental situations
- static charges, current elements, induction, currents or circuits in motion, respectively.
Its author considers this second task of electrodynamics, turning to the motions of elec-
tric masses due to the forces treated in the first task, as even more far-reaching, hitherto
neglected, and hence all the more important.

Weber, a child of the 19th century, formulates very cautiously, one of the reasons for the
kind of language he uses (see below). For instance, he does not take the validity of Ohm’s
law for granted when he turns to what we call alternating currents (“oscillations”). Clearly
these investigations are of great importance for telegraphy, Weber’s pioneering subject in
collaboration with Gauss, and for the later triumphant career of alternating currents in
general. The validity of Ohm’s law for rapidly varying currents is questioned. Do we sense
here an early taste of the skin effect in spite of the then still quite low frequencies?

His repeated and very meticulous experiments (assisted by Rudolf Kohlrausch) require a
few remarks.

Of particular interest are his rotating magnet to produce well defined oscillations (Section
20) and his solution how to handle wires 5 miles long in a laboratory. Aiming at telegraphy,
these experiments on long conductors called for the strategy to spool them as twin wires
(bifilar winding) with opposite current directions to avoid inductive losses (Section 26).

Referring to Kirchhoff , Weber rightfully mentions the great importance of the agreement
between the propagation velocity of electric waves and of light in free space.

The occurrence of a factor
√
2 when Weber addresses the propagation velocity of wave

trains (Section 16) may appear strange; it has been commented in recent years by several
scientists. We may speculate and seek its connection with Weber’s novel velocity dependent
modification of the static Coulomb potential where the relative velocity dr/dt = ṙ between
two charges enters by means of the dynamic factor (1− ṙ2/2c2).

17.2 About Weber’s Language

Weber’s language is 19th century German, in his case with extensively long sentences, with
technical terms not in use any more, with circumstantial formulations and intertwined syntax.
The German grammar is suited to fill a person with awe when it comes to long chains of
nouns linked together and to construct extended periods (just take a look at the very end of
Section 36; yes — that is one single sentence!)

Yet this here is the attempt to convey the text in Weber’s spirit to the readers of our
time, trying to stay close to the original at the cost of sounding strange. For instance, these
many conjunctions (but, however, thus, (w)hence, finally, now, and more of the like) are
indeed present in the original.

You may notice some compound nouns with a “German taste”, like rotation direction,
oscillation phase, oscillation amplitude. They are to avoid some of the many “of - of - type”
constructions for better readability.

The following glossary exemplifies Weber’s old-time German by means of some technical
terms in 19th century formulation and spelling → here translated as:

Ablenkung → deflection (Weber uses Elongation, too).
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Beharrlicher Strom → steady current (our DC, constant in density and direction; today
beharrlich = tenacious or stubborn).

Beruhigung → damping (Weber also uses Absorption or Dämpfung; calling his device,
intended to dampen, a “Beruhigungsmittel” — meaning tranquillizer today).

(Freie) Electricität → “(free) electricity” (corresponds to the scientific state of the art
of the mid 19th century when Weber was among those scientists to already postulate a
smallest indivisible charge long before the electron was identified as the mobile carrier; to
be understood as (free) charge. Sometimes Weber also uses Ladung).

Kette → chain, translated as circuit.
Linearer Leiter → “linear”, or thin in the sense of 1-D, or line shaped, or straight con-

ductor.
Maass → unit (this fits better than measure because Weber set great value on his “ab-

solute units” as is also expressed in his use of Maasseinheit and Maassbestimmungen).
Säule → voltaic pile.
Schwingungsdauer → (oscillation) period.
Schwingungszahl → (oscillation) number.
Stärke der Ladung → amount of charge.
Strom or Strömung → current (Weber uses both).
Stromdichtigkeit or Stromintensität→ current density (Weber does not clearly distinguish

current density and intensity).
Tangentenbussole → tangent galvanometer (bussole means a compass with a graduated

circle and a line of sighting).
Verhältniss → quotient in the sense of proportion or ratio.
Commutator, (electro)dynamometer, multiplier, magnetoelectric, electrodiamagnetic and

others of the like have similar meanings in German and English; they are somewhat obsolete
names, maybe not listed in a standard dictionary.

17.3 About Weber’s Presentation

Some additional illustrative figures of the experimental setup to assist or, better still, to
reduce the text, would have been helpful. Weber contents himself to just 5 figures (see
Section 25, The Commutators).

His nomenclature is not easy to follow, and so are some of his formulas.
His “partial differential equations” (e. g. Sections 17 and 20) are not formulated as

“partial” according to our usage.
Weber’s treatment of a “line element”, ds, is different from our infinitesimal differentials:

his ds = l may be considered very small compared to the circumference of a conducting ring,
yet large enough compared to its thickness, so as to consider the finite length l as straight,
“geradlinig” (Section 10).

You will definitely not fail to notice that the essence of this long treaty could be offered in
a concise form. Brevity (“the wit of wisdom”), so it seems, was not in the spirit of Weber’s
time. If interested to get just a taste of that spirit, feel free to resist the temptation to follow
all the details.

Anyway, if you venture into the text and get acquainted with its peculiarities, you will
find yourself rewarded entering a past world of great science. Enjoy!

PS Apologies for all mistakes and linguistic lapses which have survived.
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Chapter 18

[Weber, 1864, EM5] Electrodynamic
Measurements, Fifth Memoir, relating
specially to Electric Oscillations

Wilhelm Weber395,396,397

Introduction

The first task of these treatises on Electrodynamic Measurements398 has been to exactly and
completely determinate the various forces exerted by electric masses. A fundamental law399

has been set up from which have been derived and determined first the forces of electrostatic
interactions and their laws discovered by Coulomb,400 second the mutual electrodynamic
forces between current elements and their laws discovered by Ampère,401 third the forces
of induction discovered by Faraday (Volta-induction)402 — including a current co-moving

395[Web64] with English translation in [Web21d]. Foreword in [Web63] with English translation in [Web21f],
see Chapter 16.
396Translated by P. Marquardt, marquardtp@gmail.com. Edited by A. K. T. Assis. We thank Thomas

Herb for sharing with us his partial translation of the first 2 Sections of this work.
397Wilhelm Weber’s Notes are represented by [Note by WW:]; the Notes by H. Weber, the editor of the

fourth volume of Weber’s Werke, are represented by [Note by HW:]; the Notes by A. K. T. Assis are
represented by [Note by AKTA:]; while the Notes by the translator P. Marquardt are represented by [Note
by PM:].
398[Note by AKTA:] [Web46] with partial French translation in [Web87] and a complete English translation

in [Web07]; [Web52c] with English translation in [Web21b]; [Web52b] with English translation in [Web21a];
and [KW57] with English translation in [KW21].
399[Note by AKTA:] Weber is referring to his force law presented in the first treatise on Electrodynamic

Measurements, [Web46] with partial French translation in [Web87] and a complete English translation in
[Web07].
400[Note by AKTA:] See footnote 43 on page 56.
401[Note by AKTA:] See footnote 44 on page 57.
402[Note by AKTA:] Michael Faraday (1791-1867). The expression utilized by Weber, Volta-Induktion,

had been first suggested by Faraday himself in paragraph 26 of his first paper on electromagnetic induction
presented in 1831, see [Far32a, § 26] and [Far52, § 26, p. 267]. Portuguese translation in [Far11, p. 159]:

For the purpose of avoiding periphrasis, I propose to call this action of the current from the voltaic

battery, volta-electric induction.
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with its carrier and a current changing in its stationary carrier, and also what Neumann
first discovered and observed,403 [namely, induction with] the passage of a current through
a sliding contact — and their laws.

Apart from these various forces due to purely electric interactions, also forces exerted by
magnetism on electricity have been considered, namely electromagnetic and magnetoelectric
induction forces due to magnetism moving relative to electric masses — including magnetism
co-moving with its carrier and merely within its carrier. — The laws could also be derived for
these forces beginning with the established fundamental electric law, namely when, following
Ampère, molecular currents were substituted for molecular magnetism. The same was valid
for electrodiamagnetic forces.

Finally, also the laws for the forces exerted by ponderable bodies on the electric masses
moving within them and exerted on the latter, have been considered; and which are called the
galvanic resistance forces of the ponderable bodies. On the basis of Ohm’s law,404 established
for steady currents, a more general fundamental law for these forces has been tentatively set
up.

The investigation of these forces is closely tied to a second task of electrodynamics,
namely the exploration of the motions of the electric masses driven by all these forces and
the exploration of their laws in terms of these forces acting on the electric masses. Hence
an exact and complete knowledge of all forces and their exploration is mandatory in order
to determine these motions, the exploration of these forces may be considered as the means
and the exploration of these motions as the aim to be arrived at in this way.

This second very general task of electrodynamics has found but little attention and
we may rightfully ask why so little has been done to extend the foundation based on the
knowledge of the forces? Obviously one can hesitate to consider this foundation as safely
established and finished. The knowledge of all forces acting on the electric masses could be
called in question, namely, whether some yet unknown co-acting electric molecular forces
limited to immeasurably small scales, must be investigated besides the known purely electric
forces acting at all distances, before one tried to develop the laws of motion depending on
them. There was also some doubt about the reliability of the resistance law in ponderable
conductors as applied for the development of the laws for high frequency electric motions,
because Ohm’s law was established for steady currents only and the generalization has been
only been tentative. — To conclude, add to this that the knowledge of the forces is not the
only necessary requisite to fulfill the second task, but moreover a more specific knowledge of
the masses subject to motion besides other not yet sufficiently known details is required.

Nevertheless, Kirchhoff made a very thorough effort to fulfill the second task, in fact in
such a comprehensive way as the conditions allowed, and published the results in Poggen-
dorff’s Annalen 1857, Vols. 100 and 102.405 Irrespective of the above objections, this first
attempt has rightfully received wide attention because the decision whether and, if so, how
far the objections are justified can hardly be found by any way other than by experiment. —
Kirchhoff indeed tried to set up a general theory on the motion of electricity in an infinitely
long thin wire, however, indicating himself that he considered as generally valid some known

This phenomenon of Volta-induction is nowadays called Faraday’s law of induction.
403[Note by AKTA:] Franz Ernst Neumann (1798-1895). See [Neu48a] and [Neu49]. See also [Web49] with

English translation in [Web21c].
404[Note by AKTA:] See footnote 128 on page 123.
405[Note by AKTA:] [Kir57b] and [Kir57c], with English translations in [Kir57a] and [GA94], respectively.

See Chapters 8 and 12.
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facts which take place for constant currents, or for those whose intensity varies only slowly.
His procedure will be considered in more detail in the following Section.
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I - Laws of Motion

18.1 Kirchhoff on the Propagation of Electricity in Con-

ductors

Let x, y, z denote the rectangular co-ordinates of a point of the conductor and u, v, w the
(x, y, z) components of the current densities which is present at time t in this point of
the conductor. — We understand current density here as the product of the velocity of the
moving carriers times the amount of positive electricity per unit volume of the conductor.
Assuming Ohm’s resistance law as generally valid, this is tantamount to the product of
the electromotive force acting on the point (x, y, z) under consideration times the specific
conductivity of the metal conductor. Hence, if A denotes the electromotive force at point
(x, y, z) — that is the difference of the forces acting on the unit measure of positive and
negative electricity at the point (x, y, z) —, and α, β, γ as the angles between this force
and the three co-ordinate axes, and k as the specific conductivity of the metal we have

u = A cosα · k, v = A cos β · k, w = A cos γ · k ,
where the mechanical measures406 always used by Kirchhoff are to be assumed for forces and
conductivity.407

406[Note by AKTA:] In German: mechanischen Maasse. This expression can be translated as “mechanical
measures”, “mechanical units” or “mechanical units of measure”.
407[Note by WW:] Let ξ, η, ζ denote the displacement of an electric particle at point (x, y, z) after time
t, hence dξ/dt, dη/dt, dζ/dt the velocity components of the flowing electricity, then, when E represents the
amount of positive electricity in the unit volume of the conductor, we have according to the first relation:

u = E
dξ

dt
, v = E

dη

dt
, w = E

dζ

dt
.

But, according to Ohm’s law for steady currents, the current intensity i, if steady, in a linear conductor is
proportional to, or, in mechanical measure, equal to the sum of all electromotive forces, that is

∫

Adl along
the total length l of the conductor divided by the total resistance, that is

∫

dl/ks, where s is the cross section
and k the specific conductivity of the metal, hence we have i =

∫

Adl/[
∫

dl/ks]. But in this form of Ohm’s
law the current intensity i through the cross section s of the conducting wire is understood as the product
of the velocity of the flowing electricity, that is dσ/dt, and the amount E of positive electricity in the volume
unit of the conductor, hence putting

dξ

dt
=
dσ

dt
· cosα, dη

dt
=
dσ

dt
· cosβ, dζ

dt
=
dσ

dt
· cos γ ,

[one gets]

∫

Adl
∫

dl
ks

= Es
dσ

dt
.

Assuming that Ohm’s law holds in general for each length element in the circuit, one gets

Adl
dl
ks

= Aks = Es
dσ

dt
,

or Ak = E[dσ/dt], and from this [relation], decomposing for the coordinate axes

A cosα · k = E
dξ

dt
= u, A cosβ · k = E

dη

dt
= v, A cos γ · k = E

dζ

dt
= w .
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The electromotive force, A, however, originates partly from the free electricity distributed
in the whole circuit and partly from the induction which acts in all parts of the conducting
circuit due to the change of intensity of the current. To start with, we exclude all external
electromotive forces, for example magnetoelectric induction forces. Excluding resistive forces
that could be taken into account, all other known forces acting on electric masses do not
contribute to the electromotive force (if the resistive forces, that could be taken into account,
are excluded), like for example the electrodynamic forces discovered by Ampère, resulting
from interacting current elements, from which it is known that the difference between the
forces acting on positive electricity and those acting on negative electricity is always zero,
from which hence no electromotive force results.

The components of the first part of the electromotive force, which comes from the free
electricity distributed in the conducting circuit, are represented by doubling the negative
values of the partial differentials of Ω, taken as the value of the potential function of the
free electricity at point (x, y, z), with respect to the three coordinate axes, that is these
components are represented by408

−2
dΩ

dx
, −2

dΩ

dy
, −2

dΩ

dz
,

as is readily realized taking into account that the electromotive force, that is the difference
of the forces acting on the unit positive and negative electricities, is double the force acting
only on one unit of positive electricity.

In order to determine the components of the second part of the electromotive force which
comes from the induction caused by changes of current intensities in all parts of the conduct-
ing circuit, we denote the coordinates of a second point in the circuit by x′, y′, z′, further
the values of u, v, w at this point [are represented] by u′, v′, w′, and the distance between
(x, y, z) and (x′, y′, z′) by r.

From the fundamental law of electric action we get the electromotive force exerted by the
electricity in volume element dx′dy′dz′, moving along the direction of the x axis with velocity
dξ′/dt, remembering that, according to the previous footnote, u′ = E[dξ′/dt], [acting] at
point (x, y, z) along the x-axis, expressed in mechanical measure [as given by:]

= − 8

c2
· dx

′dy′dz′

r3
· (x− x′)2 · du

′

dt
.

Hence, the electromagnetic force due to a current element of length α with its current
intensity uniformly increasing by [a factor of] i during the time t that acts on a point at
distance r equals (see Electrodynamic Measurements, Vol. 5 of these Abhandlungen, p. 268,
number 4)409,410

= −2
√
2

c
· α
r
· i
t
· cosϑ cos ϑ′ ,

408[Note by AKTA:] Nowadays these partial derivatives would be written as:

−2
∂Ω

∂x
, −2

∂Ω

∂y
, −2

∂Ω

∂z
.

In this English translation we are maintaining Weber’s original notation.
409[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 655.
410[Note by AKTA:] [KW57, Section 18, number 4, p. 655 of Weber’s Werke] with English translation in

[KW21, Section 18, number 4, p. 55]. See also item (4) of page 182 on Section 7.18.
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along the direction which makes an angle ϑ′ with the extension of r, if αmakes an angle ϑ with
r. Here, however, the current intensity i, usually determined by means of a galvanometer, is
to be expressed in terms of absolute magnetic measure; which can be replaced by the value
expressed in mechanical measure if multiplied by 2

√
2/c. In mechanical measure the above

current intensity, on the other hand, is = u′dy′dz′. Putting i = [2
√
2/c] · u′dy′dz′, hence

i

t
=
di

dt
=

2
√
2

c
· du

′

dt
· dy′dz′ ,

and notice that in the above case cos ϑ = cosϑ′ = (x− x′)/r and α = dx′, then we find the
electromotive force we were looking for

= −2
√
2

c
· dx

′

r
· 2

√
2

c
· du

′

dt
· dy′dz′ · (x− x′)2

r2
,

which equals the value given above.
Considering the motion of electricity in element dx′dy′dz′ along the y or z axis instead of

along the x axis, the value of cos ϑ is given by (y−y′)/r or by (z−z′)/r instead of (x−x′)/r,
and dv′/dt or dw′/dt instead of du′/dt, from which the total electromotive force exerted by
the element dx′dy′dz′ at point (x, y, z) along the x axis results as equal to

= − 8

c2
· dx

′dy′dz′

r3
(x− x′)

(

du′

dt
(x− x′) +

dv′

dt
(y − y′) +

dw′

dt
(z − z′)

)

.

Likewise, putting (y − y′)/r or (z − z′)/r instead of (x− x′)/r for cosϑ′, one finds the total
electromotive force exerted along the y or z axis as equal to

= − 8

c2
· dx

′dy′dz′

r3
· (y − y′)

(

du′

dt
(x− x′) +

dv′

dt
(y − y′) +

dw′

dt
(z − z′)

)

,

or

= − 8

c2
· dx

′dy′dz′

r3
· (z − z′)

(

du′

dt
(x− x′) +

dv′

dt
(y − y′) +

dw′

dt
(z − z′)

)

.

Putting for brevity

U =

∫ ∫ ∫

dx′dy′dz′

r3
(x− x′)

(

u′(x− x′) + v′(y − y′) + w′(z − z′)

)

, (1)

V =

∫ ∫ ∫

dx′dy′dz′

r3
(y − y′)

(

u′(x− x′) + v′(y − y′) + w′(z − z′)

)

, (2)

W =

∫ ∫ ∫

dx′dy′dz′

r3
(z − z′)

(

u′(x− x′) + v′(y − y′) + w′(z − z′)

)

, (3)

one gets the components of the second part of the electromotive force which comes from the
induction as a result from changes of current intensities in all parts of the conducting circuit
equal to
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= − 8

c2
· dU
dt
, = − 8

c2
· dV
dt
, = − 8

c2
· dW
dt

.

However, the above components of the total electromotive force have been expressed as

A cosα, A cos β, A cos γ ,

thus one gets

A cosα = −2

(

dΩ

dx
+

4

c2
· dU
dt

)

,

A cos β = −2

(

dΩ

dy
+

4

c2
· dV
dt

)

,

A cos γ = −2

(

dΩ

dz
+

4

c2
· dW
dt

)

.

Finally, putting these values into the above equations for the current densities u, v, w at
point (x, y, z), one gets the following equations

u = −2k

(

dΩ

dx
+

4

c2
· dU
dt

)

, (4)

v = −2k

(

dΩ

dy
+

4

c2
· dV
dt

)

, (5)

w = −2k

(

dΩ

dz
+

4

c2
· dW
dt

)

, (6)

As a special prerequisite to determine the value Ω of the potential function at point
(x, y, z) of the total free electricity distributed in the whole circuit, the density of free
electricity in the inner part of the conductor where current motions take place must not be
equated to zero, as for a conductor with electricity at rest. Denoting by ε′ the non-zero
[volume] density of free electricity at point (x′, y′, z′), if inside the conductor, and by e′,
when located on the surface element dS ′, thus denoting the [surface] density of free electricity
in the surface element dS ′ by e′, we then get the following value of Ω, namely

Ω =

∫ ∫ ∫

dx′dy′dz′

r
· ε′ +

∫ ∫

dS ′

r
· e′ . (7)

In addition, the distribution of free electricity inside the whole conducting circuit as well
as at its surface which is determined by the values of ε′ and e′, may indeed change with time,
but these changes depend on the motion of electricity in the circuit, whence there must be
two equations to represent the partial differential coefficients of ε′ and e′ with respect to time
in their dependence on the motion of electricity.

The difference between the positive electricity leaving the element dx′dy′dz′ along the x,
y, z axis during the time element dt and the electricity entering it is

dx′dy′dz′ · du
′

dx′
dt, dx′dy′dz′ · dv

′

dy′
dt, dx′dy′dz′ · dw

′

dz′
dt .
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The sum of these differences yields the decrease of the free electricity dx′dy′dz′ ·ε′ contained in
dx′dy′dz′ during the time element dt which is produced by motion of the positive electricity.
There is, however, another equal decrease resulting from the opposite motion of negative
electricity during the same time element dt; consequently this sum equals half of the total
decrease of the free electricity contained in the element dx′dy′dz′ during the time element dt,
that is half of = −dx′dy′dz′ · [dε′/dt] · dt, hence we have

du′

dx′
+
dv′

dy′
+
dw′

dz′
= −1

2

dε′

dt
. (8)

Finally, denoting the angles between the inward normal on the surface element dS ′ and
the x, y, z axes by (N ′, x′), (N ′, y′), (N ′, z′), the amount of positive electricity flowing back
inwards from the surface element dS ′ during the time element dt equals

=

(

u′ cos(N ′, x′) + v′ cos(N ′, y′) + w′ cos(N ′, z′)

)

dS ′ · dt ,

and, because an equal amount of negative electricity flows from the interior towards the
surface element dS ′ during the same time, this amount equals half of the total decrease
of free electricity e′dS ′ at the surface element dS ′ during the time element dt, that is, =
−1

2
[de′/dt] · dS ′dt, hence we have

u′ cos(N ′, x′) + v′ cos(N ′, y′) + w′ cos(N ′, z′) = −1

2

de′

dt
. (9)

As general as this derivation of the equations of motion of electricity in any conductor
by Kirchhoff may be in other respects, it is based on three limiting assumptions, namely:

1. the assumption that the value of the electromotive force in a point, as was done above,
may simply be determined by doubling the force exerted on the positive electricity,
that is, assuming equal amounts of positive and negative electricity in all parts of
the conductor, or, more precisely, that this would strictly mean that the densities
ε′ and e′ of free electricity inside and on the surface of the conductor would always
and everywhere be equal to zero, which is not the case, that at least the present free
electricity may be considered as vanishingly small compared with the amount of a
neutral mixture of both electricities at the same position;

2. the assumption that always equal amounts of positive and negative electricity pass
through each cross section simultaneously in opposite directions, which is only justified,
when in addition we can assume everywhere an arbitrary motion of the neutral fluid,
on the grounds that such an added motion of a neutral fluid, if it were really present,
would have no influence at all on the observations;

3. the assumption of a more general validity of Ohm’s law which, as is to be shown
later, may be reduced to the assumption that the mass of the electric fluid would
vanish everywhere compared with the mass of its ponderable carrier, which, however,
is usually assumed in general.
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18.2 Derivation of the Expression for the Electromo-

tive Force Exerted by the Free Electricity and by

the Electric Motions in a Small Piece of the Con-

ducting Wire, Considered as a Cylinder, on Any

Point of the Middle Circular Cross Section of This

Piece

The more precise determination of the electromotive force acting in any point of the cross
section of the conducting wire suggests to divide the latter into two parts, namely the
part that comes from the element of the conducting wire which contains the point under
consideration, and the part that comes from all other elements that lie in greater measurable
distances from the point under consideration.411

Let the element of the conducting wire which contains the point under consideration
be a cylinder whose radius is very small compared with its length. Kirchhoff assumes the
distribution of free electricity as well as that of the electric motions in that cylinder as
symmetric with respect to the cylinder axis. With respect to the coordinates, let the x axis
coincide with the cylinder axis and put

y = ρ cosϕ, y′ = ρ′ cosϕ′ ,

z = ρ sinϕ, z′ = ρ′ sinϕ′ .

Further, distinguishing the current densities parallel to the cylinder axis and perpendicular
to the cylinder axis, the latter is everywhere radial under the assumption of the symmetry
of the motions, that is, in any point its direction coincides with the cylinder radius through
that point. Hence, denoting σ this radial current density at point (x, y, z) and σ′ at point
(x′, y′, z′), it follows that

v = σ cosϕ, v′ = σ′ cosϕ′ ,

w = σ sinϕ, w′ = σ′ sinϕ′ ,

where the values of σ and σ′ are independent of ϕ and ϕ′.
Substituting these values in the expressions of Ω and U in the previous Section and taking

α as the radius of the cylinder, we get

411[Note by AKTA:] Weber will calculate the electromotive force at a point P inside the wire. He then
divides the whole circuit AD below into two parts.

A B C
D

P

The first part, BC, contains all points closed to the point P and will be considered as cylindrical. The
point P is located in the cross section of the wire located in the middle of BC. The second part, composed
of pieces AB and CD, contains the points which are at great distances from P .

275



Ω =

∫ ∫ ∫

dx′ · ρ′dρ′dϕ′

r
· ε′ + α

∫ ∫

dx′dϕ′

r
· e′ , (1)

U =

∫ ∫ ∫

dx′ · ρ′dρ′dϕ′

r3
(x− x′)

(

u′(x− x′) + σ′(ρ cos(ϕ− ϕ′)− ρ′)

)

. (2)

Further, this substitution yields

dv′

dy′
=
d · σ′ cosϕ′

dy′
,

where σ′ depends only on the variable ρ′ for a given value of x′. Hence putting σ′ = f(ρ′) =

f

(

√

y′2 + z′2
)

, we get

dv′

dy′
=

d

dy′
·





y′f
(

√

y′2 + z′2
)

√

y′2 + z′2



 =
y′2

ρ′2
· dσ

′

dρ′
+
ρ′2 − y′2

ρ′3
· σ′ .

Likewise, we get

dw′

dz′
=
z′2

ρ′2
· dσ

′

dρ′
+
ρ′2 − z′2

ρ′3
· σ′ .

hence

dv′

dy′
+
dw′

dz′
=
dσ′

dρ′
+
σ′

ρ′
=

1

ρ′
· d · ρ

′σ′

dρ′
.

Adding du′/dx′ and substituting the respective value for the sum du′/dx′+dv′/dy′+dw′/dz′

in Equation (8) of the preceding Section, yields the equation

du′

dx
+

1

ρ′
· d · ρ

′σ′

dρ′
= −1

2

dε′

dt
. (3)

Finally one finds the following values for the angles between the normal of the surface
element dS ′ pointing inwards and the directions of the three coordinate axes:

(N ′, x′) =
π

2
, (N ′, y′) = ϕ′ + π, (N ′, z′) = ϕ′ +

π

2
;

hence we have412

u′ cos(N ′, x′) = 0 ,

412[Note by AKTA:] The second and third equation below were written in the original text as, respectively:

v′ cos(N ′, y′) = −σ′ cosϕ′2 ,

w′ = cos(N ′, z′) = −σ′ sinϕ′2 .

In order to avoid confusion, in this translation we are replacing the notations sinϕ′2 and cosϕ′2 used in
Weber’s time by their modern counterparts, namely, sin2 ϕ′ and cos2 ϕ′, respectively.
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v′ cos(N ′, y′) = −σ′ cos2 ϕ′ ,

w′ = cos(N ′, z′) = −σ′ sin2 ϕ′ .

Substituting these values in Equation (9) of the preceding Section then yields

σ′ =
1

2

de′

dt
. (4)

Putting for brevity

x′ − x = λ, hence dx′ = dλ ,

ρ2 + ρ′
2 − 2ρρ′ cos(ϕ− ϕ′) = β2, hence r2 = β2 + λ2 ,

then, according to Equations (1) and (2), we have

Ω =

∫ ∫

ρ′dρ′dϕ′
∫ l/2

−l/2

ε′dλ
√

β2 + λ2
+ α

∫

dϕ′
∫ l/2

−l/2

e′dλ
√

β2 + λ2
,

U =

∫ ∫

ρ′dρ′dϕ′
∫ l/2

−l/2

u′λ2dλ

(β2 + λ2)3/2

+

∫ ∫

ρ′
2

(

1− ρ

ρ′
cos(ϕ− ϕ′)

)

dρ′dϕ′
∫ l/2

−l/2

σ′λdλ

(β2 + λ2)3/2
.

where l denotes the length of the cylinder and the point (x, y, z) lies on the cross section
that cuts this length in half.413

Calculating the series expansion of ε′ and e′ in powers of λ in the first equation, namely

e′ = e+
de

dx
· λ+

1

1 · 2 · d
2e

dx2
· λ2 + ... ,

ε′ = ε′0 +
dε′0
dx

· λ+
1

1 · 2 · d
2ε′0
dx2

· λ2 + ... .

where ε′0, apart from time, depends only on the variable ρ′, then for very small values of
β2/l2 which follow with necessity from small values of α/l because β2 can never be greater
than 4α2, we may put414

∫ l/2

−l/2

dλ
√

β2 + λ2
= 2 log

l

β
,

∫ l/2

−l/2

λdλ
√

β2 + λ2
= 0 ,

413[Note by AKTA:] In footnote 407 on page 270 of Section 18.1, Weber had called l the total length of the
curved and thin conductor. He is now representing by the same letter the length of the small cylinder BC
represented in footnote 411 on page 275.
414[Note by AKTA:] What Weber represents by the symbol “log” in the next equations should be understood

as the natural logarithm represented nowadays as “ln”.
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∫ l/2

−l/2

λ2dλ
√

β2 + λ2
=
l2

4
,

whence for small values of l we get

Ω =

∫ ∫

ρ′dρ′dϕ′
(

2ε′0 log
l

β
+

1

8

d2ε′0
dx2

l2
)

+ α

∫

dϕ′
(

2e log
l

β
+

1

8

d2e

dx2
l2
)

.

The integration is to be carried out from ϕ′ = 0 to ϕ′ = 2π and from ρ′ = 0 to ρ′ = α,
whence we get

Ω = 2π

∫ α

0

ρ′dρ′
(

2ε′0 log l +
1

8

d2ε′0
dx2

l2
)

+ 2πα

(

2e log l +
1

8

d2e

dx2
l2
)

− 2

∫ α

0

ρ′dρ′ · ε′0
∫ 2π

0

dϕ′ · log β − 2αe

∫ 2π

0

dϕ′ · log β .

Considering that

∫ 2π

0

dϕ′ · log β =
1

2

∫ 2π

0

dϕ′ · log
(

ρ2 + ρ′
2 − 2ρρ′ cos(ϕ− ϕ′)

)

either equals 2π log ρ′ when ρ′ > ρ, or equals 2π log ρ when ρ > ρ′, then we get for the part
referring to the surface for which ρ′ = α,

−2αe

∫ 2π

0

dϕ′ · log β = −4παe logα .

The part referring to the interior [of the conductor] is decomposed into two parts, namely

−2

∫ α

0

ρ′dρ′ · ε′0
∫ 2π

0

dϕ′ · log β = −4π log ρ

∫ ρ

0

ρ′dρ′ · ε′0 − 4π

∫ α

ρ

ρ′dρ′ · ε′0 log ρ′ ,

which hence reduces to

−4π logα ·
∫ α

0

ρ′dρ′ · ε′0 ,

in the limit where ρ = α, and [reduces] to

−4π

∫ α

0

ρ′dρ′ · ε′0 log ρ′ ,

in the other limit where ρ = 0, which expressions differ the less from each other the smaller
[the value of] α,415 so that, with sufficient precision for very small values of α one may put

415[Note by WW:] Under the assumption of the symmetric distribution of free electricity in the wire, ε′0
approaches a constant with decreasing values of ρ′. Thus, if for small values of α it is allowed to put ε′0 equal
to a constant for all values of ρ′ < α, the value found for the first limit turns into

−4πε′0 logα

∫ α

0

ρ′dρ′ = −2πα2ε′0 logα ,
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2

∫ α

0

ρ′dρ′ · ε′0
∫ 2π

0

dϕ′ · log β = −4π logα ·
∫ α

0

ρ′dρ′ · ε′0

for the part referring to the interior; hence

Ω = 2π

∫ α

0

ρ′dρ′
(

2ε′0 log l +
1

8

d2ε′0
dx2

l2
)

+ 2πα

(

2e log l +
1

8

d2e

dx2
l2
)

− 4π logα ·
(

αe+

∫ α

0

ρ′dρ′ · ε′0
)

,

or, more concisely

Ω = 4π log
l

α
·
(

αe+

∫ α

0

ρ′dρ′ · ε′0
)

+
1

4
πl2 ·

(

α
d2e

dx2
+

∫ α

0

ρ′dρ′ · d
2ε′0
dx2

)

.

Finally, putting

2παe+ 2π

∫ α

0

ρ′dρ′ · ε′0 = E ,

that means, denoting the amount of free electricity contained in the conductor element dx,
partly at its surface, partly in the interior, by Edx,416 then differentiating twice one gets

2πα · d
2e

dx2
+ 2π

∫ α

0

ρ′dρ′ · d
2ε′0
dx2

=
d2E

dx2
,

hence

Ω = 2E log
l

α
+

1

8

d2E

dx2
· l2 . (5)

Likewise, the values of u′ and σ′ may be developed in the above equation for U by a
series expansion in powers of λ, namely

u′ = u′0 +
du′0
dx

· λ+
1

1 · 2 · d
2u′0
dx2

· λ2 + ... ,

σ′ = σ′
0 +

dσ′
0

dx
· λ+

1

1 · 2 · d
2σ′

0

dx2
· λ2 + ... ,

where, apart from the time, u′0 and σ
′
0 depend only on the variable ρ′ for a given value of x′.

Now, for very small values of β2/l2 corresponding to very small values of α2/l2, one can
put

∫ l/2

−l/2

λdλ

(β2 + λ2)3/2
= 0 ,

and the one for the latter limit [turns] into

−4πε′0

∫ α

0

ρ′dρ′ log ρ′ = −2πα2ε′0

(

logα− 1

2

)

,

which expressions differ the less, the smaller α.
416[Note by AKTA:] Therefore the magnitude E means the linear charge density of the wire, that is, the

amount of free charge per unit length.
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∫ l/2

−l/2

λ2dλ

(β2 + λ2)3/2
= 2

(

log
l

β
− 1

)

= 2 log
l

eβ
,

∫ l/2

−l/2

λ3dλ

(β2 + λ2)3/2
= 0 ,

∫ l/2

−l/2

λ4dλ

(β2 + λ2)3/2
=

1

4
l2 ,

where e is the base of the natural logarithms. Hence one gets the following equation for U :

U =

∫ ∫

ρ′dρ′dϕ′ ·
(

2u′0 · log
l

eβ
+

1

8

d2u′0
dx2

· l2
)

+

∫ ∫

ρ′
2

(

1− ρ

ρ′
cos(ϕ− ϕ′)

)

dρ′dϕ′
(

2
dσ′

0

dx
log

l

eβ
+

1

24

d3σ′
0

dx3
l2
)

.

The latter part of this value of U may be considered very small when α is very small, because
the integration for ρ′ has to be carried out from ρ′ = 0 to ρ′ = α, hence

U =

∫ ∫

ρ′dρ′dϕ′ ·
(

2u′0 log
l

eβ
+

1

8

d2u′0
dx2

l2
)

,

where the integration has to be carried out from ϕ′ = 0 to ϕ′ = 2π and from ρ′ = 0 to
ρ′ = α, thus

U = 2π

∫ α

0

ρ′dρ′ ·
(

2u′0 log
l

e
+

1

8

d2u′0
dx2

· l2
)

− 2

∫ α

0

ρ′dρ′ · u′0
∫ 2π

0

dϕ′ log β .

As

∫ 2π

0

dϕ′ · log β =
1

2

∫ 2π

0

dϕ′ · log
(

ρ2 + ρ′
2 − 2ρρ′ cos(ϕ− ϕ′)

)

equals either 2π log ρ′ if ρ′ > ρ, or equals 2π log ρ if ρ > ρ′, one gets

U = 2π

∫ α

0

ρ′dρ′ ·
(

2u′0 log
l

e
+

1

8

d2u′0
dx2

l2
)

− 4π log ρ

∫ ρ

0

ρ′dρ′ · u′0 − 4π

∫ α

ρ

ρ′dρ′ · u′0 log ρ′ ,

for which one can also write

U = 4π log
l

eα

∫ α

0

ρ′dρ′ · u′0 +
1

4
πl2
∫ α

0

ρ′dρ′ · d
2u′0
dx2

+ 4π log
α

ρ
·
∫ ρ

0

ρ′dρ′ · u′0 + 4π

∫ α

ρ

ρ′dρ′ · u′0 log
α

ρ′
.

But now, when α is very small, the latter two parts of this value of U may be considered as
vanishing, then one may put
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U = 4π log
l

eα
·
∫ α

0

ρ′dρ′ · u′0 +
1

4
πl2 ·

∫ α

0

ρ′dρ′ · d
2u′0
dx2

.

Finally putting

2π

∫ α

0

ρ′dρ′ · u′0 = i ,

that means, denoting the amount of positive electricity flowing through the cross section of
the conducting wire during the time element dt by idt, where i expresses the current intensity
in mechanical measure, then differentiating twice yields

2π

∫ α

0

ρ′dρ′ · d
2u′0
dx2

=
d2i

dx2
,

hence

U = 2i log
l

eα
+

1

8

d2i

dx2
· l2 .

Hereafter the electromotive force exerted by the free electricity in a small piece of the
conducting wire, considered as a cylinder, on any point of the middle part of this piece, is
determined more precisely, namely, from the value of Ω, [through]

−2
dΩ

dx
= −4

dE

dx
· log l

α
− 1

4

d3E

dx3
· l2 ,

and likewise the electromotive force exerted by induction of the electric motions in the same
piece on the same point [is determined], namely, from the value of U , [through]

− 8

c2
dU

dt
= −16

c2
· di
dt

· log l

eα
− 1

c2
· d3i

dx2dt
· l2 .

Finally, assuming a very large number for the value of log[l/α] as Kirchhoff did, one may
put

−2
dΩ

dx
= −4

dE

dx
· log l

α
,

− 8

c2
dU

dt
= −16

c2
· di
dt

· log l

eα
,

or, when 1 vanishes completely compared with log[l/α],

− 8

c2
dU

dt
= −16

c2
· di
dt

· log l

α
.

18.3 Simplification of the General Equations

Following a more exact determination of the electromotive forces acting on a point (x, y, z)
of the conducting wire, that come partly from free electricity, partly from the electric motions
in a small part of the conducting wire to be considered as a cylinder, Kirchhoff has tried
to simplify the general equations presented in Section 18.1 under the following conditions,
namely
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1. that the radius of the conducting wire, α, be so small compared to the length l of its
element, considered as cylindrical, that log[l/α] represents a very large number as was
assumed already in the preceding Section for the simplification of the expression of the
electromotive forces;

2. that the electromotive forces acting on a point (x, y, z) in such a thin conducting
wire originating from the free electricity and from the electric motions, except from
the single small piece considered as a cylinder whose central cross section contains the
point (x, y, z), be vanishingly small compared to the electromotive forces acting on
the same point originating from the electric motions in this small piece. — In addition,
we have the assumption already used also for the development of the general equations
in Section 18.1;

3. that Ohm’s law be separately valid for all current elements, even if the current inten-
sities in these elements are very different and vary rapidly.

If now, according to the first assumption, log[l/α] is a very large number and if, according
to the second assumption, only the electromotive forces determined more precisely in the
preceding Section are taken into consideration, compared to which the others due to the more
distant parts of the conducting wire are vanishingly small, one finds after the conclusion of
the preceding Section the complete expression of the electromotive force along the axis of the
conducting wire, [namely]

−2

(

dΩ

dx
+

4

c2
dU

dt

)

= −4 log
l

α

(

dE

dx
+

4

c2
di

dt

)

.

If this [formula] is now the expression of the total electromotive force, then it yields accord-
ing to Section 18.1, multiplied by the specific conductivity k, in accordance with the third
assumption, the current density u along the direction of the conducting wire in the point
(x, y, z), namely

u = −4k log
l

α
·
(

dE

dx
+

4

c2
di

dt

)

.

Considering, finally, that the current density at the point (x, y, z), hereafter independent
of ρ and, consequently, equal for all points of the cross section of the wire, multiplied by the
wire cross section πα2, yields therefore the current intensity i, then, multiplying the previous
equation by πα2 one gets the following equation derived from the seven first general equations
of Section 18.1:

i = −4πα2k log
l

α
·
(

dE

dx
+

4

c2
di

dt

)

.

Hence there only remain the last two of the general equations derived in Section 18.1,
which have been reduced in Section 18.2 to

du

dx
+

1

ρ
· d · ρσ
dρ

= −1

2

dε

dt
,

σ =
1

2

de

dt
.
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Multiplying the first equation by ρdρdϕ and integrating over the total cross section of the
conducting wire, and finally subtracting the second equation multiplied by 2πα, one gets

πα2 · du
dx

= −πα · de
dt

− π

∫ α

0

ρdρ · dε
dt

.

But now, according to Section 18.2, for ρ′ = ρ we have

2παe+ 2π

∫ α

0

ρdρ · ε = E ,

whence

2πα · de
dt

+ 2π

∫ α

0

ρdρ · dε
dt

=
dE

dt
,

and so, because we had πα2u = i, from which follows πα2 · (du/dx) = di/dx, the two last
equations of Section 18.1 yield the following [equation]:

di

dx
= −1

2

dE

dt
.

Based on this reduction from nine general equations to two, namely

i = −4πα2k log
l

α
·
(

dE

dx
+

4

c2
di

dt

)

,

di

dx
= −1

2

dE

dt
,

we can, eliminating i, finally derive the law that allows to determine the distribution of free
electricity, E, in the circuit for any moment, namely417

d2E

dt2
− c2

2

d2E

dx2
+

c2

16πα2k log l
α

· dE
dt

= 0 ,

or we can, eliminating E, derive the law that allows to determine the current intensity, i, for
any point of the circuit and for any moment, namely

417[Note by AKTA:] The next equation can be expressed in more familiar terms utilizing the modern symbol
∂ for partial derivatives, the modern symbol “ln” for the natural logarithm instead of Weber’s “log”, and
multiplying all terms by −2/c2. After rearranging the terms we get the following equation for the linear
charge density E(x, t) along the thin wire:

∂2E

∂x2
− 1

c2/2

∂2E

∂t2
=

1

8πα2k ln l
α

∂E

∂t
.

Weber and Kohlrausch had measured Weber’s constant c in 1855-6. They obtained c = 4.39450×108 m/s,
[KW57] with English translation in [KW21], see also page 179 on Section 7.17. Therefore c/

√
2 = 3.1× 108

m/s, essentially the same value of light velocity in vacuum, as pointed out by Kirchhoff in 1857, [Kir57b]
with English translation in [Kir57a], see page 214 on Chapter 8.
Therefore the next equation presented by Weber is the modern telegraph equation describing the propa-

gation of an electric disturbance along a resistive wire. When the resistance is negligible, we obtain the wave
equation for a signal propagating at light velocity vL = c/

√
2, namely

∂2E

∂x2
− 1

c2/2

∂2E

∂t2
=
∂2E

∂x2
− 1

v2L

∂2E

∂t2
= 0 .
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d2i

dt2
− c2

2

d2i

dx2
+

c2

16πα2k log l
α

· di
dt

= 0 .

As is easy to see, the distribution of free electricity as well as the current intensities in
all parts, however, would have followed all by itself from the motions of all electric particles
in the conducting wire, were the law of the latter known. Vice versa the latter law is easily
derived from the known law of the distribution and the current intensities where it suffices to
formulate it for the motions of all positive electric particles in the conducting wire, because
the opposite motions of all negative electric particles follow all by themselves.

Let s denote any point of the conducting wire418 and Eds the total amount of positive
electricity which is contained in the length element, ds, of the conducting wire, and further
σ the displacement of one particle of this positive electricity after time t from its initial
equilibrium, thus dσ/dt the velocity of this particle in the conducting wire and dσ/ds the
dilution of the positive electricity at the point s of the conducting wire at the end of time
t, which always corresponds to an equally great dilution of negative electricity; then the
current intensity i at the point s of the conducting wire at the end of time t equals the
product Edσ/dt, and the [linear] density E of free electricity, that is the surplus of positive
electricity over negative in the element ds at the end of time t, equals double the negative
product Edσ/ds, thus

i = E · dσ
dt

,

E = −2E · dσ
ds

.

However, substituting these values in the preceding equations we obtain the two equations

d3σ

dt3
− c2

2

d3σ

ds2dt
+

c2

16πα2k log l
α

· d
2σ

dt2
= 0 ,

d3σ

dsdt2
− c2

2

d3σ

ds3
+

c2

16πα2k log l
α

· d
2σ

dsdt
= 0 ,

whence, taking into consideration that σ was equal to zero in the whole conducting wire
during the initial equilibrium of electricity, the law of the motion of all positive electric
particles in the conducting wire follows, namely

418[Note by AKTA:] In Section 18.1 Weber had considered s = πα2 as the area of the curved and thin wire
with a circular cross section of radius α and total length l. Now he will consider s as the position of a point
along the curved axis of this thin wire measured from a given origin 0, as represented in the Figure of this
footnote.

s

l
a

(a) (b)

0
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d2σ

dt2
− c2

2

d2σ

ds2
+

c2

16πα2k log l
α

· dσ
dt

= 0 .

18.4 Test of the Prerequisites Made in the Previous

Section

At the beginning of the previous Section the prerequisites for the simplification of the equa-
tions have been compiled, from which already one was the basis for the development presented
in Section 18.1. Concerning now the assumption added for the first simplification, namely
the assumption of a very thin conducting wire, that seems to be so natural that it barely
needs any further test, but goes without saying if it is a question of simplification; upon
closer inspection, however, it is easily seen that the fineness of the conducting wire is and
must be demanded here to such a degree that is never met in reality, so that any practical
application of its consequences becomes questionable. In addition yet we have the special
concern whether this prerequisite may not come into conflict with the prerequisite for the
development of Section 18.1 concerning Ohm’s law, because the latter must apparently be
limited to less fine conducting wires.

If namely there is no objection against considering the thickness of the conducting wire
compared to its total length for linear conductors as vanishingly small, the consideration
of this thickness as vanishing compared to a single element, still considered as straight, of
the conducting wire is more far reaching; and still more far reaching is the assumption of
the logarithm of the ratio of the length of such a small element to that thickness as a large
number, against which the number one is considered as insignificant, as was done in that
prerequisite. For, taking just 20 as such a large number, would demand a wire whose smallest
piece, still considered as straight, would have to be longer than thick by a factor of more
than 200 millions, which does not exist.

More important, however, is the other objection whether the assumption of such a thin
conduction wire, if it existed, would come into conflict with the prerequisite concerning Ohm’s
law. In any case, it must be called to doubt whether the latter prerequisite is generally and
strictly valid or whether it holds approximately for less fine wires, and, as is easily seen,
this doubt can only be remedied by a development of the laws of motion independent of
this very prerequisite. We shall try to present such a development, at least in so far as
seems to be necessary for the test of the indicated doubt, preliminarily sticking to the first
prerequisite, namely a wire so thin, that the logarithm of the ratio of the length of the
elements, still considered as straight, to their thickness be so large as to neglect the number
one by comparison. This development rests on the following consideration.

Were all forces really known which act on the electric particles in the conducting wire and
were all these forces expressed exactly in known mechanical measures, then it would be self
evident that a development of the laws of motion of these electric particles in the conducting
wire is possible quite independent of the prerequisite of Ohm’s law; for the resultant of all
forces acting on any particle divided by the acceleration of that particle must, as with all
bodies, yield always the same quotient, which in mechanics is usually called the mass of the
particle.
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18.5 On the Derivation of the Equation of Motion In-

dependent of Assuming Ohm’s Law

Hence we first try to enumerate all forces acting on an electric particle in the conducting
wire and to express them by mechanical measure, namely

1. those electric forces, already determined by Kirchhoff, acting at small distances from
which, under the assumption of the fineness of the wire, yielded the electromotive force

= −4 log
l

α
·
(

dE

ds
+

4

c2
di

dt

)

for a point s of the conducting wire expressed by mechanical measure. This electro-
motive force is the difference between the two forces that act on the positive and on
the negative electric unit of measure (as is defined in electrostatics) if they are present
in that point. As these two forces are equal, apart from their opposite directions, it
follows that half of this electromotive force, namely

= −2 log
l

α
·
(

dE

ds
+

4

c2
di

dt

)

,

is the force acting on any positive electric unit of measure at the point s. But the
number of positive electric units of measure contained in the length element, ds, of
the conducting wire has been denoted earlier in Section 18.3 by Eds, where it has
been noted that Edσ/dt = i and −2Edσ/ds = E. Multiplying the above force by the
number Eds and substituting the above values we get the force acting on the positive
electricity in the element ds expressed in mechanical units, namely

= 4E2 log
l

α
·
(

d2σ

ds2
− 2

c2
d2σ

dt2

)

· ds .

In addition to these previously determined forces we have to add

2. the forces exerted by the ponderable conductor particles on the positive electricity in
the element ds which we try to determine as follows.

According to Ohm’s law, established for steady currents as shown in the footnote of
Section 18.1,419 the electromotive force in one point of the conductor = u/k, which is
independent of the ponderable particles of the conducting wire, or = i/[πα2k], because
πα2u = i according to Section 18.3. But the steadiness of the current, that is the
constant velocity of the electric particles in the conducting wire, proves that, apart from
this electromotive force independent of ponderable particles, a second electromotive
force of equal value and of opposite direction must exist which must obviously originates
from the action of ponderable conductor particles on the electricity in the conductor,
which hence is given by

= − i

πα2k
.

419[Note by AKTA:] See footnote 407 on page 270.
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Half of this electromotive force, namely

= − i

2πα2k
,

then is, as is clear from the previous statement, the force which is exerted by the
ponderable conductor particles on each positive electric unit of measure in the point s
under consideration. Hence multiplying this force by the number of positive units of
measure Eds contained in the element ds and substituting also here as before Edσ/dt
by i, we find the force exerted on the positive electricity contained in the element ds
expressed by mechanical measure, namely

= − 1

2πα2k
· E2 · dσ

dt
· ds .

Considering finally that the cases of non-steady currents differ from those of steady cur-
rents only regarding situations coming from different interactions between the electric
particles, wherein the forces due to the interaction between ponderable conductor par-
ticles on the electric particles have no direct dependence, it seems justified to assume
that the presented law for the determination of the latter forces, when it is valid for
all cases of steady currents, holds in general, also in the cases of non-steady currents.

In order to take into account all forces which act on the electric particle under consid-
eration, we finally summarize

3. all forces acting from a distance, wherever they may originate, and understand among
them in particular also all forces originating from the interaction of the electricity
[located on distant points of the conductor and acting] on the electricity in the point
under consideration, apart from those [originating from electric particles located] in the
element ds itself which contains the point under consideration, and which Kirchhoff
has assumed as vanishingly small. We denote by S the electromotive force originating
from this at point s in mechanical measure, half of which multiplied by Eds yields the
force exerted on the positive electricity in element ds, expressed in mechanical measure,

=
1

2
ESds .

As all these forces, expressed in mechanical measure, that means by parts of that force
which conveys the unit of velocity (one millimeter during one second) during the time unit
(during the time of a second) to the ponderable unit of mass (the mass of one milligram),
[then] it follows, according to the law of motion valid for all bodies, that the quotient of the
sum of all these unidirectional forces and the acceleration, that is of the velocity conveyed
by the sum of forces due to the positive electricity in the element ds acting on them during
the unit time, namely

d2σ

dt2
,

yields the definition of the mass of the positive electricity contained in the element ds,
expressed in the unit mass (milligram) defined for all bodies.

It is remarkable that one is led hereby to a new kind of absolute determination of an
amount of electricity, about which the following remark, for comparison of this new method
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of absolute determination with the already known methods may find room here for the
application to the present consideration.

Arranging the different methods of absolute determinations of an amount of electricity
according to the exactness they allow in practice, the absolute determinations by the gal-
vanometric method have to be placed topmost by which the amount of electricity, present
as part of the neutral fluid, is obtained expressed as part of the amount of electricity which
passes during the unit of time through the cross section of the conductor with the unit of
current intensity determined galvanometrically. — Then follow the absolute determinations
by means of electrostatic measurement, by which an existing amount of free electricity is
obtained expressed as part of that amount of electricity which exerts the unit of force on the
same amount [of free electricity] from a unit distance according to the electrostatic law. This
determination is applied only to small amounts of electricity occurring as free in comparison
with the large amounts of electricity in the neutral fluid determined galvanometrically. —
Especially important is the knowledge of the ratio of the units of measure determined by the
two methods, obtained by measuring twice one and the same amount of electricity, galvano-
metrically as well as by the electrostatic method, namely the ratio 155 370 · 106 : 1 (see the
previous Abhandlung, Vol. V, p. 261)420,421 — To these two absolute methods one may now
add as third one that by which an existing amount of electricity is to be expressed by its
mass in parts of the unit of mass (milligram) determined for all bodies; here, however, we
have to remark that until now no existing amount of electricity has been expressed by this
method because no way has yet been discovered which would just approximately lead to such
a knowledge. Consequently, there is a complete lack of knowledge concerning the ratio of
the units of measure due to the latter method and that due to the previous method because
no measurement of one and the same amount of electricity could be carried out according
to these different methods. Were this ratio = r : 1 known, then the mass of this amount of
electricity in milligrams expressed as = [1/r] · Eds could be obtained from the number Eds
of electrostatic units of measure of positive electricity contained in the conductor element
ds.

Introducing this expression for the mass and equating it with the above quotient, one
obtains the following equation:

1
d2σ
dt2

·
(

4E2 log
l

α
·
[

d2σ

ds2
− 2

c2
d2σ

dt2

]

ds− 1

2πα2k
· E2 · dσ

dt
ds

+
1

2
ESds

)

=
1

r
Eds ,

or, arranging and putting

c2

8 log l
α
· rE = λ ,

one obtains

420[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 649.
421[Note by AKTA:] [KW57, Section 15, p. 649 of Weber’s Werke] with English translation in [KW21,

Section 15, p. 48]. See, in particular, page 176 of Section 7.15.
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d2σ

dt2
− c2

2(1 + λ)
· d

2σ

ds2
+

c2

16πα2k log l
α
· (1 + λ)

· dσ
dt

=
c2

16E log l
α
· (1 + λ)

· S .

18.6 Comparison of the Results

This more general equation is seen to contain Kirchhoff’s above equation, namely under the
two assumptions that S = 0 and λ = 0; then we have

d2σ

dt2
− c2

2
· d

2σ

ds2
+

c2

16πα2k log l
α

· dσ
dt

= 0 ,

in total agreement with the equation developed at the end of Section 18.3.
Here it may be remarked that Poggendorff’s Note to Kirchhoff’s treatise in the 1857

Annalen, Vol. 100, p. 351, refers to this more general equation, just derived, and to its
agreement with Kirchhoff’s equation.422,423

The assumption that S = 0 does not just contain Kirchhoff’s previously made assump-
tion, that no external electromotive force shall act on the electricity in the conducting wire,
but especially also the second assumption from the three made at the beginning of the third
Section,424 namely that all electromotive forces originating from the free electricity and from
the electric motions in the whole conducting wire, apart from the small piece considered as
cylindrical with the point under consideration in its center, are vanishingly small compared
to those electromotive forces acting on the same point originating from the free electricity
and from the electric motions in the cylindrical small piece itself.

The assumption that λ = 0, on the other hand, agrees with Kirchhoff’s assumption
of the general validity of Ohm’s law. It may, however, seem that λ = c2/[8r · E log(l/α)]
vanishes for log(l/α) = ∞, and that the assumption λ = 0 would approximately be fulfilled
by Kirchhoff’s assumption that α vanishes compared to l; but this is not the case, [we have]
rather λ = ∞ when α vanishes, as is easily seen because the number, = E, of positive units
of measure contained in the unit length of the conducting wire is proportional to the square
of the radius α, and, denoting the constant number of positive electric units of measure
contained in the unit volume of the conducting wire by E0, is given by

E = πα2 · E0 ,

whence it follows that the product

E log
l

α
= πE0 · α2 log

l

α

vanishes together with α and thus

λ =
c2

8r · E log l
α

becomes infinite.

422[Note by HW:] This Note can be found at the end of this paper under number VI.
423[Note by AKTA:] See [Pog57], reprinted in [Web94b, Paper number VI, p. 242 of Weber’s Werke].

English translation in [Pog21]. See Chapters 10 and 11.
424[Note by AKTA:] See Section 18.3.
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Hence it follows that in thicker conducting wires, with larger values of α, Ohm’s law
indeed could approximately hold in general as assumed by Kirchhoff, namely for a very
small value of the constant quotient c2/[rE0]; that, on the other hand, Ohm’s law would lose
this more general validity for thinner conducting wires, particularly if this refinement is to be
pushed so far as to make log(l/α) a very large number, whence the explicit objection about
the incompatibility of the two assumptions presented under (1) and (3) at the beginning of
Section 18.3 seems to be well founded.

On the other hand, if by observation cases of thinner conducting wires could be demon-
strated where Ohm’s law does not receive this more general validity, but measurable devi-
ations became obvious from which λ could be determined, it would yield the knowledge of
the constant quotient

c2

rE0
= 8πα2 log

l

α
· λ ,

and the knowledge of the ratio r : 1, that is the number of electrostatic units of measure per
milligram, would merely depend on the exploration of the number of electrostatic units of
measure, E0, which are contained in 1 cubic millimeter of the conductor.

18.7 Development of the Expression for the Electro-

motive Force which is Exerted by the Free Elec-

tricity and by the Electric Motions in the Whole

Conductor on One Point of a Closed Thin Con-

ductor, apart from that Element which Contains

the Point under Consideration

If the forces which could not be determined, acting on a point s of the conducting wire from
a distance including those which act from more distant parts of the conducting wire itself
and those acting from outside were put equal = 0, then according to the developments of the
preceding Section one obtains the following partial differential equation for the displacement
σ of the positive particle in the point s:425

d2σ

dt2
− a

d2σ

ds2
+ b

dσ

dt
= 0 ,

where the only difference was that the meaning of the constant coefficients a and b in this
equation after Section 18.3 was a bit different from that used in Section 18.6, a difference
which possibly does not need to be considered, namely if the experience should show that
the quotient in the previous Section denoted by c2/[rE0] had a vanishingly small value for
all kinds of conductors.

This agreement, however, does not at all make the above equation suited to really deter-
mine the motions of electricity in a conducting wire; even if there were cases with no external
electromotive forces acting on the electricity in the conducting wire, there would be no case
where also no electromotive forces would be acting [originating] from the more distant parts
of the conducting wire itself, if any disturbance of the equilibrium of the electricity has

425[Note by AKTA:] We are maintaing Weber’s notation for partial derivatives, see footnote 408 on page 271.
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happened. Thus, in order to arrive at an equation which would really serve to determine
the motion of electricity in a conducting wire, the development of the electromotive forces
from Section 18.2, exerted by the free electricity and by the electric motions of the single
element ds containing the point s is not sufficient, but also those electromotive forces remain
to be determined which are exerted by the free electricity and by the electric motions in all
remaining parts of the conducting wire on the point s. Therefore, Kirchhoff’s conclusions
from the above equation remain to be tested with respect to the influence of these latter
forces.

As the dimensions of the elements in question, ds and ds′, vanish compared to their
distance, it suffices indeed for the development of these forces to consider only the total
values of the [linear] densities of free electricity and the current intensities E, E ′, i, i′,
respectively, for the total cross section which are merely functions of s and t or [functions
of] s′ and t′. But it is self evident that, unlike in Section 18.2, these functions cannot be
expanded in series according to Taylor’s theorem,426 because the same can be arbitrarily
given in the first moment t = 0; instead one must try to represent them in terms of sine and
cosine series.

Hence putting for a closed conducting wire of length 2πa

E ′ =
∑

(

an sin
ns′

a
+ bn cos

ns′

a

)

,

i′ =
∑

(

cn sin
ns′

a
+ ∂n cos

ns′

a

)

,

where n takes all successive integer numbers, and denoting the distance between the points
s and s′ by r and the angles which ds and ds′ form with r by ϑ and ϑ′, we get according to
Section 18.1

Ω =

∫

E ′ds′

r
=

∫

ds′

r

∑

(

an sin
ns′

a
+ bn cos

ns′

a

)

,

U =

∫

ds′

r
cosϑ cosϑ′ · i′ =

∫

ds′

r
cosϑ cos ϑ′ ·

∑

(

cn sin
ns′

a
+ ∂n cos

ns′

a

)

.

In addition, we still have the equation found in Section 18.3,

di′

ds′
= −1

2

dE ′

dt
,

or expressed in terms of sine and cosine series,

1

a

∑

n

(

cn cos
ns′

a
− ∂n sin

ns′

a

)

= −1

2

∑

(

dan
dt

· sin ns
′

a
+
dbn
dt

cos
ns′

a

)

.

Hence it follows, because this equation is to be valid for all values of s′

cn = − a

2n
· dbn
dt

,

426Note by AKTA:] See footnote 303 on page 233.
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∂n = +
a

2n
· dan
dt

.

Aiming now to determine the electromotive force acting on the point s of the closed conduct-
ing wire from the obtained expressions for Ω and U , one may put s′ − s = σ, and substitute
s+ σ for s′ and dσ for ds′ in the expressions for Ω and U . This then yields

Ω =
∑

∫

dσ

r

(

an sin
(nσ

a
+
ns

a

)

+ bn cos
(nσ

a
+
ns

a

))

,

U =
∑

∫

dσ

r
cosϑ cosϑ′ ·

(

cn sin
(nσ

a
+
ns

a

)

+ ∂n cos
(nσ

a
+
ns

a

))

.

Expanding the sum in terms of sine and cosine, one gets

Ω =
∑

(

an cos
ns

a
− bn sin

ns

a

)

·
∫

sin nσ
a
· dσ

r

+
∑

(

an sin
ns

a
+ bn cos

ns

a

)

·
∫

cos nσ
a
· dσ

r
.

U =
∑

(

cn cos
ns

a
− ∂n sin

ns

a

)

·
∫

cosϑ cos ϑ′ sin nσ
a
dσ

r

+
∑

(

cn sin
ns

a
+ ∂n cos

ns

a

)

·
∫

cosϑ cosϑ′ cos nσ
a
dσ

r
.

Here, r, cosϑ and cosϑ′ are functions of σ which result from the equation of the curve of
the conducting wire. It follows that for each consecutive number n the four integrals to be
taken between the limits from σ = l

2
to σ = 2πa− l

2
(where l is the length of the same piece

of the conducting wire as in Section 18.2)

∫

sin nσ
a
dσ

r
,

∫

cos nσ
a
dσ

r
,

∫

cosϑ cosϑ′ sin nσ
a
dσ

r
,

∫

cosϑ cosϑ′ cos nσ
a
dσ

r

are given and determined by the shape of the conductor, the values of which shall be denoted
by

N, N ′, M, M ′ .

Then one has

Ω =
∑

(

(anN
′ − bnN) sin

ns

a
+ (anN + bnN

′) cos
ns

a

)

,

U =
∑

(

(cnM
′ − ∂nM) sin

ns

a
+ (cnM + ∂nM

′) cos
ns

a

)

,

from which now the electromotive forces can be determined, namely

−2
dΩ

ds
= −2

a

∑

n
(

(anN
′ − bnN) cos

ns

a
− (anN + bnN

′) sin
ns

a

)

,
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− 8

c2
· dU
dt

= − 8

c2

∑

[(

dcn
dt

·M ′ − d∂n
dt

·M
)

sin
ns

a

+

(

dcn
dt

·M +
d∂n
dt

·M ′
)

cos
ns

a

]

,

or, substituting the above values of cn and ∂n in the latter equation

− 8

c2
· dU
dt

= +
4a

c2

∑ 1

n

[(

d2bn
dt2

·M ′ +
d2an
dt2

·M
)

sin
ns

a

+

(

d2bn
dt2

·M − d2an
dt2

·M ′
)

cos
ns

a

]

.

18.8 Equation of Motion of the Electricity in a Closed

Conductor

In order to formulate the equation of motion of the electricity in a closed conductor according
to the method presented in Sections 18.4 to 18.5, at first all forces have to be taken into
account which act on the positive electricity in an element ds of the conducting wire and [it
is necessary] to express the value of these forces by mechanical measure.

1. At the end of Section 18.2 the electromotive forces acting in the vicinity of the point
s of the conducting wire have been found:

−2
dΩ

ds
= −4

dE

ds
· log l

α
− 1

4

d3E

ds3
· l2 ,

− 8

c2
dU

dt
= −16

c2
di

dt
· log l

eα
− 1

c2
d3i

ds2dt
· l2 .

But here we can substitute according to the previous Section

E =
∑

(

an sin
ns

a
+ bn cos

ns

a

)

,

i = −a
2

∑ 1

n

(

dbn
dt

· sin ns
a

− dan
dt

· cos ns
a

)

,

hence

−2
dΩ

ds
= −4

a

∑

(

n log
l

α
− 1

16

n3l2

a2

)

(

an cos
ns

a
− bn sin

ns

a

)

,

− 8

c2
dU

dt
=

8

c2

∑

(

a

n
log

l

eα
− 1

16

nl2

a

)(

d2bn
dt2

· sin ns
a

− d2an
dt2

· cos ns
a

)

.
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2. At the end of the previous Section the electromotive forces acting from a distance on
the point s of the conducting wire have been found

−2
dΩ

ds
= −2

a

∑

n
[

(anN
′ − bnN) cos

ns

a
− (anN + bnN

′) sin
ns

a

]

,

− 8

c2
dU

dt
= +

4a

c2

∑ 1

n

[(

d2bn
dt2

·M ′ +
d2an
dt2

·M
)

+

(

d2bn
dt2

·M − d2an
dt2

·M ′
)

cos
ns

a

]

.

Thus, putting

N ′ + 2 log
l

α
− 1

8

n2l2

a2
= N ′′ ,

M ′ + 2 log
l

eα
− 1

8

n2l2

a2
=M ′′ ,

the electromotive forces acting from the vicinity and from a distance taken together
are

−2
dΩ

ds
= −2

a

∑

n
[

(anN
′′ − bnN) cos

ns

a
− (anN + bnN

′′) sin
ns

a

]

,

− 8

c2
dU

dt
= +

4a

c2

∑ 1

n

[(

d2bn
dt2

·M ′′ +
d2an
dt2

·M
)

sin
ns

a

+

(

d2bn
dt2

·M − d2an
dt2

·M ′′
)

cos
ns

a

]

.

Now these electromotive forces are the differences of those forces which act on the
positive and the negative electric unit of measure at the point s. As, however, the
force acting on the positive unit of measure equals that acting on the negative unit of
measure, apart from the opposite direction, it follows that half of these electromotive
forces are those acting on each positive unit of measure in the point s. But the
number of the positive units of measure contained in the length element, ds, of the
conducting wire has been denoted by Eds in Section 18.3; multiplying half of the above
electromotive forces by Eds, one finds the forces which act on the positive electricity
in the element ds, expressed in mechanical measure,

= −Eds

a

∑

n
[

(anN
′′ − bnN) cos

ns

a
− (anN + bnN

′′) sin
ns

a

]

+
2aEds

c2

∑ 1

n

[(

d2bn
dt2

·M ′′ +
d2an
dt2

·M
)

sin
ns

a

+

(

d2bn
dt2

·M − d2an
dt2

·M ′′
)

cos
ns

a

]

.
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3. The resistive force originating from the ponderable conductor particles acting on the
positive electricity in the element ds was found in Section 18.5 and is given by, expressed
in mechanical measure

= − 1

2πα2k
· E2 · dσ

dt
ds ,

wherein

Edσ

dt
= i = −a

2

∑ 1

n

(

dbn
dt

· sin ns
a

− dan
dt

· cos ns
a

)

,

which yields this force as

= +
aEds

4πα2k
·
∑ 1

n

(

dbn
dt

· sin ns
a

− dan
dt

· cos ns
a

)

.

In addition, finally, we have

4. the force acting from outside on the positive electricity in the element ds which, ac-
cording to Section 18.5 (3),427 yields

= +
1

2
ESds ,

where S denotes here only the external electromotive force acting on the point s.
Expanding now S in sine and cosine series

S =
∑

(

fn sin
ns

a
+ gn cos

ns

a

)

,

then this force is represented by

= +
1

2
Eds ·

∑

(

fn sin
ns

a
+ gn cos

ns

a

)

.

As now all these forces are expressed in mechanical measure, that is in parts of that force
which conveys the unit of velocity428 to the unit of ponderable mass (milligrams) during the
unit of time (second), it follows that, according to the well known law of motion, valid for all
bodies, the quotient of the sum of all these forces and of the acceleration, = d2σ/dt2, conveyed
to the positive electricity in the element ds on which they act, expresses the definition of
the mass of this amount of electricity, where the measure of mass (milligram) has been
denoted by [1/r]Eds milligram in Section 18.5. Multiplying the equation thus obtained by
[1/Eds] · [d2σ/dt2] and putting

E
d2σ

dt2
=
di

dt
= −a

2

∑ 1

n

(

d2bn
dt2

sin
ns

a
− d2an

dt2
· cos ns

a

)

,

one gets the desired equation of motion of the electricity in a closed conducting wire as
follows:

427[Note by AKTA:] That is, item 3 in Section 18.5.
428[Note by AKTA:] That is, a constant force increasing in 1 mm/s the velocity of the mass under consid-

eration.
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−1

a

∑

n
[

(anN
′′ − bnN) cos

ns

a
− (anN + bnN

′′) sin
ns

a

]

+
2a

c2

∑ 1

n

[(

d2bn
dt2

·M ′′ +
d2an
dt2

·M
)

sin
ns

a

+

(

d2bn
dt2

·M − d2an
dt2

·M ′′
)

cos
ns

a

]

+
a

4πα2k

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

+
1

2

∑

(

fn sin
ns

a
+ gn cos

ns

a

)

= − a

2rE
·
∑ 1

n

(

d2bn
dt2

sin
ns

a
− d2an

dt2
cos

ns

a

)

.

As N , N ′′, M , M ′′ depend only on the equation of the shape of the conductor, they can
be presented as function of s. In the single case where this shape is a circle, each of these
quantities has the same value for all points s and then the above equation can be split into
the two simpler equations, namely, putting c2/[4M ′′rE] = λ,

d2an
dt2

+
c2

8πα2kM ′′(1 + λ)
· dan
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· an −

nc2

4aM ′′(1 + λ)
· gn

=
M

M ′′(1 + λ)
· d

2bn
dt2

+
n2c2N

2a2M ′′(1 + λ)
· bn ,

d2bn
dt2

+
c2

8πα2kM ′′(1 + λ)
· dbn
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· bn +

nc2

4aM ′′(1 + λ)
· fn

= − M

M ′′(1 + λ)
· d

2an
dt2

− n2c2N

2a2M ′′(1 + λ)
· an .

Hereby the treatment of the case of a conductor of circular shape is considerably simplified
and deserves to be considered in particular. In all other cases N , N ′′, M , M ′′ as functions
of s would have to be expanded further in series of sine and cosine whereby the equations
would considerably lose their simplicity.

18.9 Equation for the Mean Values of the Electromo-

tive Forces and Current Intensities in Closed Con-

ductors with Arbitrary Shape

Considerations and applications of closed circuits often occur which do not demand the
knowledge of the electromotive forces and current intensities in individual points of the
circuit, but where the knowledge of their mean values for the total length of the conducting
wire suffices. Hence before entering the special development of the laws of motion of the
electricity in a circular conductor, the laws just found shall be applied in order to derive from
them the equation for the mean values of the electromotive forces and current intensities in
closed conductors of arbitrary shape.
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This equation results when the terms of the equation found in the previous Section are
multiplied by ds and are integrated from s = 0 to s = 2πa. It is considerably simplified
because first, according to a known theorem, the value of the integral of the electromotive
forces originating from the free electricity in the conducting wire is always equal to zero,429

and because second the integral value of the external electromotive forces can usually be
considered as given. Hence one obtains first

∫ 2πa

0

ds

a

∑

n
(

(anN
′′ − bnN) cos

ns

a
− (anN + bnN

′′) sin
ns

a

)

= 0 ,

second, denoting by S the integral value of the external electromotive forces,

∫ 2πa

0

ds
∑

(

fn sin
ns

a
+ gn cos

ns

a

)

= S .

As now further, putting

in = − a

2n

(

dbn
dt

· sin ns
a

− dan
dt

· cos ns
a

)

,

we had i =
∑

in; hence one gets

∫

ds · 2a
c2

∑ 1

n

[(

d2bn
dt2

M ′′ +
d2an
dt2

M

)

sin
ns

a

+

(

d2bn
dt2

M − d2an
dt2

M ′′
)

cos
ns

a

]

= − 4

c2

∫

ds
∑

M ′′din
dt

− 4a

c2

∑ 1

n

∫

d2in
dsdt

Mds .

Now one has

∫

d2in
dt2

Mds =M
din
dt

−
∫

din
dt

· dM
ds

ds ;

hence

∫ 2πa

0

d2in
dsdt

Mds = −
∫ 2πa

0

din
dt

· dM
ds

ds ,

thus also

429[Note by AKTA:] That is, in modern terms,

∮

C

~E · d~ℓ = 0 ,

where ~E is the electric field due to free charges, C is a closed circuit of arbitrary shape and d~ℓ is an
infinitesimal element of length.
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∫ 2πa

0

ds · 2a
c2

∑ 1

n

[(

d2bn
dt2

M ′′ +
d2an
dt2

M

)

sin
ns

a

+

(

d2bn
dt2

M − d2an
dt2

M ′′
)

cos
ns

a

]

= − 4

c2

∫ 2πa

0

ds
∑

M ′′ din
dt

+
4a

c2

∑ 1

n

∫ 2πa

0

din
dt

· dM
ds

ds .

Finally adding that

∫

ads

4πα2k

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

= − 1

2πα2k
·
∫

ids ,

∫

ads

2rE

∑ 1

n

(

d2bn
dt2

sin
ns

a
− d2an

dt2
cos

ns

a

)

= − 1

rE
·
∫

di

dt
ds ,

one gets the following equation for the mean values of the electromotive forces and current
intensities, 1

2πa
· S and 1

2πa
·
∫ 2πa

0
ids, respectively:

S =
1

πα2k
·
∫ 2πa

0

ids+
8

c2

∫ 2πa

0

ds
∑

M ′′din
dt

− 8a

c2

∑ 1

n

∫ 2πa

0

din
dt

· dM
ds

ds+
2

rE

∫ 2πa

0

di

dt
ds .

Now these mean values obviously come into primary consideration when there is no difference
at all for the electric motions in the different elements of the conducting wire, or so small that
it can be totally neglected. Thus in all these cases i and di/dt are quantities independent of
s, and one may put i = i0 and di/dt = di0/dt, hence din/dt = 0 for n > 0, from which

S =
2πa

πα2k
i0 +

(

8

c2

∫ 2πa

0

M ′′
0 ds+

4πa

rE

)

di0
dt

,

where 2πa/[πα2k] = w is the resistance of the whole circuit. Putting

8

c2

∫ 2πa

0

M ′′
0 ds+

4πa

rE
= p ,

and writing i for i0, one gets

S = wi+ p
di

dt
,

wherein S, i and di/dt are only functions of t. Integrating one gets

i =
1

p
e−wt/p ·

∫

ewt/p · Sdt .
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18.10 Laws of Motion of the Electricity in a Circular

Conducting Wire

When the shape of a closed conductor is given, [then] the values of N , N ′, M , M ′, that is
the values of the definite integrals

∫ 2πa−l/2

l/2

sin nσ
a
dσ

r
,

∫ 2πa−l/2

l/2

cos nσ
a
dσ

r
,

∫ 2πa−l/2

l/2

cosϑ cosϑ′ sin nσ
a
dσ

r
,

∫ 2πa−l/2

l/2

cosϑ cosϑ′ cos nσ
a
dσ

r
,

can be determined for any point s of the conductor. As an example take a conductor with
the shape of a circle with radius = a.430

With this circular shape the distance r between two point s and s′ equals the chord of
the arc (s′ − s)/a = σ/a; hence we have

r = 2a sin
σ

2a
.

Furthermore, the angle ϑ between the element ds and r equals the angle ϑ′ between the
element ds′ and r, and both equal the angle between the tangent to the circle at the point
s and the chord of the arc σ/a, that is

ϑ = ϑ′ =
σ

2a
.

Hence we have

N =
1

2a

∫ 2πa−l/2

l/2

sin nσ
a
dσ

sin σ
2a

,

N ′ =
1

2a

∫ 2πa−l/2

l/2

cos nσ
a
dσ

sin σ
2a

,

430[Note by AKTA:] Weber will consider a conductor in the shape of a ring with larger radius a, smaller
radius α, with s being the arc length of a specific point P measured from a fixed origin 0, as shown in the
Figure of this footnote:

a

s
P

0

2a
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M =
1

2a

∫ 2πa−l/2

l/2

(

cos σ
2a

)2 · sin nσ
a
dσ

sin σ
2a

= N − 1

2a

∫ 2πa−l/2

l/2

sin
nσ

a
sin

σ

2a
dσ ,

M ′ =
1

2a

∫ 2πa−l/2

l/2

(

cos σ
2a

)2 · cos nσ
a
dσ

sin σ
2a

= N ′ − 1

2a

∫ 2πa−l/2

l/2

cos
nσ

a
sin

σ

2a
dσ .

Putting now σ/2a = z, hence

N =

∫ π−l/(4a)

l/(4a)

sin 2nz · dz
sin z

,

N ′ =

∫ π−l/(4a)

l/(4a)

cos 2nz · dz
sin z

,

M = N −
∫ π−l/(4a)

l/(4a)

sin 2nz · sin zdz ,

M ′ = N ′ −
∫ π−l/(4a)

l/(4a)

cos 2nz · sin zdz ,

and considering that

∫

sin 2nz · dz
sin z

= +2

∫

cos(2n− 1)z · dz + 2

∫

cos(2n− 3)z · dz

+ ... + 2

∫

cos zdz ,

∫

cos 2nz · dz
sin z

= −2

∫

sin(2n− 1)z · dz − 2

∫

sin(2n− 3)z · dz

− ...− 2

∫

sin zdz +

∫

dz

sin z
,

then one finds, taking all integrals between z = l/(4a) and z = π − [l/(4a)],

N = 0 ,

N ′ = −4

(

cos
l

4a
+

1

3
cos

3l

4a
+ ...+

1

2n− 1
cos

(2n− 1)l

4a

)

− 2 log tan
l

8a
.

Furthermore, as

∫

sin 2nz · sin zdz = 1

2(2n− 1)
sin(2n− 1)z − 1

2(2n+ 1)
sin(2n+ 1)z ,

∫

cos 2nz · sin zdz = 1

2(2n− 1)
cos(2n− 1)z − 1

2(2n+ 1)
cos(2n+ 1)z ,

taking also these integrals between the limits from z = l/(4a) to z = π − [l/(4a)], one finds
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M = 0 ,

M ′ = N ′ +
1

2n+ 1
cos(2n+ 1)

l

4a
− 1

2n− 1
cos(2n− 1)

l

4a
.

Hence follows finally, according to Section 18.8,

N ′′ = −4

(

cos
l

4a
+

1

3
cos

3l

4a
+ ... +

1

2n− 1
cos(2n− 1)

l

4a

)

− 2 log tan
l

8a
+ 2 log

l

α
− 1

8

n2l2

a2
,

M ′′ = −4

(

cos
l

4a
+

1

3
cos

3l

4a
+ ...+

1

2n− 1
cos(2n− 1)

l

4a

)

− 2 log tan
l

8a
+ 2 log

l

eα
− 1

8

n2l2

a2

+
1

2n+ 1
cos(2n+ 1)

l

4a
− 1

2n− 1
cos(2n− 1)

l

4a
.

But here l denotes the length of the conductor element ds, considered as linear, with the
point under consideration in its center. Between certain limits, this length is arbitrary, its
choice is only limited by the quantities α/l and l/a being considered as vanishingly small
values which must be the case if the conductor is to be considered as linear. The difference
in the values of l, which are possible within these limits, does not have a noticeable influence
on the values of N ′′ and M ′′. We may therefore put

l =
√
aα ,

because for every conductor to be considered as linear, this value must lie between the
specified limits. It also becomes clear that then tan(l/8a) may be replaced by l/8a. Putting
for brevity

n2α

8a
= 2 log ν ,

[and]

n2α

8a
+

1

2n− 1
cos

2n− 1

4

√

α

a
− 1

2n+ 1
cos

2n+ 1

4

√

α

a
= 2 logµ ,

yields

N ′′ = −4

(

cos
1

4

√

α

a
+

1

3
cos

3

4

√

α

a
+ ...+

1

2n− 1
cos

2n− 1

4

√

α

a

)

+ 2 log
8a

να
,

M ′′ = −4

(

cos
1

4

√

α

a
+

1

3
cos

3

4

√

α

a
+ ...+

1

2n− 1
cos

2n− 1

4

√

α

a

)

+ 2 log
8a

µeα
.
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Now substituting the values of N , N ′′, M , M ′′ found for a circular conductor into the
equations found at the end of the Section 18.8 one gets the following two equations for the
motions of the electricity in a circular conductor

d2an
dt2

+
c2

8πα2kM ′′(1 + λ)
· dan
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· an −

nc2

4aM ′′(1 + λ)
· gn = 0 ,

d2bn
dt2

+
c2

8πα2kM ′′(1 + λ)
· dbn
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· bn +

nc2

4aM ′′(1 + λ)
· fn = 0 ,

where N ′′ and M ′′ have the above values.

18.11 Equilibrium of Electricity in a Circular Conduc-

tor

For the case of equilibrium of the electricity one has in all parts of the conductor

i = 0 and
di

dt
= 0 .

Putting the value for i from Section 18.8 (3)431 one gets

−a
2

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

= 0 ,

−a
2

∑ 1

n

(

d2bn
dt2

sin
ns

a
− d2an

dt2
cos

ns

a

)

= 0 ,

whence follows

dan
dt

= 0,
dbn
dt

= 0,
d2an
dt2

= 0,
d2bn
dt2

= 0 ,

where it has to be added that also for n = 0 one need to have

1

n

dan
dt

=
1

n

d2an
dt2

= 0 .

The equations of motion, established at the end of the preceding Section, then turn into
the following equations of equilibrium, namely, when n > 0,

nN ′′

a
· an −

1

2
gn = 0 ,

nN ′′

a
· bn +

1

2
fn = 0 ,

where g0 = 0 still has to be added. Hence follows as equilibrium condition for the electricity
that the sum of all external electromotive forces acting on the circular conductor, must equal

431[Note by AKTA:] That is, from item 3 of Section 18.8.
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S =

∫

ds
∑

(

fn sin
ns

a
+ gn cos

ns

a

)

= 0 ,

in complete agreement with the known Ohm’s law according to which the current intensity
is proportional to the sum of all these forces and hence can only be zero together with this
sum.

18.12 Steady Currents of Electricity in a Circular Con-

ductor

The motion of electricity in a conductor is called a steady current if it stays constant in any
point of the conductor. In the case of such a steady current one has for all points of the
closed conductor

i = constant,

hence

di

dt
= −a

2

∑ 1

n

(

d2bn
dt2

sin
ns

a
− d2an

dt2
cos

ns

a

)

= 0 ,

whence

d2an
dt2

= 0 ,
d2bn
dt2

= 0 ,

where it still has to be added that one must have [1/n][d2an/dt
2] = 0, also for n = 0.

The equations of motion given at the end of Section 18.10 then turn into the following
equations of motion for steady currents, namely when n > 0

1

4πα2k
· dan
dt

+
n2N ′′

a2
· an −

n

2a
gn = 0 ,

1

4πα2k
· dbn
dt

+
n2N ′′

a2
· bn +

n

2a
fn = 0 ,

where also [1/n][dan/dt] = constant for n = 0, hence a0 = constant has to be added. It
follows that for steady current the sum of all external electromotive forces acting on the
circular conductor must be given by

S =

∫

ds
∑

(

fn sin
ns

a
+ gn cos

ns

a

)

=
2

a

∫

ds
∑

nN ′′
(

an cos
ns

a
− bn sin

ns

a

)

− a

2πα2k

∫

ds
∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

;

hence, because
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−a
2

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

= i ,

and because

∫

ds
∑

nN ′′
(

an cos
ns

a
− bn sin

ns

a

)

= 0 ,

as is easily seen considering that a0 has a constant value and hence nan = 0 for n = 0,

S =
1

πα2k
·
∫

ids .

But now [1/(2πa)]·
∫

ids = J is themean value of the current intensity in the whole conductor,
and 2πa/[πα2k] = w is the resistance of the whole conductor; thus S = Jw, that is, the sum
of the external electromotive forces in the whole conductor must be equal the product of the
resistance and the average current intensity of the whole conductor, quite in agreement with
Ohm’s law that yields the electromotive force of the circuit as the product of the resistance
and the current, which is identical with the above results when it is assumed that there are
no differences of the current intensities in the various points of the conductor. This need
not be the case according to the above theory; but should there be current intensities in
various points differing from the steady current in any single point, then the electromotive
forces acting from outside must change in proportion to time, a case that does not occur in
reality and therefore has been left out of the consideration of Ohm’s law that is founded on
experience. It is, namely, clear that if

i = −a
2

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

is to have different values in different parts of the conductor, either dan/dt or dbn/dt must
have a non-zero value = A for a non-zero value of n, whence follows either an = At + B or
bn = At + B. Substituting in one case At + B for an in the first of the above equations for
the condition for steady currents, one gets

1

4πα2k
· A+

n2N ′′

a2
(At+B)− n

2a
gn = 0 ,

whence follows that gn changes in proportion to time. Substituting in the other case At+B
for bn in the second conditional equation, it follows in a similar way that fn changes in
proportion to time. Hence in both cases also the electromotive force

Sn = fn sin
ns

a
+ gn cos

ns

a
would change in proportion to time.

18.13 Laws of Motion of the Electricity in a Circu-

lar Conductor Left to Itself After an Arbitrary

Disturbance

The theory of the motion of the electricity left to itself after an arbitrary disturbance in
a conductor comprises the important science of propagation, in particular the [following]
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questions, whether the propagation of motion in conductors by electricity is mediated by
waves, just as the propagation [of light] in the luminiferous ether or [the propagation of
sound] in air, furthermore what is the velocity of these waves and finally which laws at all
are valid for this propagation of waves. The initial disturbance may in fact be restricted to a
small part of the conductor, and if subsequently similar disturbances of the equilibrium occur
without external influence successively in all other parts of the conductor all by themselves,
this transmission is given the name propagation, and the disturbance is given the name wave.

If the electricity in the conductor is to be left to itself, all external forces that would act
on the electricity in the conductor have to be put equal = 0. Hence for this case one obtains
the equations of motion, putting

fn = 0 and gn = 0 ,

in the equations at the end of Section 18.10, [obtaining] the following [equations:]

d2an
dt2

+
c2

8πα2kM ′′(1 + λ)
· dan
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· an = 0 ,

d2bn
dt2

+
c2

8πα2kM ′′(1 + λ)
· dbn
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· bn = 0 .

Setting

c2

16πα2kM ′′(1 + λ)
= ε ,

[and]

n2c2N ′′

2a2M ′′(1 + λ)
= m2 + ε2 ,

then one obtains from these two equations by integration

an = Ae−εt · sinm(t− A′) ,

bn = Be−εt · sinm(t− B′) ,

where A, A′, B, B′ are constants of integration, to be determined from the given initial
disturbance.

If the original distribution of free electricity in the conductor is given by the following
equation, where E0 denotes the value of the [linear charge] density E for t = 0, namely

E0 =
∑

(

a0n sin
ns

a
+ b0n cos

ns

a

)

,

and if the original currents in all parts of the conductor, where i0 denotes the value of the
current intensity i for t = 0, [is given] by the following equation

i0 = −a
2

∑ 1

n

(

db0n
dt

sin
ns

a
− da0n

dt
cos

ns

a

)

,

where a0n, b
0
n, da

0
n/dt, db

0
n/dt have known values, inserting these values for t = 0 into the

above equation yields
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a0n = −A sinmA′ ,

b0n = −B sinmB′ ,

and, after differentiating the above equations,

da0n
dt

= mA cosmA′ − εa0n ,

db0n
dt

= mB cosmB′ − εb0n .

These four equations yield the following values of the constants of integration:

A =

√

a0n
2 +

1

m2

(

εa0n +
da0n
dt

)2

,

B =

√

b0n
2 +

1

m2

(

εb0n +
db0n
dt

)2

,

A′ = − 1

m
arcsin

a0n
A

,

B′ = − 1

m
arcsin

b0n
B
.

Inserting the latter two values into the above equations one gets

an = Ae−εt sin

(

mt + arcsin
a0n
A

)

,

bn = Be−εt sin

(

mt + arcsin
b0n
B

)

,

and hence the distribution law of free electricity in the conductor [is given by]:

E =
∑

e−εt ·
[

A sin
ns

a
sin

(

mt + arcsin
a0n
A

)

+ B cos
ns

a
sin

(

mt + arcsin
b0n
B

)]

,

or, expanding the sine of the sum of two arcs:

E =
∑

e−εt ·
(

a0n sin
ns

a
cosmt +

√

B2 − b0n
2 cos

ns

a
sinmt

+ b0n cos
ns

a
cosmt +

√

A2 − a0n
2 sin

ns

a
sinmt

)

.

Now putting
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a0n = p+ q , b0n = p′ + q′ ,

√

B2 − b0n
2 = p− q ,

√

A2 − a0n
2 = p′ − q′ ,

whereby p, q, p′, q′ are determined, namely,

p =
1

2

(

a0n +
1

m

(

εb0n +
db0n
dt

))

,

q =
1

2

(

a0n −
1

m

(

εb0n +
db0n
dt

))

,

p′ =
1

2

(

b0n +
1

m

(

εa0n +
da0n
dt

))

,

q′ =
1

2

(

b0n −
1

m

(

εa0n +
da0n
dt

))

,

thus one obtains

E =
∑

e−εt ·
(

q sin
(ns

a
−mt

)

+ p′ cos
(ns

a
−mt

))

+
∑

e−εt ·
(

p sin
(ns

a
+mt

)

+ q′ cos
(ns

a
+mt

))

,

or, alternatively,

E =
∑

√

p′2 + q2 · e−εt sin

(

ns

a
−mt+ arctan

p′

q

)

+
∑

√

p2 + q′2 · e−εt sin

(

ns

a
+mt + arctan

q′

p

)

.

Similarly one finds the law of the current of electricity in the conductor, namely:

i =
∑

√

P ′2 +Q2 · e−εt sin

(

ns

a
−mt + arctan

P ′

Q

)

+
∑

√

P 2 +Q′2 · e−εt sin

(

ns

a
+mt+ arctan

Q′

P

)

,

where P , Q, P ′, Q′ have the following values:

P = − a

4n

(

db0n
dt

+
1

m

(

(

m2 + ε2
)

a0n + ε
da0n
dt

))

,

Q = − a

4n

(

db0n
dt

− 1

m

(

(

m2 + ε2
)

a0n + ε
da0n
dt

))

,

P ′ = +
a

4n

(

da0n
dt

+
1

m

(

(

m2 + ε2
)

b0n + ε
db0n
dt

))

,

Q′ = +
a

4n

(

da0n
dt

− 1

m

(

(

m2 + ε2
)

b0n + ε
db0n
dt

))

.
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18.14 Comparison with Ohm’s Law

It has already been discussed in Section 18.6 on which grounds Ohm’s law, formulated for
steady currents, may also be applied to variable currents. This [application] depends on the
value of

λ =
c2

8rE log l
α

.

Wherever this quantity comes into question and its value does not vanish, Ohm’s law does
not apply at all or only approximately. This magnitude λ has been considered in more detail
in Section 18.8, with respect to the influence of more distant parts of the circuit not yet
considered in Section 18.6, namely

λ =
c2

4M ′′rE
,

where the value M ′′ put for 2 log[l/α] in Section 18.6 has been defined exactly and deter-
mined for a circular conductor in Section 18.10. The magnitude λ, or, as the value of the
factor c4/[4M ′′] may be considered as constant, the value of the product rE decides on the
applicability of Ohm’s law, thereby gaining particular importance for the theory of motion
of the electricity in conductors, whose reason is easily seen from the physical meaning of the
product rE.

In particular, the amount of positive electricity contained in the unit length of the conduc-
tor has been denoted by E, expressed in the unit of measure determined from the electrostatic
law, and its mass in milligrams has been put equal to [1/r]E. From the definition of the
unit of measure established for the electrostatic law (where the amount of electricity is taken
as the unit of measure which exerts on an equal [amount of electricity] the unit force at
unit distance according to the electrostatic law, that is, a force that produces the unit ve-
locity during the unit time on one milligram), it follows that r2 is the force exerted by one
milligram of positive or negative electricity on an equal milligram of electricity at the unit
distance. Whence it follows that the product rE means the force that the positive electricity
contained in the unit length of the conductor, if concentrated in one point, would exert on
one milligram of positive electricity at unit distance.

Now the influence of this magnitude λ or that of the product rE will be determined in
more detail on the basis of the development of the laws of motion of the electricity in a closed
conductor as given in Sections 18.8 and the following. To begin with, from Sections 18.11
and 18.12 it follows that the laws of equilibrium and of steady currents of the electricity in
conductors are in complete agreement with Ohm’s law because the magnitude λ or rE does
not come into question here, while it follows from Section 18.13 that the laws of propagation,
or generally the laws of all changes of motion effective after a disturbance of equilibrium,
vitally depend above all on the values of m and ε and hence indirectly on λ or rE. Therefore
it follows that the magnitude λ or the product rE (hence indirectly the total mass of the
amount of electricity, in milligrams, contained in the conductor if the amount of electricity
per unit length of a conductor were known in electrostatic measure) can only be known by
means of observations which disclose certain deviations from Ohm’s law in the changes of
motion of the electricity in conductors after a disturbance of the equilibrium.

The importance thereby gained due to more detailed observations on the changes of
motion or on the propagation of motion through electricity in conductors is clear; if these
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observations really allowed to detect any deviation from Ohm’s law, then this result would
disclose the value of the product rE, that is, the number of electrostatic units of measure
which make one milligram of electricity when the number of electrostatic units of measure
per unit length of the conductor is known.

To begin with, the laws of electric wave motions in circular conductors according to
Section 18.13 shall be developed in more detail in order to test whether it could yield a
certain guide on how to conduct such observations; then, if this were not the case, the reason
for this shall be searched and if there were other motions in circular conductors which are
better suited than wave motion.

18.15 Electric Wave Motions in a Circular Conductor

From the laws developed in Section 18.13 it follows that all motions of the electricity left to
itself in a circular conductor after an arbitrary disturbance turn out to be a series of wave
trains propagating forward and a series of wave trains propagating backwards, whose first
wave train consists of two waves in each series, namely, one positive and one negative, which
together cover the whole circular periphery; the second wave train of each series consists of
four alternately positive and negative waves which together fill out the whole circle; the third
wave train consists of six waves and so on.

Breaking up into their terms the sums, which in Section 18.13 represented the [linear]
density of the free electricity E and the current intensity i, and denoting these terms by En

and in according to their place number, n, then one gets

E1 =

√

p′2 + q2 · e−εt sin

(

s

a
−mt + arctan

p′

q

)

+

√

p2 + q′2 · e−εt sin

(

s

a
+mt + arctan

q′

p

)

,

i1 =

√

P ′2 +Q2 · e−εt sin

(

s

a
−mt+ arctan

P ′

Q

)

+

√

P 2 +Q′2 · e−εt sin

(

s

a
+mt + arctan

Q′

P

)

,

wherein the first parts, containing the sine of an arc that change in proportion to (s− amt),
represent the first wave train propagating forward, [and] the latter parts containing the sine
of an arc that change in proportion to (s+ amt), [represent] the first wave train propagating
backward. But the first wave train propagating forward consists of a positive wave which
extends from s = 0 to s = πa at the moment t = [1/m] arctan[p′/q], where the wave
produces a charge of the conductor with positive free electricity, and [consists] of a negative
wave which extends from s = πa to s = 2πa at the same moment, where the wave produces a
charge of the conductor with negative free electricity. But both waves together cover the total
circular periphery. The same holds for the first wave train propagating backward, consisting
of a positive wave extending from s = 0 to s = πa at the moment t = −[1/m] arctan[q′/p],
and of a negative wave extending from s = πa to s = 2πa at the same moment.

Furthermore we have
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E2 =

√

p′2 + q2 · e−εt sin

(

2s

a
−mt+ arctan

p′

q

)

+

√

p2 + q′2 · e−εt sin

(

2s

a
+mt + arctan

q′

p

)

,

i2 =

√

P ′2 +Q2 · e−εt sin

(

2s

a
−mt + arctan

P ′

Q

)

+

√

P 2 + Q′2 · e−εt sin

(

2s

a
+mt + arctan

Q′

P

)

,

where the first parts, containing the sine of an arc that changes in proportion to (s−amt/2),
represent the second wave train propagating forward, [and] the latter parts, containing the
sine of an arc that changes in proportion to (s + amt/2), represent the second wave train
propagating backward. This wave train propagating forward consists of 4 waves whose first
positive one extends from s = 0 to s = πa/2, the second negative from s = πa/2 to s = πa,
the third positive from s = πa to s = 3πa/2, and the fourth negative from s = 3πa/2 to
s = 2πa at the moment t = [1/m] arctan[p′/q]. The same holds for the 4 waves of the wave
train propagating backward at the moment t = −[1/m] arctan[q′/p].

Similarly, the third wave trains of both series result from E3 and i3, and so on.
The intensities of the various wave trains, which equal i2 according to the rules of wave

theory, decrease while propagating, in fact by a factor of

1 : e−2εt ,

during the time t. Because the value of ε changes with the value of n, this decrease varies
with the place number n of the wave trains; for we had

ε =
c2

16πα2kM ′′(1 + λ)
,

λ =
c2

4M ′′rE
,

wherein, according to Section 18.10,

M ′′ = −4

(

cos
1

4

√

α

a
+

1

3
cos

3

4

√

α

a
+ ...+

1

2n− 1
cos

2n− 1

4

√

α

a

)

+ 2 log
8a

eα
− 1

8

n2α

a
+

1

2n + 1
cos

2n+ 1

4

√

α

a
− 1

2n− 1
cos

2n− 1

4

√

α

a
,

whence if α/a is very small

for n = 1, M ′′ = 2 log
8a

α
− 6.666... ,

for n = 2, M ′′ = 2 log
8a

α
− 7.466...
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and so on.
Letting w′ = 1/[πα2k] denote the resistance of the unit length of the conductor, and

putting λ = 0, that is, restricting to those cases in which Ohm’s law applies, we get a
decrease of intensity in the unit of time in the proportion

= 1 : e
− w′c2

16 log 8a
α −53.33...

for the first wave trains with n = 1, [and in the proportion]

= 1 : e
− w′c2

16 log 8a
α −59.733...

for the second wave trains with n = 2, and so on.
Hence one sees that the decrease is the faster, the greater the resistance per unit length

of the conductor, the thicker the conductor compared to its length, and the larger the place
number n of the wave train, that means, the shorter the waves.

18.16 Propagation Velocity of the Wave Trains in a

Circular Conductor

From Section 18.13 it follows, as shown above, that, after each disturbance of the equilib-
rium, the motions of electricity in a circular conductor can be split into wave trains whose
propagation is determined by simple laws, as is the case for many other bodies. For some
bodies like air in a circular tube, in addition, these wave trains are not altered at all by
the propagation, that specifically no decrease of the intensity takes place, and that further-
more all wave trains are propagated at equal velocity, whence it follows that all wave trains
propagating forward combine to a single wave train which in turn is propagated unaltered
and at the same velocity like the single wave trains of which it consists. Such a combined
wave train, however, consists of combined waves which can largely differ in size, form, and
intensity. Such combined waves, remaining coherent due to the same velocity of all its con-
stituents, have a particular physical meaning as objects of observation and are called waves
in the strict sense of the word.

Thus in this more strict sense electric waves in a circular conductor where electric equi-
librium has been disturbed would not exist, already because of the different decreases of the
intensities of the various elementary wave trains, even less, however, if the various elementary
wave trains had different propagation velocities.

Where waves exist in the more strict sense, the propagation velocity is of utmost im-
portance for the knowledge about the medium of propagation, therefore this question con-
cerning electricity has awakened particular interest and therefore the respective results from
Section 18.13 shall be considered more closely.

The propagation velocities of the various elementary wave trains from the formulas de-
veloped in Section 18.13 were found to be equal to the increase or decrease which s must get
if, when t increases by 1 [unit] in the values of En and in, the values of the arcs under the
sines shall remain unaltered, that is

=
ma

n
,

or, inserting the value of m from Section 18.13
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m =

√

n2c2N ′′

2a2M ′′(1 + λ)
−
(

c2

16πα2kM ′′(1 + λ)

)2

,

[we get]

=
c√
2
·
√

N ′′

M ′′(1 + λ)
− a2c2w′2

128n2M ′′2(1 + λ)2
,

wherein w′ = 1/[πα2k] is put as above. Restricting ourselves to the cases where we may put
λ = 0, that is, where Ohm’s law applies, then the expression for this propagation velocity
reduces to

=
c√
2
·

√

N ′′

M ′′ −
a2c2w′2

128n2M ′′2 ,

wherein the values of N ′′ and M ′′ are determined as follows

N ′′ = 2 log
8a

α
− 4

(

cos
1

4

√

α

a
+

1

3
cos

3

4

√

α

a
+ ...+

1

2n− 1
cos

2n− 1

4

√

α

a

)

− n2α

8a
,

M ′′ = 2 log
8a

α
− 4

(

cos
1

4

√

α

a
+

1

3
cos

3

4

√

α

a
+ ...+

1

2n− 1
cos

2n− 1

4

√

α

a

)

− n2α

8a
− 2− 1

2n− 1
cos

2n− 1

4

√

α

a
+

1

2n + 1
cos

2n+ 1

4

√

α

a
.

Thus it follows that the propagation velocity is different for the various wave trains ac-
cording to their different place numbers n, and it only remains the question whether, under
certain conditions, the differences of the various propagation velocities would not be so small
as to consider them approximately as vanishing, and what would then be the limit to be
approached by all these propagation velocities.

From the values presented it follows indeed that, as long as the place number, n, does
not exceed those values for which n2α/a may be considered as vanishing compared to 1, we
may put

N ′′

M ′′ = 1 +
8n2

(4n2 − 1)M ′′ .

For large values of M ′′ for which the fraction 8n2/(4n2 − 1)M ′′ vanishes compared to 1,
and for small values of the resistance for which the fraction a2c2w′2/[128n2M ′′2] vanishes
compared to 1,432 then c/

√
2 is the desired limit which is approached by all propagation

velocities, and, for the given value433 c = 439 450 · 106 millimeter/second, this limit equals

432[Note by WW:] The fraction a2c2w′2/[128n2M ′′2] can be considered as vanishing compared with 1 when,
for large values of M ′′, that velocity expressing the resistance of the whole conductor in absolute magnetic

measure of resistance, that is, [πc/4]acw′, is very small compared to the velocity c.
433[Note by AKTA:] See [KW57, Section 17, p. 652 of Weber’s Werke] with English translation in [KW21,

Section 17, p. 52]. See also page 179 on Section 7.17.
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c√
2
= 310 740 · 106 millimeter

second
,

that is, a velocity of 41 950 miles/second.
Already Kirchhoff has found this velocity and remarked:434

“that it is independent of the cross section, of the conductivity of the wire, also,
finally, of the density of the electricity: its value is 41 950 German miles in a second,
hence very nearly equal to the velocity of light in vacuo.”

Could this close coincidence of the propagation velocity of electric waves with that of
the light be considered as a hint to the inner relationship of both theories, then it would
demand the greatest interest considering the great importance of the investigation of such a
relationship. But it is clear that above all, the true meaning of this velocity with respect to
electricity must be considered, but it is not of the kind encouraging great expectations.

For the approximation of the true propagation velocity to this limiting value which co-
incides with the velocity of light presupposes, as just demonstrated, a conducting wire not
only very thin compared to its length, but also that this long and thin conducting wire
would have a very small resistance. Hence it is clear that the close approach to this limit
will occur only rarely, larger deviations from it very frequently. A corresponding survey is
best obtained giving examples.

As examples we choose three circular copper wires with respective radii

a = 1000 , 1 000 000 , 1 000 000 millimeter ,

and respective cross sections

πα2 = 1 , 1 ,
1

10
square millimeter .

The resistance of these wires, as found by measurement in absolute magnetic measure of
resistance, can be put in rounded figures equal to

W =
2πa

πα2
· 2 · 106 ,

(see the Abhandlungen der Königl. Gesellschaften der Wissenschaften zu Göttingen, Vol,
5, Section 9).435,436 But, according to the known relation between magnetic and mechanical
measures of resistivity, we have W = πc2aw′/4 or a2c2w′2/128 =W 2/[8π2c2], after what437

c√
2

√

N ′′

M ′′ −
a2c2w′2

128n2M ′′2 =
c√
2

√

N ′′

M ′′ −
W 2

8π2c2n2M ′′2 =
c′√
2
.

The following Table is calculated on this basis.

434[Note by AKTA:] [Kir57b, pp. 209-210] with English translation in [Kir57a, p. 406]. See page 214 on
Chapter 8.
435[Note by HW:] Wilhelm Weber’s Werke, Vol. II, p. 319.
436[Note by AKTA:] [Web53e, Section 9, pp. 315-319 of Weber’s Werke], see also [Web53a] and [Web53c].
437[Note by AKTA:] Weber is defining the magnitude c′ by the equation following immediately after this

footnote.
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First wire Second wire Third wire
n a = 1000 a = 1 000 000 a = 1 000 000

πα2 = 1 πα2 = 1 πα2 = 1/10
W = 4 · 109 · π W = 4 · 1012 · π W = 4 · 1013 · π
N ′′ = 15.119 = 28.935 = 31.605
M ′′ = 12.452 = 25.268 = 28.938

1 N ′′/M ′′ = 1.214 = 1.145 = 1.092
W 2

8π2c2n2M ′′2 = 1
14 970 000

= 0.0166 = 1.2364

c′2/c2 = 1.214 = 1.128 = −0.0443
N ′′ = 13.786 = 27.601 = 31.062
M ′′ = 11.652 = 25.468 = 28.928

2 N ′′/M ′′ = 1.183 = 1.084 = 1.074
W 2

8π2c2n2M ′′2 = 1
52 450 000

= 0.004 08 = 0, 3093

c′2/c2 = 1.183 = 1.080 = 0.7644
N ′′ = 12.986 = 26.801 = 30.262
M ′′ = 10.929 = 24.747 = 28.205

3 N ′′/M ′′ = 1.188 = 1.083 = 1.073
W 2

8π2c2n2M ′′2 = 1
103 800 000

= 0.001 92 = 0, 1446

c′2/c2 = 1.188 = 1.081 = 0.9283
N ′′ = 12.414 = 26.230 = 29.690
M ′′ = 10.383 = 24.198 = 27.659

4 N ′′/M ′′ = 1.196 = 1.084 = 1.073
W 2

8π2c2n2M ′′2 = 1
166 200 000

= 0.001 13 = 0, 0846

c′2/c2 = 1.197 = 1.083 = 0.9889
N ′′ = 11.970 = 25.785 = 29.246
M ′′ = 9.950 = 23.765 = 27.226

5 N ′′/M ′′ = 1.203 = 1.085 = 1.074
W 2

8π2c2n2M ′′2 = 1
239 000 000

= 0.000 75 = 0, 0559

c′2/c2 = 1.203 = 1.084 = 1.0183

The values of c′2/c2 in the above Table which give the squares of the propagation velocities
c′/

√
2 in parts of the square of the limiting value c/

√
2 disclose essential differences already

among the first five wave trains to which the Table is restricted; for the third wire c′2/c2

even has a negative value for n = 1; hence here the expression for the propagation velocity
of the first wave train becomes imaginary and therefore the laws of the changes of motion
in this wire after a disturbance of the equilibrium cannot at all be interpreted in terms of
propagating waves trains, but they require a different form which represents the changes of
motion as a pure approximation to the state of equilibrium which may be called absorption,
and which deserves particular attention because of its special importance for long and thin
conducting wires with large resistance, namely telegraph wires.
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18.17 Damping of Electric Motions in a Circular Con-

ductor

In Section 18.13, in the integration of the two partial differential equations for the motion
of the electricity left to itself in a circular conductor, namely the equations

d2an
dt2

+ 2ε
dan
dt

+ (m2 + ε2)an = 0 ,

d2bn
dt2

+ 2ε
dbn
dt

+ (m2 + ε2)bn = 0 ,

it has been assumed for the two expressions set up for an and bn

an = Ae−εt sinm(t− A′) ,

bn = Be−εt sinm(t−B′) ,

that m would be a real value which, however, is not always the case. Because, putting
1/[πα2k] = w′, we had

m =
n

a
· c√

2

√

N ′′

M ′′(1 + λ)
− a2c2w′2

128n2M ′′2(1 + λ)2
,

namely this assumption can also be formulated so that

a2c2w′2

128n2M ′′2(1 + λ)2
<

N ′′

M ′′(1 + λ)
,

should hold, or, if λ = 0,

a2c2w′2

128n2M ′′2 <
N ′′

M ′′ .

On the other hand, the example of the third wire in the preceding Section shows that with
long and thin conducting wires also the case may occur in which

a2c2w′2

128n2M ′′2 >
N ′′

M ′′ ,

whence it becomes clear that the integration of the above differential equations becomes
illusive and hence must be sought in a different form.

Therefore, putting for this purpose

m =
n

a
· c√

2

√

a2c2w′2

128n2M ′′2(1 + λ)2
− N ′′

M ′′(1 + λ)
,

then the two differential equations get the following form, namely

d2an
dt2

+ 2ε
dan
dt

+ (ε2 −m2)an = 0 ,
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d2bn
dt2

+ 2ε
dbn
dt

+ (ε2 −m2)bn = 0 ,

from which by integration we get

an = Ae−εt ·
(

em(t−A′) − e−m(t−A′)
)

,

bn = Be−εt ·
(

em(t−B′) − e−m(t−B′)
)

.

As performed in Section 18.13, the constants of integration A, A′, B, B′ will be found from
the values of a0n, b

0
n, da

0
n/dt, db

0
n/dt given for t = 0 by means of which the original distribution

of the free electricity in the conductor and the original currents are expressed. In this way
one obtains

Ae−mA′

=
1

2m

(

(ε+m)a0n +
da0n
dt

)

,

Ae+mA′

=
1

2m

(

(ε−m)a0n +
da0n
dt

)

,

Be−mB′

=
1

2m

(

(ε+m)b0n +
db0n
dt

)

,

Be+mB′

=
1

2m

(

(ε−m)b0n +
db0n
dt

)

.

Substituting these values, one obtains the following two equations

an =
1

2m

[(

(ε+m)a0n +
da0n
dt

)

e−(ε−m)t −
(

(ε−m)a0n +
da0n
dt

)

e−(ε+m)t

]

,

bn =
1

2m

[(

(ε+m)b0n +
db0n
dt

)

e−(ε−m)t −
(

(ε−m)b0n +
db0n
dt

)

e−(ε+m)t

]

.

Finally inserting these values of an and bn into the equations

E =
∑

(

an sin
ns

a
+ bn cos

ns

a

)

,

i = −a
2

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

,

one finds the laws of distribution of the free electricity and of the currents in the circular
conductor for the cases considered here.

Now such a case occurs with each circular conductor, namely when the given original dis-
tribution of the free electricity and of the currents is such that the value of b0n or [1/n]·[da0n/dt]
is not zero for n = 0, and therefore this case has been excluded from the consideration in
Section 18.15, where only those values of En and in have been discussed which are valid for
n = 1, 2, 3 ... Is in fact n = 0, then it becomes clear that

a2c2w′2

128n2M ′′2(1 + λ)2
>

N ′′

M ′′(1 + λ)
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holds and that consequently we have to put

m =
1

a
· c√

2

√

a2c2w′2

128M ′′2(1 + λ)2
.

But we had

ε =
c2w′

16M ′′(1 + λ)
,

whence it follows that, for n = 0, we have to put

m = ε .

Now substituting this value of m into the above values of an and bn, we get

a0 = a00 +
1

2ε

da00
dt

− 1

2ε

da00
dt

· e−2εt ,

b0 = b00 +
1

2ε

db00
dt

− 1

2ε

db00
dt

· e−2εt ,

whence by differentiation

da0
dt

=
da00
dt

· e−2εt ,

db0
dt

=
db00
dt

· e−2εt .

Now inserting these values into the equations

En = an sin
ns

a
+ bn cos

ns

a
,

in = − a

2n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

,

for n = 0, one finds

E0 = b00 +
1

2ε

db00
dt

(

1− e−2εt
)

,

i0 = −s
2

db00
dt
e−2εt +

a

2

(

1

n

dan
dt

)

0

,

where

(

1

n

dan
dt

)

0

denotes the value of ([1/n] · [dan/dt]) for n = 0; hence, as

(

1

n

dan
dt

)

0

=

(

1

n

da0n
dt

)

0

· e−2εt ,
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and as the coefficients of sin(ns/a) and cos(ns/a) are to have finite values in the equation

in = − a

2n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

,

whence, for n = 0, we should have

da0
dt

= 0 , and
db0
dt

= 0 ,

[therefore,]

E0 = b00 ,

i0 =
a

2

(

1

n

da0n
dt

)

0

· e−2εt .

Whence it follows that, if a circular conductor is originally homogeneously charged with free
electricity along its total length, so that each unit length contains the same amount of free
electricity = b00, then this charge does not change with time t, which becomes clear all by
itself. But in addition to that, if there is originally the same current in all parts of this
conductor, that this current does not vanish at the moment after which the electricity is left
to itself, but gradually decreases following the law of a geometric series as time t increases
arithmetically. If here also the necessity of gradual vanishing becomes clear a priori, it can
not be easily seen a priori how fast this should happen and what differences in this speed
should take place between different conductors.

If a current with certain intensity i flows in a closed conductor at the very moment after
which the electricity is left to itself because no external electromotive force acts on it, as
is for example the case when an inductive magnet moving with respect to a conductor is
suddenly stopped in this motion by pushing against it — then it is interesting for some
practical questions to determine the amount of positive or negative electricity which still
passes after this moment through each cross section of the conductor; and then further to
determine the time that has to pass after the same moment until the current intensity i has
decreased to i/2.

If i = (a/2)([1/n] · [da0n/dt])0 is given for that moment t = 0, then the current intensity
after time t [is given by]

= i · e−2εt ,

which, expressed in mechanical measure, denotes the amount of positive electricity that
would pass through the cross section of the conductor in the unit of time for this current
intensity. Hence, the amount of positive electricity passing through the cross section of the
conductor during the time element, dt, equals

= i · e−2εtdt ,

and the integral value hereof, taken from t = 0 to t = ∞, yields the total amount of positive
electricity which at all passes through any cross section of the conductor after the moment
considered, namely

i

∫ ∞

0

e−2εtdt =
1

2ε
· i .
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The amount of negative electricity passing through the cross section in opposite direction is
equally large.

Furthermore, the following equation yields the time t during which the current intensity
decays to half of its value:

e−2εt =
1

2
,

hence

t =
1

2ε
log nat 2 .

Now we had ε = c2w′/[16M ′′(1 + λ)], wherein we have to put M ′′ = 2 log(8a/α) for
n = 0; hence, taking λ = 0, that amount of electricity passing through the cross section of
the conductor equals

1

2ε
· i = 16

c2w′ · log
8a

α
· i = 2

W ′ log
8a

α
· i ,

when W ′ = [c2/8] · w′ denotes the resistance in magnetic measure in unit length of the
conductor.

The time during which the current intensity decays to half of its value is then, expressed
in seconds

1

2ε
· log 2 =

16

c2w′ · log
8a

α
· log 2 =

2

W ′ · log
8a

α
· log 2 .

Hence we get the following values for the wires exemplified in Section 18.16:

First wire Second wire Third wire

1
2ε

1
104 607

1
60 726

1
567 581

log 2
2ε

1
150 916

1
87 609

1
818 846

.

However small may be here the fraction 1/2ε of the amount which would pass through the
cross section of the conductor with the original current, produced by the positive electricity
transported by the vanishing current through the cross section in the unit of time of the
conductor, yet this amount of electricity could produce a very strong charge of the conductor
if it were used for this purpose. If, for example, the current intensity originally present were
equal to the magnetic unit of measure (which decomposes 1 milligram of water during 1062

3

seconds),438 then the positive amount of electricity passing through the cross section of the
conductor in the unit of time at this current would amount to 155 370 ·106 electrostatic units
of measure and, as the current disappeared in the first wire, still [155 370/104 607] · 106, that
is almost 11

2
million electrostatic units of measure of positive electricity would be carried

through any cross section of the conductor, that is about the 24th part of the weakest, or
the 33rd part of the strongest charge of the small Leyden jar which have been used for the

438[Note by AKTA:] See footnote 146 on page 134.
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experiment described in Vol. 5 of the previous Abhandlung, where these charges have been
determined in more detail on p. 254.439,440

It is easily seen that a similar vanishing of the current flowing in a closed conductor oc-
curs at the moment when the circuit of a galvanic current is disrupted and that the positive
amount of electricity then carried through the center cross section by the decaying current in
fact contributes to charging the first half of the conductor, and likewise the amount of nega-
tive electricity oppositely carried through the same cross section contributes to charging the
second half of the conductor, and that the opposite charges produce the spark of disruption
at the place where the circuit has been disrupted, where it is interesting to learn about the
amounts of electricity discharged by the spark of disruption.

Likewise the importance is clear to further develop the laws of the current decay for the
determination of the inductive forces thus exerted on other conductors, especially for the
theory of the Rühmkorff type and other similar inductive machines which hereby is given its
foundation.441

18.18 Reference to Heat Conduction

For increasing values of t where eventually e−2mt vanishes in comparison with 1, the two
equations found for an and bn in the preceding Section, namely

an =
1

2m

[(

(ε+m)a0n +
da0n
dt

)

e−(ε−m)t −
(

(ε−m)a0n +
da0n
dt

)

e−(ε+m)t

]

,

bn =
1

2m

[(

(ε+m)b0n +
db0n
dt

)

e−(ε−m)t −
(

(ε−m)b0n +
db0n
dt

)

e−(ε+m)t

]

,

turn into the simpler equations:

an =
1

2m

(

(ε+m)a0n +
da0n
dt

)

e−(ε−m)t ,

bn =
1

2m

(

(ε+m)b0n +
db0n
dt

)

e−(ε−m)t ,

and inserting these values of an and bn into the equations

E =
∑

(

an sin
ns

a
+ bn cos

ns

a

)

,

i = −a
2

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

,

we get the following distribution laws of the free electricity and the currents in the circular
conductor:

439[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 641.
440[Note by AKTA:] [KW57, Section 12, p. 641 of Weber’s Werke] with English translation in [KW21,

Section 12, pp. 36-40]. See page 170 of Section 7.12.
441[Note by AKTA:] See footnote 392 on page 261.
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E =
∑ 1

2m

[(

(ε+m)a0n +
da0n
dt

)

sin
ns

a

+

(

(ε+m)b0n +
db0n
dt

)

cos
ns

a

]

e−(ε−m)t ,

i =
a

4

∑ ε−m

mn

[(

(ε+m)b0n +
db0n
dt

)

sin
ns

a

−
(

(ε+m)a0n +
da0n
dt

)

cos
ns

a

]

e−(ε−m)t .

Here it is easily seen that in all cases where ε−m/[n2] = β is a coefficient independent of n
we get

i = −a
2b

2
· dE
ds

,

di

ds
= −1

2

dE

dt
,

whence it follows by eliminating i

dE

dt
= a2β

d2E

ds2
,

an equation having the same form as the equation for the heat conduction in solid bodies.
But in the preceding Section we had put

m =
n

a
· c√

2

√

a2c2w′2

128n2M ′′2(1 + λ)2
− N ′′

M ′′(1 + λ)
,

wherein c2w′/[16M ′′(1 + λ)] = ε, thus

m = ε

√

1− 128N ′′M ′′(1 + λ)

a2c2w′2 · n2 .

Now in all cases where the values of n2/[a2c2w′2] and α/a are very small, we may put instead

m = ε

(

1− 256
(

log 8a
α

)2 · (1 + λ)

a2c2w′2 · n2

)

,

from which ε−m = [8/a2w′]n2 log(8a/α), therefore

β =
8

a2w′ · log
8a

α

is a coefficient independent of n.
Hence for the changes of motion of electricity in the cases just described, this yields

laws similar to those for the heat conduction in solids as has already been demonstrated by
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Thomson and Kirchhoff.442 Even if the expression for the propagation velocity of the longer
wave trains, that is for smaller values of n, become imaginary and hence demand other laws
for this part of the motion which approach the laws of heat conduction in solid bodies, a still
remaining part of the motion deserves particular attention which yields shorter wave trains
for which greater values of n are valid, for which the expression for the propagation velocity
stays real and thus the laws developed in Section 18.13 remain valid. After a disturbance
of the equilibrium, thus there are always wave trains in such a conductor propagating at
certain velocities, however, there is no pure wave motion, but it is mixed with other motions
which are governed by laws similar to those when heat is conducted.

Now considering all conditions resulting from such a mixture of motions subject to quite
different laws, it becomes immediately clear that Wheatstone’s observation443 of the non-
synchronicity of the sparks at two mutually very distant places where the long conducting
wire is disrupted does not at all allow to conclude a definite propagation velocity, and that
Wheatstone’s way of observation, as meaningful it may be and as valuable its results for
other contexts may be, if they could really be guaranteed exactly, yet it is not suited directly
for the purpose in question, like it will generally be not possible at all to succeed in finding
such ways of observation by means of which the laws of all changes of motion of electricity
in a conductor after a disturbance of the equilibrium may be founded on pure experience.
Hence the aim of the observations will here be restricted to test the laws derived up to now
from our previous knowledge about electricity. Therefore it was necessary, as has been tried
in the previous Sections, to treat the derivation of the laws before the observations to be
carried out for their test, even more because the laws thus formulated have to be used as a
guide in the search of the most suitable ways of observation to be applied for the test.

18.19 Oscillations of Electricity in a Circular Conduc-

tor

As regards the most appropriate ways of observation to test the laws of electric motions, it
becomes automatically clear from the laws developed so far that, considering the extremely
high velocity of most of the electric wave trains in good conductors according to these laws
and the quick damping of these wave trains resulting from the same laws, with the limits
imposed on all observations by the sensory tools, it would barely be possible to conduct
exact observations and measurements for direct testing of these laws. An exact performance
of measurements always demands a certain expenditure of time which is appropriate for such
non-persistent phenomena. Considering therefore that the finest measurements of physics are
those concerning either equilibrium phenomena, or uniform motions, or periodically recurring
phenomena, as for example oscillations of a pendulum, then this suggests to base a testing
method also for these laws on observations of the motion of electricity in conductors, apart
from constant currents, on periodically recurring phenomena, supposing that methods will
be found for the fine performance of such observations.

But periodically occurring motions of the electricity in a conductor cannot exist all by
themselves, but only due to continuous excitation by external electromotive forces and their
production suggests the fast rotation of a small magnet about an axis perpendicular to its
magnetic axis as the simplest and, for finer observations and measurements, most practi-

442[Note by AKTA:] See footnote 387 on page 259.
443[Note by AKTA:] See footnote 138 on page 129.
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cable method. In order to obtain a guide to practical equipments for exact observations of
periodically occurring motions or oscillations of the electricity in a conductor thus produced,
we shall first try to develop the laws of such electric oscillations in a circular conductor from
the partial differential equations formulated in Section 18.10.

18.20 Oscillations Due to Induction by a Rotating

Magnet

The electromotive force exerted by fast rotation of a small magnet in the vicinity of the
circular conductor on any point, s, of the conductor in a certain moment of time may be
represented, if a denotes the radius [of the conductor], by

∑

(

fm sin
ns

a
+ gn cos

ns

a

)

,

where fn and gn depend only on the place number, n. But due to the uniform rotation of
the magnet, all these forces acting on different points, s, of the conductor are subjected to
a regular periodic change, and in effect, with a suitable set up, they are proportional to the
sine of an angle uniformly growing with time. For an arbitrary moment, all these forces may
be represented at the end of time t by

sinµt ·
∑

(

fn sin
ns

a
+ gn cos

ns

a

)

.

Inserting fn sinµt and gn sinµt into the two partial differential equations at the end of Sec-
tion 18.10 in place of fn and gn which denoted arbitrary functions of the time there, where
now fn and gn have values independent of time, one gets the following two partial differential
equations444

d2an
dt2

+
c2

8πα2kM ′′(1 + λ)
· dan
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· an −

nc2

4aM ′′(1 + λ)
· gn sinµt = 0 ,

d2bn
dt2

+
c2

8πα2kM ′′(1 + λ)
· dbn
dt

+
n2c2N ′′

2a2M ′′(1 + λ)
· bn +

nc2

4aM ′′(1 + λ)
· fn sinµt = 0 .

Now one sees easily that, putting

an = p sin(µt+ ρ) ,

bn = q sin(µt+ ρ) ,

[then] p, q and ρ can be determined so that the values of an and bn thus obtained satisfy
the two partial differential equations. Inserting the above values, namely an and bn, and the
values derived from them,

dan
dt

= pµ cos(µt+ ρ) ,

444[Note by PM and AKTA:] The following equations are ordinary differential equations.
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dbn
dt

= qµ cos(µt+ ρ) ,

d2an
dt2

= −pµ2 sin(µt+ ρ) ,

d2bn
dt2

= −qµ2 sin(µt+ ρ) ,

into the equations above, one obtains, putting 1/[πα2k] = w′ for brevity, and either λ = 0
according to Ohm’s law, or M ′′ for M ′′(1 + λ),

−pµ2 sin(µt+ ρ) +
pµc2w′

8M ′′ cos(µt+ ρ) +
pn2c2N ′′

2a2M ′′ · sin(µt+ ρ)− c2n

4aM ′′ · gn sinµt = 0 ,

−qµ2 sin(µt+ ρ) +
qµc2w′

8M ′′ cos(µt+ ρ) +
qn2c2N ′′

2a2M ′′ · sin(µt+ ρ) +
c2n

4aM ′′ · fn sinµt = 0 .

Expanding the sine and cosine of the sum in terms of sine and cosine of the parts, one gets

(

µc2w′

8M ′′ · p sin ρ+
(

µ2 − n2c2N ′′

2a2M ′′

)

· p cos ρ+ c2n

4aM ′′ · gn
)

sinµt

+

((

µ2 − n2c2N ′′

2a2M ′′

)

· p sin ρ− µc2w′

8M ′′ · p cos ρ
)

cosµt = 0 ,

(

µc2w′

8M ′′ · q sin ρ+
(

µ2 − n2c2N ′′

2a2M ′′

)

· q cos ρ− c2n

4aM ′′ · fn
)

sinµt

+

((

µ2 − n2c2N ′′

2a2M ′′

)

· q sin ρ− µc2w′

8M ′′ · q cos ρ
)

cosµt = 0 .

If these equations are to be valid for any value of t, one obtains for cosµt = 0 the two
equations

µc2w′

8M ′′ · p sin ρ+
(

µ2 − n2c2N ′′

2a2M ′′

)

· p cos ρ+ c2n

4aM ′′ · gn = 0 ,

µc2w′

8M ′′ · q sin ρ+
(

µ2 − n2c2N ′′

2a2M ′′

)

· q cos ρ− c2n

4aM ′′ · fn = 0 ,

and for sinµt = 0 also the third equation, namely

(

µ2 − n2c2N ′′

2a2M ′′

)

sin ρ− µc2w′

8M ′′ · cos ρ = 0 ,

from which p, q and ρ are be determined so that the two partial differential equations are
satisfied by the values of an and bn thus determined. One gets in fact
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ρ = arctan
µa2c2w′

4(2µ2a2M ′′ − n2c2N ′′)
,

p = − ac2n

2(2µ2a2M ′′ − n2c2N ′′)
· gn cos ρ

= − 2ac2n
√

16(2µ2a2M ′′ − n2c2N ′′)2 + µ2a4c4w′2
· gn ,

q = +
ac2n

2(2µ2a2M ′′ − n2c2N ′′)
· fn cos ρ

= +
2ac2n

√

16(2µ2a2M ′′ − n2c2N ′′)2 + µ2a4c4w′2
· fn .

Adding the values of an and bn, found in Section 18.13 for the case where fn = 0 and gn = 0,
to these special values of an and bn which satisfy the partial differential equations, then the
two sums yield the complete integral values of an and bn, namely

an = p sin(µt+ ρ) + Ae−εt · sin
(

mt+ arcsin
a0n
A

)

,

bn = q sin(µt+ ρ) +Be−εt · sin
(

mt+ arcsin
b0n
B

)

,

wherein A and B as well as ε and m have the meaning as given in Section 18.13. If m
has an imaginary value, then the values of an and bn developed in Section 18.17 replace the
added terms. But it becomes clear that the added terms decrease for increasing values of
t and that they, as shown in Section 18.17, may be considered as vanishing already after a
very small portion of a second has passed, thus from then on the motion of electricity in the
circular conductor becomes uniform and periodic, the production of which was the aim of
the described method with the rotating magnet.

Omitting the terms vanishing with time and inserting these values of an and bn into the
equations

E =
∑

(

an sin
ns

a
+ bn cos

ns

a

)

,

i = −a
2

∑ 1

n

(

dbn
dt

sin
ns

a
− dan

dt
cos

ns

a

)

,

yields the following laws of the distribution of free electricity and of the currents in the
circular conductor for the regularly ongoing electric oscillation:

E =
∑

sin(µt+ ρ)
(

p sin
ns

a
+ q cos

ns

a

)

,

i = −aµ
2

∑ 1

n
cos(µt+ ρ)

(

q sin
ns

a
− p cos

ns

a

)

,

where p, q and ρ have the above values. From these values, however, we get
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p = − 2n

µaw′ sin ρ · gn ,

q = +
2n

µaw′ sin ρ · fn .

Substituting these values of p and q in both equations, we get

E =
2

µaw′

∑

n sin ρ sin(µt+ ρ)
(

fn cos
ns

a
− gn sin

ns

a

)

,

i = − 1

w′

∑

sin ρ cos(µt+ ρ)
(

fn sin
ns

a
+ gn cos

ns

a

)

,

or, expanding sin(µt+ ρ) and cos(µt+ ρ)445

E =
2

µaw′ sin µ ·
∑

n sin ρ cos ρ
(

fn cos
ns

a
− gn sin

ns

a

)

+
2

µaw′ cosµt ·
∑

n sin2 ρ
(

fn cos
ns

a
− gn sin

ns

a

)

,

i =
1

w′ sin µt ·
∑

sin2 ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

− 1

w′ cosµt ·
∑

sin ρ cos ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

.

Finally, herein putting

∑

sin2 ρ
(

fn sin
ns
a
+ gn cos

ns
a

)

∑

sin ρ cos ρ
(

fn sin
ns
a
+ gn cos

ns
a

) = tan γ ,

∑

n sin2 ρ
(

fn cos
ns
a
− gn sin

ns
a

)

∑

n sin ρ cos ρ
(

fn cos
ns
a
− gn sin

ns
a

) = tan γ′ ,

(

∑

sin2 ρ
(

fn sin
ns

a
+ gn cos

ns

a

))2

+
(

∑

sin ρ cos ρ
(

fn sin
ns

a
+ gn cos

ns

a

))2

= k2 ,

(

∑

n sin2 ρ
(

fn cos
ns

a
− gn sin

ns

a

))2

+
(

∑

n sin ρ cos ρ
(

fn cos
ns

a
− gn sin

ns

a

))2

= k′
2
,

we get

E =
2

µaw′ · k
′ sin(µt+ γ′) ,

445[Note by AKTA:] In the next equations I replaced Weber’s notation sin ρ2 by sin2 ρ.
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i = − 1

w′ · k
′ cos(µt+ γ) .

But putting

∑

sin2 ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

= f ,

∑

sin ρ cos ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

= g ,

df

ds
= f ′ ,

dg

ds
= g′ ,

we get

E =
2

µw′

√

f ′2 + g′2 · sin
(

µt+ arctan
f ′

g′

)

,

i = − 1

w′

√

f 2 + g2 · cos
(

µt+ arctan
f

g

)

,

whence it is easy to derive the equation

di

ds
= −1

2

dE

dt
.

18.21 Equality of Phases and Amplitudes of Electric

Oscillations in Circular Conductors

Considering that the electromotive force exerted on the whole conducting wire by the rotating
magnet is represented by

sinµt ·
∫

ds ·
∑

(

fn sin
ns

a
+ gn cos

ns

a

)

,

and that g0 must have a specific finite value if this whole force should not be zero, then the
value found for i can be presented more clearly if, in the given values of tan γ and k2, the
first terms of the series, namely the terms corresponding to the place number n = 0, are
separated in the following way, denoting the value of ρ for n = 0 by ρ0:

tan γ =
g0 sin

2 ρ0 +
∑∞

1 sin2 ρ
(

fn sin
ns
a
+ gn cos

ns
a

)

g0 sin ρ0 cos ρ0 +
∑∞

1 sin ρ cos ρ
(

fn sin
ns
a
+ gn cos

ns
a

) ,
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k2 = g20 sin
2 ρ0 + 2g0 sin ρ0 cos ρ0 ·

∞
∑

1

sin ρ cos ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

+ 2g0 sin
2 ρ0 ·

∞
∑

1

sin2 ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

+

( ∞
∑

1

sin ρ cos ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

)2

+

( ∞
∑

1

sin2 ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

)2

.

As now herein we had

sin ρ =
µa2c2w′

√

16(2µ2a2M ′′ − n2c2N ′′)2 + µ2a4c4w′2
,

cos ρ =
4(2µ2a2M ′′ − n2c2N ′′)

√

16(2µ2a2M ′′ − n2c2N ′′)2 + µ2a4c4w′2
,

and, denoting the value of M ′′ for n = 0 by M ′′
0 , we get the values of sin ρ0 and cos ρ0 [as

given by]

sin ρ0 =
c2w′

√

64µ2M ′′
0
2 + c4w′2

,

cos ρ0 =
8µM ′′

0
√

64µ2M ′′
0
2 + c4w′2

.

Considering furthermore that the ratios µa2w′/N ′′ and µa/c are very small fractions also for
very long and thin conductors and for the greatest accessible velocity of rotation of the small
magnet, then it is clear that we may put with sufficient approximation for all values n > 0

sin ρ =
µa2w′

4n2N ′′ ,

cos ρ = 1 .

Hence it is clear that already µa2w′/N ′′ being a very small fraction, sin ρ = µa2w′/[4n2N ′′]
all the more may be considered as vanishingly small the larger the place number n. Therefore
also for very long and thin conductors and for very rapid rotation of the small magnet we
may approximately assume

γ = ρ0 and k = g0 sin ρ0 ,

whence we find

i = − g0
w′ sin ρ0 cos(µt+ ρ0) .
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As g0/w
′ and ρ0 have values independent of s, it follows that the electric oscillations

have equal phase and oscillation amplitude in all parts of a circular conductor, even if the
electromotive forces exerted by the rotating magnet are very unevenly distributed along the
different parts of the conductor.

From the evenness of oscillation phases and amplitudes in all parts of the circular con-
ductor, it follows that the current intensity at any point always equals the average current
intensity in the whole conductor. But we had derived the law for the averages of the current
intensities in closed conductors already in Section 18.9 where, denoting the average of the
external electromotive force by [1/2πa] · S and putting

8

c2

∫

M ′′
0 ds+

4πa

rE
= p ,

2πa

πα2k
= w = 2πaw′ ,

we had the result

i =
1

p
e−wt/p ·

∫

ewt/p · Sdt .

Now applying this law to our case where the oscillations in a conductor are produced by a
rotating magnet and where the average of the electromotive forces exerted by the rotating
magnet on the conductor was equal to

1

2πa
· S = g0 sin µt ,

we get

i =
2πag0
p

e−wt/p ·
∫

ewt/p · sinµt · dt = 2πag0
p

·
w
p
sin µt− µ cosµt

w2

p2
+ µ2

= − 2πag0

µp

√

(

w
µp

)2

+ 1

· cos
(

µt+ arctan
w

µp

)

.

As now

p =
8

c2
·
∫

M ′′
0 ds+

4πa

rE
=

8

c2
·
∫

M ′′
0 (1 + λ)ds ,

and

w = 2πaw′ ,

one gets, putting M ′′
0 instead of M ′′

0 (1 + λ) for simplification as in Section 18.20,

w

µp
=

πac2w′

4µ
∫

M ′′
0 ds

= tan ρ0 ,

w

µp

√

(

w
µp

)2

+ 1

=
2πaw′

µp

√

(

w
µp

)2

+ 1

= sin ρ0 ,
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hence agreeing with the above result found for circular conductors

i = −g0 sin ρ0
w′ · cos(µt+ ρ0) .

As the above law for the averages of the current intensities in closed conductors depending
on the averages of the electromotive forces in Section 18.9 was found not to be restricted
to circular conductors only, but also to be independent of the consideration of the shape of
the closed conductor, this yields that the law, derived for the case where the electromotive
forces originating from a rotating magnet are given, equally holds for closed conductors of
any shape.

The presented result that the phases and amplitudes of electric oscillations in circular
conductors be equal everywhere, is based on the assumption that the ratios µa2w′/N ′′ and
µa/c are very small fractions. As now these fractions increase with the length and the
fineness of the conductor and with the rotational velocity of the magnet, it is interesting to
calculate their actual values for some examples of long and thin wires at great rotational
velocities. Choosing the three conducting wires already exemplified in Section 18.16, we get
the values presented in the following Table.

First wire Second wire Third wire
a 1000 1 000 000 1 000 000
w′ 1

120 697·1012
1

120 697·1012
1

12 070·1012

N ′′ 15.119 28.935 31.237
(for n = 1)

100a2w′

N ′′

1
18 248·106

1
34 939

1
3770

100a
c

1
4 394 500

1
4394

1
4394

The two bottom rows of this Table contain the values of the two ratios for the three
exemplified wires if µ = 100, that is at 15.965 turns of the magnet per second. We see that
in all these cases the values of these ratios are very small fractions, while we also see that,
as these values may be 10 times larger at 159.65 turns per second and 100 times larger at
1596.5 turns per second, indeed cases may occur where these ratios become considerably
large quantities and where hence the law of equality of the phases and amplitudes in the
conductor would not hold any more.

18.22 Distribution of the Free Electricity in a Circular

Conductor During the Electric Oscillation

The law of the distribution of the free electricity in a circular conductor during the electric
oscillation is contained in the expression for the [linear] density, E, found in Section 18.20,
namely

E =
2

µaw′ · k
′ sin(µt+ γ′) ,
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where the coefficient k′ was determined by the equation

k′
2
=
(

∑

n sin2 ρ
(

fn cos
ns

a
− gn sin

ns

a

))2

+
(

∑

n sin ρ cos ρ
(

fn cos
ns

a
− gn sin

ns

a

))2

.

Hence we see that also the amount of the charge with free electricity in each point of
the circular conductor changes in proportion to the sine of an arc increasing in proportion
to t, but that the maximum charge = 2k′/[µaw′] which takes place when the sine = 1, is
different in different points of the conductor and that in fact the change from element to
element is greatest approximately in those points where the electromotive force exerted by
the rotating magnet deviates most from its average; where this electromotive force equals
its average, also the charge is approximately constant, in fact it equals zero. Hence in the
whole conductor there would be no free electricity anywhere if the rotating magnet acted
equally on all points of it, where it is assumed that the circular conductor would have no
charge from free electricity independent of the rotating magnet.

Since sin ρ and cos ρ retain finite values for n = 0 according to the preceding Section, it
is clear that the above value for k′2 can be written as
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Furthermore, putting

sin ρ =
µa2w′

4n2N ′′ ,

cos ρ = 1 ,

under the assumptions made in the previous Section and when the value of sin ρ is very small,
the first part of k′2, containing the factor sin2 ρ in the sum, may be neglected compared to
the second term, whence we thus get
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This now yields
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If finally log[8a/α] is a very large number and if furthermore the series
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)
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converges so fast that all terms of the series may be neglected for n > ν, while

2
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]

+
ν2α

8a

vanishes in comparison with log[8a/α], then we may put N ′′ = 2 log[8a/α] and
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equals the difference between the electromotive force exerted at the point s by the rotating
magnet and its average along the whole length of the conductor; hence dk′/ds or the change
of k′ with respect to the change of s is proportional to this difference.

As is easily seen, the discharge of sparks446 and the necessary degree of insulation of the
conductor depend on the amount of these charges, if the flash over is to be avoided, a topic
to be treated in more detail only when the conductors in question are not just circular but
constitute a system of closely spaced windings, a case that has been excluded here.

18.23 Guide to the Observations

It remains to use the results of the previous development as a guide to the observations by
means of which those results shall be checked with experience. Such a guide is particularly
necessary if there are no analogies of other motion phenomena which may be used for this
purpose, and from what was previously said it follows that here such analogies are missing
in many respects.

In the absence of analogies with other already known and investigated motion phenom-
ena, above all the question is to know the determination of objects of observation, which
are particularly important and suited for more detailed determination by observations. Fur-
thermore the closer knowledge of the conditions is required under which the most exact
determinations can be obtained via these objects of observation. Now it is clear that the
more detailed discussion of these conditions is best combined with the discussion of the tools
for its effective representation and with the very execution of the observations, which will
be the subject of the following Section of this treatise. Therefore, at the end of this Section
the objects of observation shall be only briefly indicated which, according to the preceding
development, seem to be particularly important and suited for a more detailed determination
by observations.

The velocity of propagation which is so important for other motion phenomena, seemingly
has not to be included here, as already mentioned in Section 18.18, but instead other different
topics are available for the observation.

According to the developed laws, there are essentially three topics which prove to be
particularly suited as topics of observation to test the formulated laws, namely first the
comparison of the phases and the amplitudes of the oscillations of the electricity at various

446[Note by AKTA:] In German: Das Ueberspringen elektrischer Funken.

332



places of a long closed conductor on which a rotating magnet acts inductively; second the law
of the dependence of the oscillation amplitude on the rotation velocity of the magnet; finally
third another important topic suggests the observations of the dependence of the oscillation
amplitude produced by a rotating magnet in a closed conducting wire on the shape of this
wire.

The equality of the phase and of the amplitude of the oscillation which, according to
the formulated laws, should occur in all parts even in a very long closed circuit and at a
high velocity of rotation, is a topic all the more suited for an experimental test the more
unexpected this result would seem. For without a more detailed definition of the conditions it
would be expected in a very long circuit, where all motions start in one place and are subject
to a very strong damping or absorption while propagating, that all motions would arrive only
very faint at the most distant parts of the circuit even if the oscillations were continuously
excited. As further the propagation from the place of excitation occurs in both directions,
one would expect that the encounter of interchanging positive and negative oscillations from
opposite sides would result in amplification at some places, and in cancellation at other
places, as with interference phenomena. Finally, even if oscillations, due to such an encounter
which are perfectly synchronous in all parts of the circuit, were possible, one would indeed
expect that this possible case were tied to special conditions, for instance certain velocities
of rotation, but not that such synchronous oscillations would arise in all parts of the circuit
at any velocity of rotation. Hence the presented result is highly unexpected as regards
all analogies offered by the propagation of motion in other known cases and therefore is
especially suited for an experimental test of the results of the theory built on our hitherto
existing knowledge about electricity.

Further, the dependence of the oscillation amplitude on the velocity of rotation of the
magnet is suitable from a different perspective, namely, the quantitative test of the formulated
law by observations and measurements which are arranged in a sequence of increasing velocity
of rotation.

Finally, if one succeeded in addition to gain more detailed determinations of the de-
pendence of the oscillation amplitude on the shape of the circuit by exact observations and
measurements, one would not only obtain a new test of the formulated laws, but also an
essential supplement of our knowledge of the very electricity from which these laws were
derived. From our hitherto existing knowledge, the electricity as a body must be attributed
with a mass, and this mass exerts a force on another similar mass; still missing is the knowl-
edge of the ratio of that mass to this force. Now the knowledge of this ratio was also not
required as long as we dealt with equilibrium phenomena or with steady motions, where it
was sufficient to know the forces; here the different amounts of electricity could be distin-
guished according to the strength of the forces they exert on the same amount of electricity
at the unit distance, instead of their masses, and the latter amount of electricity could be
determined by means of the force it exerts on an identical amount of electricity at the unit
distance. Indeed such a specific quantity of electricity thus determined was the so called
electrostatic unit of measure. If we do not deal with a mere equilibrium or a mere mainte-
nance of an already existent motion but, instead, if an amount of electricity is to receive a
new motion not existing before, then the pure knowledge of the forces is not sufficient but
also the knowledge of the mass of the electricity to be set in motion is required, or of the
ratio of this mass and of the force it exerts on the electrostatic unit of measure at the unit
distance, that is the knowledge of the number of electrostatic units of measure, contained
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in the unit of mass (milligram) of electricity. Above,447 this number has been denoted by
r and hence the mass of each specific amount of electricity, E, determined in electrostatic
measure, is thus found equal to [1/r] · E. Now if any force, f , acts on this mass, it is clear
that the ratio of this force through the mass [1/r] · E on which it acts, yields the velocity of
the motion imparted by the force to this mass per unit time, = fr/E.448

Now our knowledge of the existing amounts of electricity in electrostatic units of measure
is indeed limited to the free amounts of electricity contained in the bodies obtained by the
observations and does not cover the amounts of electricity contained in the neutral fluid.
Likewise, our knowledge of the forces, f , is limited to those acting on free amounts of
electricity, while the observations yield only the knowledge of the coefficient, f ′, denoted
by the name electromotive force, which has to be multiplied by the unknown number of
electrostatic units of measure contained in the neutral fluid, E, in order to obtain f = f ′ ·E.
On the other hand, in the whole electrodynamics we do not have to investigate the velocity
itself, but only the current density and its changes, that is, the product of the number of
electrostatic units of measure, E, contained in the flowing electricity, and that velocity rf/E,
that is, rf = f ′ · rE, where the electromotive force, f ′, is already known, hence where only
the product rE remains to be determined.

If hence, in agreement with the previous development of the determination of the current
densities and of their changes, we do not need the very knowledge of the number of electro-
static units of measure, r, contained in the unit of mass (milligram), but only the knowledge
of the product rE, it is clear that, on the other hand, from the observation of the current
densities and their changes, also only the knowledge of the product rE can be obtained; but
the importance of the knowledge of rE is immediately clear, the tentative to know it by
means of detailed and exact observations on the dependence of the oscillation amplitude on
the shape of the circuit, according to the guide based on the derived laws, turns out to be
the most appropriate.

To this end, the most exact knowledge of the conditions under which definite statements
about this dependence can be obtained is necessary, the discussion of which, as already
mentioned, shall be combined with the discussion of the tools for the practical presentation
in the following Sections of this treatise.

447[Note by AKTA:] See page 288 on Section 18.5.
448[Note by AKTA:] That is, fr/E represents the acceleration acquired by this mass [1/r] · E through the

action of the force f .
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II - Observations of Oscillations

18.24 Method of Observation

According to the guide for the observations presented in the previous Section mainly the dif-
ferences of the phases and amplitudes of electric oscillations shall be observed and measured
in closed conductors. But no galvanometers are suited for these observations and measure-
ments, as for the observation and measurement of the intensities of steady currents. For if an
electric oscillation is present in the multiplier of a galvanometer, instead of a steady current,
the needle of the galvanometer cannot stay at rest and in equilibrium, but must also perform
oscillations that become the weaker the smaller the fraction of the period of electric oscilla-
tion compared with the period of oscillation of the magnetometer needle; if these oscillations
were becoming vanishingly weak, the galvanometer needle would exactly behave as if there
were no electric oscillation in the multiplier, it would stay fixed in the equilibrium position
without any deflection, so that nothing could be determined. Therefore, the observation of
electric oscillations and in particular the measurement of its differences of amplitudes and
phases demand that the closed conductor in which the oscillations take place constitutes not
only a multiplier as part of a galvanometer, but also a solenoid supported as a torsion balance
which, together with the multiplier, makes an electrodynamometer, whose construction has
already been described in the first treatise on Electrodynamic Measurements (Abhandlung
bei Begründung der Königl. Sächs. Gesellschaft der Wissenschaften, Leipzig 1846)449,450 and
the use of which for the observation of electric oscillations has been discussed in general and
analyzed with an example at this very place.

Now the method how to determine the differences of phases and amplitudes of electric
oscillations in closed conductors from observations by means of a dynamometer shall be
considered more closely here, where it may be assumed for simplification that the multiplier
formed by the conductor carrying the electric oscillations be formed by a vertical ring having
a quite large diameter, similar to that of a tangent galvanometer,451 with the solenoid formed
by the same conductor concentrated in a volume as small as possible supported in its center,
replacing the pivoted needle of the galvanometer there.

There is a fundamental difference between this needle and the solenoid formed by the
conductor that carries the oscillation, [namely,] that the needle has a constant magnetic
moment on which the steady current in the multiplier acts, while the solenoid has a galvanic
moment which, according to Ampère’s law, indeed would be completely equivalent to the
magnetic moment of the needle, which, however, would not be constant for an electric
oscillation in the solenoid, but varies with the phase of the electric oscillation. Furthermore,
it is not a steady current from the multiplier that acts on this variable galvanic moment
of the solenoid, but the electric oscillation existing in the multiplier, whose action on the
solenoid is also variable with the phase of the oscillation.

Let a and n be the average radius and the number of windings, respectively, of the
multiplier and likewise a′ and n′ for the solenoid, further i and i′ the current intensities
in multiplier and solenoid, respectively, expressed in absolute magnetic measure as used in
galvanometry, whence [c/

√
8] ·idt and [c/

√
8] ·i′dt represent the amount of positive electricity

449[Note by HW:] Wilhelm Weber’s Werke, Vol. III, pp. 35 and 123.
450[Note by AKTA:] [Web46, Sections 1 and 16, pp. 35 and 123 of Weber’s Werke] with partial French

translation in [Web87] and a complete English translation in [Web07].
451[Note by AKTA:] See footnote 12 on page 22.
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passing through the cross section of the conductors during the time element dt; then nπa2i
and n′πa′2i′ represent the galvanic moments of the multiplier and the solenoid. Twice the
product of these two galvanic moments divided by the third power of the distance a between
the solenoid concentrated at the center and the ring of the multiplier yields the directive
force452 exerted on the solenoid by the multiplier which, multiplied by the sine of the angle
formed between the solenoid axis and the multiplier axis, or, equivalently, multiplied by the
cosine of the deflection angle ϕ between the solenoid axis and the plane of the multiplier
ring, yields the torque453 exerted by the multiplier on the solenoid, namely

= 2
nπa2i · n′πa′2i′

a3
· cosϕ .

With this complete analogy between the theory of the electrodynamometer and that of the
galvanometer, no further explication is needed, but instead, considering how to use the
instrument, we can immediately pass over to the case when the conducting wire which
includes multiplier and solenoid carries electric oscillations, where thus the current intensities
i and i′ vary with the sine of an angle, which increase in proportion with time t.

If in this case i and i′ represent the maximum current intensities corresponding to the
maximum values of the sine, then the current intensities can be represented by i sin(µt+ γ)
and i′ sin(µt+γ′) for any moment at the end of the time t. If E denotes the amount of positive
electricity contained in the unit length of the conductor, the distance between an oscillating
particle in the multiplier or solenoid from its equilibrium position during this oscillation for
this moment will be represented by [i/µE] cos(µt+ γ) and [i′/µE] cos(µt+ γ′), where i/[µE]
and i′/[µE] is the amplitude of oscillation to be determined here. — As, however, with
currents one renounces the knowledge of the drift velocity itself,454 being satisfied with the
product of this drift velocity and the unknown factor E, similarly one contents oneself here
with the determination of the product of this oscillation amplitude and this very factor E,
because the observations will only permit us to express this product in absolute measure.

In this case, with these new specifications of the current intensities, one now obtains the
torque exerted by the multiplier on the solenoid:

= 2
nπa2i · n′πa′2i′

a3
sin(µt+ γ) sin(µt+ γ′) · cosϕ ,

wherein i and i′ have constant values independent of the time t.
Under the influence of this torque whose magnitude changes incessantly with time t, the

mobile solenoid clearly cannot get to rest at all; therefore the question arises what kind of
observations can be performed with this incessant motion of the solenoid and what can be
determined from these observations. In order to answer this question we have to develop the
laws of motion of the solenoid under the influence of such a variable torque.

To simplify this development we may at first stick to the case where the current intensities
in the multiplier and the solenoid are always the same, where hence we may put

i = i′ and γ = γ′ = 0 .

This case yields the variable torque acting on the solenoid equal to

452[Note by AKTA:] See footnote 66 on page 77.
453[Note by AKTA:] See footnote 10 on page 18.
454[Note by AKTA:] See footnote 52 on page 61. Weber is referring here to the velocity of the electrified

particles relative to the matter of the conductor.
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= 2
π2nn′a′2

a
· i2(sinµt)2 cosϕ ,

which may be written as

=
π2nn′a′2

a
· i2(1− cos 2µt) cosϕ .

But from the construction of the electrodynamometer we know that the solenoid is sup-
ported in a bifilar fashion, whence with the given length and distance of the two supporting
wires there is a static directive force which can easily be determined and shall be denoted
by S. If now this bifilar suspension of the solenoid is normally regulated, so that the torque
resulting from the static directive force equals zero, when the axis of the solenoid is parallel
to the plane of the ring of the multiplier, or when the angle of deflection ϕ = 0, then we get
the static torque acting on the solenoid for any value of the angle ϕ equal to

= −S sinϕ .

Adding this static torque to the above electrodynamic torque, the sum of both torques acting
on the solenoid divided by the moment of inertia K of the solenoid, yields the rotational
acceleration of the solenoid, d2ϕ/dt2, at the end of the time t, whence follows the equation
of motion of the solenoid, namely

π2nn′a′2

a
· i2(1− cos 2µt) cosϕ− S sinϕ = K

d2ϕ

dt2
.

Putting herein

ϕ = v + α ,

in which one assumes the constant value for v determined by the following equation

tan v =
π2nn′a′2

aS
· i2 ,

hence d2ϕ/dt2 = d2α/dt2, so that one gets

d2α

dt2
+
S

K

[

(1 + (1− cos 2µt) tan2 v) cos v sinα + cos 2µt · sin v cosα
]

= 0 .

Under the assumption that v and α have small values (which, as a rule, is possible because
the solenoid, equipped with a mirror, is to be observed quite like a magnetic needle, where
the deflection of the solenoid shall always stay within narrow limits given by the length of
the scale), we can write

d2α

dt2
+
S

K
(α sec v + cos 2µt · sin v) = 0 ,

whence we get by integration:

α =
sin v

4µ2K
S
− sec v

· cos 2µt+ A sin(t−B)

√

S sec v

K
,
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with A and B the two constants of integration. Now denoting by τ the period of oscillation
of the solenoid,455 which corresponds to the directive force S and the moment of inertia K,
and by ϑ the period of oscillation of the electricity in the conducting wire, we get

K

S
=
τ 2

π2
and µ =

π

ϑ
;

consequently

α =
sin v

4 τ2

ϑ2 − sec v
· cos 2π

ϑ
t + A sin

π

τ
(t− B)

√
sec v ,

or, for the assumed small value of v and putting A = 0, that means apart from that small
oscillation which would be performed by the solenoid if solely under the influence of the static
directive force S and the electrodynamic [directive force] nn′π2a′2i2/a (as this oscillation is
easily suppressed during the observation by standard damping devices), it follows

α =
ϑ2

4τ 2 − ϑ2
· v cos 2π

ϑ
t .

As an example we choose the case which will occur in the following observations where
we had, expressed in seconds

τ = 15 , ϑ =
1

520
,

which hence yields

α =
1

243 · 106 · v cos 2π
ϑ
t ,

that means where α vanishes completely compared to v. The same is valid for all observations
to be treated here.

When α vanishes, the constant deflection of the solenoid v can now be observed directly
with utmost precision and one finds

i =
1

πa′

√

aS tan v

nn′ ,

whence the electric oscillation in the closed conductor is determined completely if the period
of oscillation, ϑ, were known from counting the revolutions of the rotating magnet, namely

i sin
π

ϑ
t =

sin π
ϑ
t

πa′
·
√

aS tan v

nn′ .

If, instead of the electric oscillation, there were a constant current having intensity i
√

1
2
,

then the torque exerted by the multiplier on the solenoid would be

=
π2nn′a′2

a
i2 cosϕ ,

and this torque, together with the static torque, −S sinϕ, would amount to zero for equilib-
rium, whence the deflection ϕ of the solenoid for equilibrium would be given by

455[Note by AKTA:] In German: Die Schwingungsdauer des Solenoids. See also footnote 199 on page 164.

338



ϕ = v .

Therefore the result from the above consideration can be expressed as follows:

If the period of oscillation of the electricity in the closed conductor makes a
very small fraction of the static period of oscillation of the solenoid, the solenoid
behaves as if there were a constant current in the conductor whose intensity is to
the maximum intensity, i, of the currents due to the electric oscillation as 1 :

√
2.

There is then a deflection of the solenoid which can be observed similarly as if there were
a constant current in the closed conductor and if from this observed deflection (according
to the same law as with galvanometers) the intensity of the constant current is calculated
which could cause it, then this intensity has only to be multiplied by

√
2 in order to obtain

the maximum intensity, i, of the currents occurring in the electric oscillation, or multiplied
by c/[2µE] in order to obtain the amplitude of the electric oscillation in the closed conductor,
whereby, however, as already remarked, E must be left indefinite as an unknown coefficient
and where only ci/[2µ] can be expressed in absolute units of measure. Hereby the problem is
solved how to observe and to determine with an electrodynamometer the electric oscillation
caused in a closed conductor by a magnet rotating at a known speed.

The solution of the problem, however, has here been limited to the case where the mul-
tiplier and solenoid belong to adjacent parts of the closed conductor where there is no
noticeable difference of the oscillation amplitude and the oscillation phase of the electricity.
If the multiplier and solenoid belonged to two parts of the closed conductor where the period
of oscillation of the electricity were indeed the same, but where the current maxima i and
i′, as well as the phases of the oscillation λ and λ′, would have to be distinguished; then the
starting point of the time t may always be chosen so that the arithmetic mean (λ + λ′)/2
of both phases of the oscillation is equal to zero. Then the current intensities related to the
electric oscillation can be represented in these two parts of the closed conductor by

i sin
π

ϑ
(t+ λ) and i′ sin

π

ϑ
(t− λ) .

One then observes first the deflection of the solenoid, v, when both multiplier and solenoid
belong to the first part of the closed conductor. According to the established rules, the
maximum intensity, i, of the currents of the electric oscillation in this part can be determined
from this observation, namely

i =
1

πa′

√

aS tan v

nn′ .

Second, one observes the deflection of the solenoid, v′, when both multiplier and solenoid
belong to the other part of the closed conductor and finds the maximum intensity, i′, of the
currents of the existing electric oscillation in this part

i′ =
1

πa′

√

aS tan v′

nn′ .

Third finally, one observes the deflection of the solenoid, v′′, when the multiplier belongs
to the first part and the solenoid to the latter part of the closed conductor. Then from the
third observation also the difference of the phases of the oscillation, 2λ, in both parts of the
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closed conductor can be determined. According to the previous details we then have the
equation of motion of the solenoid, namely:

2
π2nn′a′2

a
· ii′ sin(µt+ λ) sin(µt− λ) · cosϕ− S sinϕ = K

d2ϕ

dt2
,

for which, as

sin(µt+ λ) sin(µt− λ) = sin2 µt− sin2 λ =
1

2

(

1− cos 2µt− 2 sin2 λ
)

holds, we can write:

π2nn′a′2

a
· ii′(1− cos 2µt− 2 sin2 λ) cosϕ− S sinϕ = K

d2ϕ

dt2
.

Let

ϕ = u+ α ,

where we take

tan u =
π2nn′a′2

aS
· ii′ .

As after that we have d2ϕ/dt2 = d2α/dt2, we obtain

d2α

dt2
+
S

K

[

(

1 + (1− cos 2µt− 2 sin2 λ) tan2 u
)

cosu sinα

+
(

cos 2µt+ 2 sin2 λ
)

sin u cosα

]

= 0 .

Under the assumption that u and α have small values we get

d2α

dt2
+
S

K

[

(

1− 2 sin2 λ sin2 u
) α

cosu
+
(

cos 2µt+ 2 sin2 λ
)

sin u
]

= 0 ,

or, when

β =
(

1− 2 sin2 λ sin2 u
)

α ,

and

S ′ =
(

1− 2 sin2 λ sin2 u
)

S ,

[we get]

d2β

dt2
+
S ′

K

[

sec u · β +
(

cos 2µt+ 2 sin2 λ
)

sin u
]

= 0 .

By integration we get from this

β =
sin u

4µ2K
S′

− sec u
· cos 2µt− sin 2u sin2 λ+ A sin(t− B)

√

S ′ sec u

K
,
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α =
S sin u

4µ2K − S ′ sec u
· cos 2µt− sin 2u · sin2 λ

1− 2 sin2 u sin2 λ
+ A′ sin(t−B)

√

S ′ sec u

K
.

If now, with fast oscillations of the electricity and after the solenoid has settled to rest,
the first and second parts of α vanish, one obtains the constant value of the deflection ϕ,
denominated by v′′, namely

v′′ = u− sin 2u · sin2 λ

1− 2 sin2 u sin2 λ
,

whence we get

sin2 λ =
u− v′′

2 sinu(cosu+ [u− v′′] sin u)
.

As u is already known from the values of i and i′ determined by the previous observations
by means of the equation

tan u =
π2nn′a′2

a
· ii′ ,

we solved the problem to determine the phase difference 2λ of the electric oscillations at two
different places of the closed circuit from the observed deflection v′′.

18.25 The Commutators

To meet the aim of an exact comparison of the amplitudes and phases of oscillations at
two places of a closed conductor, if they were only slightly different, the execution of the
described observations after the method described in the preceding Section would demand a
very detailed fineness and exactness, hardly attainable if they had to be performed separately
and independently. But the achievement of this aim can be extremely simplified if these
observations can be combined pairwise and performed simultaneously with the same closed
conductor and the same rotation of the magnet. For this aim, two as equally as possible
constructed electrodynamometers are required with their multipliers and solenoids making
part of the same closed circuit. If a system of exactly corresponding observations is to be
performed by means of two such electrodynamometers belonging to the same circuit, the
most essential condition to be fulfilled is that the period of oscillation of the solenoids of the
two electrodynamometers, suspended in a bifilar manner, be identical, which is very easily
realized if the construction of the electrodynamometer provides the possibility to control at
will the distance of the suspending wires of one solenoid or of both, whereby the period of
oscillation of one solenoid can be exactly matched with that of the other solenoid. If the two
solenoids are at complete rest before an observation series is started, then a more expanded
observation series may be performed in such a way that all of the observed elongations of
both solenoids set in motion by electric oscillations in the circuit are pairwise valid for equal
moments.

The complete correspondence of both electrodynamometers in other respects is consid-
erably much less taken into consideration as with the period of oscillation. For it is easily
seen that if both electrodynamometers in the closed circuit are closely spaced in series, so
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that both belong to the same part of the circuit where there are no noticeable differences
of the oscillation amplitudes and phases, then a very exact comparison of both instruments
is possible by means of simultaneous observations with both instruments in correspondence
which can be continued over a longer duration at equal period of oscillation of the solenoids,
whence all observations performed with one of the instruments can be reduced exactly so as
to yield the same results that would be obtained with the other instrument if this instrument
were identical.

Under this assumption both electrodynamometers, exactly adjusted with each other, can
be applied at two different very distant places of one and the same conductor and then,
by simultaneously observing both instruments with one electric oscillation in the conductor,
a much finer comparison of the oscillation amplitudes at both places of the circuit can be
gained than would be possible if one and the same electrodynamometer would be applied and
observed at both places and different times, whereby it would have to be assumed that the
rotation of the magnet were identical at both times, an assumption that never can be fulfilled
in reality and which can be completely economized with these synchronized corresponding
observations.

Furthermore, after mutually comparing them exactly, both electrodynamometers can also
serve to place the solenoid of one electrodynamometer at another distant part of the closed
conductor, while the multiplier of the same instrument stays at its former place, and then
to perform simultaneous corresponding observations by means of this electrodynamometer
and the other one, fixed at its place, by means of which any ever so minute phase difference
of the electric oscillation is recognized at the two very distant places of the closed conductor
without the necessity to assume an identical rotation of the magnet at different times.

Finally, it is now of great importance for the exactness and the reliability of the results
derived from these observations that the different series of observation, namely first those
for the comparison of the instruments and second those for the comparison of the oscillation
amplitudes and phases, be performed alternately in direct succession and repeated while the
magnet is continuously rotated in an utmost uniform fashion, where it is required to be able
to replace either the whole electrodynamometer or one of its parts, for example the solenoid,
momentarily between two observations, which is easily realized by means of suitably designed
commutators.

These commutators, as they will be applied in the following experiments, consist of a
number of twin cells, that is, cells pairwise connected by a conductor and connected to the
ends of the various parts of the conducting wire. These twin cells then can be connected
again pairwise with each other, namely, combined together in two different ways, by distin-
guishing the front cell from the rear cell. One of these methods of pairwise combination of
the twin cells can indeed be obtained by means of a fixed system of connective wires which
are simultaneously immersed in all front cells; the other method of pairwise combination of
the twin cells can be obtained by another fixed system of connective wires which are simul-
taneously immersed in all rear cells. And these two different systems of connective wires
can behave like the two arms of a lever, so that immersing one of the systems causes the
other to emerge and vice versa. It is immediately clear that by means of such a commutator
with 6 twin cells one part of the conducting wire may be disconnected from its connection
with two other parts of the conducting wire, thus connecting the two latter parts among
themselves, and finally the hitherto connected two parts may be disconnected and the pre-
viously disconnected part may be inserted between them. All this is performed by means
of a simultaneously operated interchange, namely by turning a lever whereby the system
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of connecting wires is immersed into the front cells, while the other system emerges from
the rear cells, or vice versa. — Moreover, one needs commutators with 4 twin cells, if not
during the observations, but beforehand. In fact, before the observations the solenoids of
the two electrodynamometers are to be damped, wherefore first a current is needed which
passes through the solenoid and the dynamometer to be damped, second a commutator with
4 twin cells, two of which are connected to the ends of the multiplier wire and the other two
of which to the ends of the solenoid wire. By means of this commutator the multiplier can
be connected at will now in parallel, now crosswise. With one kind of connection the current
through the multiplier exerts a positive torque on the solenoid carrying the same current,
with the other kind a negative torque, and the solenoid is damped if the former kind of
connection is established during the backward oscillation, the latter kind during the forward
oscillation. As the effect of a current simultaneously present in multiplier and solenoid is
completely independent of the direction of the current, the alternating current induced in
the circuit by the rotating magnet can be used, instead of a steady current, whereby it is
possible to let the damping of the dynamometer, after the rotation of the magnet has started,
immediately precede the observations.

If now all these operations, namely, the damping of the dynamometer and then all ob-
servations required at different places of the circuit for the comparison of the oscillation
amplitudes and phases, while the magnet is continuously rotated, are executed successively
without interruption, this requires five commutators in total which have to be connected
with the various parts of the circuit in a systematic way to be explained in more detail.

For an easier overview first the 5 commutators, second the various parts of the circuit to
be connected with the commutators are now to be denoted exactly and distinguished. Then
Figure 1 will serve to give the overview of the set up as a whole and of all connections in
detail.
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The first commutator, denoted by A, is required either in order to put one of the elec-
trodynamometers (multiplier and solenoid in one) alternately into two different places of the
conducting wire, or in order to put the solenoid of this electrodynamometer into two different
places of the conducting wire while the respective multiplier stays in its place. This requires
a commutator with 6 twin cells, two of which are required for both ends of the electrody-
namometer to be replaced, two for the ends of the conducting wire at one of the switch-on
locations, and finally two for the ends of the conducting wire at the other switch-on location.

The second commutator, denoted by B, is required as auxiliary commutator, the setting
of which determines whether the multiplier including solenoid or the solenoid of one of
the electrodynamometers alone is put into two different places of the conducing wire by
alternative operation of commutator A, which equally requires a commutator with 6 twin
cells.

The third and fourth commutator, namely C and C ′, respectively, are used to dampen
the solenoids before the observations start. This requires commutators with 4 twin cells, two
of which for the two ends of the leads to the solenoid and two for the leads to the respective
multiplier including the remaining conducting wire from which, however, the part belonging
to the other electrodynamometer has to be excluded, so that the solenoid at rest is not
disturbed while the other one is damped.

Finally, the fifth commutator, denoted by D, is required in order to establish the connec-
tion between the dynamometers with the commutators C and C ′, respectively, now with one,
now with the other solenoid. To this purpose, a commutator with 4 twin cells is needed, two
of which for the ends of the conducting wire at the switch-on location of the commutator, the
other two for two connecting wires through which the current can be led to the conducting
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wire by-passing one or the other electrodynamometer.

The following parts of the closed conducting wire have to be distinguished which can be
connected by means of the commutators in various ways.

The first wire, denoted by a, is the multiplier wire of the first dynamometer whose ends
lead to two twin cells of the commutator C, besides two short connecting wires of the two
other twin cells of this commutator [leading] to two twin cells of commutator B. These
various parts of wire a, which always stay connected in the same way during the observations,
shall be distinguished by symbols aI , aII , aIII .

The second wire, denoted by b, is the solenoid wire of the first dynamometer, whose ends
are connected to a twin cell of commutator B and to a twin cell of commutator A.

The third and fourth wires, denoted by c and d, are two short connecting wires of two
twin cells of commutator B [leading] to two twin cells of commutator A, whose resistance
may be considered as vanishingly small.

The fifth wire, denoted by e, is one of the two very long pieces of wire which are needed
during the observations in order to either remove both dynamometers from each other or to
remove the solenoid of the first dynamometer from its multiplier by connecting either the
two wire endings of one dynamometer with those of the other one, or the two wire endings
of the multiplier and the wire endings of the solenoids by a long piece of wire. Both ends of
the long piece of wire, e, are connected to two twin cells of commutator A.

The sixth wire, denoted by f , is the whole rest of the conducting circuit and comprises
the inductor ring of the rotating magnet, further the second long piece of wire just mentioned
before, then the wire of the second dynamometer, of the solenoid as well as the multiplier,
and finally a connecting wire leading back to the first wire. These various parts of the wire
f , which stay connected in the same way during the observations, are to be distinguished by
the symbols f I , f II , f III , f IV , fV . The commutator C ′ is plugged in between the solenoid
wire f III and the multiplier wire f IV of the second dynamometer, the latter, however, will
not be used during the observations. Likewise, there is a plug in the connecting wire fV for
the commutator D which, however, stays closed because also this commutator is not needed
during the observations.

Hence now Figure 1 has been sketched for a better illustration where the various twin
cells of the commutators A, B, C, C ′, D are represented by the symbol

and one of the two ways of connection is sketched by the upper dashed arcs and the other
way is sketched by the lower dashed arcs.

The commutators C and C ′, keeping the top setting, and D, being excluded from the
circuit by means of a wire connecting its first and last cell after the solenoid is damped, are
not used to displace the first dynamometer, consisting of the multiplier aI and the solenoid b,
from the first switching place to the other one during the observations, but the displacement
is performed simply by a change of the setting of the commutator A after the connections,
sketched by dashed arcs on top, are established by means of commutator B. Because the
setting of commutator A, sketched by means of dashed top arcs, completes a closed circuit
with the shown setting of commutator B, where the wires denoted follow in the following
sequence:

abefdca;
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the setting of commutator A, sketched by means of the bottom dashed arcs, completes a
closed circuit with the following sequence of wires:

abfdeca.

Breaking up f into its parts f I , f II , f III , f IV , fV , and representing the whole circuit
by means of the four sides of a rectangle with its long sides symbolizing the long connecting
wires, denoted by e and f II , then Figure 2 sketches the former case and Figure 3 the latter
case.

In addition, the place of the inductor, f I , with the rotating magnet has been marked
with +, the two places of the multipliers, a and f IV , with larger circles, the two places of
the solenoids b and f III by smaller circles. The inductor, f I , with the rotating magnet is
always at the top side of the rectangle, the dynamometer, f III f IV , is always at the opposite
bottom side. The place of the other dynamometer, ab, is alternated and, in the former
case, is situated at the bottom side besides the first dynamometer, f III f IV , opposite to
the inductor, f I , in the latter case at the top side besides the inductor, f I , opposite to the
dynamometer, f III f IV . Hence by operating the commutator A, the dynamometer ab is
switched now at a place of the circuit very far from the inductor, f I , now at a place very
close to it as was demanded for the first series of observations.

Likewise, the commutators C, C ′ and D are not used to displace the solenoid b of the first
dynamometer from one switching place to the other one, but the displacement is performed
by a simple change of the setting of commutator A after the connections, symbolized by the
lower dashed arcs, have been established by means of commutator B. Because the setting of
commutator A, sketched by means of dashed top arcs, completes a closed circuit where the
wires denoted follow in the following sequence:

adcbefa;

the setting of commutator A, sketched by means of the bottom dashed arcs, completes a
closed circuit with the following sequence of wires:
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adecbfa.

The former case is represented by Figure 4, the latter case by Figure 5.

We see that the places of the inductor f I of the dynamometer, f III f IV , and also of the
multiplier, a, always stay unchanged and that simply the place of the solenoid b alternates,
which in the former case, is situated at the bottom side of the rectangle besides the multiplier,
a, opposite to the inductor, f I , and in the latter case is situated at the top side of the rectangle
besides the inductor, f I , opposite to the multiplier, a. Hence by operating the commutator
A, the solenoid b is switched now at a place of the circuit very far from the multiplier, a,
now at a place very close to it as was demanded for the second series of observations.

In order to dampen the solenoids before starting the observations, the piece of the wire,
fV , connecting the first and fourth twin cell of the commutator, D, is taken out. Then, in
order to dampen the solenoid of the first dynamometer, b, the commutator, D, is given the
setting symbolized by the upper dashed arc, whereby the wire, f II , together with the second
dynamometer, f III f IV , are connected and whereby, depending on the setting of commutator
C, a circuit is completed with the following sequence of wires:

with top setting of C: aIaIIbef IfV aIIIaI ,
with bottom setting of C: aIaIIIcdfV f IebaIIaI ,

where the top settings have been assumed for the commutators A and B. Hence we see that,
with the given direction of the current through the multiplier aI , the direction of the current
through the solenoid b with the top setting of C is given by aIIbe, while it is given by ebaII

with the bottom setting, being hence opposite to the former, whereby in both cases opposite
equal torques are exerted on the solenoid b, one of which can always be used to dampen the
motion of the solenoid.

In order to dampen the solenoid of the second dynamometer, f III , the commutator D is
given the bottom setting symbolized by a dashed arc whereby the wires ebaIIaIaIII , including
the first dynamometer, are connected and whereby, depending on the setting of commutator
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CI , a circuit with the following sequence of wires is completed:

with top setting of CI : f IV fV f If IIf IIIf I ,
with bottom setting of CI : f IV f IIIf IIf IfV f IV .

We see that, given the current direction through multiplier f IV , the current direction through
the solenoid f III with the top setting of CI is given by f IIf IIIf IV , while by the bottom setting
it is given by f IV f IIIf II , hence opposite, whereby in both cases opposite torques are exerted
on the solenoid f III , one of which can always be used to dampen the motion of the solenoid.

After damping both solenoids, the commutator D is opened and the removed piece of
wire fV is again inserted to connect the first and last cell.

18.26 The Long Conducting Wires

For the displacement of the solenoid of an electrodynamometer or for the displacement of the
whole electrodynamometer (solenoid and multiplier) from one switching place of the closed
circuit to the other one, it is a matter of great importance for the observations that the two
conducting wires connecting the two switching places be of almost equal and great length.
Therefore two parts of the closed circuit, namely the wires e and f II , have been explicitly
mentioned for serving this purpose in the previous Section. In the circuit used in the following
experiments each of these two wires had a length of 36 600 meters or almost 5 miles.

Considering the great length of the whole circuit containing these two long wires, it is
immediately clear that it is practically impossible to give them the exact shape of a circle
as has been assumed for simplification in the previous Section when developing the laws.
But even apart from this great length to be associated with the closed conductor, the simple
shape of a circle could not be applied in a circuit that must contain an inductor ring for the
rotating magnet and two dynamometers for the purpose of the observations, because pieces
of the conducting wire have to be employed whose shape and position are determined by the
rules valid for the construction of these instruments.

Obviously this in practice unavoidable deviation of the shape of the closed conductor
from a circle has an influence on the electric oscillations caused by the rotating magnet
in the conductor, and thereby the law of the dependence of the amplitude of the electric
oscillations on the rotation velocity of the magnet is essentially changed. If, however, it is
not a question of observations by which the amplitude is exactly determined and measured,
but only of those to compare the amplitudes at two different places of the conductor (or
to determine only the phase difference at both places), then the deviation from the circular
shape is of minor importance. Because if, according to the laws developed in the previous
Section, there were really no noticeable difference of oscillation amplitude and phase at two
very distant places of a circular conductor even at high rotation velocities, there would be
no reason to assume that such a difference would be brought forth simply by a deviation
of the conductor from the circular shape; still more so, if the observations show that in a
closed conductor with an arbitrary shape entirely different from a circle that there are no
noticeable differences of oscillation amplitude and phase, it might be allowed conversely to
consider this result as generally valid, also for differences of oscillation amplitudes and phases
being unnoticeable for a perfect circular shape.

It is of special importance for these two 5 mile wires making part of the closed conductor
that, if no telegraph wires are used but if these long wires shall instead be housed in the
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closed laboratory where the observations are made as is necessary to completely control all
essential external conditions of the observations, these long wires have to be wound on spools
to save space. Now it is clear, however, that in the case of electric currents now abruptly
arising and now dying off again as happens due to the electric oscillations caused by the fast
rotation of the magnet, all windings of the conducting wire on the spool must mutually exert
electromotive forces according to the laws of Volta-induction456 which sum up to a strong
damping force, thereby essentially reducing the amplitude of the electric oscillations so that
the latter could not any more be observed even with the most sensitive dynamometers at
faster rotations of the magnet. In order to perform the observations it is therefore utterly
important to find a method to wind the long wires on spools so that such a mutual induction
between the wire windings is avoided.

To achieve this aim, provided the wires are well braid,457 the simplest and most perfect
way is to combine the two halves of each piece to a twin wire before winding it on one coil.
This combination is best obtained by braiding the two halves, each of which is already braid
and thus kept isolated from each other by means of this double braiding, wound once again
together with cotton or silk. Then, connected at one of the ends, the two halves form a
conductor through which a current entering by the other open end and passing through one
of the wire halves is led back to the open end passing through the other half wire on almost
the same path. Then the end where the two wire halves are connected is fixed at the spool
intended for the braiding and subsequently the whole twin wire is braided on this spool, so
that the end which leaves the two wire halves non-isolated are freely exposed on top and
the whole twin wire can be connected to the remainder of the circuit by means of these two
non-isolated ends of the two wire halves.

In this way all current elements pertaining to such a twin wire are ordered pairwise, so
that only oppositely equal current elements are close neighbors. It is clear that, even at
the fastest changes of intensity, such pairs of current elements cannot exert an electromotive
force on any other more distant conductor element and that hence this twin wire, in whatever
way it may be wound by braiding it on the spool, is not subject to any damping force
as a consequence of these windings which otherwise the electric oscillations would have
experienced by the rotating magnet, as would have been the case had the wire simply been
wound in a unidirectional fashion alongside its whole length.

Without the above method fast electric oscillations in such a long conducting circuit
would become vanishingly weak, though not in consequence of the great resistance of the
circuit, but in consequence of the mutual induction between all the windings, making their
observation practically impossible. Here it is barely necessary to remark that the same
method may find fruitful applications also in other cases where similar conditions are met
under which this very method will perform in a similar way.

This is valid, in particular, for long distance electric telegraphs, where for the purpose
of [sending] telegraph signals, electric currents in a very long circuit arise and vanish very
rapidly. We have indeed already mentioned that the damping forces, exerted hereby by the
electricity in the various wire elements (and suffered especially under the influence of an
enclosing conductor), cause great impediments due to delays in signaling which threaten to
thwart the further expansion especially of undersea telegraph lines. For example from Europe
to America, quite independent of the technical difficulties in connection with the laying and

456[Note by AKTA:] See footnote 402 on page 267.
457[Note by AKTA:] In German: Wenn die Drähte gut umsponnen sind. A braided wire here means silk or

cotton woven around the conductor for insulating purposes.
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maintenance. Hereby, not only the forces mutually exerted between the electricities in the
various wire elements come into play, but also those forces exerted by the electricity on the
neighboring conductors and sustained by them, and even the forces exerted by the magnetism
of the earth and its variability on the electricity of the various wire elements. All impediments
arising from this for fast signal processing and great extension of the circuit can be totally
or almost totally avoided by applying the above method, always placing two wire elements
closely together in which the electric current and charge are practically equal but opposite.
Hence it is very clear that, as a rule for further extension of the telegraph line, a cable must
be designed so as to have a wire with current passing in one direction very close to a second
wire leading the current back, where hence the return of the current via the earth must be
given up. That the insulation between closely spaced wires does not cause difficulties seems
to be shown by the example of our circuit where the two wires packed closely together by
means of a common braiding are insulated from each other only by covering each individual
wire with silk before joining them. The thickness of the insulator coating here was less than
1/10 of a millimeter and yet the insulation was to be considered perfect for currents so strong
that the scale range barely sufficed for the dynamometer deviations caused by them, as will
be demonstrated by the corresponding observations to be described below.

18.27 Observations to Compare the Amplitude of Elec-

tric Oscillations at Two Different Places of a

Long Closed Circuit

According to the arrangement discussed in the previous Sections now four series of obser-
vations have been performed, all on one day, September 28, 1860, alternately to compare
the amplitude and to determine the phase difference at two distant places of the above long
closed circuit while electric oscillations were excited therein by a fast rotating magnet. How-
ever, while not performed in immediate succession, the two series of observations to compare
the amplitude shall both be considered together in the present Section, likewise both series of
observations to determine the phase difference in the following Section.

The corresponding observations at both electrodynamometers were made by Mr. Schering
and myself, while Mr. Klinkerfues and Mr. H. Weber performed the uniform rotation of
the magnet in the inductor coil and determined its velocity.458 This velocity was kept as
close as possible to 260 turns per second whereby only slight deviations occurred which were
noticeable as small variations of the deviations of the solenoids of both dynamometers.

The duration of the periods of the solenoids was regulated in such a way that it was
equal in size and lasted almost exactly 15 seconds. In doing so, the sensitivity of both
instruments, however, was very different as a consequence of using indeed equal spools for
both solenoids, but having different wire thickness and hence different numbers of windings.
The more sensitive dynamometer, the one with the solenoid having a greater number of
windings, was used for those observations by means of which the oscillation amplitude was
to be determined alternately at two different places of the conducting circuit, while the less
sensitive dynamometer served for the corresponding observations, in order to account for the
influence of small variations of the rotation velocity, to which purpose the same had to stay

458[Note by AKTA:] Ernst Christian Julius Schering (1824-1897), Ernst Friedrich Wilhelm Klinkerfues
(1827-1884) and Heinrich Weber (1839-1928).
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fixed at a certain place of the conducting wire.

First Series.

According to the setup prescribed in Section 18.24, the first series of observations was
performed in order to compare the intensity or oscillation amplitude of the electric oscillations
at two different places of the long closed circuit.

All observations are expressed in parts of a millimeter scale, the image of which, 2 100
divisions away from it and attached to the solenoid, plane mirror on the magnetometer,
was observed in the usual way with a telescope. In order to exploit the whole expansion of
the scale, the telescopes including their scales were placed before the mirrors in such a way
that the solenoid position at rest with the magnet at rest or with the open circuit did not
correspond, as usual, to the center of the scale above the telescope, but to a point near the
beginning of the scale, because the solenoid was always deflected towards one and the same
side from its position at rest.

During the whole series of observations the magnet was kept in continuous uniform ro-
tation. Between the various sets of observation distinguished by number the commutator A
described in Section 18.25 was operated, namely the first time, when it had previously been
open, it was closed, and afterward the top and bottom settings were simply exchanged. Dur-
ing this the commutator B was kept closed in the top setting, likewise the two commutators
C and C ′ with 4 cells each which had been used for the damping of the solenoids before
the beginning of the observations, while the commutator D with 4 cells was opened and
completely taken out of the circuit by re-inserting the piece of wire connecting the first and
fourth cell which had been removed while the two solenoids were damped.

Before starting the observations the solenoids of both dynamometers, as explained in
Section 18.25, were damped as much as possible. — As the setting of the three commutators
B, C, C ′ was kept fixed during the whole series of observations, it sufficed to remark in
the headlines of the various sets whether the circuit was open or closed and whether, in the
latter case, the top or bottom setting of commutator A was employed according to the scheme
in Section 18.25. — With the closed circuit, where the solenoids moved more vividly, the
second averages have been chosen from the subsequently observed elongations to determine
the state of rest.
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Top Setting of Commutator B.

Set number 1, open circuit Set number 2, closed circuit
Top setting of commutator A

Dynamometer no. 1 Dynamometer no. 2 Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State Observed State Observed State
elongations of rest elongations of rest elongations of rest elongations of rest

52.9 + 11.4 901.7 638.2
34.55 −0.30

16.2 −12.0 854.7 876.55 606.8 621.38
34.40 −0.40

52.6 + 11.2 895.1 877.93 633.7 622.35
34.60 −0.35

16.6 −11.9 866.8 880.82 615.2 624.52
34.55 −0.45

52.5 +11.0 894.6 882.70 634.0 625.83
34.70 −0.20

16.9 −11.4 874.8 620.1

Average 34.56 Average −0.34 Average 879.50 Average 623.52

Set number 3, closed circuit Set number 4, closed circuit
Bottom setting of commutator A Top setting of commutator A

843.1 596.2 811.4 574.2
908.8 872.35 644.9 617.95 941.8 880.90 668.5 624.65
828.7 870.45 585.8 616.60 828.6 890.82 587.4 631.87
915.6 873.72 649.9 619.10 964.3 887.95 684.2 629.68
835.0 879.35 590.8 623.20 794.6 872.93 562.9 619.13
931.8 661.3 838.2 666.5

Average 873.97 Average 619.21 Average 883.15 Average 626.33

Set number 5, closed circuit Set number 6, closed circuit
Bottom setting of commutator A Top setting of commutator A

796.7 564.7 748.3 531.5
978.0 885.60 694.1 628.20 1007.5 877.80 714.5 622.93
789.7 887.47 559.9 629.45 747.9 879.30 531.2 623.97
992.5 884.35 704.1 627.15 1013.9 880.67 719.0 624.97
762.7 876.35 540.5 621.37 747.0 876.65 530.7 622.13
987.5 700.4 998.7 708.1

Average 883.44 Average 626.55 Average 878.61 Average 623.50

Set number 7, closed circuit
Bottom setting of commutator A

Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State
elongations of rest elongations of rest

742.8 527.6
1011.1 880.28 716.2 624.38
756.1 883.47 537.5 626.77
1010.6 882.45 715.9 626.00
752.5 879.43 534.7 623.80
1002.1 709.9

Average 881.41 Average 625.24

Comparing the corresponding deflections of both simultaneously observed dynamometers
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which we obtain by subtracting the state of rest observed with open circuit (set number 1)
from that observed with closed circuit and hereby restricting ourselves at first to those cases,
sets numbers 2, 4, 6, where both dynamometers have been positioned symmetrically and
close together and separated from either side from the inductor of the rotating magnet by
means of the long conducting wires, where hence the oscillation amplitude and phase should
always be equal in both dynamometers; we get the ratio of their sensitivities from the ratio
of the observed deflections of both dynamometers. Hence we obtain the sensitivity of the
first dynamometer expressed in parts of that of the second dynamometer:

from sets number 1 and number 2: 844.94/623.86 = 1.3544 ,
from sets number 1 and number 4: 848.59/626.67 = 1.3541 ,
from sets number 1 and number 6: 844.05/623.84 = 1.3530 ,

hence the average ratio of the sensitivity of dynamometer number 1 and of dynamometer
number 2 behaves as

1.3538 : 1 .

After this mutual comparison of the sensitivities of both dynamometers the number of read-
ings of one dynamometer alternatively switched onto two different places of the circuit may
be reduced by making use of the observed deflections of the other dynamometer, always kept
fixed at the same place of the circuit, as if the deflections were observed simultaneously at
the two places of the circuit by means of identical dynamometers. Namely from the corre-
sponding deflections of the auxiliary dynamometer it is now always possible to calculate the
deflections of the main dynamometer as would have been observed if the main dynamometer
had stayed in its original place, for which the comparison of its sensitivity with that of the
other dynamometer is valid, and this comparison calculated for the first position of the main
dynamometer in the circuit may then be compared with the deflection really observed for
the second position of the main dynamometer.

That is, if the obtained ratio of 1.3538 is multiplied by the deflections of the auxiliary
dynamometer observed in the 3rd, 5th, and 7th set, after subtracting the state of rest found
in set number 1,

619.55, 626.89, 625.58 ,

one gets the deflections which would have been observed at the main dynamometer if the
latter had kept its place in the circuit like it has been in the 2nd, 4th, and 6th set.

The following Table contains the values of the calculated deflections in the second col-
umn; the third column contains the actually observed deflections at position II of the main
dynamometer for which these calculated deflections of the main dynamometer at position I
were valid; the fourth column finally lists the differences between both.

Set Calculated deflection Observed deflection Difference
number for position I for position II

3 838.75 839.41 +0.66
5 848.69 848.88 +0.19
7 846.92 846.85 −0.07

Average 844.78 845.05 +0.26
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These deflections, observed in scale units, divided by the distance, 2 100 scale units, of
the mirror from the scale, now yield the tangents of twice the angles designated by v and v′

in Section 18.24. Hence we have for position I:

tan v = tan
1

2
arctan

844.78

2100
= 0.193 601 ,

and for position II:

tan v′ = tan
1

2
arctan

845.05

2100
= 0.193 656 .

But now, according to Section 18.24, the ratio of the squares of the intensities i and i′,
or the squares of the amplitudes of the electric oscillations at the two positions I and II in
comparison where the main dynamometer has been placed by means of the top and bottom
settings of commutator A, behaves as

i2 : i′
2
= tan v : tan v′ ;

hence one gets

i′ = 1.000 142 · i .
Position I in the circuit, however, is almost 5 miles away from the inductor which houses

the rotating magnet, while position II is very close to the inductor. It seems that this indeed
means that the amplitude of the electric oscillations, produced by the rotating magnet in
the whole circuit are somewhat weaker at the great distance from the inductor where the
excitation started, namely at the position denoted by I, than very close to the inductor, at
position II; the difference found, however, is exceedingly small, so that it cannot be safely
established even by means of the most exact observations, it is in fact less than 1/7000 of
the total oscillation amplitude corresponding to the full deflection of the dynamometer. In
fact these observations hence show that at two positions of the circuit at a mutual distance
of almost 5 miles practically no difference of the amplitudes of the electric oscillations can
be detected even by the most exact observations.

Concerning the exactness of the observations it is indeed clear that its closer determina-
tion cannot yet be gained from just so few repetitions as in this first series of observations;
yet, as no deviation from the average surpasses 0.40 scale units, one may consider this aver-
age obtained from all 3 observations as reliable, which corresponds to one part in 845 of the
total oscillation amplitude. — Such an accuracy of the intensity measurements of electric
oscillations surpasses the precision that could be obtained hitherto by means of intensity
measurements of almost any other kind of oscillation. In acoustics and optics the intensity
of sound and light depends on the oscillation amplitude and it is known how far the intensity
measurements of sound and light stay behind this precision. Only the observations of the
oscillation amplitude of a magnetic needle or generally by means of a torsion balance in
unifilar or bifilar suspension after Gauss’ method allow equal or, under favorable conditions,
a still somewhat higher precision.459 — It is worthwhile to remark that the same precision
by means of the same inductor and the same dynamometers, which served for the production
and observation of electric oscillations, 520 of which took place every second, would have
been obtained equally easily in a circuit almost 10 miles long even if the frequency of the

459[Note by AKTA:] See [Web38a] with English translation in [Web41a] and [Web66a]; and [Web94a].
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electric oscillations were increased to more than 1000 per second and the length of the circuit
to more than 30 miles without having to reinforce the wire of the prolonged circuit; for the
electric oscillation and its effect were deliberately weakened during the above experiments;
namely first by excluding one half of the inductor on which the rotating magnet acted; sec-
ond by increasing the static directive force of the solenoids of both dynamometers; otherwise
the length of the scale would not have sufficed to perform the observations. The observed
effects would have been equally strong in a much longer circuit making use of the whole
inductor and decreasing the static directive force of the solenoids, whereby the duration of
their oscillation would have been increased from 15 to 20 seconds.

In order to eliminate any doubt that this precision be just an apparent one and that
the coincidence of the observations repeated only 3 times in the above series of observations
be just accidental, finally a second series of observations were performed by means of the
identical set up and on this very day, the results of which are compiled in the same way for
comparison with the preceding series in the following Table.

Second Series.

The remarks preceding the first series are equally valid for the second series.
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Top Setting of Commutator B.

Set number 1, open circuit Set number 2, closed circuit
Top setting of commutator A

Dynamometer no. 1 Dynamometer no. 2 Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State Observed State Observed State
elongations of rest elongations of rest elongations of rest elongations of rest

30.3 −8.5 858.7 615.7
32.35 −1.65

34.4 +5.2 904.2 879.00 636.1 623.83
32.35 −1.55

30.3 −8.3 848.9 879.68 607.4 624.47
32.20 −1.65

34.1 +5.0 916.7 880.52 647.0 625.15
32.20 −1.50

30.3 −8.0 839.8 876.00 599.2 621.90
32.25 −1.55

34.2 +4.9 907.7 642.2

Average 32.27 Average −1.58 Average 878.80 Average 623.84

Set number 3, closed circuit Set number 4, closed circuit
Bottom setting of commutator A Top setting of commutator A

837.0 596.0 792.5 554.0
918.8 880.60 649.0 624.70 964.0 881.38 683.1 623.30
847.8 885.58 604.8 628.67 805.0 884.72 573.0 628.07
927.9 881.70 656.1 625.75 964.9 880.70 683.2 625.22
823.2 880.00 586.0 624.38 788.0 879.35 561.5 624.25
945.7 669.4 976.5 690.8

Average 881.97 Average 625.87 Average 881.54 Average 625.21

Set number 5, closed circuit Set number 6, closed circuit
Bottom setting of commutator A Top setting of commutator A

794.0 566.4 783.2 559.9
962.4 875.90 678.5 621.10 961.1 877.62 679.0 623.15
784.8 876.73 561.0 621.93 805.1 875.53 574.7 621.42
974.9 879.92 687.2 623.95 930.8 869.10 657.3 617.10
785.1 874.35 560.4 620.02 809.7 872.52 579.1 619.68
952.3 672.1 939.9 663.2

Average 876.73 Average 621.75 Average 873.69 Average 620.34

Set number 7, closed circuit
Bottom setting of commutator A

Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State
elongations of rest elongations of rest

783.5 560.8
969.6 878.25 682.9 623.13
790.3 881.72 565.9 625.67
976.7 882.28 688.0 626.08
785.4 882.12 562.4 625.95
981.0 691.0

Average 881.09 Average 625.21

The ratios of the sensitivity of the first dynamometer, expressed in parts of [the sensi-
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tivity] of the second [dynamometer], from the observations listed in the second column yield
the following values:

from sets number 1 and number 2: 846.53/625.42 = 1.3535 ,
from sets number 1 and number 4: 849.27/626.79 = 1.3549 ,
from sets number 1 and number 6: 841.42/621.92 = 1.3529 ,

hence the average ratio of the sensitivity of the first and the second dynamometer behaves
as

1.3538 : 1 .

Now multiplying this ratio 1.3538 with the observed deflections of the second dynamometer
which was always fixed at its position in the circuit during all observations, namely the
deflections resulting from the difference between the positions at rest with open circuit in
set number 1 and with closed circuit in sets numbers 3, 5 and 7, yield:

627.45, 623.33, 626.79 ,

so the products

849.45, 843.86, 848.55 ,

yield the values of the deflections which would have been observed at the first dynamometer
if the latter had kept its position as in sets numbers 2, 4 and 6, while the deflections of
the positions at rest in sets numbers 3, 5 and 7 correspond to the changed position of the
dynamometer. The following Table lists the deflections from the initial position together
with the corresponding deflections of the first dynamometer in the changed position.

Set Calculated deflection Observed deflection Difference
number for position I for position II

3 849.45 849.70 +0.25
5 843.86 844.46 +0.60
7 848.55 848.82 +0.27

Average 847.29 847.66 +0.37

Herewith, like with the previous series of observations, we get the comparison of the
oscillation amplitude or of the current intensity at position I and II, [respectively]. For
position I:

tan v = tan
1

2
arctan

847.29

2100
= 0.194 134 ,

and for position II:

tan v′ = tan
1

2
arctan

847.66

2100
= 0.194 212 ,

hence, as according to Section 18.24 [one has]

i2 : i′
2
= tan v : tan v′ ,

it follows that
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i′ = 1.000 201 · i .

Thus the difference between the oscillation amplitude at both positions, one of which was
almost 5 miles away from the inductor of the rotating magnet while the other one was close
to the inductor, makes barely 1/5000 of the total oscillation amplitude corresponding to the
total deflection of the dynamometer. It is clear that also this difference is too small in order
to be safely declared even for the most exact observations and therefore also this second
series of observations will confirm that there is practically no difference of the amplitudes of
the electric oscillations that can be safely established even for two positions almost 5 miles
apart.

18.28 Observations to Determine the Difference of the

Phase of Electric Oscillations at Two Different

Places of a Long Closed Circuit

On the basis of an equal setup as described for the two foregoing series of observations, a
third series of observations was performed, however, not for the comparison of the oscillation
amplitudes, but for the determination of the phase difference of the electric oscillations at
two different places of a long circuit. To this aim, like with the previous series of observations,
the commutator A described in Section 18.25, was closed, if previously open, between the
various sets of observation distinguished by number, or it was opened if previously closed,
that means, the top and bottom setting were exchanged. Commutator B, on the other hand,
was kept closed, but in the bottom setting (instead of in the top setting as before). Finally,
the two commutators C and C ′, equipped with 4 cells each, used to dampen the solenoids
before starting the observations, were again kept closed and set exactly as before during the
observations. After damping the solenoids, the commutator D was opened before starting
the observations and completely excluded from the circuit by means of a wire connecting its
first and last cell.

Third Series.
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Bottom Setting of Commutator B.

Set number 1, open circuit Set number 2, closed circuit
Top setting of commutator A

Dynamometer no. 1 Dynamometer no. 2 Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State Observed State Observed State
elongations of rest elongations of rest elongations of rest elongations of rest

33.9 −3.5 849.5 995.0
35.95 −3.70

38.0 −3.9 917.7 883.25 263.1 626.67
35.95 −3.65

33.9 −3.4 848.1 889.37 985.5 630.87
35.95 −3.20

38.0 −3.0 943.6 889.15 289.4 629.60
35.95 −3.40

33.9 −3.8 821.3 875.85 954.1 619.50
36.00 −3.45

38.1 −3.1 917.2 280.4

Average 35.96 Average −3.48 Average 884.41 Average 626.66

Set number 3, closed circuit Set number 4, closed circuit
Bottom setting of commutator A Top setting of commutator A

812.8 940.0 943.2 363.1
956.7 882.55 317.6 625.27 809.5 875.45 873.8 619.30
804.0 876.10 925.9 620.57 939.6 873.17 366.5 617.70
939.7 873.35 312.9 618.70 804.0 875.20 864.0 618.62
810.0 878.10 923.1 622.32 953.2 880.35 380.0 622.13
952.7 330.2 811.0 864.5

Average 877.52 Average 621.72 Average 876.04 Average 619.44

Set number 5, closed circuit Set number 6, closed circuit
Bottom setting of commutator A Top setting of commutator A

925.7 366.2 919.8 369.0
836.3 881.82 879.8 625.35 845.1 886.12 881.2 627.52
929.0 877.45 375.6 622.35 934.5 885.68 378.7 627.53
815.5 875.10 858.4 618.15 828.6 880.35 871.5 624.62
940.4 879.10 380.2 621.40 929.7 878.32 376.8 622.53
820.1 866.8 825.3 865.0

Average 878.37 Average 621.81 Average 882.62 Average 625.55

Set number 7, closed circuit
Bottom setting of commutator A

Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State
elongations of rest elongations of rest

898.0 367.5
850.5 875.77 870.9 619.52
904.1 872.63 368.8 619.13
831.8 870.10 868.0 618.45
912.7 868.52 369.0 615.77
816.9 857.1

Average 871.76 Average 618.22

For the ratio of the sensitivity of the first dynamometer, expressed in parts of the second
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one, the observations of this third series yield the following values:

from sets number 1 and number 2: 848.45/630.14 = 1.3464 ,
from sets number 1 and number 4: 840.08/622.92 = 1.3486 ,
from sets number 1 and number 6: 846.66/629.03 = 1.3460 ,

hence the average ratio of the respective first and second dynamometer sensitivities equals

1.3740 : 1 .

Now multiplying this ratio 1.3740 by the observed deflections of the second dynamometer
which has kept its position in the circuit during all observations, namely the deflections
resulting from the differences of the positions of rest with open circuit in set number 1 and
with closed circuit in sets numbers 3, 5 and 7, one obtains:

625, 20, 625.29, 621.70 ,

so that one gets the products

842.15, 842.26, 837.44 ,

which yield the values of the deflections which would have been observed at the first dy-
namometer if the solenoid had kept its positions during the observations of sets numbers 2,
4 and 6, while the deflections taken from the positions of rest of sets numbers 3, 5 and 7
correspond to the changed position of the solenoid in the circuit. The following Table lists
the deflections of the solenoid of the original position and the corresponding deflections of
the changed position.

Set Calculated deflection Observed deflection Difference
number for position I for position II

of the solenoid of the solenoid
3 842.15 841.56 −0.59
5 842.26 842.41 +0.15
7 837.44 835.80 −1.64

Average 840.62 839.92 −0.70

Also this series of observations has been repeated again in order to test the exactness
attributed to these observations and we let this fourth series of observations follow immedi-
ately.

Fourth Series.
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Bottom Setting of Commutator B.

Set number 1, open circuit Set number 2, closed circuit
Top setting of commutator A

Dynamometer no. 1 Dynamometer no. 2 Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State Observed State Observed State
elongations of rest elongations of rest elongations of rest elongations of rest

44.8 +4.3 840.9 592.2
36.50 −1.25

28.2 −6.8 917.6 879.82 650.3 621.70
36.35 −1.25

44.5 +4.3 843.2 880.80 594.0 622.37
36.20 −1.15

27.9 −6.6 919.2 882.23 651.2 623.40
36.25 −1.20

44.6 +4.2 847.3 884.05 597.2 624.70
36.35 −1.30

28.1 −6.8 922.4 653.2

Average 36.33 Average −1.23 Average 881.72 Average 623.04

Set number 3, closed circuit Set number 4, closed circuit
Bottom setting of commutator A Top setting of commutator A

794.5 559.9 772.9 543.9
970.1 882.67 687.4 623.90 1005.7 886.77 712.1 626.20
796.0 882.95 560.9 624.00 762.8 883.15 536.7 623.57
969.7 885.48 686.8 625.82 1001.3 882.50 708.8 623.15
806.5 887.97 568.8 627.70 764.6 882.25 538.3 623.00
969.2 686.4 998.5 706.6

Average 884.77 Average 625.36 Average 883.67 Average 623.98

Set number 5, closed circuit Set number 6, closed circuit
Bottom setting of commutator A Top setting of commutator A

744.1 524.2 988.3 698.9
1023.3 883.92 724.3 624.45 779.0 883.07 550.1 623.95
745.0 883.75 525.0 624.32 986.0 879.20 696.7 621.00
1021.7 885.80 723.0 625.80 765.8 878.93 540.5 620.75
754.8 883.37 532.2 624.15 998.1 884.37 705.3 624.72
1002.2 879.68 709.2 621.60 775.5 547.8
795.5 535.8

Average 883.30 Average 624.06 Average 881.39 Average 622.61

Set number 7, closed circuit
Bottom setting of commutator A

Dynamometer no. 1 Dynamometer no. 2

Observed State Observed State
elongations of rest elongations of rest

960.0 678.2
805.4 884.25 570.5 625.37
966.2 882.20 682.3 623.75
791.0 876.15 559.9 619.38
956.4 875.35 675.4 618.87
797.6 564.8

Average 879.49 Average 621.84
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From the observations of this fourth series we obtain the following values for the sensitivity
of the first dynamometer in parts of that of the second dynamometer:

from sets number 1 and number 2: 845.39/624.27 = 1.3542 ,
from sets number 1 and number 4: 847.34/625.21 = 1.3553 ,
from sets number 1 and number 6: 845.06/623.84 = 1.3546 ,

hence the average ratio of the respective first and second dynamometer sensitivities equals

1.3547 : 1 .

Now multiplying this ratio 1.3547 by the observed deflections of the second dynamometer
which has kept its position in the circuit during all observations, namely the deflections
resulting from the differences of the positions of rest with open circuit in set number 1 and
with closed circuit in sets numbers 3, 5 and 7, one obtains:

626.59, 625.29, 623.07 ,

so we get the products

848.84, 847.10, 844.10 ,

which yield the values of the deflections which would have been observed at the first dy-
namometer if the solenoid had kept its positions during the observations of sets numbers 2,
4 and 6, while the deflections taken from the positions of rest of sets numbers 3, 5 and 7
correspond to the changed position of the solenoid in the circuit. The following Table lists
the deflections of the solenoid of the original position and the corresponding deflections of
the changed position.

Set Calculated deflection Observed deflection Difference
number for position I for position II

of the solenoid of the solenoid
3 848.84 848.44 −0.40
5 847.10 846.97 −0.13
7 844.10 843.16 −0.94

Average 846.68 846.19 −0.49

Comparing these averages found in the fourth series of observations with those obtained
from the third series of observations, we find the ratio of the deflections at both positions
in such an agreement, that it obviously suffices for all further considerations to take into
account the averages of both series, namely for the deflections of the solenoid at position I:

843.65 ,

and at position II:

843.055 .

Now this yields the following values for the determination of the difference of the oscillation
phases at position I and II according to Section 18.24:
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u =
1

2
arctan

843.65

2100
= 10◦56′37.0′′ ,

v′′ =
1

2
arctan

843.055

2100
= 10◦56′11.7′′ .

The latter task would need a minor correction if, according to the result of the previous
Section, one were to take into account not the oscillation amplitudes at positions I and II
considered as equal, but instead the little difference, although it cannot be guaranteed in
any way. In that case, we would have to put v′′ = 10◦56′13.2′′. Here however we will keep
to the first task because there is no reason to assume such an inequality of the oscillation
amplitude because in practice it cannot be safely demonstrated at all.

This finally yields the determination of the phase difference 2λ at both positions I and
II according to Section 18.24

sin2 λ =
u− v′′

2 sin u(cosu+ [u− v′′] sin u)
= 0.000 329 ,

hence

2λ = 2◦4′43′′ ,

which corresponds to about 1/87 of the period of oscillation.
Also this determination of the phase difference is based on such a small difference of

the observed deflections, being equal to only 3/5 of a scale unit, that it can be just as
little considered as safely established by experience, as the small difference of the oscillation
amplitude in the previous Section.

18.29 Result of the Test

The observations described in Sections 18.27 and 18.28 serve to test the laws developed on the
previous Section in what concerns the behavior of the oscillation amplitudes and oscillation
phases at various positions of a closed conductor and thereby the identity of amplitudes and
phases has been established even for very fast oscillations in a very long closed conducting
wire. The method used for these observations of simultaneous corresponding observations
by means of two dynamometers with exactly corresponding periods of oscillation allowed
thereby a very high exactness, and this test could be carried out much further if the means
for a still faster rotation of the magnet and for the production of still longer circuits were
available. Such a further expansion of the test, however, would not suffice, as it seems,
to justify the effort and the expenditure to be invested, and their expansion up to 520
oscillations per second and up to a length of 10 miles of the circuit would already suffice.
Even if amplitudes and phases of electric oscillations in closed conductors were not generally
equal everywhere, it is indeed clear that yet their differences should have to become the
smaller, the longer the period of oscillation depending on the velocity of rotation, and the
shorter the conducting wire would be, so that finally these differences should have to become
unnoticeable with increasing period of oscillation and decreasing length of the conducting
wire. Hence the intended test can only arrive at its aim if it were considerably extended
beyond the limits within which such a compensation would have to occur in any case, and the

363



question therefore arises whether a length of conductor of 10 miles and a period of oscillation
of 1/520 of a second would serve this purpose.

Let a simple wave train start from a point and consider the same during the first cycle.
Let the wave period be 1/520 of a second and the propagation velocity be equal to the usual

c
√

1
2
= 41 950 miles [per second]. In this case, if it were realizable, a decrease of the amplitude

of the electric oscillation would take place as the distance increases from the starting position
of the wave train together with an increase of the phase difference with the same distance
for any moment, both of which are easy to determine.

In fact, for such a simple wave train the displacement of an electric particle, σ, can be
represented by the following equation:

σ = Ae−εt · sin 520π
(

t− s

c

√
2
)

,

where, according to Section 18.15, we may approximately put

ε =
c2

16πα2kM ′′ ,

and

M ′′ = 2 log
8a

α
.

As now further, according to Section 18.16,

1

πα2k
= w′ =

16 · 106
πα2 · c2 ,

hence

ε =
106

2πα2 log 8a
α

,

and with 2πa = 76 · 106 millimeter and α = 1/8 millimeter for our circuit, we obtain

ε = 477 000 .

The distance of s = 30 · 106 millimeter (about 5 miles) now corresponds to a duration of

t =
s

c
·
√
2 =

1

8177
second,

hence the ratio of the amplitudes at the starting point and at a distance of 5 miles (equals):

1 : e−εt = 1 : e−54.7 = 573 · 1021 : 1 ,
whence the amplitude has become so small at a distance of 5 miles that it completely vanishes
compared to that of the wave train at its starting point.

At a given moment the phase difference at the starting point of the wave train and at a
distance = s from there is represented by

520
πs

c
·
√
2 ,
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thus equals 0.0636 · π = 10◦27′ for s = 38 · 106, a phase difference which can by no means
be considered unnoticeable in view of the exactness allowed by the observations according
to the previous Section.

According to these rough figures taken from the consideration of the elementary waves,
the experiments described in the previous Sections may be considered as sufficient for the
test of the laws established in the preceding Section for the ratios of the amplitudes and
phases in closed conductors.

Finally let us remark that the identity of the oscillation amplitude at different positions
at a large mutual distance of the closed conducting wire serves as proof, too, that the wire
braided with silk may be considered as sufficiently insulated for electric currents like those
produced by the rotating magnet; for with an insufficient insulation the currents would have
been weaker far away from the inductor than closer to it.

18.30 Observations of the Dependence of the Oscilla-

tion Amplitude on the Rotation Velocity of the

Magnet

After having confirmed the identity of the oscillation amplitudes and oscillation phases for
the longest circuit and the fastest rotation velocity of the magnet possible with the present
means, whence it is clear that this identity holds all the more for shorter circuits and lower
rotational velocities, essentially only the test of the law of the dependence of the oscillation
amplitude on the rotation velocity of the magnet for the circuit in question remains for the
quantitative test of the laws developed in the preceding Section.

From the identity of the oscillation amplitudes and oscillation phases in all parts of a
closed conductor, it follows all by itself that the intensity of the current in any point always
equals the average of the current intensity in the whole conductor. Now the law for the
averages of the current intensities in closed conductors depending on the average values of
the electromotive forces has been developed in Section 18.9, independent of the consideration
of the shape of the closed conductor, whence in Section 18.21 the law of this dependence
has been determined more closely for the case when this average value of the electromotive
forces changes in proportion to the sine which increases in proportion to time, which happens
when the electromotive forces are produced by rotation of a small magnet. Hence putting
namely the average electromotive force equal to g0 sin µt, this yielded the following law for
the average current intensity

i = − g0
w′ · sin ρ0 cos(µt+ ρ0) ,

where w′ denoted the resistance of the unit length of the conductor and where we had

ρ0 =
πac2w′

4µ
∫

M ′′
0 ds

.

But, according to this law, with a magnet of given strength and position and a given circuit,
for which the resistance w′ and the coefficient

∫

M ′′
0 ds depending on the shape of the circuit,

as well as the factor g0 depending on the strength of the magnet and on its position in the
closed circuit, have definite values, the current intensity i depends still only on the faster
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or slower rotation velocity to be determined by µ, with µ/[2π] designating the number of
revolutions per unit time.

However, besides the law of the dependence of the current intensity on the rotation velocity
of the magnet, also the dependence of the absolute value of the current intensity i on the
absolute values of the constants w′,

∫

M ′′
0 ds and g0 in addition could be subjected to a further

test; but in what concerns the dependence on w′ and g0, the same has already been tested
for vanishing values of µ, which yields ρ0 = π/2 and hence

i =
g0
w′ ,

which constitutes the well known Ohm’s law firmly based on experience; but in what concerns
the dependence on

∫

M ′′
0 ds, this test would be easy to perform as soon as there were analytical

methods at hand to determine the value of the constant
∫

M ′′
0 ds from the shape of the closed

conductor. The knowledge of this value for a circular conductor is not sufficient, because
the observations requiring one inductor and two dynamometers cannot be carried out using
a circular conductor.

The performance of the demanded quantitative test, however, requires an exact knowledge
of the instruments by means of which the observations are made, in particular an exact
knowledge of the dynamometers in use. Provided a practical device in order to regulate the
mutual position of the multiplier and the solenoid of each dynamometer and the period of
oscillation of the solenoid is at hand, this above all is a matter of practical positioning and
then of the test of the instrument. The positioning of the instrument is to be performed in
such a way that the axis of the solenoid is horizontal and parallel to the magnetic meridian;
the axis of the multiplier housing the solenoid shall be equally horizontal and perpendicular
to the axis of the solenoid. The center of the multiplier is to coincide with the center of
the solenoid. If this is approximately done guided by external markings, it remains to be
discussed how one could test by observations performed with the same instrument, whether
the conditions are realized exactly, or how large the remaining deviations still are, as well
as which experiments are needed to determine also those elements of the instrument, the
knowledge of which is required for the exact quantitative determinations by means of the
observations performed with them.

18.31 Test of the Dynamometer

Aiming at such a test of the dynamometer, we let the current of a constant voltaic pile
equally pass through the multiplier of a tangent galvanometer, used to determine the current
intensity, now forward, now backward, through the solenoid and through the multiplier,
while the latter is connected with the solenoid, now in parallel, now crosswise, which is
easily performed by means of a commutator whose twin cells are connected to the ends of
the solenoid and multiplier wire. In all these 4 cases the deflection of the solenoid from the
original equilibrium position is observed in the familiar way. These observations serve to
determine

1. the deviation, µ, of the solenoid axis from the magnetic meridian at the original position
of equilibrium,

2. the deviation, δ, of the angle between the solenoid axis and the multiplier axis from a
right angle,
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3. the ratio, ε, of the directive force, exerted by terrestrial magnetism on the solenoid
with given current intensity, and the static directive force of the solenoid,

4. the ratio, κ, of the directive force, exerted by the multiplier on the solenoid with given
current intensity in both of them, and the static directive force of the solenoid.

The observation yields the deflection of the solenoid from the original equilibrium position
in scale units, and dividing this number of scale units by double the distance, R, between
the mirror and the scale in scale units, we get for smaller deflections the same expressed in
arc values, which we denote by a, b, c, d for the 4 cases discussed. Then we get

κ =
1

2

(

c+ b

c− b
+
d+ a

d− a

)

,

ε =
da− cb− (db− ca)κ

d+ c− b− a
,

δ =
1

2ε

(

c+ b

c− b
− d+ a

d− a

)

,

µ =
1

κ

(

ε− (1 + κ − δε)a

)

.

As a proof we only have to determine the static, the geomagnetic, and the electrodynamic
torques acting on the solenoid, whose sum is to be put equal to zero for the equilibrium at
the observed deflection.

Let s be the static directive force, then the static torque, at the deflection, ϕ, from the
static equilibrium that had existed before a current passed through the circuit, is given by

= −s sinϕ .

Let further i be the current intensity, positive if the current carrying solenoid is equivalent
to a magnet pointing northward with its north pole, let mi be the geomagnetic directive
force, with m being the product of the horizontal part of terrestrial magnetism and the area
encircled by the solenoid wire; finally let µ, as already mentioned, be the angle between the
solenoid axis and the magnetic meridian at static equilibrium; then the geomagnetic torque
equals

= −mi sin(ϕ+ µ) ,

or, when µ is very small,

= −mi(sinϕ+ µ cosϕ) .

Let finally (π/2 + δ) be the angle between the multiplier axis pointing eastward and
the solenoid axis pointing northward; let further ei2 be the electrodynamic directive force
exerted by the multiplier on the solenoid, with positive e when multiplier and solenoid are
connected in such a way that the multiplier acting at a distance with i positive is equivalent
to a magnet with its south pole pointing eastward; then the electrodynamic torque equals

= ei2 cos(ϕ− δ) ,
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or, if δ is very small,

= ei2(cosϕ+ δ sinϕ) .

Now the equilibrium condition for the solenoid with the observed deflection, ϕ, demands
that the sum of the three torques equals to zero, that is

−s sinϕ−mi(sinϕ+ µ cosϕ) + ei2(cosϕ+ δ sinϕ) = 0 .

Dividing this equation by −s cosϕ and noting that tanϕ may be replaced by the arc value
of the observed deflection, that is by a in the first of the four cases considered, we obtain the
following equation

a+
mi

s
(a+ µ)− ei2

s
(1 + δa) = 0 .

In this first case, the current passed the solenoid wire in the forward direction and the solenoid
was connected in parallel with the multiplier. In the second case, with the current also passing
the solenoid wire in the forward direction but with the solenoid connected crosswise with
the multiplier, the current intensity i stays positive, but e changes sign while the arc value
of the deflection b observed in this case has to replace tanϕ, whence

b+
mi

s
(b+ µ) +

ei2

s
(1 + δb) = 0 .

In the third case, with the current passing the solenoid wire backwards, but with the solenoid
connected in parallel with the multiplier as in the first case, i changes sign and e is positive
as in the first case, while the arc value of the deflection, c, observed in this case has to replace
tanϕ, whence

c− mi

s
(c+ µ)− ei2

s
(1 + δc) = 0 .

Finally in the fourth case with the current passing the solenoid wire backwards as in the third
case, and with the solenoid connected crosswise with the multiplier, as in the second case, i
is negative as in the third case and e is negative as in the second case, while the arc value of
the deflection, d, observed in this case, has to replace tanϕ, whence

d− mi

s
(d+ µ) +

ei2

s
(1 + δd) = 0 .

Replacing κ by mi/s and ε by ei2/s we get the given values of κ, ε, δ and µ from these four
equations.

Let us take as example the dynamometer used for the following experiments for which
the observations yielded in terms of scale units:

2Ra = +440.01 ,

2Rb = −443.81 ,

2Rc = +448.26 ,

2Rd = −450.68 .

Here we had 2R = 5075 scale units. It now follows from this that
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κ = 0.008 484 ,

ε = 0.088 0 ,

δ = −0.039 7 ,

µ = +0.032 3 .

The values of κ and ε, which are easy to refer to the normal values valid for the unit of
the current intensity after i has been measured by means of a tangent galvanometer, yield
the figures for the strength of the solenoid and for the sensitivity of the dynamometer. The
other two values, δ and µ, on the other hand, refer to the setup and indicate the deviations
of this setup under the conditions defined for them. In fact, this yields that, instead of a
right angle, the solenoid axis makes the angle

π

2
+ δ = 87◦43′31′′

with the multiplier axis and that the solenoid axis, instead of coinciding with the magnetic
meridian at the static equilibrium, deviates eastward from it by the angle

µ = 1◦51′ .

One can see from this that, with the instrument being equipped with fine gradings, the errors
of the setup are very easy to correct. — Even if these small errors remain uncorrected, the
observations made with this instrument can still be refined and those values can be calculated
that would have been obtained for an exact setup.

For the purpose of the following oscillation experiments the latter deviation, designated
by µ, does not come into question because of the very rapidly alternating sign of i, but only
the deviation designated by δ, and for a deviation x′ observed in terms of scale units, we
easily arrive at the corrected value x, namely

x = x′ − δx′2

2R
= x′ +

x′2

127 780
.

The observations presented in the following Sections were the beginning of a common
work performed by myself and R. Kohlrausch which has been interrupted by the illness and
the passing away of my dear friend.460 The devices used for the uniform fast rotation of the
magnet and for the measurement of this velocity including the respective observations have
been performed by him.

18.32 First Series

The following series of observations has been performed jointly by R. Kohlrausch and myself
on April 12, 1857. It concerns the dependence of the oscillation amplitude on the rotation
velocity of the magnet and was made using four different circuits but always using the same

460[Note by AKTA:] Rudolf Hermann Arndt Kohlrausch (1809-1858) had collaborated with Weber on the
measurment of his fundamental constant c, [Web55b] with English translation in [Web21c]; [WK56] with
English translation in [WK03] and Portuguese translation in [WK08]; [KW57] with English translation in
[KW21]; see also [WK68]. See Chapters 5, 6 and 7.
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dynamometer and the same inductor coil, the latter consisting of one piece of a very fine
copper wire, about 1500 meters long and having a resistance of 23 · 1012 in absolute units,
which was the constant part of the four circuits. In addition we used

in the first circuit A a piece 2800 meters long with resistance = 8.79 · 1012,
in the second circuit B a piece 5600 meters long with resistance = 18 · 1012,
in the third circuit C a piece 8000 meters long with resistance = 27 · 1012,

in the fourth circuit D a piece 10800 meters long with resistance = 35 · 1012.

The scale was in a fixed position at a distance of 2537.5 scale units from the little plane
mirror fixed at the solenoid and made a right angle with the perpendicular of the mirror at
the static equilibrium of the solenoid, and the vertical plane of the perpendicular of the mirror
cut it at the 800th scale mark. The telescope mounted behind the scale could be displaced
in such a way that, at static equilibrium of the solenoid, now the 800th scale marking, now a
higher or lower scale marking could be observed, in order to enable observing the deflection
of the solenoid also when it surpassed half of the scale width.
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Circuit Oscillation Position Deflected Deflection in x′ x
number of static position scale units
m equilibrium y

288.80 361.69 1475.85 +1114.16 +1111.84 +1121.51
217.80 362.52 1242.34 +879.82 +879.80 +885.86
141.77 363.13 892.45 +529.32 +526.91 +529.08
106.46 363.13 710.41 +347.28 +343.61 +344.53

A 289.88 363.13 1480.61 +1117.48 +1115.01 +1124.74
170.26 1210.44 857.52 −352.92 −349.96 −349.00
140.46 1210.44 681.63 −528.81 −527.08 −524.90
215.10 1210.44 328.91 −881.53 −881.42 −875.34
281.68 1210.44 97.05 −1113.39 −1109.88 −1100.24
106.76 800.15 630.73 −169.42 −169.23 −169.01
142.74 800.15 561.78 −238.37 −237.84 −237.40
216.80 800.15 463.11 −337.04 −335.55 −334.67
290.26 800.15 410.90 −389.25 −386.95 −385.78

B 106.84 800.24 969.02 +168.78 +168.59 +168.81
144.15 800.24 1040.27 +240.03 +239.49 +239.94
217.90 800.24 1136.55 +336.31 +334.84 +335.72
288.04 800.24 1185.91 +385.67 +383.44 +384.59
107.12 800.24 897.67 +97.43 +97.39 +97.46
144.32 800.24 931.32 +131.08 +131.00 +131.13
214.80 800.24 988.77 +170.89 +170.69 +170.92
289.62 800.24 988.77 +188.53 +188.26 +188.54

C 108.60 800.24 701.11 −99.13 −99.09 −99.01
143.68 800.24 669.66 −130.58 −130.50 −130.37
219.78 800.24 628.57 −171.67 −171.47 −171.24
286.90 800.24 611.76 −188.48 −188.21 −187.94
108.42 800.58 731.93 −68.65 −68.63 −68.59
144.44 800.58 711.98 −88.60 −88.57 −88.51
217.68 800.58 689.18 −111.40 −111.35 −111.25
289.56 800.58 679.54 −121.04 −120.97 −120.86

D 430.80 800.58 675.17 −125.41 −125.33 −125.21
433.06 801.30 926.27 +124.97 +124.89 +125.01
109.06 801.30 869.69 +68.39 +68.37 +68.41
143.50 801.30 888.91 +87.61 +87.58 +87.64
217.12 801.30 912.31 +111.01 +110.96 +111.06
286.92 801.30 922.00 +120.70 +120.63 +120.74

The values of x′ in the penultimate column are calculated using the deflections y listed
in the foregoing column by means of the formula x′ = y − y3/50752, whence we obtain
x′ = 2R tanϕ with sufficient precision when the observed deflection y = R tan 2ϕ. Only for
the observations on circuit A where the telescope was displaced, the deflections listed in the
third column from the right do not directly give the values of R tan 2ϕ, but the latter must
be calculated as follows. Separating the value of the deflection, y′, given in this column into
two parts, namely into part y′′ which reaches from the scale mark observed for the static
equilibrium to the 800th scale mark, and into part y′′′ reaching from the 800th scale mark
to the scale mark observed for the deflection, we get
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y = R tan 2ϕ =
y′

1− y′′y′′′

R2

,

from which the value of x′ = 2R tanϕ is easily calculated for R = 2537.5.
Now the values of x′ calculated in this way have finally to be corrected as indicated at

the end of the previous Section, whence the values of x = x′ + x′2/127 780 listed in the last
column are calculated.

18.33 Calculations of the Observations

The described observations serve to test the law developed in the previous Section concerning
the dependence of the oscillation amplitude on the rotation velocity of the magnet. Accord-
ing to Section 18.24 the oscillation amplitude is expressed by i/[µE], where i denotes the
maximum intensity of the electric currents accompanying the electric oscillations. As now
further according to Section 18.30 the current intensity in each moment of the oscillation is
given by the value

− g0
w′ sin ρ0 cos(µt+ ρ0) ,

hence the maximum intensity of the currents accompanying the electric oscillations is given
by

i =
g0
w′ sin ρ0 ,

where we had

tan ρ0 =
πac2w′

4µ
∫

M ′′
0 ds

,

then, according to Section 18.24, we get the following expression for the oscillation amplitude:

i

µE
=

πac2g0

µE
√

16µ2(
∫

M ′′
0 ds)

2 + π2a2c4w′2
.

Further the observations yield according to Section 18.24

i =
1

πa′
·
√

aS tan v

nn′ ,

where v denotes the observed deflection of the solenoid, hence the oscillation amplitude
equals

i

µE
=

1

πa′µE
·
√

aS tan v

nn′ =
πac2g0

µE
√

16µ2(
∫

M ′′
0 ds)

2 + π2a2c4w′2
.

For the test of the obtained laws by means of the observations this yields the value
denoted by ±x = 2R tan v in the last column of the observation Table in the preceding
Section as given by
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±x =
π4aa′2nn′c4g20

16µ2(
∫

M ′′
0 ds)

2 + π2a2c4w′2 · 2R
S

.

But now µ/π is the oscillation number461 denoted by m in the Table and g0 is proportional
to the rotation velocity according to the laws of magnetic induction, or g0 = mg′0, where g

′
0

denotes the value of g0 for the oscillation number m = 1; hence we have

±x =
π2aa′2nn′c4g′0

2m2

16(
∫

M ′′
0 ds)

2 ·m2 + a2c4w′2 · 2R
S

,

or, putting

C =
π2a′2nn′g′0

2

aw′2 · 2R
S

,

[and]

P =
16(
∫

M ′′
0 ds)

2

a2c4w′2 ,

[one gets]

C − Px− x

m2
= 0 ,

where C and P have constant values for all observations which have been made by means of
the same circuit, the same rotating magnet, and the same dynamometer. Here the value of
x, ignoring its sign, is always to be taken positive.

Hence the observations listed in the Table of the preceding Section yield the following
equations for the determination of the constants C and P for the circuit A:

C − 1121.51P − 1121.51

288.802
= 0 ,

C − 885.86P − 885.86

217.802
= 0 ,

C − 529.08P − 529.08

141.772
= 0 ,

C − 344.53P − 344.53

106.462
= 0 ,

C − 1124.74P − 1124.74

289.882
= 0 ,

C − 349.00P − 349.00

107.262
= 0 ,

C − 524.90P − 524.90

140.462
= 0 ,

461[Note by AKTA:] In German: Schwingunszahl. On page 366 of Section 18.30 Weber had designated by
µ/(2π) the number of revolutions per unit time.

373



C − 875.34P − 875.34

215.102
= 0 ,

C − 1100.24P − 1100.24

281.682
= 0 ,

from which we obtain the most probable values of C and P , namely:

C = 0.037 978 , P = 0.000 021 865 .

Calculating the values of C and P for the circuits B, C, and D in a similar way, one gets
the results listed in the following Table.

Circuit C P
A 0.037 978 0, 000 021 865
B 0.022 795 0.000 047 050
C 0.015 174 0.000 068 093
D 0.011 869 0.000 087 274

Now finally calculating the values of x from the given values of m one gets, in progressive
order of the values of m, the following comparison of the calculated values of x and those
found by observation:

A B
m Observed Calculated Difference m Observed Calculated Difference

value of x value of x value of x value of x
106.46 344.53 344.96 −0.43 106.76 169.01 169.12 −0.11
107.26 349.00 349.11 −0.11 106.84 168.81 169.28 −0.47
140.46 524.91 523.48 +1.43 142.74 237.40 237.13 +0.27
141.77 529.08 530.29 −1.21 144.15 239.94 239.51 +0.43
215.10 875.34 873.50 +1.84 216.80 334.67 333.63 +1.04
217.80 885.86 884.34 +1.52 217.90 335.72 334.68 +1.04
281.68 1100.24 1101.83 −1.59 288.04 384.59 385.69 −1.10
288.80 1121.51 1121.81 −0.30 290.26 385.78 386.89 −1.11
289.88 1124.74 1124.77 −0.03

C D
107.12 97.46 97.74 −0.28 108.42 68.59 68.87 −0.28
108.60 99.01 99.25 −0.24 109.06 68.41 69.27 −0.86
143.68 130.37 130.21 +0.16 143.50 87.64 87.38 +0.26
144.32 131.13 130.69 +0.44 144.44 88.51 87.79 +0.72
214.80 170.92 169.04 +1.88 217.12 111.06 109.41 +1.65
219.78 171.24 170.89 +0.35 217.68 111.25 109.52 +1.73
286.90 187.94 189.10 −1.16 286.92 120.74 119.38 +1.36
289.62 188.54 189.64 −1.10 289.56 120.86 119.69 +1.17

430.80 125.21 128.09 −2.88
433.06 125.01 128.17 −3.16
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Now this first test can be tied to another test. Indeed, according to the established law
the two constants C and P should be inversely proportional to the square of the average
resistance of the unit length of the conducting wire, w′; but the other quantities on which
their values depend according to the presented formulas:

C =
π2a′2nn′g′0

2

aw′2 · 2R
S

,

[and]

P =
16(
∫

M ′′
0 ds)

2

a2c4w′2 ,

are not equal for all four circuits to which the observations described in the previous Section
refer, but the magnitude g′0 on which the constant C depends, and the magnitude

∫

M ′′
0 ds

on which the constant P depends, have a special value for each circuit. But now designating
the total length of the conducting wire by l which also has different values for the four
circuits and minding that g′0 sinµt at the time t denotes the average electromotive force
exerted by the rotating magnet at the velocity for which m = 1 on any unit length of the
total conducting wire; then lg′0 sinµt at the time t denotes the electromotive force exerted by
the rotating magnet at the velocity for which m = 1 on the total conducting wire. As now
the induction by the rotating magnet acted only on the inductor wire common to all four
circuits, it follows that lg′0 has the same value for all four circuits; hence the formula

C =
π2a′2nn′g′0

2

aw′2 · 2R
S

=
π2a′2nn′(lg′0)

2

a
· 2R
S

· 1

(lw′)2
,

yields that the values of the constant C must be inversely proportional to the squares of the
resistances of these four circuits; for lw′ designates the resistance of the whole circuit, as w′

was the average resistance of the unit length.

In order to test the established law also with this respect, the values of the resistances of
these four circuits presented at the beginning of the previous Section must be added to the
observations considered, we note, however, that their determination was not considered the
main purpose of the previous considerations, but, without claiming special exactness (they
were based partly on the mere comparison in terms of wire lengths) was to serve only as a
short description to distinguish the four circuits. However, we use also these determinations
for a test of the established law because they, like all other observations presented, had been
determined several years ago without respect to the laws developed here.

But, as mentioned at the beginning of the previous Section, according to this determi-
nation the resistances of the four circuits are roughly in proportion to

31.79 : 41 : 50 : 58 ,

while, according to the established law, dividing the number 6.2158 by
√
C, the same pro-

portions are obtained as

31.89 : 41.17 : 50.46 : 57.06 ,

which agrees quite well with the above experimental results.
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18.34 Second Series

The following series of observations, also jointly performed by Kohlrausch and myself on
April 18 and 22, 1857, is basically a repetition of the preceding one, but other than the
whole conducting wire consisting of simply wound wire spools in the former series, this was
valid in the following [series] only for circuit A, while another circuit was formed by switching
a twin wire E into circuit A. This twin wire E was composed of two very fine copper wires
braided by silk and hence insulated, but fixed together by another common braiding, in order
to reduce the damping of electric oscillations caused by mutual induction in accordance with
the prescription of Section 18.26, which should thereby be tested. — This damping was in a
way additionally reduced by the fact that the twin wire E was mounted on a special support
keeping all windings at least 20 millimeters away from each other instead of being wound up
on a spool.

According to Section 18.32 the circuit A had a length of some 4300 meters with a re-
sistance, in absolute measure, equal to 3179 · 1010. The twin wire E had a length of 1412
meters (hence the single wire was 2824 meters long) and a resistance equal to 4292 · 1010.

The setup of the scale and the reading telescope was identical with what was mentioned
in Section 18.32 for the previous series of observations. — For each circuit, two series of
observations have been performed, the first one on April 18, the second one on April 22.
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Circuit Oscillation Position Deflected Deflection in x′ x
number of static position scale units
m equilibrium y

107.22 801.98 728.42 −73.56 −73.54 −73.50
139.66 801.98 681.37 −120.61 −120.54 −120.40
214.10 801.98 542.95 −259.03 −258.36 −257.84
279.44 801.98 402.21 −399.77 −397.29 −396.06

A + E 108.02 801.98 876.36 +74.38 +74.36 +74.40
141.82 801.98 926.06 +124.08 +124.01 +124.13
213.76 801.98 1059.59 +257.61 +256.95 +257.47
282.80 801.98 1206.57 +404.59 +402.03 +403.29
280.58 389.64 1468.13 +1078.49 +1075.80 +1084.86
214.12 425.42 1281.09 +855.67 +855.32 +861.05
142.58 425.42 954.80 +529.38 +528.38 +530.56
141.66 425.42 948.80 +523.38 +522.36 +524.50

A 103.36 425.42 762.90 +337.48 +335.26 +336.14
283.60 1193.13 86.44 −1106.69 −1102.50 −1092.99
215.16 1193.13 323.28 −869.85 −869.06 −863.15
139.82 1193.13 676.38 −516.75 −515.29 −513.21
110.53 1193.13 827.49 −365.64 −363.10 −362.07
106.10 801.52 730.24 −71.28 −71.26 −71.22
142.88 801.52 676.72 −124.80 −124.73 −124.61
214.80 801.52 543.31 −258.21 −257.55 −257.03
279.92 801.52 404.02 −397.50 −395.05 −393.83

A + E 107.43 801.43 873.91 +72.48 +72.46 +72.50
141.94 801.43 924.38 +122.95 +122.88 +123.00
215.64 801.43 1060.12 +258.69 +258.03 +258.55
279.30 801.43 1194.00 +392.57 +390.22 +391.41
282.02 384.83 1465.47 +1080.64 +1077.20 +1086.28
217.17 385.13 1249.53 +864.40 +864.14 +869.98
139.59 385.13 893.92 +508.79 +506.73 +508.74
107.15 385.13 728.92 +343.79 +340.65 +341.56

A 281.96 1202.32 106.96 −1095.36 −1090.85 −1081.54
217.14 1202.30 329.47 −872.83 −872.43 −866.48
144.32 1202.30 664.30 −538.00 −536.49 −534.24
139.56 1202.30 690.03 −512.27 −510.54 −508.50
106.64 1202.30 860.67 −341.63 −340.30 −339.39

The calculation of the x values in this Table is the same as has been discussed for the
preceding Table.

Now from the corresponding values of m and x in this Table we can calculate the most
probable values of the constants C and P for the circuits A and A+ E in the same way, as
in Section 18.33 from the values of Section 18.32 for the circuits A, B, C, D. In this way,
the results listed in the following Table have been obtained.
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Circuit C P
A+ E 0.006 672 0, 000 004 041
A 0.037 63 0.000 021 96

A+ E 0.006 610 0.000 004 083
A 0.037 14 0.000 021 63

Finally calculating the x values from the given values of m, we obtain, in successive order
of the m values, the following comparison of the values calculated for x and the values found
by observation.

A+ E A
m Observed Calculated Difference m Observed Calculated Difference

value of x value of x value of x value of x
107.22 73.50 73.29 +0.21 103.36 336.14 335.82 +0.32
108.02 74.40 74.34 +0.06 110.53 362.07 362.41 −0.34
139.66 120.40 120.63 −0.23 139.82 513.21 514.68 −1.47
141.82 124.13 124.10 +0.03 141.66 524.50 524.09 +0.41
213.76 257.47 257.34 +0.13 142.58 530.56 528.81 +1.75
214.10 257.84 258.04 −0.20 214.12 861.05 859.37 +1.68
279.44 396.06 396.02 +0.04 215.16 863.15 863.68 −0.53
282.80 403.29 402.55 +0.74 280.58 1084.86 1085.42 −0.56

283.60 1092.99 1093.l70 −0.71
A+ E A

106.10 72.22 71.14 +0.08 106.64 339.39 338.98 +0.41
107.43 72.50 72.85 −0.35 107.15 341.56 341.58 −0.02
141.94 123.00 123.04 −0.04 139.56 508.50 508.97 −0.47
142.88 124.61 124.56 +0.05 139.59 508.74 509.12 −0.38
214.80 257.03 256.62 +0.41 144.32 534.24 533.30 +0.94
215.64 258.55 258.32 +0.23 217.14 866.48 866.96 −0.48
279.30 391.41 391.07 +0.34 217.17 869.98 867.08 +2.90
279.92 393.83 392.37 +1.46 281.96 1081.54 1085.70 −4.16

282.02 1086.28 1085.85 +0.43

Finally, as indicated at the beginning of this Section, the observed resistances of the
circuits A+ E and A to each other are roughly in the ratio of

7471 : 3179 ,

while this ratio, according to the law presented in the preceding Section, applied here in the
same way, as the values of the constant C for both circuits should be inversely proportional
to the squares of the resistances of these circuits, and this proportion is obtained dividing
611.75 by

√
C as

7507 : 3164 ,

which agrees with the proportions obtained from the observations as far as the modest
exactness of the resistance measurement justifies to expect.
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18.35 Proportion of the Electrostatic Force of Two

Equal Amounts of Electricity to Their Mass

Finally, the third subject for more detailed observations according to Section 18.23 remains
to be considered, namely the dependence of the amplitudes of the oscillations produced by a
rotating magnet in a closed conductor on the shape of the conducting wire. Exact observations
concerning this subject can not only serve to test the formulated laws but can moreover,
as already discussed in Section 18.23, be used to expand our knowledge about electricity,
namely, in order to determine the still unknown ratio of the force due to the electrostatic
interaction between two equal amounts of electricity to their mass.

Let E be the amount of positive electricity in the unit length of the conducting wire
expressed in electrostatic measure, then it exerts the electrostatic force equal to E

2 at unit
distance on an equal amount of electricity, while its mass has been expressed462 by [1/r]E,
which yields the unknown proportion of that force to this mass,

E
2

1
r
E

=
rE

1
.

If now this proportion, or the unknown quantity rE has a value comparable with other
determined quantities, then it can be easily shown that this value could be determined most
exactly from observations of the dependence of the oscillation amplitude on the shape of the
circuit.

From the differential equations of electric motions in closed conductors established in
Sections 18.8 and 18.10, it is clear that they contain the magnitude rE only in the expression

4M ′′(1 + λ)

c2
=

4M ′′

c2
+

1

rE
.

However, by no means not all effects determinable from the differential equations depend on
this expression contained in the differential equations; because for the determination of some
effects the differential equations can be simplified so that this expression does not occur at all
any more. As shown in Sections 18.11 and 18.12, this holds for all equilibrium effects or for
the conservation of already existing motions, whence it follows vice versa that observations of
equilibrium effects or of effects due to steady currents cannot serve to determine the quantity
rE.

The other effects, on the contrary, determined when the expression containing rE does not
vanish from the differential equations, comprise the electric oscillations produced in a closed
conducting wire by induction due to a rotating magnet whose laws have been developed in
Section 18.20 from these differential equations, according to which the current intensity of
such an oscillation in the conducting wire was obtained as given by

i = − 1

w′

√

f 2 + g2 · cos
(

µt+ arctan
f

g

)

,

if we had

f =
∑

sin2 ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

,

462[Note by AKTA:] See page 288 on Section 18.5.
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g =
∑

sin ρ cos ρ
(

fn sin
ns

a
+ gn cos

ns

a

)

,

tan ρ =
µa2c2w′

4(2µ2a2M ′′(1 + λ)− n2c2N ′′)
=

µa2w′

2µ2a2
(

4M ′′

c2
+ 1

rE

)

− 4n2N ′′ .

According to Section 18.21 this determination of the current intensity i is simplified in most
cases, namely those cases in which all remaining terms may be considered as vanishingly
small compared with the one corresponding to the place number n = 0. Indeed for these
cases we obtain

i = − g0
√

w′2 + 4µ2
(

4M ′′

0

c2
+ 1

rE

)2
· cos



µt+ arctan
w′

2µ
(

4M ′′

0

c2
+ 1

rE

)



 ,

where, according to Section 18.10, we have to put

M ′′
0 = 2 log

8a

α
.

Hence it follows that the magnitude rE could be found out by measuring the current intensity
i when we have the rotation velocity of the magnet, namely µ/[2π] turns per second, the
length = 2πa, the thickness = 2α, and the resistance = 2πaw′ of the conducting wire, because
also the induction coefficient g0, proportional to the rotation velocity, can be determined from
the strength of the inducing magnet and from its distance and position with respect to the
induced conducting wire.

Hence it would be possible to directly determine directly the magnitude rE without consid-
ering the dependence of the amplitude of electric oscillations on the shape of the conducting
wire; it is easily seen, however, that this direct way cannot practically lead to any exact
result if the magnitude 1/[rE] is a very small fraction of the magnitude 4M ′′

0 /c
2, especially

when considering that the determination of M ′′
0 and c cannot be performed very precisely.

Considering in addition, however, the dependence of the amplitude of the electric oscilla-
tions on the shape of the conducting wire, the following indirect way allows to determine the
magnitude rE with much more precision.

In order to use the observation of the dependence of the amplitude of electric oscillations
on the shape of the conducting wire for a more exact determination of the magnitude rE,
it is essential to find a method to give a closed conducting wire two different shapes, which
allow to exactly determine either the two values of M ′′

0 , or at least their ratio ν : 1.

Here it comes into question that in the first part of this treatise the development of
the laws of motion of electricity had to be restricted to circular conductors, for which an
essential simplification could be achieved because the values of the integrals denoted by
M , N , M ′′ and N ′′ were equal for all points of the conductor shape. But the latter also
holds for a system consisting of two equal and parallel circles, which could not be taken into
consideration only because it forms two separate conductors. For practical purposes when
performing the observations, however, such a system may be substituted by a closed double
winding conductor with respect to almost all considerations, and hence, according to this
substitution, the values of the definite integrals M , N , M ′′ and N ′′ may be put equal for
all points of a closed conductor which forms two equal very close circular windings, whereby
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it is possible to expand the laws of motion of electricity, at first formulated for a circular
conductor only, to a closed conductor consisting of two equal very close circular windings.

Such a conductor, however, as we see easily, presents a very essential alternative concern-
ing the variety of the connection between both of its windings, which may either provide
the same current passing through both windings in series in the same direction, or passing
through the second winding in opposite direction as the first one. These two cases correspond
to completely different values of M , N , M ′′ and N ′′ whose ratio can be determined exactly.
In fact the same holds also for the value of M ′′ for n = 0, denoted by M ′′

0 , and we may put
the ratio of both values of M ′′

0 for the two above cases equal to ν : 1.
Let A be the greatest current intensity of an electric oscillation in this conductor in the

first case, and B in the second case, then we have, according to Section 18.23,

A =
g0

√

w′2 + 4µ2
(

4M ′′

0

c2
+ 1

rE

)2
,

B =
g0

√

w′2 + µ2
(

4M ′′

0

νc2
+ 1

rE

)2
,

and both values, A and B, can be determined by measurement; but here we assumed that
the induction due to the rotating magnet does not extend to both windings of the closed
conductor, but that the induction be limited to one of both windings or only to one part
of it. In reality, this element is represented by the small inductor which houses the rotating
magnet.

But now these values of A and B can be determined by measurement for different rotation
velocities, that is, for different values of µ, and it is clear that their difference must vanish
completely before long with decreasing values of µ. Now let µ0 be the small value of µ for
which this difference is not noticeable. Let then C denote the values of A and B when
considered equal; then we get

C =
µ0

µ
· g0
w′ .

because the coefficient of induction, denoted by g0, is proportional to the rotation velocity.
Also this third value, C, can be determined by measurement.

Eliminating now g0 from the three obtained equations where A, B, C are known by
measurement, we obtain the following two equations:

4M ′′
0

c2
+

1

rE
=
w′

2µ

√

µ2

µ2
0

· C
2

A2
− 1 ,

4M ′′
0

νc2
+

1

rE
=
w′

2µ

√

µ2

µ2
0

· C
2

B2
− 1 ,

and hence follows:

4M ′′
0

c2
=

ν

ν − 1
· w

′

2µ

{
√

µ2

µ2
0

· C
2

A2
− 1−

√

µ2

µ2
0

· C
2

B2
− 1

}

,
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1

rE
=

1

ν − 1
· w

′

2µ

{

ν

√

µ2

µ2
0

· C
2

B2
− 1−

√

µ2

µ2
0

· C
2

A2
− 1

}

.

The first of theses equations where all quantities are known may either serve to test the theory
or the observations, while the unknown quantity rE is found from the second equation, where
not even the closer determination of the quantities M ′′

0 , g0, and C463 is required, but only
that of the ratio ν : 1.

The latter of both equations thus found can finally be given a somewhat simpler form
noting that the resistance of the unit length of the conducting wire equals w′ = 1/[πα2

κ],
with α the radius of the wire and κ the specific conductivity of the metal, and that further
the amount of positive electricity expressed in electrostatic units of measure contained in
the unit length of the conducting wire equals E = πα2 · E0, where E0 denotes the positive
amount of electricity in the unit volume of the conducting wire. Substituting these values
we get

1

rE0

=
1

2(ν − 1)µκ
·
{

ν

√

µ2

µ2
0

· C
2

B2
− 1−

√

µ2

µ2
0

· C
2

A2
− 1

}

.

Hence it remains to be considered how to determine the ratio denoted by ν : 1.
Let 2πa be the length of the total closed conducting wire as before, each half of which,

equal to πa, constitutes one winding, and consider both of these windings as parallel circles
the centers of which lie at a distance, δ, perpendicular to the plane of the circle; then the
value of M ′′

0 may be split into two parts at any point of that entire conducting wire, namely
the part due to the circle containing the point under consideration and the part due to the
other circle at a distance = δ from the first circle. The former part is immediately found
equal to the value of M ′′

0 for a circle of radius = 1
2
a, namely, according to Section 18.16,

equal to double the logarithm of the ratio of the 8-fold circle radius to the wire radius,
= 2 log(4a/α). As is easily shown, the latter part is obtained from the former part by merely
substituting the radius, α, by the distance between the two circles, δ, namely = 2 log(4a/δ).
— If now the two windings are connected in such a way that the current passes them in the
same direction, then the value of M ′′

0 of the entire closed conductor at any point of its first
or second winding equals the sum of both parts,

= 2 log
4a

α
+ 2 log

4a

δ
;

if, on the other hand, both windings are connected so that the second winding is passed in
the counter sense as the first one, then the value of M ′′

0 equals the difference of both parts,

= 2 log
4a

α
− 2 log

4a

δ
;

Hence we get the desired ratio as given by

ν : 1 =

(

2 log
4a

α
+ 2 log

4a

δ

)

:

(

2 log
4a

α
− 2 log

4a

δ

)

=

(

2 log 4a
α

log δ
α

− 1

)

: 1 .

463[Note by AKTA and PM:] In the original we have here c instead of C. We are replacing the lowercase c
by the uppercase C.
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18.36 Conclusion

The discussions concerning the determination of the magnitude rE in the previous Section
serve mainly to specifically exemplify that the dependence of the amplitude of the oscillation
produced by a rotating magnet in a closed conductor on the shape of the conducting wire,
as presented in Section 18.23, constitutes a third topic important and particularly suitable
for more exact observations, deserving a more careful and more extensive treatment because
of its multiple meaning. If the performance of exact observations on this topic is to be of
practical use, it becomes clear that this has to be done in connection first with the extensive
discussion of the dependence of the values of the integrals, denoted by N , N ′′, M and M ′′ in
Section 18.8, on the shape of the conducting wire, restricted to the single case of a circular
wire in Section 18.10, and second with a specific discussion of the value of the magnitude rE,
the determination of which is of great interest all by itself, as has been treated in the preceding
Section. Now it has indeed been shown in the preceding Section how the determination of
this magnitude rE would be possible from observations of a special case of the dependence
of the oscillation amplitude on the shape of the conducting wire without entering into an
extensive discussion of this dependence in general; but this, however, still demands a lot of
work and observations even for the solution of the hereby essentially simplified and limited
task, for which the measures described and used in this treatise are not sufficient.

As now furthermore also the determination of the magnitude rE concerned less the test
of the laws developed in the first part of this treatise, but rather a novel application of the
theory with a particular and separate aim — appropriate as a topic for a special treatise —;
it seems adequate to restrict beforehand the performance of observations, intended in the
second part of this treatise and concerning a test of the laws, to the observations, presented
in the first section, concerning the first two topics presented in Section 18.23 — [namely,
(1),] comparison of amplitudes and phases of electric oscillations at various places of a long
conducting wire — [and (2), the] law of the dependence of the oscillation amplitude on
the rotation velocity of the magnet —; and to reserve the performance of all the more exact
observations concerning the third topic— namely, the law of the dependence of the oscillation
amplitude on the shape of the conducting wire, including the respective special questions and
tasks according to the instruction of the preceding Section — for a future treatise for which,
finally, the results of the present treatise were intended here as the preparatory foundations
only.
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Chapter 19

The Origins and Meanings of Weber’s
Constant c, of Maxwell’s Constant c
and the Relation of these Two
Different Constants with Light
Velocity in Vacuum

A. K. T. Assis464

I present the origins and meanings of Wilhelm Weber’s constant c and of Maxwell’s
constant c. Although these two constants are represented by the same symbol, they refer to
different magnitudes which have different numerical values. Weber’s constant c is equal to
Maxwell’s constant c times the square root of two. I also discuss the relations of these two
different constants with light velocity in vacuum.

19.1 Weber’s Constant c

In 1846 Wilhelm Weber unified electrostatics (Coulomb’s force of 1785), electrodynamics
(Ampère’s force between current elements of 1822 and 1826) and Faraday’s law of induction
(1831). In Section 19 of his work, Weber presented the following force between two particles
electrified with charges e and e′ and separated by a distance r:465

ee′

r2

[

1− a2
(

dr

dt

)2

+ b
d2r

dt2

]

. (19.1)

In this Equation a is a constant with the inverse dimension of a velocity and b another
magnitude which he showed to be given by:466

b = 2ra2 . (19.2)

464Homepage: www.ifi.unicamp.br/~assis
465[Web46, Section 19, p. 142 of Weber’s Werke] and [Web07, Section 19, p. 87].
466[Web46, p. 144 of Weber’s Werke] and [Web07, p. 89].
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By combining Equations (19.1) and (19.2) he expressed his fundamental law as:

ee′

r2

[

1− a2
(

dr

dt

)2

+ 2a2 · rd
2r

dt2

]

. (19.3)

In Section 21 of the same work he introduced another constant by the same letter a,
emphasizing that its value was different from the constant a introduced in Section 19. He
then expressed his force law in terms of this new constant a as follows:467

ee′

r2

[

1− a2

16

(

dr

dt

)2

+
a2

8
r
d2r

dt2

]

. (19.4)

In 1848 he presented a potential energy from which he could deduce his force.468

In 1852 he replaced the constant a2/16 of Equation (19.4) by a constant 1/c2 and ex-
pressed his force as follows:469

ee′

r2

[

1− 1

c2
·
(

dr

dt

)2

+
2r

c2
d2r

dt2

]

. (19.5)

This was the first time in which Weber introduced this constant c = 4/a. This constant
c had the dimension of a velocity, that is, distance per time. In 1852 Weber had no idea of
its numerical value (it might be, for instance, 105 m/s or 1011 m/s). Moreover, at that time
no one had the slightest idea that it might have any relation whatsoever with light velocity
in vacuum. At that time it was a purely electrodynamic constant.

The reason why he chose the letter c for this new constant was probably alphabetical.
After all, he had already utilized the letters a and b in the expression of his fundamental
force law.

He showed, in particular, that when two particles were moving relative to one another
with a constant relative velocity dr/dt = ±c, such that d2r/dt2 = 0, they would exert no net
force on one another according to his law. This was the meaning he gave to this constant,
namely:470

The meaning of c is that constant value of the relative velocity dr/dt, in which two
electric masses have no effect on each other.

He expressed the same meaning of his constant c in later works.471 For instance:

The meaning of the constant c is that of a well-defined velocity, and indeed the
velocity with which two electric masses must approach or separate from each other
if neither attraction nor repulsion is to exist between them.

In 1869 he also expressed his potential energy in terms of this constant c:472

467[Web46, Section 21, pp. 152 and 157 of Weber’s Werke] and [Web07, Section 21, pp. 94 and 98].
468[Web48a, p. 245 of Weber’s Werke] with English translation in [Web52e], [Web66d] and [Web19].
469[Web52c, p. 366 of Weber’s Werke] with English translation in [Web21b].
470[Web52c, p. 367 of Weber’s Werke] with English translation in [Web21b].
471[Web55b, p. 594 of Weber’s Werke], [WK56, p. 20 of the 1856 paper and p. 605 of Weber’s Werke],

[WK03, p. 294], [WK08, p. 99] and [KW57, pp. 617 and 651].
472[Web69, p. 243 of Weber’s Werke] with English translation in [Web21g].
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ee′

r

[

1− 1

c2
·
(

dr

dt

)2
]

. (19.6)

Weber was also involved in determining current intensities and their dimensions through
the effects produced by these currents. The electrodynamic measure of current intensity was
related to Ampère’s force between two current elements and the analogous force between
two current-carrying wires.473 The electromagnetic measure of current intensity was related
to the torque exerted by a current carrying wire on a magnet. The electrolytic measure of
current intensity was related to the amount of water that is decomposed when a current
flows through it. He also determined current intensity and its dimension through the origin
of a current, that is, by the amount of charge which flows through the cross-section of
a circuit at a given amount of time. In this case the amount of charge was determined
mechanically in electrostatics by means of the force with which the electricities act on each
other at a distance, that is, utilizing Coulomb’s force.474 Weber showed that the ratio of
these measures of current intensity was related with his constant c.

Weber was then interested to measure the numerical value of c for two main reasons.
The first one was to complete the determination of his fundamental force law. In this way
he would be able to compare quantitatively the electrostatic component of his force (which
depends only on the distance r) with the dynamic components (which depend on dr/dt and
d2r/dt2). The second reason was to be able to compare completely with one another the
intensities and dimensions of the electric currents obtained through the origin of the current
and its different effects (electrodynamic, electromagnetic and electrolytic).

The first experiment to measure the constant c was performed by Weber and Rudolf
Kohlrausch (1809-1858) in 1854-1855. Their result was presented in three works of 1855, 1856
and 1857.475 The final value of Weber’s constant after taking into account all corrections
was given by:476

c = 4.39450× 108 m/s . (19.7)

19.2 The Relation of Weber’s Constant c with Light

Velocity

In 1857 Weber and Gustav Kirchhoff (1824-1887) were the first to derive theoretically the
complete telegraph equation. Utilizing the modern concepts and usual terminology of circuit
theory, it is possible to say that they were the first to take into account not only the capac-
itance and resistance of the wire, but also its self-inductance. They deduced the telegraph
equation utilizing Weber’s 1846 force law between electrified particles. Kirchhoff’s papers
were published in 1857.477 Weber’s simultaneous and independent work was delayed in pub-

473See footnote 44 on page 57.
474See footnote 43 on page 56.
475[Web55b], [WK56] and [KW57], with English translations in [Web21c], [WK03] and [KW21], and with

a Portuguese translation in [WK08]. See Chapters 5, 6 and 7.
476[WK56, p. 605 of Weber’s Werke], [WK03, p. 294], [WK08, p. 100], [KW57, p. 652 of Weber’s Werke]

and [KW21, p. 52]. See also page 179 on Section 7.17.
477[Kir57b] and [Kir57c] with English translations in [Kir57a] and [GA94], respectively. See Chapters 8, 9

and 12.
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lication due to the death of R. Kohlrausch in 1858, with whom Weber was performing some
experiments related to electric oscillations, being published only in 1864.478

Kirchhoff’s papers of 1857 were published in the Annalen der Physik und Chemie, now
known as Annalen der Physik. In this same year of 1857 Johann Christian Poggendorff (1796-
1877), the editor of this Journal, published a paper in the same Volume of the Annalen, after
Kirchhoff’s first work.479 He related that after seeing Kirchhoff’s paper, he had occasion to
meet Weber in Berlin. Weber showed him the paper he intended to publish, with essentially
the same results as Kirchhoff’s. But Weber had not yet sent it to print, as he was waiting
for the results of experiments on this topic which were being performed together with R.
Kohlrausch. These experiments dealt with the propagation of electromagnetic signals along
wires, taking into consideration variable currents and the effects of all surface charges upon
the current. In his published work, Weber compared his theoretical results with those of
Kirchhoff and mentioned Poggendorff’s paper.480

Kirchhoff and Weber showed, in particular, that when the conductor had negligible resis-
tance, the velocity of propagation of an electric wave is very nearly equal to the velocity of
light in vacuum. As Kirchhoff pointed out in his paper (referring to Weber’s constant c):481

The velocity of propagation of an electric wave is here found to be = c/
√
2, hence

it is independent of the cross section, of the conductivity of the wire, also, finally, of
the density of the electricity: its value is 41950 German miles in a second, hence very
nearly equal to the velocity of light in vacuo.

Representing light velocity in vacuum by vL and assuming that c/
√
2 is equal to this

velocity yields:

c√
2
= vL or c =

√
2 · vL . (19.8)

Weber’s force and potential energy given by Equations (19.5) and (19.6) can be expressed
in terms of light velocity in vacuum as, respectively:

ee′

r2

[

1− 1

c2

(

dr

dt

)2

+
2r

c2
d2r

dt2

]

=
ee′

r2

[

1− 1

2v2L

(

dr

dt

)2

+
r

v2L

d2r

dt2

]

, (19.9)

and

ee′

r

[

1− 1

c2

(

dr

dt

)2
]

=
ee′

r

[

1− 1

2v2L

(

dr

dt

)2
]

. (19.10)

Utilizing Weber and Kohlrausch’s experimental value of Weber’s constant c, Equation
(19.7), the velocity of propagation of an electric wave obtained by Weber and Kirchhoff was
given by

c√
2
=

4.39450× 108 m/s√
2

= 3.10738× 108 m/s . (19.11)

478[Web64] with English translation in [Web21d]. See Chapter 18.
479[Pog57] with English translation in [Pog21]. See Chapters 10 and 11.
480[Web64, Section 6, pp. 130-132 of Weber’s Werke] with English translation in [Web21d, Section 6]. See

page 289 of Section 18.6.
481[Kir57b, pp. 209-210] and [Kir57a, p. 406]. See page 214 on Chapter 8.
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This value was really very close to the known velocity of light as given by astronomical
observations and optical terrestrial experiments.

Several scientists were impressed by this result. In 1858 Georg Friedrich Bernhard Rie-
mann (1826-1866) wrote a paper (first published posthumously in 1867) developing a theory
of a retarded potential propagating at this velocity of c/

√
2.482 Ludvig Valentin Lorenz

(1829-1891) developed an independent theory of electromagnetic waves propagating at a
velocity of c/

√
2 utilizing retarded potentials.483 Carl Gottfried Neumann (1832-1925) also

developed an independent theory on the propagation of electrodynamic potentials which
generated a debate with Rudolf Julius Emanuel Clausius (1822-1888).484

Maxwell was aware of Kirchhoff’s 1857 papers. The first paper was published in the
Annalen der Physik und Chemie and an English translation appeared in the same year in
the Philosophical Magazine with the title “On the motion of electricity in wires”.485 In note
26 of Schaffer’s paper we find the following important remark regarding Maxwell’s knowledge
of Kirchhoff’s first paper of 1857:486

In the early 1870s Maxwell made detailed notes on Kirchhoff’s paper on electricity in
wires: see Cambridge University Library MSS ADD 7655 Vn/1, p. 44 ff.

Kirchhoff’s second paper of 1857 was also published in the Annalen der Physik und
Chemie.487 It was quoted explicitly by Maxwell in the Note included in Article [805] of the
second Volume of his Treatise on Electricity and Magnetism published in 1873.488 However,
this specific quotation did not appear in the final Index of the Treatise under Kirchhoff’s
name.489 For this reason some researches discussing Maxwell’s works may have missed this
important information. Ludvig Lorenz’ 1867 work is also discussed by Maxwell in this Note
included in Article [805] of the Treatise.

Two of the main inspirations for Maxwell’s electromagnetic theory of light developed
in 1861-1864 were related to these two results, namely, (a) the experimental measurement
of c by Weber and Kohlrausch, and (b) the result obtained by Kirchhoff and Weber on
the propagation of electromagnetic signals at the velocity c/

√
2 = 3.1 × 108 m/s, that is,

essentially with the same value as the known velocity of light obtained by astronomical
observations and by terrestrial experiments as those conducted by Fizeau and Foucault. In
the next Section, I discuss some works by Maxwell related to this topic.

Weber and Kohlrausch’s measurement of c have been discussed by many authors.490

482[Rie67b] with English translation in [Rie67a] and [Rie77].
483[Lor67b] with English translation in [Lor67a].
484[Neu68a] with English translation in [Neu20a], [Neu68b], [Neu69] with English translation in [Neu20b],

[Cla68] with English translation in [Cla69], [Arc86].
485[Kir57b] with English translation in [Kir57a]. See Chapter 8.
486[Sch95].
487[Kir57c], see Chapter 12.
488[Max73a, Article 805, p. 398] and [Max54, Article 805, p. 450].
489[Max73a, Index on p. 441] and [Max54, Index on p. 498].
490[Duh02] with English translation in [Duh15], [Kir56] with English translation in [Kir57], [Ros56], [Wie60],

[Woo62], [O’R65, p. 534], [Wie67], [Woo68], [Whi73, p. 232], [Woo81], [Wis81], [Ros81], [D’A81], [Har82],
[JM86, Vol. 1, pp. 144-146 and 296-297], [Wie92], [Wie93c], [Wie93b], [Wie93a], [Wie94], [Hec96b], [Hec96a],
[Hec97], [Wie97], [Gib97], [Dar00], [ARW02], [ARW04], [Wie04], [Men06], [Men15], [Tom20] and [Hun21].
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19.3 Maxwell’s Constant c and the Confusion Intro-

duced by Many Scientists up to Einstein

I will now trace the origin of Maxwell’s constant c.491 This constant appears in most text-
books representing light velocity in vacuum and also the ratio of electromagnetic and elec-
trostatic units of charge. Its value is given as a number close to 3× 108 m/s. The origin of
Maxwell’s constant c is closely related with Weber’s constant c. The symbol of Maxwell’s
constant c is the same as the symbol for Weber’s constant c. Despite this fact, the meaning
and numerical value of Maxwell’s constant c are different from the meaning and numerical
value of Weber’s constant c. The value of Maxwell’s constant c is given by Weber’s constant
c divided by the square root of two. The goal of this Section is to clarify this confusion in
which the same letter represents two different magnitudes.

In his paper on physical lines of force published in 1861-1862, Maxwell utilized the upper
case letter V to represent the velocity of light (or the velocity of propagation of electromag-
netic disturbances in a non-conducting medium according to his electromagnetic theory of
light) and continued to utilize the symbol V with this meaning in his other publications.492

In his paper on a dynamical theory of the electromagnetic field published in 1865, Maxwell
utilized the lower case letter v to represent the number of electrostatic units of electricity
contained in one electromagnetic unit of electricity (or the number of units of statical elec-
tricity which are transmitted by the unit electric current — estimated in electromagnetic
units — in the unit of time) and continued to utilize the symbol v with this meaning in his
other papers.493 He also utilized this small case letter v to represent this ratio in his Treatise
on Electricity and Magnetism first published in 1873.494 Maxwell utilized the letters V and
v for these two magnitudes because they had the dimension of a velocity.

Maxwell mentioned in all his papers quoted above that the first numerical determination
of the ratio of the electromagnetic to the electrostatic unit of electricity, v, was made by
Weber and Kohlrausch, quoting their papers of 1856 and 1857. Maxwell expressed this
measure as:495

v = 3.10740× 108 m/s . (19.12)

Maxwell himself made an experiment to determine this magnitude in 1868.496 He ob-
tained the following value:

v = 2.8798× 108 m/s . (19.13)

I will now discuss these numerical values obtained by Weber and Maxwell in their ex-
periments. The value of Weber’s c/

√
2 obtained by Weber and Kohlrausch in 1854-1855, as

presented in 1856-1857, was 3.10738×108 m/s, see Equation (19.11). Maxwell’s measurement
of 1868 gave 2.8798 × 108 m/s, see Equation (19.13). I will compare these numbers with
the modern value of light velocity in vacuum as presented in modern textbooks, namely,

491[Gib97], [Men06] and [Ano06].
492[Max62, p. 22], [Max65, p. 497], [Max68, p. 655], [Max54, Vol. 2, Article 784, p. 434] and [Hop59].
493[Max65, p. 491] and [Max68, p. 645].
494[Max73b, Vol. 2, Article 628, p. 243, and Articles 768-780, pp. 368-382] and [Max54, Vol. 2, Article

628, p. 268, and Articles 768-780, pp. 413-430].
495[Max65, p. 499], [Max68, p. 651] and [Max54, Vol. 2, Article 771, p. 417].
496[Max68, p. 651], [Max70, p. 438], [Max54, Vol. 2, Article 787, p. 436] and [Hop59].
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2.99792 × 108 m/s. The relative changes ∆ (or percentage differences ∆) of Weber and
Maxwell’s numbers when compared with the modern value of light velocity are given by,
respectively:

∆Weber =
|3.10738− 2.99792|

2.99792
× 100% = 3.65% , (19.14)

∆Maxwell =
|2.8798− 2.99792|

2.99792
× 100% = 3.94% . (19.15)

Before performing this experiment, Weber and Kohlrausch had no idea of the order of
magnitude of c. It might be, for instance, 105 m/s or 1011 m/s. Moreover, in 1854-1856
nobody had any idea that Weber’s constant c might have any relation whatsoever with light
velocity in vacuum. That is, it had not been predicted that c/

√
2 might be vL. More than ten

years later Maxwell measured the same magnitude. He knew precisely its order of magnitude
as obtained by Weber’s previous experiment. Moreover, Maxwell expected its value to have
exactly the same value as light velocity in vacuum. Despite these 3 facts, Maxwell’s measured
value for this magnitude is farther from the modern value of light velocity in vacuum than
Weber’s measured value of c/

√
2, as can be seen by comparing Equations (19.14) and (19.15).

Assuming that Weber’s constant c should be exactly light velocity times the square root
of 2 and the modern value of light velocity in vacuum as 2.99792×108 m/s, then the precise
value of Weber’s constant should be 4.23970 × 108 m/s. Weber and Kohlraush obtained
4.39450× 108 m/s.

It is worth while quoting here Kirchner’s words related to this experiment:497

[...] if we are to use the words of Weber and Kohlrausch, we have to formulate the
obtained results in the following way.

The ratio between the mechanical and the magnetic measurement of current intensity
is as 1 : 3.1074× 1011 in the mm-mg-sec system or as 1 : 3.1074 × 1010 in the cgs
system.

Considering that this ratio was then not even known as to its order of magnitude,
that we deal therefore with a real pioneering effort, and if one realizes furthermore
the primitive equipment they had to work with, one has to admire the work by Weber
and Kohlrausch as a masterpiece in the art of experimentation, very few of which
exist in the history of our science.

Maxwell compared the measured values of these two magnitudes, V and v, in several
places.498 As regards light velocity, V , he quoted the measures of Fizeau, Foucault and
those based on aberration and Sun’s parallax. As regards the ratio of electromagnetic and
electrostatic units of charge, v, he quoted the measures of Weber and Kohlrausch, his own
experiment and that of Thomson of 1869.499 In his electromagnetic theory of light it was
expected that V = v.

Other authors continued to utilize this meaning of the constant v.500

497[Kir56, p. 531] with English translation in [Kir57, p. 625].
498[Max65, p. 499], [Max68, pp. 651-652] and [Max54, Vol. 2, Article 771, p. 417, together with Articles

786-787, pp. 435-436].
499[Max70] and [Kin70].
500[Kin70], [Tho83], [Ros89] and [TS90].
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Up to now everything was fine. The confusion began by Maxwell in a postcard he sent to
Tait of 1871,501 and mainly in the last Chapter of his Treatise of Electricity and Magnetism
published in 1873.502 In his papers of 1855 (published in 1858) and 1864 (published in 1865),
he had praised Weber’s electrodynamics but saw only one problem in it, namely, he believed
that Weber’s law was incompatible with the principle of the conservation of energy.503 In
1869 and 1871Weber proved in more detail that his force was compatible with the principle of
the conservation of energy utilizing his potential energy which he had introduced in 1848.504

Maxwell changed his mind only in 1871, after Weber’s proof. Harman reproduced a postcard
from Maxwell to Peter Guthrie Tait (1831-1901), from 7 November 1871. In this postcard
Maxwell informed Tait that Weber had reason. Weber’s force has a potential. Hence in any
cyclic operation no work is spent or gained. There is then conservation of energy in Weber’s
electrodynamics.505 In this postcard Maxwell wrote Weber’s potential energy ψ and Weber’s
force as given by, respectively:

ψ =
ee′

r

[

1− 1

2c2

(

∂r

∂t

)2
]

, (19.16)

and

m
∂2r

∂t2
=
ee′

r2

[

1− 1

2c2

(

∂r

∂t

)2

+
r

c2
∂2r

∂t

2
]

. (19.17)

In his Treatise of Electricity and Magnetism Maxwell discussed Weber’s deduction of
Ampère’s formula for the force between two current elements of lengths ds and ds′. Maxwell
considered two current elements carrying electric currents of intensities i and i′ estimated in
electromagnetic units. He also considered two electric particles e and e1 (with the magnitude
of their charges estimated in electrostatic units) moving with velocities v and v1 along the
first current element. He then stated that:506

the total transfer of electricity, reckoned algebraically, along the first circuit, is rep-
resented by

ve+ v1e1 = cids , (19.18)

where c is the number of units of statical electricity which are transmitted by the unit
electric current in the unit of time.

That is, the constant c introduced here by Maxwell is the same constant which he had
always represented by v, namely, the number of electrostatic units of electricity contained in
one electromagnetic unit of electricity.

501[Har82, pp. 96-97] and [Max95, pp. 686-688].
502See Chapter XXIII, Theories of Action at a Distance, in volume 2 of Maxwell’s Treatise, [Max73b] and

[Max54]. German translation in [Max83a]. Portuguese translation in [Ass92].
503[Max58, pp. 207-208 of Niven’s book] and [Max65, pp. 526-527 of Niven’s book].
504[Web69] with English translation in [Web21g]; [Web71] with English translation in [Web72].
505[Har82, pp. 96-97] and [Max95, pp. 686-688].
506[Max73b, Vol. 2, Article 849, p. 428] and [Max54, Vol. 2, Article 849, p. 482].
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In Articles 850 and 853 of his Treatise, Maxwell considered two electrical particles e and
e′ separated by a distance r. He then expressed Weber’s force and potential energy ψ in the
same way as he had written them in his 1871 postacard to Tait, namely:507

ee′

r2

[

1 +
1

c2

(

r
∂2r

∂t2
− 1

2

(

∂r

∂t

)2
)]

, (19.19)

and

ψ =
ee′

r

[

1− 1

2c2

(

∂r

∂t

)2
]

. (19.20)

Maxwell utilized here the symbols ∂r/∂t and ∂2r/∂t2 to indicate Weber’s relative velocity
dr/dt and relative acceleration d2r/dt2, respectively. What Maxwell wrote as ∂r/∂t would
be written today as dr/dt, as is evident from what he wrote in Article [847] of the Treatise.
Although Weber and Maxwell utilized different symbols to express these magnitudes, they
had the same meanings for both authors.

The main difference between Equations (19.5), (19.17) and (19.19) — or between Equa-
tions (19.6), (19.16) and (19.20) — is that Maxwell’s constant c is not the same as Weber’s
constant c. Let Weber’s constant c be represented by cWeber, while Maxwell’s constant c
is represented by cMaxwell. A comparison of Equations (19.5) and (19.19) — or a com-
parison between Equations (19.6) and (19.20) — yields 1/c2Weber = 1/(2c2Maxwell), that is,
cMaxwell = cWeber/

√
2. This comparison shows that Maxwell’s constant c is Weber’s c di-

vided by the square root of two. Moreover, combining this result with Equation (19.8)
yields

cMaxwell =
cWeber√

2
= vL . (19.21)

I do not know why Maxwell wrote Weber’s force and potential energy as Equations
(19.16) and (19.17). Maybe he had a memory lapse and had not available Weber’s original
works with him when he sent the postcard to Tait in 1871. In any event, I also do not know
why did he continue to express Weber’s force and potential energy in this way two years
later in the Treatise, as can be seen in Equation (19.19) and (19.20).

In the Treatise he may have utilized the letter c instead of his usual letter v to represent
the number of electrostatic units of electricity which are contained in one electromagnetic
unit of electricity in order to avoid confusion with the letter v which he was utilizing now in
this last Chapter of the Treatise to represent the velocity of the electric particle e relative to
the metal wire. However, Maxwell did not warn his readers of this change of letters, nor that
his present c in the Article [849] of the last Chapter of the Treatise was the same magnitude
as his earlier v in Articles [628] and [771] of the same Treatise, namely, the number of units
of statical electricity which are transmitted by the unit electric current in the unit of time.

Moreover, Maxwell did not emphasize in the Treatise that his present constant c included
in Equations (19.19) and (19.20) was numerically different fromWeber’s constant c appearing
in Equations (19.5) and (19.6). Weber’s constant c had been widely utilized in physics. It is
amazing that without a single warning, Maxwell wrote Weber’s force and potential energy

507[Max73b, Vol. 2, Articles 850 and 853, pp. 428-429] and [Max54, Vol. 2, Articles 850 and 853, pp.
483-484].
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utilizing a letter c which had a different numerical value from the letter c which Weber
himself had introduced exactly in the expression of this force!

The importance acquired by Maxwell’s Treatise created a confusion related to the mean-
ing and numerical value of c which lasts up to the present time.

Paul K. L. Drude (1863-1906) was a German physicist who wrote papers and books
integrating optics with Maxwell’s theory of electromagnetism. Like Maxwell, he utilized the
capital letter V to represent the velocity of light propagating in the ether.508 In 1894 he
followed Maxwell and called c = 3× 108 m/s the number of electrostatic units of electricity
contained in one electromagnetic unit. He also claimed that Kirchhoff had shown in 1864
that electric waves propagate along metal wires with this velocity c:509

Kirchhoff (G. Kirchhoff, Pogg. Ann. 121, 1864) has proven, that electric waves must
propagate along a metal wire, located in air, with the speed c, where c is the ratio of
an amount of electricity measured according to the electrostatic unit by an amount
measured in electromagnetic unit.

Two corrections must be made here. Kirchhoff had proven the result pointed out by
Drude in 1857 and not in this quoted paper of 1864.510 Moreover, in his 1857 paper Kirchhoff
utilized Weber’s constant c with the same meaning as that given by Weber, with its numerical
value as measured by Weber and Kohlrausch, namely, c = 4.39 × 108 m/s. As pointed out
before, Kirchhoff showed that electric waves propagate along the wire with the velocity
c/
√
2 = 3.1× 108 m/s.
In his books of 1894, Physik des Aethers auf elektromagnetischer Grundlage, and 1900

(translated into English in 1902, The Theory of Optics), Drude continued to utilize c with
the numerical value given by Maxwell, c = 3×108 m/s, and with its meaning as the number
of electrostatic units of electricity contained in one electromagnetic unit.511 Moreover, he
followed his paper of 1894 and also represented by c the speed of electrodynamic waves
propagating along wires and through air.

In 1892 and 1895 Hendrik Antoon Lorentz (1853-1928) utilized the upper case V to
represent light velocity relative to the ether and also the ratio of electromagnetic and elec-
trostatic units of electricity.512 However, by 1903 he began utilizing the lower case c for these
magnitudes.513

In 1900 Max Planck (1858-1947) utilized c as the symbol for light velocity in vacuum,
being followed in 1902 by Max Abraham.514

Albert Einstein (1879-1955) utilized the symbol V to represent the velocity of light from
1905 to 1907.515 For instance, in his paper creating the special theory of relativity, “On the
electrodynamics of moving bodies”, he said the following:516

Wir wollen diese Vermutung (deren Inhalt im folgenden “Prinzip der Relativität”
genannt werden wird) zur Voraussetzung erheben und auβerdem die mit ihm nur

508[Dru94b], [Dru94a, pp. 343-391 and 483] and [Dru02, pp. 114-119].
509[Dru94b, p. 191].
510[Kir57b] with English translation in [Kir57a], see Chapter 8; and [Kir64].
511[Dru94a, pp. 447-455] and [Dru02, pp. 115-123, 263-265 and 276].
512[Lor92, p. 46], [Lor95, pp. 17 and 139] and [Lor06, pp. 17 and 139].
513[Lor22, pp. 81-82], [Lor04, p. 809] and [Gib97].
514[Pla00], [Abr02a] and [Abr02b, pp. 114 and 116].
515[Ein05b, pp. 891-2 and 894], [Ein05a, p. 639] and [Ein07b, p. 371].
516[Ein05b, pp. 891-2].
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scheinbar unverträgliche Vorausetzung einführen, daβ sich das Licht im leeren Raume
stets mit einer bestimmten, vom Bewegungszustande des emittierenden Körpers un-
abhängigen Geschwindigkeit V fortplanze.

The English translations of these papers by Princeton University Press maintained the
capital letter V as the symbol for light velocity.517 Curiously, when these papers were
translated into English in the famous Dover edition, the capital letter V was replaced by
the lower case c without warning to the readers.518 For instance, the quoted sentence of this
paper on the special theory of relativity has been translated as follows:519

We will raise this conjecture (the purport of which will hereafter be called the “Princi-
ple of Relativity”) to the status of a postulate, and also introduce another postulate,
which is only apparently irreconcilable with the former, namely, that light is always
propagated in empty space with a definite velocity c which is independent of the state
of motion of the emitting body.

It was in 1907 that Einstein changed his notation and utilized the lower case c to represent
light velocity in vacuum:520

Lorentz bewies allerdings bekanntlich in jener Arbeit,521 daß nach seinen Grundannah-
men eine Beeinflussung des Strahlensganges bei optischen Versuchen durch jene Rel-
ativbewegung nicht zu erwarten sei, sofern man sich bei der Rechnung auf die Glieder
beschränkt, in denen das Verhältnis v/c jener Relativgeschwindigkeit im Vakuum in
der ersten Potenz auftritt. [...] Wer nehmen nun an, die Uhren können so gerichtet
werden, daß die Fortpflanzungsgeschwindigkeit eines jeden Licht-strahles im Vakuum
— mit Hilfe dieser Uhren gemessen — allenthalben gleich einer universellen Kostante
c wird, vorausgesetzt, daß das Koordinatensystem nicht beschleunigt wird.

English translation:522

It is true that in the study cited523 Lorentz proved that in optical experiments, as a
consequence of his basic assumptions, an effect of that relative motion on the ray
path is not to be expected as long as the calculation is limited to terms in which the
ratio v/c of the relative velocity to the velocity of light in vacuum appears in the
first power. [...] We now assume that the clocks can be adjusted in such a way
that the propagation velocity of every light ray in vacuum—measured by means of
these clocks—becomes everywhere equal to a universal constant c, provided that
the coordinate system is not accelerated.

517[Ein89b, pp. 140 and 143], [Ein89a, p. 172] and [Ein89c, p. 238].
518[Ein52b, pp. 38 and 40] and [Ein52a, pp. 69-70].
519[Ein52b, p. 38].
520[Ein07a, pp. 412 and 415].
521[Note by Einstein:] H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen

in bewegten Körpern. Leiden 1895. Neudruck Leipzig, 1906.
522[Ein89d, pp. 252-253 and 256].
523[Note appearing in this English translation:] H. A. Lorentz, Versuch einer Theorie der elektrischen und

optischen Erscheinungen in bewegten Körpern. [Attempt at a theorie of electric and optical phenomena in
moving bodies] Leiden 1895. Reprinted Leipzig, 1906.

395



As discussed before, in his work of 1895 (reprinted in 1906) quoted by Einstein, Lorentz
utilized V to represent light velocity relative to the ether and also the ratio of electromagnetic
and electrostatic units of electricity. Einstein utilized now in 1907 the letter c to represent
light velocity in vacuum.

It was also in this paper of 1907 that Einstein introduced his most famous equation,
E = mc2.

Einstein was certainly influenced by the works of Drude, Planck and Lorentz (from 1903
onwards) in this utilization of the letter c to represent light velocity.524 He was only indirectly
influenced by Maxwell, but not directly. As pointed out by Miller,525 in his works he spoke
a lot about Maxwell’s equations and his electromagnetic theory of light, but he never read
Maxwell’s Treatise, although a German translation had been published in 1883.526

From Einstein’s 1907 paper onwards, the lower case c with the value of the order of
3 × 108 m/s has been widely utilized to represent light velocity in vacuum not only in
relativity papers, but in physics textbooks in general and also in popular media. Its original
meaning and numerical value, as first obtained by Wilhelm Weber, were essentially forgotten
after 1907. This situation continued during the whole of the XXth century.

In my own papers and books, I utilized the symbol c to represent light velocity in vacuum
with its value of the order of 3×108 m/s. The reason for this choice was that I was addressing
myself to modern scientists and physics students who had learned this meaning of the letter
c from their textbooks. In any event, whenever I was discussing Weber’s original works, I
was careful to call attention that Weber’s c was different from light velocity in vacuum.527

In this book with the English translation of Weber’s main works on electrodynamics, I
am maintaining the definition, meaning and numerical values of c as those given by Weber
himself.

I hope that in the XXIst century, after Weber’s electrodynamics reaches once more the
dominant role it deserves in physics, the definition and meaning of the constant c will be
those given by Weber, with a numerical value given by c =

√
2·vL as first measured by Weber

himself. In this case my suggestion is that light velocity in vacuum should be represented by
vL, with its numerical value of the order of 3 × 108 m/s. That is, light velocity in vacuum
should no longer be represented by c. This letter should be reserved for Weber’s constant in
order to avoid confusion, to respect his original work and in honour of this great scientist.

524[Gib97].
525[Mil81, pp. 138-139, note 7].
526[Max83b] and [Max83a].
527[Ass94, Section 3.1], [Ass95, Section 2.1], [AW03, p. 55], [ARW04, p. 25], [AWW11, Section 1.6],

[AWW14, Section 1.6], [Ass15a, Section 2.1] and [AWW18, Section 1.6].
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sion. Détermination expérimentale de la loi suivant laquelle les élémens des corps
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Volume 1: Mémoires de Coulomb, pp. 107-115 (Gauthiers-Villars, Paris, 1884).

[Cou88b] C. A. Coulomb. Quatrième mémoire sur l’électricité. Où l’on démontre deux prin-
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qu’il se partage entre differens corps mis en contact uniquement par son action
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l’air plus ou moins humide, soit le long des soutiens plus ou moins idio-électriques.
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Mémoires de l’Académie royale des Sciences. Année 1787, 90:421–467, 1789.
Published in 1789. Reprinted in A. Potier (ed.), Collection de Mémoires relatifs
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[Ein07a] A. Einstein. Über das Relativitätsprinzip und die aus demselben gezogenen
Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4:411–462, 1907.
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Annalen der Physik, 23:371–384, 1907.

403

http://www.ampere.cnrs.fr/i-corpuspic/tab/Sources/coulomb/Coulomb_El_1785.pdf
http://www.ampere.cnrs.fr/i-corpuspic/tab/Sources/coulomb/Coulomb_El_1785.pdf


[Ein52a] A. Einstein. Does the inertia of a body depend upon its energy-content? In A.
Einstein, H. A. Lorentz, H. Weyl and H. Minkowski, The Principle of Relativity,
pages 67–71, New York, 1952. Dover. Translated by H. Perrett and G. B. Jeffery.

[Ein52b] A. Einstein. On the electrodynamics of moving bodies. In A. Einstein, H. A.
Lorentz, H. Weyl and H. Minkowski, The Principle of Relativity, pages 35–65,
New York, 1952. Dover. Translated by H. Perrett and G. B. Jeffery.

[Ein89a] A. Einstein. Does the inertia of a body depend upon its energy content? In
The Collected Papers of Albert Einstein, volume 2 — The Swiss Years: Writings,
1900-1909, pages 172–174, Princeton, 1989. Princeton University Press. Anna
Beck, translator.

[Ein89b] A. Einstein. On the electrodynamics of moving bodies. In The Collected Papers
of Albert Einstein, volume 2 — The Swiss Years: Writings, 1900-1909, pages
140–171, Princeton, 1989. Princeton University Press. Anna Beck, translator.

[Ein89c] A. Einstein. On the inertia of energy required by the relativity principle. In
The Collected Papers of Albert Einstein, volume 2 — The Swiss Years: Writings,
1900-1909, pages 238–250, Princeton, 1989. Princeton University Press. Anna
Beck, translator.

[Ein89d] A. Einstein. On the relativity principle and the conclusions drawn from it. In
The Collected Papers of Albert Einstein, volume 2 — The Swiss Years: Writings,
1900-1909, pages 252–311, Princeton, 1989. Princeton University Press. Anna
Beck, translator.
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suchung. H. Laupp, Tübingen, 1868. Reprinted in Mathematische Annalen, Vol.
17, pp. 400-434 (1880).

[Neu68b] C. Neumann. Resultate einer Untersuchung über die Principien der Elektrody-
namik. Nachrichten der Göttinger Gesellschaft der Wissenschaften, 10:223–234,
1868.

[Neu69] C. Neumann. Notizen zu einer kürzlich erschienenen Schrift über die Principien
der Elektrodynamik. Mathematische Annalen, 1:317–324, 1869.

[Neu20a] C. Neumann, 2020. Principles of electrodynamics. Posted in August 2020 at www.
ifi.unicamp.br/~assis. Translated by Laurence Hecht and Urs Frauenfelder.
Edited by A. K. T. Assis.

[Neu20b] C. Neumann, 2020. Notes on a recently published essay on the principles of
electrodynamics. Second version posted in July 2020 at www.ifi.unicamp.br/

~assis. Translated by Laurence Hecht and edited by A. K. T. Assis.

[Ohm26a] G. S. Ohm. Bestimmung des Gesetzes, nach welchem Metalle die Kontakt-
Elektrizität leiten, nebst einem Entwurfe zu einer Theorie des Voltaschen Appa-
rates und des Schweiggerschen Multiplikators. Journal für Chemie und Physik,
46:137–166, 1826. Reprinted in Ostwald’s Klassiker der exakten Wissenschaften,
Nr. 244, C. Piel (ed.), (Akademische Verlagsgesellschaft, Leipzig, 1938), pp. 8-29.

[Ohm26b] G. S. Ohm. Ein Nachtrag zu dem vorstehenden Aufsatz. Annalen der Physik
und Chemie, 7:117–118, 1826.

[Ohm26c] G. S. Ohm. Versuch einer Theorie der durch galvanische Kräfte hervorgebrachten
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Coulomb. Gauthiers-Villars, Paris, 1884.
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sitäts-Messungen auf mechanisches Maass. Berichte über die Verhandlun-
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- Page 5, the title of Section 7.5 should be replaced by:
7.5 Plan for Solving the Problem— Electrostatic Measurement of the Amount of Electric-

ity Accumulated in a Leyden Jar — Electromagnetic Measurement of the Current Generated
by the Discharge of the Jar

- Page 13, the 2nd line of the 2nd paragraph should be replaced by:
discuss more carefully the consideration which led to the conjecture of a diamagnetic

induction of

- Page 14, the 6th line of Section 2.1 should be replaced by:
iron and a bar of bismuth, the iron exerts magnetic forces at a distance, compared to

which the

- Page 15, the 2nd line below Figure 1 should be replaced by:
trodiamagnet consisted of two spiraling copper wires. Each of these spirals had a length

of 190

- Page 18, the 4th to 6th lines should be replaced by:
important to achieve this without changing the strength of their diamagnetism and without

inducing through this movement a current in the conductor bismuth. here the advantage of
a electrodiamagnet compared to a usual one became manifest. In fact, a usual diamagnetic
material

- Page 20, the line of item 8 of the Table should be replaced by:

8. above 489.7 487.3 ± 7.0

- Page 21, the title of Section 2 should be replaced by:
Experiments with One Little Bar of Iron

- Page 21, the 3rd line of Section 2 should be replaced by:
spiral up and down and then in the second one. The little iron bar had the same length

- Page 23, the 18th line of Section 2.4 should be replaced by:
= log 3

2
and therefore it suffices to divide the value of the nth oscillation arc by

(

1−
(

2

3

)n)

or

- Page 24, the 12th line should be replaced by:
rest states of the needle were obtained alternately for the upper and lower position:

- Page 28, the last line should be replaced by:
opposite direction, as with the bismuth bar.

- Page 29, the 1st line of Section 2.6 should be replaced by:
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The experiments about diamagneto-electric induction are obviously more difficult than
the previous

- Page 29, the 1st line of Section 2.7 should be replaced by:

Here I describe a different diamagnetic inductor than the one with the help of which I

- Page 29, the 5th line of Section 2.7 should be replaced by:

in the Philos. Transact. 1850, P. I.20 However, Faraday did not succeed to detect
diamagnetic

- Page 29, the 1st line of item 1. of Section 2.7 should be replaced by:

1. Instead of a usual electromagnet, an electrodiamagnet is used for the induction, whose
moment due

- Page 32, the 3rd line of the Section The Induction Spiral should be replaced by:

belonging to the electrodiamagnet through which the current of the galvanic pile flows
and has

- Page 32, the 9th line of the Section The Induction Spiral should be replaced by:

electrodiamagnet or more precisely the spiral was wound arount it.

- Page 33, the 4th line should be replaced by:

of the needle to the other side, a second commutator ee next to the observation telescope
in Figure 6 E is

- Page 34, the 14th line should be replaced by:

West reversed displacement. Finally the position the rotating commutator had during the

- Page 34, the 8th and 9th lines from bottom to top should be replaced by:

induced current created a decrease of the present oscillation arc, which then by a con-
tinuous change decreased until zero and then started increasing until it attained its limit.
When the

- Page 46, the 8th line after item 2. should be replaced by:

the magnetoelectric effects requires the application of quite different devices than the
mag-

- Page 46, the 15th, 16th and 17th lines after item 2. should be replaced by:

been even much larger if the difference between the masses of bismuth and iron, which
were used for the various electrodiamagnets and electromagnets, had not already been taken
into account in determining these ratios. By taking into account the inequality of the masses,
the coarsest occurring

- Page 48, the two last lines of the footnote 26 should be replaced by:

the thickness of the wire was 2.8 millimeters. Consequently, the strength of the separating
force exerted by the current of one layer of turns whose radius = r on a point of the iron bar
laying at the distance = a from the center

- Page 49, the 7th line from bottom to top of the footnote should be replaced by:

weight = 7.78, so that one finds for its thickness d′ = 0.8342. The value of X ′ for this
little bar is determined



- Page 51, the 18th line should be replaced by:

poles. Some experiments by Poggendorff (Annalen 1848, Vol. 73, p. 475)32 followed
immedi-

- Page 53, the 1st line of the 2nd paragraph should be replaced by:

Among the devides which allow an even higher degree of fineness and accuracy than

- Page 53, the 14th line of the 2nd paragraph should be replaced by:

of the experiments, but that it is in any case far preferable to eliminate this influence

- Page 55, the last line of Section 2.13 should be replaced by:

in my first papers (in the Berichten of 1847 and in Poggendorff’s Annalen of 1848, Vol.
73).

- Page 58, the 12th to 15th lines should be replaced by:

that through continued increase in the magnetic separating force, a continued accumu-
lation of the magnetic fluids must also occur in the ideal distribution. It follows from this,
that each given strength of the magnetic separating force corresponds to a certain moment of

ideally distributed magnetic fluids. However, this summation only takes place for molecular

currents,

- Page 58, the 17th line should be replaced by:

which are induced from the same separating force in larger orbits, which however due

- Page 58, the 6th and 7th lines of the 2nd paragraph of Section 2.17 should be replaced
by:

diamagnetic state emerges due to the inducing forces which acted on the material and
from the induced electric fluids present in the body, which move without resistance in circular

orbits around the individual molecules. Therefore one

- Page 61, the 5th and 6th lines should be replaced by:

This integral value is the some of the products of the intensity with the element of time

during which the force with this intensity is acting, according to the absolute measure [of
current intensity] determined on page 321 of this Volume [page 321 of Weber’s Werke].

- Page 62, the 10th line should be replaced by:

Here i denotes the intensity of the inducing current according to the same measure.

- Page 65, the 1st line of the last paragraph should be replaced by:

However, since −k has a very small negative value even in case of bismuth which is the
most

- Page 66, the 1st line of the last paragraph should be replaced by:

For each of the two main cases a theory can be developed and each of the theories can
be split

- Page 67, the 9th line of the 2nd paragraph should be replaced by:

already existing rotatable molecules (molecular magnets or molecular currents) and into
the

- Page 71, the 1st to 3rd lines of footnote 61 should be replaced by:



[Note by WW:] Namely, according to this assumption, the magnetic state of equilibrium
is defined by the fact that on the surface of all molecular conductors there is a distribution
of the two magnetic fluids acting on all points in the interior of the molecules in such a way
taht the effect of the external separating forces gets cancelled. It follows

- Page 71, the last two lines of the 2nd paragraph should be replaced by:
a given magnetic or electromagnetic separating force) a substitute for the magnetic fluids

through electric currents is possible.

- Page 72, the 10th line from bottom to top should be replaced by:

is then just due to the magnetism of iron which can be determined by the same acuteness

- Page 77, the 1st line should be replaced by:

ND. However, this driving force, which is due to the interaction of the molecules, has to
increase according

- Page 88, the last line of footnote 80 should be replaced by:
current” in all places.

- Page 88, the 17th line of the 2nd paragraph should be replaced by:
resistance. The other currents, which are excited by the same force of separation in larger

trajectories, but

- Page 90, the 6th and 7th lines of footnote 81 should be replaced by:

where n signifies the number of coils, r the radius, and a the length of the axis of the
spiral. This value holds first of all for the force of separation at the center of the cylinder,
but approaches it for every other

- Page 97, the 7th and 8th lines of Section 3.1.7 should be replaced by:
iron are the rotatable bearers of permanent molecular currents, be assumed, from it will

follow a different law of the dependence of the variable magnetism on the magnitude of

- Page 99, the 8th line should be replaced by:

moment y to the force X , in the theory of rotatable molecular currents, has the same
meaning as the

- Page 101, the 4th line of the 2nd paragraph should be replaced by:

connexion with the results of certain experiments made at the Institute of Physics in
Leipzig by him and Prof. Hankel,104 M.

- Page 101, the 1th and 2nd lines of the 3rd paragraph should be replaced by:
“A current of four elements of Grove105 was made use of, and the magnet was maintained

in its former position by a multiplier placed on the side, which was achieved on 1 to 1.5 parts
of the scale. The bismuth was chemically pure,

- Page 102, the last line should be replaced by:
the bar of bismuth in the middle of each oscillation, the following results were obtained:

- Page 103, the 3rd line below the Table should be replaced by:
smaller numbers; the same was observed when the bar of iron was reversed. The stand

- Page 103, the 6th line from bottom to top should be replaced by:



be increased to 57.5 divisions of the scale, and retained at this magnitude, inasmuch as
the action

- Page 106, the 11th line should be replaced by:
a particular form of the iron bar and for a definite strength of the magnetizing force

acting on the iron, namely

- Page 108, the 1st line should be replaced by:
however, would be sufficient to induce in the induction-spiral a current much stronger

than that dia-

- Page 109, the number in the last column of the Table should be replaced by:
32◦ 10′ W

- Page 113, the number in the last column of the Table should be replaced by:
31◦ 39′ W

- Page 115, the 2nd, 3rd and 4th lines of the paragraph below the Table should be replaced
by:

the inductive shocks108 (caused by the motion of the bismuth to and fro) over the entire
period of oscillation of the needle, it is easy to deduce the limit-value which would correspond
to all the inductive shocks during one period of oscillation concentrated on the center of the
period of oscillation. The value of the

- Page 116, the last line should be replaced by:
upon the remote magnetometer, a conclusion capable of easy proof. The entire action

exhibited

- Page 117, the penultimate line should be replaced by:
the iron M , divided by the mass of the iron expressed in milligrams, p = 8190, and thus

reduced to the unit of mass,

- Page 126, the first two lines of the last paragraph should be replaced by:
As far as concerns the measurement of the intensity and duration of the current produced

by the electricity that is stored in a Leyden jar when it is discharged into the Earth,

- Page 127, the 1st sentence of the last paragraph should be replaced by (there is
a misprint in the original text in German in which we have E/

∫

idt = c
√
2 instead of

E/
∫

idt = c/
√
2):

However, from the above, when one observes that only half of the positive amount of
electricity E flows from the Leyden jar to the Earth, because the other half is neutralized
by the negative electricity that flows from the Earth to the jar in the opposite direction, one
will have the quotient E/

∫

idt = c/
√
2, in which c denotes the desired constant.

- Page 128, the 4th line of the 3rd paragraph below the Table should be replaced by:
e.g., that a positive amount of electricity of 164

9
trillion units of measurement and an

equal amount of

- Page 135, the 1st line of the 3rd paragraph should be replaced by:
First, with the help of the sine-electrometer,148 the ratio was determined with great

- Page 140, the 4th line should be replaced by:



of water in a column 1 millimeter long were linked in a string, and all oxygen particles

in another string,

- Page 146, the 2nd to 4th lines of footnote 177 should be replaced by:

his tangent galvanometer and long conducting wires, that the amount of electricity by
which 1 milligram of hydrogen is electrically liberated from 9 milligrams of water electrically,
when one possesses the means to condense it, would be sufficient to charge a battery of 45,480
Leyden jars, 480 millimeters in height and

- Page 148, the 4th line of the 3rd paragraph of Section 7.4 should be replaced by:

is ordinarily chosen to be the unit of the strength of all other currents by observing it
with

- Page 148, the title of Section 7.5 should be replaced by:

7.5 Plan for Solving the Problem— Electrostatic Measurement of the Amount of Electric-
ity Accumulated in a Leyden Jar — Electromagnetic Measurement of the Current Generated
by the Discharge of the Jar

- Page 149, the 4th line of the 5th paragraph should be replaced by:

amount x of positive electricity that flows through the cross-section of the conductor during

- Page 149, the two last lines should be replaced by:

which is a result of whose validity one can easily convince oneself, whatever idea one may
have of what happens inside the conductors during the discharge.

- Page 150, the 5th line from bottom to top should be replaced by:

If one then multiplies 1

2
E by the number that shows how often τ is included in one second,

- Page 151, the 8th line of the 4th paragraph should be replaced by:

electrometer,186 which will yield the ratio 1 : (n − 1) of the amount of electricity E
remaining in the bottle to the

- Page 151, the penultimate line should be replaced by:

through the Leyden jar, the fixed ball through the large one, and the moving one through
the

- Page 152, the 4th line should be replaced by:

ball. — In Section 7.10, one will find the determination of the torsion of the torsion
balance that would likewise

- Page 153, the last line of the 1st paragraph should be replaced by:

measurements could be performed, especially towards the end of each series of experi-
ments.

- Page 154, the 1st paragraph below the Table should be replaced by:

The last column in this Table, under n, gives the ratio of the charge in the jar before
contact with the ball to the charge after contact, calculated for the moment of contact from
the two observations made immediately before and after, contained in the second and third
columns, according to the following rule:

- Page 155, the 3rd line of footnote 191 should be replaced by:



from which the values of q0 and q0 should be calculated, which are true for the moments
immediately before

- Page 158, the 6th line of the 3rd paragraph should be replaced by:
observer at the telescope m′ watched the elongation of the magnetic needle of the tangent

- Page 160, the 8th line should be replaced by:
That yields for the cited values the desired ratio:

- Page 162, the 4th line from bottom to top should be replaced by:
of the extended line c; i.e., the repulsive force of the two balls:

- Page 163, lines 4 to 7 should be replaced by:
Finally, the product of the force of repulsion between the two balls with the perpendicular

drawn from the axis of rotation to the direction of this force — i.e., to the line c — gives the
value of the rotational moment that this force of repulsion exerts upon the torsion balance,
which should be equal to 1.

- Page 163, the 15th and 16th lines should be replaced by:
From this follows the rotational moment exerted on the torsion balance by the electric

force of repulsion between the two balls will be equal to:

- Page 163, the last sentence should be replaced by:
This determination of ε is based on that quantity of electricity as a unit which exerts the

unit of repulsive force on an equal quantity of electricity in the unit of distance at relative
rest.

- Page 172, the 23rd line should be replaced by:
that is exerted upon the compass will be equal to:

- Page 172, the 29th line should be replaced by:
with the rotational moment that is exerted by it will be:

- Page 174, The 7th and 8th lines from bottom to top should be replaced by:

T = 1.798 3 ,

λ = 0.070 ,

- Page 175, the two last lines should be replaced by:
into a point. Determining this ratio was the problem which, according to Section 7.4, was

to be solved, which has now been done.

- Page 176, the 7th to 11th lines of the 3rd paragraph of Section 7.15 should be replaced
by:

of the magnetic unit for current intensity to the mechanical unit, since the amount of
electricity that passes through the cross-section in the same time interval will then be:

155 370 · 106

times greater in the magnetic current unit than the amount in the mechanical unit of current.
As a result, from the cited



- Page 177, footnote 215 should be replaced by:

[Note by HW:] Wilhelm Weber’s Werke, Vol. III, p. 614.

- Page 179, the 4th line of the last paragraph should be replaced by:
and negative electricity, against which those forces would disappear. Wherever

- Page 180, the 3rd and 4th lines of the penultimate paragraph should be replaced by:
(From Section 7.14), 1

2τ
·E then denotes the number of millimetres that both electricities

must traverse in the opposite directions in 1 second in order to make:

- Page 182, the 4th line of item (4) should be replaced by:
conductor element of length α′ at a distance of r when α makes an angle of ϑ with r and

α′

- Page 184, the 1st line of the 2nd paragraph of Section 7.19 should be replaced by:
The above sentence is self-evident if electric masses are so connected to their ponderable

carrier that they cannot be moved without it.

- Page 184, the 5th line of the 2nd paragraph of Section 7.19 should be replaced by:

finds a coupling between the electrical masses and the metallic particles that must be
dissolved

- Page 184, the 7th and 8th lines of the 2nd paragraph of Section 7.19 should be replaced
by:

coupling exists, all forces that act directly only on the electrical masses are, however,
indirectly transmitted to the metallic particles that they are coupled with, and only those
forces that act

- Page 184, the 19th line of the 2nd paragraph of Section 7.19 should be replaced by:
immediately vanish as soon as the driving force ceases. — It will then follow from this

that,

- Page 185, the 15th line of the 4th paragraph should be replaced by:

a Voltameter is introduced into a circuit, then the electrical separating forces that act in
the

- Page 186, the 1st line of the 3rd paragraph should be replaced by:
Now, if the current intensity for this resistance is to be = 1062

3
in magnetic units —

- Page 186, the 4th line of footnote 231 should be replaced by:

was chosen because Lenz, who often worked together with Jacobi, probably used the
same

- Page 187, the 2nd line of the 2nd paragraph should be replaced by:
that act in the direction of the current in each unit of free positive electricity (in the

- Page 188, the 1st line of the 2nd paragraph should be replaced by:
Should the water be decomposed at a smaller rate under the same conditions — e.g.,

with a rate

- Page 189, the 12th line of the 3rd paragraph of Section 7.20 should be replaced by:

defined amount of neutral fluid, in addition, and finally, how the negative electricity on



- Page 190, the 6th line of the 4th paragraph should be replaced by:

it can by no means be assumed that 1.6449 · ε also disappears towards the radius of the
small torn-off particle; on

- Page 190, the two final sentences of the 4th paragraph, beginning with the word “Fi-
nally” should be replaced by (in a new paragraph):

Finally, as to the question of whether the free electricity from the positively charged
conductor is carried only by the torn-off particles to the negative conductor, or whether,
in addition, another quantity of positive electricity, without a ponderable carrier, makes its
own way to the negatively charged conductor, one can only assert the lack of any physical
reason on which it would depend that one part of the electricity, under exactly the same
conditions, should move independently of its ponderable carrier, while the other must drag
its ponderable carrier along with it. Since it is therefore factually established that one part of
the passing electricity drags its ponderable carrier along with it, the same must be assumed
of all passing electricity, until the contrary is proven.

- Page 191, the 1st line should be replaced by:

that is contained in each element of length in the conductor is exceptionally large. How-
ever, for a given current intensity,

- Page 191, the 7th line of the 2nd paragraph should be replaced by:

units, together with 1/9 milligram of hydrogen, will move in one direction, while an
equally-

- Page 191, the 8th line of the 1st paragraph of Section 7.21 should be replaced by:

another mass at a unit distance that would impart in the unit of time a velocity to the
latter that would equal

- Page 191, the 2nd line from bottom to top should be replaced by:

each other, by the unit of length, if they are to have no influence on each other according
to that law.

- Page 192, the 8th line of the 2nd paragraph should be replaced by:

be 4394502 trillion times larger, and the previous acceleration would be equal to:

- Page 193, the 1st sentence of Appendix I (Description of the Torsion Balance) should
be replaced by:

In order to avoid as much as possible an unequal reaction of the walls of the torsion
balance, electrified by the charged spheres through electrostatic induction, on the movable
sphere, the balance is constructed on an unusually large scale.

- Page 195, the 8th and 9th lines should be replaced by:

c a 5 mm protruding threaded spindle, in order to attach either the body, by whose
period of oscillation the torsion coefficient should be determined, or the brass wire

- Page 195, the 3rd line of the 3rd paragraph should be replaced by:

at right angles to it, a brass rod rt with a running weight. The tips rested on brass
bearings, q in a conical hole, p in a slot. The running weight pushed the

- Page 213, the 6th line should be replaced by:



Let the expressions under the signs of summation in e and i be modified according to the
equations

- Page 215, the 10th line of the 2nd paragraph should be replaced by:

If the corresponding expression be formed for i, remembering the equation by which h
has

- Page 217, the 6th line of the 2nd paragraph should be replaced by:
which the wire is at each moment divided by this point, the same current intensity exists

everywhere

- Page 217, the 1st line of the 3rd paragraph should be replaced by:

The current intensity before the point at which the break occurs, considered without
regard to

- Page 219, the 4th line should be replaced by:

This expression shows that the current intensity at the commencement of the wire is 0
up to the

- Page 219, the 1st line of footnote 276 should be replaced by:

[Note by AKTA:] In the Philosophical Magazine this equation appeared as

- Page 223, Equation (9.16) should be replaced by:

∂2V

∂s2
− 2

c2
∂2V

∂t2
=

r

8γl

∂V

∂t
.

- Page 241, the 1st line of the 3rd paragraph should be replaced by:

With Jacobi’s resistance standard,319 a copper wire of 7.62 m length, 0.333 mm radius,

- Page 248, the 3rd line should be replaced by:

important that the same determination should be repeated for the two larger needles
with

- Page 253, the 7th line of footnote 376 should be replaced by:

reverse the polarity of the needle, [WSH03].

- Page 258, the 1st line should be replaced by:
non-uniform and rapidly changing motions; because this law, first formulated by Ohm,384

- Page 258, the 5th line of the 2nd paragraph should be replaced by:
rapidly changing currents. Furthermore, the development of the laws, as far as it has

been

- Page 271, the 1st line of the 5th paragraph should be replaced by:

Hence, the electromotive force due to a current element of length α with its current

- Page 280, the last sentence should be replaced by:

But now, when α is very small, the latter two parts of this value of U may be considered
as vanishing compared to the first part, then one may put

- Page 281, the 11th line should be replaced by:



conducting wire, considered as a cylinder, on any point of the middle cross-section of this
piece, is

- Page 287, the 5th line should be replaced by:

under consideration. Hence multiplying this force by the number of positive electric units
of

- Page 287, the 1st line of the 2nd paragraph should be replaced by:

In order to take into account all forces which act on the electric particle of the conducting
wire under consid-

- Page 289, the 5th line of the 4th paragraph of Section 18.6 should be replaced by:

rather λ = ∞ when α vanishes, as is easily seen because the number, = E, of positive
electric units

- Page 293, the 1st sentence of item 1 of Section 18.8 should be replaced by:

1. The electromotive forces acting on the point s of the conductor wire from the vicinity

have been found at the end of Section 18.2:

- Page 308, the 12th line of the 1st paragraph should be replaced by:

factor c4/[4M ′′] may be considered as known, the value of the product rE decides on the

- Page 308, the 7th line of the 2nd paragraph should be replaced by:

locity during the unit time on a mass of one milligram), it follows that r2 is the force
exerted by one

- Page 309, the 2nd line of Section 18.15 should be replaced by:

itself in a circular conductor after an arbitrary disturbance of equilibrium turn out to be
a series of wave

- Page 310, the 1st line of the 3rd paragraph should be replaced by:

The intensities of the various wave trains, which are proportional to i2 according to the
rules of wave

- Page 312, the 3rd line from bottom to top should be replaced by:

and for small values of the resistance of the entire conductor for which the fraction
a2c2w′2/[128n2M ′′2] vanishes

- Page 313, the 3rd line should be replaced by:

Already Kirchhoff has found this velocity for the propagation of electric waves and
remarked:434

- Page 313, the 3rd line from bottom to top should be replaced by:

measures of resistance, we have W = πc2aw′/4 or a2c2w′2/128 = W 2/[8π2c2], after
what437

- Page 329, the 2nd line of the 1st paragraph should be replaced by:

have at the same time equal phase and oscillation amplitude in all parts of a circular
conductor, even if the

- Page 330, the 6th line of the 2nd paragraph should be replaced by:



velocities of the small magnet. Choosing the three conducting wires already exemplified
in Section 18.16, we get

- Page 337, the 3rd line of the 2nd paragraph should be replaced by:
wires and the solenoid weight carried by them, there is a static directive force for the

solenoid which can easily be determined and shall be denoted

- Page 339, the penultimate line should be replaced by:
to the first part and the solenoid to the latter part of the closed conductor. Then from

this

- Page 345, the 7th line of the 7th paragraph should be replaced by:
wire f III and the multiplier wire f IV of the second dynamometer, but will

- Page 347, the 14th line should be replaced by:
dynamometer, f IIIf IV , are removed and whereby, depending on the setting of commu-

tator

- Page 347, the last line should be replaced by:
the first dynamometer, are removed and whereby, depending on the setting of commutator

- Page 350, the 3rd line of the 1st paragraph should be replaced by:
neighboring conductors and which it suffers from them, and even the forces exerted by

the magnetism

- Page 353, the 15th and 16th lines should be replaced by:
After this mutual comparison of the sensitivities of both dynamometers, the observed

deflections of one dynamometer alternatively switched onto two different places of the circuit
may

- Page 353, the 23rd line should be replaced by:
other dynamometer is valid, and this deflection calculated for the first position of the

main

- Page 357, the 1st line should be replaced by:
tivity] of the second [dynamometer], from the observations listed in this second series

yield

- Page 360, the 11th line should be replaced by:

625.20, 625.29, 621.70 ,

- Page 370, the last line should be replaced by:
of the solenoid also when it surpassed half of the scale length.

- Page 380, the 1st line of the 2nd paragraph should be replaced by:
Hence it would be possible to determine directly the magnitude rE without consid-

- Page 393, the 1st line after Equation (19.19) should be replaced by:
same way as he had written them in his 1871 postcard to Tait, namely:507

- Page 395, the 19th and 20th lines should be replaced by:



beschränkt, in denen das Verhältnis v/c jener Relativgeschwindigkeit zur Lichtgeschwin-
digkeit im Vakuum in der ersten Potenz auftritt. [...] Wir nehmen nun an, die Uhren können
so gerichtet
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