FI-144 TEORIA DE GRUPOS Lista #3

Guillermo Cabrera

Entrega: 07de maio de 2018 Só entregar os itens destacados com *

1. * Redução da Simetria.

Uma partícula está submetida a um potencial $V_1(\mathbf{r})$ de simetria pontual \mathbf{O} (grupo do octaedro). Posteriormente adicionamos um novo potencial $V_2(\mathbf{r})$ de simetria \mathbf{D}_6 . Como \mathbf{D}_6 não é subgrupo de \mathbf{O} , este problema merece especial cuidado. Oriente o campo $V_2(\mathbf{r})$ de maneira que o potencial resultante $V_1(\mathbf{r}) + V_2(\mathbf{r})$ tenha o máximo número de elementos de simetria (veja a figura 1).

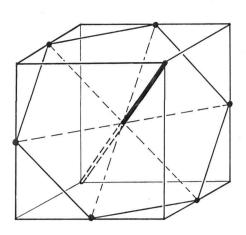


Figure 1:

Chamamos de \mathbf{G}' o subgrupo obtido. Identifique \mathbf{G}' como grupo de ponto cristalino.

(a) Queremos que agora responda as seguintes questões. Descreva a situação física em relação aos níveis de energia, quando uma partícula em um campo de simetria inicial cúbica, de grupo **O**, é perturbada por outro campo de simetria

 \mathbf{G}' orientado ao longo de um dos eixos \mathbf{C}_3 de \mathbf{O} (este campo pode ser visualizado como uma deformação ao longo de uma das diagonais do cubo). Analise todos os tipos possíveis de níveis de energia e encontre a sua separação quando a simetria é reduzida.

(b) Formule todas as regras de seleção para transições de dipolo elétrico e magnético e de quadrupolo elétrico, primeiro para o campo de simetria O e depois para o campo da perturbação G'. Analise também o caso das regras de seleção para elementos de matriz diagonais. ■

2. Distribuição de cargas pontuais.

Considere uma distribuição de 6 cargas idênticas de valor q cada uma, com coordenadas $(\pm a, 0, 0)$, $(0, \pm b, 0)$ e $(0, 0, \pm c)$. Calcule o potencial eletrostático da distribuição, perto da origem de coordenadas, como uma expansão em (x, y, z) até potências de quarta ordem nos produtos homogêneos, ou seja para produtos $x^i y^j z^k$ com i + j + k = 4. Se desejar, use a fórmula de adição dos harmônicos esféricos

$$\frac{1}{|\overrightarrow{\mathbf{r}} - \overrightarrow{\mathbf{r}}'|} = \frac{4\pi}{r'} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} \left(\frac{r}{r'}\right)^{l} Y_{l}^{m} *(\theta', \phi') Y_{l}^{m} (\theta, \phi) ,$$

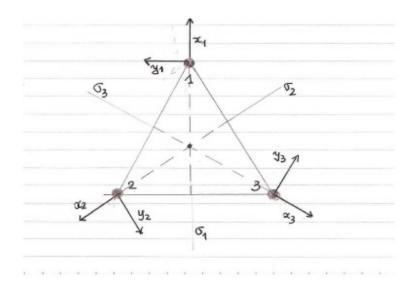
onde r < r'. Queremos o desenvolvimento até l = 4.

- (a) O caso $a \neq b \neq c$ corresponde a simetria ortorrômbica. Identifique o grupo de ponto e mostre que os invariantes podem ser construídos com as funções $r^l\left[Y_l^m\left(\theta,\phi\right)+Y_l^{-m}\left(\theta,\phi\right)\right]$, com l par e |m| par. Aumente gradativamente a simetria,
- (b) primeiro, para $a = b \neq c$ (simetria tetragonal). Identifique o grupo pontual;
- (c) segundo, para a=b=c (simetria cúbica). Identifique o grupo de ponto.

Em todos os casos, confira que o potencial resultante é um invariante do grupo de simetria.

3. Vibrações de uma molécula triangular (tema de estudo).

Considere a molécula triangular, mostrada na figura, com simetria C_{3v} :



- (a) Supondo que os átomos estão confinados no plano, escolhemos coordenadas generalizadas $(x_1, y_1, x_2, y_2, x_3, y_3)$ do sistema como mostrado na figura. Analise o movimiento general da molécula, estudando como as coordenadas generalizadas transformam por operações do grupo. Obtenha os caracteres da representação induzida e sua decomposição em representações irredutíveis do grupo.
- (b) Elimine os graus de liberdade de translação e rotação e obtenha os modos normais de vibração da molécula. Forneça uma representação geométrica dos modos normais.
- (c) Para os modos de vibração, diga quais são infra-vermelhos ativos e quais Raman ativos, para transições fundamentais.