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36. Determine the potential energy for each of the following forces which is conservative:

a)  F,=2ax(z*+yY),  F, = 2ap@+ )43y x2+1?),  F.=3a2?(x?+)7).
b) F, = ap® cos @, F, = ap®sin ¢, F. = 2az%.

c) F, = —2ar sin ) cos ¢. F,= —arcosfcosop, ~ F,=arsinfsing.

r

37. Determine the potential energy for each of the following forces which is conservative:

a) F.=axe ®  F,=bye ®,  F,=cze ® where R = ax*+by* + ¢z,
b) F = Af(A-r), where A is a constant vector and f(s) 1s any suitable function of s = A-r.
c) F=(rxA)f(A-r)

38. A particle is attracted toward the z-axis by a force F proportional to the square of its
distance from the xy-plane and inversely proportional to its distance from the z-axis. Add an
additional force perpendicular to F in such a way as to make the total force conservative, and
find the potential energy. Be sure to write expressions for the forces and potential energy
which are dimensionally consistent.

39. Show that F = #F(r) is a conservative force by showing by direct calculation that the
integral

j:l F-dr
along any path between r, and r, depends only on ry and r,. [Hint: Express F and dr in

spherical coordinates. |

40. Find the components of force for the following potential-energy functions:

aj V = axy®z’.
b) Vo= thr?.
¢) Vo= $kx? +3k,07 + k.22,

{ 41, Find the force on the electron in the hydrogen molecule ion for which the potential is

e? &
S, <Y .
Fi T3
where r, is the distance from the electron to the pomnt y = z = 0, x = —a,and r, is the distance
from the electron to the point y = 2 = 0, x = a.

42. Devise a potential-energy function which vanishes as r - o, and which yields a force

= —kr when r - 0. Find the force. Verily by doing the appropriate line integrals that the
work done by this force on a particle going from r = 0 to r = r, is the same if the particle
travels in a straight line as it 1s il it follows the path shown in Fig. 3.32.

@Thc potential energy for an isotropic harmonic oscillator is
Vo= dke?.

P lot the effective potential energy for the r-motion when a particle of mass m moves with this
potential energy and with ung_urar momentum L about the origin. Discuss the types of motion
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that are possible, giving as complete a description as is possible without carrying out the
solution. Find the frequency of revolution for circular motion and the frequency of small
radial oscillations about this circular motion. Hence describe the nature of the orbits which
differ slightly from circular orbits.

QFind the frequency of small radial oscillations about steady circular motion for the
eflective potential given by Eq. (3.232) for an attractive inverse square law force, and show
that it is equal to the frequency of revolution.

Find r(t), 0(t) for the orbit of the particle in Problem 43. Compare with the orbits found
in Section 3.10 for the three-dimensional harmonic oscillator.

46. A particle of mass m moves under the action of a central force whose potential 1s
Vir) = Kr*, K = 0.

For what energy and angular momentum will the orbit be a circle of radius @ about the origin?
What is the period of this circular motion? If the particle is shghtly disturbed from this circular
motion, what will be the period of small radial oscillations about r = a?

According to Yukawa’s theory of nuclear forces, the attractive force between a neutron
and a proton has the potential

;= ar

. Ke 2
Vir) = - - K < 1.
.

a) Find the force. and compare it with an inverse square law of force.

b) Discuss the types of motion which can occur if a particle of mass m moves under such a
force.

¢) Discuss how the motions will be expected to differ from the corresponding types of motion
for an inverse square law of force.

d) Find L and E for motion in a circle of radius a.

¢) Find the period of circular motion and the pefiod of small radial oscillations.

f) Show that the nearly circular orbits are almost closed when « 1s very small.

48. Solve the orbital equation (3.222) for the case F = 0. Show that your solution agrees with
Newton'’s first law.

49. It will be shown in Chapter 6 (Problem 7) that the effect of a uniform distribuuion of
dust of density p about the sun is to add to the gravitational attraction of the sun on a planet
of mass m an additional attractive central force

F' = —mkr,
where

4
o= —:I pG.

a) If the mass of the sun is M, find the angular velocity of revolution of the planet in a
circular orbit of radius ry, and find the angular frequency of small radial oscillations. Hence
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154 MOTION OF A PARTICLE IN TWO OR THREE DIMENSIONS

show that if F” is much less than the attraction due to the sun, a nearly circular orbit will be
approximately an ellipse whose major axis precesses slowly with angular velocity

’SG 1/2
m, = 2mp o .

b) Does the axis precess in the same or in the opposite direction to the orbital angular
velocity? Look up M and the radius of the orbit of Mercury, and calculate the density of dust
required to cause a precession of 41 seconds ol arc per century.

50. a) Discuss by the method of the effective potential the types of motion to be expected
for an attractive central force inversely proportional to the cube of the radius:

K :
F)=—>. K> 0.

b) Find the ranges of energy and angular momentum for each type of motion.
¢) Solve the orbital equation (3.222), and show that the solution is one of the forms:

L _ A cos [BO—00)], (1)
|

~ = A cosh [f(6—0,)], 2)
-

1

o A sinh [ (0 —0,)]. (3)
1

Lo (5)
roorg

d) For what values of L and E does each of the above types of motion occur? Express the
constants A and f in terms of E and L for each case.
e) Sketch a typical orbit of each type.

Q[a] Discuss the types of motion that can occur for a central force

Fir) K.~'r-
()= —5+—.
( e

Assume that K = 0, and consider both signs for K'.
b) Solve the orbital equation, and show that the bounded orbits have the form (if L? > —mK’)
a(l —e&%)
r=—
1+¢&cos af
¢) Show that this is a precessing ellipse, determine the angular velocity of precession, and

state whether the precession is in the same or in the opposite direction to the orbital angular
velocity.
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52. Sputnik I had a perigee (point of closest approach to the earth) 227 km above the earth’s
surface, at which point its speed was 28,710 km/hr. Find its apogee (maximum) distance
from the earth’s surface and its period of revolution. (Assume the earth is a sphere, and neglect
air resistance. You need only look up g and the earth’s radius to do this problem.)

xplorer I had a perigee 360 km and an apogee 2,549 km above the earth’s surface. Find
its distance above the earth’s surface when it passed over a point 90° around the earth from
its perigee. -

(54, A comet is observed a distance of 1.00 x 10® km from the sun, traveling toward the sun

“with a velocity of 51.6 km per second at an angle of 45° with the radius from the sun. Work
out an equation for the orbit of the comet in polar coordinates with origin at the sun and
x-axis through the observed position of the comet. (The mass of the sun is 2.00 x 10°° kg.)

55. It can be shown (Chapter 6, Problems 17 and 21) that the correction to the potential
energy of a mass m in the earth’s gravitational field, due to the oblate shape of the earth, is
approximately, in spherical coordinates, relative to the polar axis of the earth,
2
e SOMOR ot
5r3

where M is the mass of the earth and 2R, 2R(1 —#) are the equatorial and polar diameters of
the earth. Calculate the rate of precession of the perigee (point of closest approach) of an
earth satellite moving in a nearly circular orbit in the equatorial plane. Look up the
equatorial and polar diameters of the earth, and estimate the rate of precession in degrees
per revolution for a satellite 400 miles above the earth.

*56. Calculate the torque on an earth satellite due to the oblateness potential energy
correction given in Problem 55. A satellite moves in a circular orbit of radius r whose plane
is inclined so that its normal makes an angle & with the polar axis. Assume that the orbit is
very little affected in one revolution, and calculate the average torque during a revolution.
Show that the effect of such a torque is to make the normal to the orbit precess in a cone of
half angle o about the polar axis, and find a formula for the rate of precession in degrees per
revolution. Calculate the rate for a satellite 400 miles above the earth, using suitable values
for M, n, and R.

57. It can be shown that the orbit given by the special theory of relativity for a particle of
mass m moving under a potential energy V(r) is the same as the orbit which the particle would
follow according to Newtonian mechanics if the potential energy were
2

v LEZ V0T,
2me?
where E is the energy (kinetic plus potential), and ¢ is the speed of light. Discuss the nature of
the orbits for an inverse square law of force according to the theory of relativity. Show by
comparing the orbital angular velocity with the frequency of radial oscillations for nearly
circular motion that the nearly circular orbits, when the relativistic correction is small, are
precessing ellipses, and calculate the angular velocity of precession. [ See Eq. (14.101). ]
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156 MOTION OF A PARTICLE IN TWO OR THREE DIMENSIONS

58. Mars has a perihelion (closest) distance from the sun of 2.06 % 108 km, and an aphelion
(maximum) distance of 2.485 x 10 km. Assume that the earth moves in the same plane in a
circle of radius 1.49 % 10% km with a period of one year. From this data alone, find the speed of
Mars at perihelion. Assume that a Mariner space probe is launched so that its perihelion 1s
at the earth’s orbit and its aphelion at the perihelion of Mars. Find the velocity of the Mariner
relative to Mars at the point where they meet. Which has the higher velocity? Which has the
higher average angular velocity during the period of the flight?

50. Mariner 4 left the earth on an orbit whose perihelion distance from the sun was approxi-
mately the distance of the earth (1.49 x 10® km), and whose aphelion distance was approximately
the distance of Mars from the sun (2.2 x 10® km). With what velocity did it leave relative to the
earth? With what velocity must it leave the earth (relative to the earth) in order to escape
altogether from the sun’s gravitational pull? (You need na further data to answer this problem
except the length of the year, if you assume the earth moves in a circle.)

60. a) A satellite is to be launched from the surface of the earth. Assume the earth is a
sphere of radius R, and neglect friction with the atmosphere. The satellite is to be launched at
an angle & with the vertical, with a velocity vg. 0 as to coast without power until its velocity
is horizontal at an altitude h, above the earth’s surface. A horizontal thrust is then applied
by the last stage rocket so as to add an additional velocity Av, to the velocity of the satellite.
The final orbit is to be an ellipse with perigee h, (point of closest approach) and apogee h;
(point farthest away) measured from the earth’s surface. Find the required initial velocity vg
and additional velocity Ag,, in terms of R. &, hy, hy, and g, the acceleration of gravity at the
earth’s surface.

b) Write a formula for the change dh, in perigee height due to a small error off in the final
thrust direction, to order (5f)%.

61. Two planets move in the same plane in circles of radii r,, r, about the sun. A space
probe is to be launched from planet | with velocity v, relative to the planet, so as to reach the
orbit of planet 2. (The velocity v, is the relative velocity after the probe has escaped from the
gravitational field of the planet) Show that v, is a minimum for an elliptical orbit whose
perihelion and aphelion are r, and r,. In that case, find v, and the relative velocity v, between
the space probe and planet 2 if the probe arrives at radius r; at the proper time to intercept
planet 2. Express your results in terms of r,, ry, and the length of the year ¥, of planet 1. Look
up the appropriate values of r, and r,, and estimate v, for trips to Venus and Mars from the
earth.

62. A rocket is in an elliptical orbit around the earth, perigee r,, apogee r, measured from
the center of the earth. At a certain point in its orbit, 1ts engine is fired for a short time so as
to give a velocity increment Av in order to put the rocket on an orbit which escapes from the
earth with a final velocity v, relative to the earth. (Neglect any effects due to the sun and moon.)
Show that Av is a minimum if the thrust is applied at perigee, parallel to the orbital velocity.
Find Av in that case in terms of the elliptical orbit parameters &, a, the acceleration g at a
distance R from the earth’s center, and the final velocity vg. Can you explain physically why
Av is smaller for larger &?

63. A satellite moves around the earth in an orbit which passes across the poles. The time
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at which it crosses ecach parallel of latitude is measured so that the function 0(z) is known.
Show how to find the perigee, the semimajor axis, and the eccentricity of its orbit in terms of
f(1), and the value of ¢ at the surface of the earth. Assume the earth is a sphere of radius R.

64. A particle of mass m moves in an elliptical orbit of major axis 2a, eccentricity &, in such
a way that the radius to the particle from the center of the ellipse sweeps out area at a constant
rate

ds

d
and with period 7 independent of a and & (a) Write out the equation of the ellipse in polar
coordinates with origin at the center of the ellipse.
b) Show that the force on the particle is a central force, and find F(r) in terms of m, .

65.) Show that the Rutherford cross-section formula (3.276) holds also when one of the charges
1s negative.

@A particle is reflected from the surface of a hard sphere of radius R in such a way that

% incident and reflected lines of travel lie in a common plane with the radius to the point of
impact and make equal angles with the radius. Find the cross-section dg for scattering through
an angle between ® and © +dO. Integrate do over all angles and show that the total cross-
section has the expected value TR

67. Exploit the analogy u, #« x, t between Egs. (3.222) and (2.39) in order to develop a
solution of Eq. (3.222) analogous to the solution (2.46) of Eq. (2.39). Use your solution to show
that the scattering anglc @ (Fig. 3.42) for a particle subject to a central force F{r) is given by

= |n—2s [y [1—s%® = V(u™")Gmog)] "' dul,
where V(r = u~ ') is the potential energy,
Vir) = f:’ F(r)dr,

s is the impact parameter, and u, is the value of u at which the quantity in square brackets
vanishes. [ This problem is not difficult if you keep clearly in mind the physical and geometrical
significance of the various quantities involved at each step in the solution.]

68. Show that a hard sphere as defined in Problem 66 can be represented as a limiting case

of a central force where
J
0,1fr > R,
V(r) = :
o, ifr < R,
that is, show that such a potential gives the same law of reflection as specified in Problem 66.
Hence use the result of Problem 67 to solve Problem 66.

69. Use the result of Problem 67 to derive the Rutherford cross-section formula (3.276).

70. A rocket moves with initial velocity v, toward the moon of mass M, radius r,. Find the
cross-section o for striking the moon. Take the moon to be at rest, and ignore all other bodies.
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@Show that for a repulsive central force inversely proportional to the cube of the radius,
K
Fir)= 5. K =0,
3

the orbits are of the form (1) given in Problem 50, and express ff in terms of K., E, L, and the
mass m of the incident particle. Show that the cross-section for scattering through an angle
between © and @ +d© for a particle subject to this force is

2K n—0@

mug ©*2n—©)

da =

@ particle of charge 4, mass m at rest in a constant, uniform magnetic field B = ByZ is
Mfct, beginning at ¢ = 0, to an oscillating electric field

E = Ey% sin ot.

Find its motion.

@Soive Problem 72 for the case w = gBg/mc.

74. A charged particle moves in a constant, uniform electric and magnetic field. Show that
if we introduce a new variable

, ExB
¥=rt=———rch
BA.
the equation of motion for #' is the same as that for r except that the component of E perpen-
dicular to B has been eliminated.

@ particle of charge ¢ in a cylindrical magnetron moves in a uniform magnetic field
B = BZ,

and an electric field, directed radially outward or inward from a central wire along the
Z-dX18,

. a
E=-p,
.(l

where p is the distance from the z-axis, and § is a unit vector directed radially outward from
the =-axis. The constants @ and B may be either positive or negative.

a) Set up the equations of motion in cylindrical coordinates.

b) Show that the quantity

L
mplé + Epz =K

is a constant of the motion.

¢) Using this result. give a qualitative discussion, based on the energy integral, of the types
of motion that can occur. Consider all cases, including all values of ¢, B, K, and E.

d) Under what conditions can circular motion about the axis occur?

¢) What is the frequency of small radial oscillations about this circular motion?


cabrera
Pencil

cabrera
Pencil

cabrera
Pencil

cabrera
Pencil




