
CN Chapter 1

CT Classical or Quantum

Probabilities. Or both?

The description of nature through quantum theory is intrinsically probabilistic, and

statistical methods are developed in order to get information of physical observables.

This distinctive feature has its roots in the probabilistic interpretation of the wave func-

tion, in conjunction with the Uncertainty Principle. As discussed in standard textbooks,

quantum probabilities embody the dual nature of matter, reproducing phenomena such

as interference and di¤raction. This statistical representation, even for a one particle

system, requires an ensemble of similarly prepared systems, in order to generate a set

of well de�ned probabilities for all quantities. The ensemble is a conceptual set of an

�in�nite�number of replicas of the same system that do not coexist in space or time.
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When all systems of the ensemble are represented by the same wave function or state

vector j i, we say that we have prepared a pure state. In Statistical Mechanics, j i

represents a possible microstate of the system. Physical predictions of an observable

quantity A are given in terms of averages or mean values of the type:

hAi = h jAj i ; (1.1)

where the bracket is calculated following well established quantum rules. In turn,

statistical �uctuations of quantum origin are obtained through:



A2
�
� hAi2 =



 
��(A�hAi)2�� � ; (1.2)

where we have assumed that the state  is normalized, i:e: <  j >= 1. The time

evolution of this microstate is dictated by the Schrödinger equation, as long as no

measurement is made on the system. We will not pursue here a thorough discussion

on the fundamental concepts of Quantum Mechanics, and will assume that the reader

has the proper background to follow this set of lectures [1, 2]. According to Quantum

Mechanics, a pure state is the maximal information we can have of a quantum system,

and represents an exception rather than the rule. In most situations, we do not know

the wave function with certainty. A typical example is given by a system of coordinate

x which is coupled to another system of coordinate y (the latter may be a thermal

bath that keeps the system at a constant temperature). In general, we cannot assign

a wave function to our system x, which is a part of the whole system (x;y). In
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this case, we say that the system x is in a mixed state and we have to look for a

more general mathematical object to describe this situation. This lack of information

closely resembles the classical statistical problem. In fact, in many instances this case

is denominated as incoherent mixture, to mean the lack of quantum coherence and the

absence of interference e¤ects. As will be discussed later on, quantum and thermal

�uctuations compete in this scenario as function of temperature. Quantum coherence

is realized at low temperatures, and asymptotically at zero temperature the system is

driven exclusively by quantum�uctuations. As long as the temperature is increased, the

system develops thermal �uctuations, which eventually dominate the statistics, leading

to decoherence of quantum e¤ects (classical statistics). The description of the general

ensemble, encompassing all cases, is attained quite naturally employing the so called

state operator � (or density operator), which is a generalization of the wave function

concept. The operator � is the relevant quantity to construct quantum statistical

mechanics. The name density is reminiscent of the classical function �(q; p) that yields

the density of points in phase space to perform classical statistics. A single point in

phase space represents one of the systems of the ensemble. An important task to be

accomplished is to relate the quantum density operator � with the classical function

�(q; p). In the next section, we develop the basis of the mathematical formalism.
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A 1.1 Ensembles and Density Operator

We begin by de�ning the di¤erent ensembles we encounter to describe a physical system

[3].

De�nition 1 Pure Ensemble. It is a collection or set of identical physical systems,

such that all members of the ensemble (systems) are characterized by the same state

vector or ket j i. This is the usual case we encounter in standard quantum mechanics

textbooks, when the state of a system is represented by a single wave function. This

ensemble represents a microstate.

Calculation of averages and standard deviations for the ensemble are given

by equations (1.1) and (1.2). This pure state j i may be an eigenstate of a particular

physical observable, or may be a linear superposition of eigenstates of an arbitrary

operator.

De�nition 2 Mixed ensemble. The wave function is not known with certainty, and

we have several possibilities that we write as
n��� (1)E ; ��� (2)E ::: ��� (i)E :::o. This collec-

tion may be �nite or in�nite. A fraction of the members of the ensemble, with relative

population wi, is assigned to the ket
��� (i)E. Normalization requires that
X
i

wi = 1: (1.3)

The weights fwig are positive (or zero) real numbers. We say that this ensemble repre-

sents a macrostate of the system.
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The states vectors
n��� (1)E ; ��� (2)E ::: ��� (i)E :::o are normalized but not neces-

sarily orthogonal, and the number of such states may be greater than the dimension

of the linear space. The numbers fwig cannot be interpreted as ordinary probabilities,

since the quantum states
n��� (1)E ; ��� (2)E ::: ��� (i)E :::o are not �mutually exclusive�. This

has to be understood in the sense that the overlap between two states of the collection

does not vanish in general, i.e. D
 (i)j (j)

E
6= 0 (1.4)

in the general case. Now, we have to prescribe the calculation of averages for the mixed

ensemble. Let A be a physical observable. We denote by [:::] the average for the

ensemble, to distinguish from h:::i used for the pure quantum case.

De�nition 3 Average or Mean Value for the mixed ensemble.

[A] �
X
i

wi

D
 (i) jAj (i)

E
: (1.5)

In the above de�nition, we see that the ordinary quantum average
D
 (i) jAj (i)

E
for

the state  (i) is weighed by its relative population wi, so the average [A] has a mixed

quantum and statistical nature. We rewrite the de�nition (1.5) using a general basis of
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states fjnig, which is orthonormal and complete:

[A] =
X
i

wi
X
n;n0

<  (i)jn > < njAjn0 > < n0j (i) >

=
X
n;n0

 X
i

wi < n0j (i) ><  (i)jn >
!
< njAjn0 > : (1.6)

The expression above suggests the following de�nition:

De�nition 4 State Operator or Density Operator, �

� �
X
i

wi j (i) ><  (i)j : (1.7)

Its matrix elements are given by:

hn0 j�jni =
X
i

wi < n0j (i) ><  (i)jn > ;

and the mean value can be written as a trace:

[A] =
X
n;n0

hn0 j�jni hn jAjn0i = Tr (�A) : (1.8)

From the de�nition, we get some immediate properties:

i) � is an Hermitian operator:

�y =
X
i

w�i

�
j (i) ><  (i)j

�y
=
X
i

wi j (i) ><  (i)j = � ;

because the fwig are real numbers. The eigenvalues of � are then real. We will

show that they are all positive;
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ii) the density operator is normalized in the sense:

Tr � =
X
n

X
i

wi < n j (i) ><  (i)j n >=
X
i

wi
X
n

<  (i)j n >< n j (i) >=

=
X
i

wi <  (i)j (i) >=
X
i

wi = 1 ; (1.9)

since the states  (i) are normalized. This condition reduces to the fact that the

unit operator 1 has mean value equal to 1;

iii) consider an observable A. The operator AyA is said to be positive de�nite (non

negative). That means that its average is positive or zero:

�
AyA

�
=
X
i

wi

D
 (i)

��AyA
�� (i)E =X

i

wi


'(i)j'(i)

�
;

where j'(i) >= Aj (i) >. Since the metric is positive, we have


'(i)j'(i)

�
= 0,

resulting
�
AyA

�
= 0. Since A is an observable, it is Hermitian, Ay= A, with real

eigenvalues. Consider the basis that leaves A in diagonal form, Amn = An�mn

and calculate
�
AyA

�
:

0 5
�
AyA

�
= Tr (�AA) =

X
k;m;n

�nmAmkAkn =
X
n

�nnA
2
n ;

and since A is arbitrary, we obtain that �nn = 0. Result: any diagonal element

of �, for an arbitrary representation, is non negative. In particular, if we choose

the representation where the operator � is diagonal, �mn = �n�mn, we obtain that

the eigenvalues are non negative, �n = 0, with
P

n �n = 1;
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iv) using the same representation, we obtain

Tr
�
�2
�
=
X
n

�2n 5
 X

n

�n

!2
= (Tr �)2 = 1 ;

that is Tr (�2) 5 1, and since the trace is invariant, this result is valid in any

representation;

v) the pure ensemble can be considered as a limit case of the mixed ensemble, when

only one of the weighs is di¤erent from zero, i.e.

wi =

8>><>>:
1; for i = j;

0; for i 6= j :

and � = j (j) ><  (j)j. In the following, we will review some properties of the

pure ensemble. �

A 1.2 Pure versus mixed ensembles

For pure states, the density operator has the simple form:

� = j ><  j ;

from where we get the properties:

a) idempotence of �,

�2 = (j ><  j) (j ><  j ) = j ><  j ><  j = j ><  j = � ;
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since <  j >= 1. This relation can be factorized:

� (�� 1) = 0 : (1.10)

b) the equation (1.10) is also satis�ed by its eigenvalues:

�n (�n � 1) = 0 ;

with solutions �n = 0; 1. Due to normalization,
P

n �n = 1, it follows that only

one of the eigenvalues is 1, and all the other are zero. In the diagonal form, the

density matrix is written as

�
:
=

0BBBBBBBBBBBBBBBBBBBBBB@

0 0 : : : 0 0

0 ::: ::: 0

: 0 :

: 1 :

: 0 :

0 ::: ::: 0

0 0 : : : 0 0

1CCCCCCCCCCCCCCCCCCCCCCA

:

c) due to the idempotent property, we get

Tr
�
�2
�
= Tr (�) = 1 : (1.11)

Relation (1.11) can be considered as a necessary and su¢ cient condition for an

ensemble to be pure.
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In contrast, for the mixed ensemble we have �2 6= �, and Tr (�2) < 1. The

decomposition �=
P

iwi j 
(i) ><  (i)j is not unique, as we shall see in the examples.

EXP Example 1

We work out an illustrative example for spin 1=2. The linear space

has dimension 2, and the density operator is represented by a (2�2)

matrix. Due to hermiticity and normalization, we are left with three

real independent parameters to determine �. Those parameters can

be identi�ed with the three mean values for the average of the spin

operator, [Sx] ; [Sy] ; [Sz]. This is a particular characteristic of spin

1=2. For convenience, we introduce the Pauli spin operator �!� by

�!
S=

~
2
�!� ;

with the standard representation:

�x =

0BB@ 0 1

1 0

1CCA ; �y =

0BB@ 0 �i

i 0

1CCA ; �z =

0BB@ 1 0

0 �1

1CCA : (1.12)

We note that the three Pauli matrices plus the identity form a basis

of the linear space of the complex (2 � 2) matrices. So, in general

we have

� =
1

2
m0 1+

1

2
mx�x +

1

2
my�y +

1

2
mz�z =

1

2
m0 1+

1

2
�!m � �!� ; (1.13)
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with the vector �!m= (mx;my;mz) being called polarization. Due to

hermiticity of � and the Pauli matrices, all the coe¢ cients in (1.13)

are real. Also, remembering that Pauli matrices are traceless, the

normalization condition reads:

Tr (�) = 1 =
1

2
m0 Tr (1) = m0 ;

and we are left with three real independent parameters given by

�!m= (mx;my;mz), with the density operator written in the general

form:

� =
1

2

�
1+�!m � �!�

�
:

Using the algebra associated with the Pauli matrices, one easily �nds

that

�2 =
1

4

h
1+ 2�!m � �!�+

��!m � �!�
�2i

=
1

2

��
1 +m2

2

�
1+�!m � �!�

�
;

with m2 =
���!m��2 = m2

x +m2
y +m2

z. Taking the trace, we obtain

Tr
�
�2
�
=
1 +m2

2
5 1 ;

implying that m2 5 1, or 0 5
���!m�� 5 1. We have a pure ensemble

if and only if m2 = 1, which means maximum polarization. For the

mixed ensemble, 0 5 m2 < 1. The case m = 0 is called unpolarized

or random ensemble. Using the anticommuting properties of Pauli

13



CHAPTER 1 � MANUSCRIPT

matrices:

�x�y = ��y�x = i�z ;

�y�z = ��z�y = i�x ;

�z�x = ��x�z = i�y ;

it follows

[Sx] = Tr (�Sx) =
~
2
mx ;

[Sy] = Tr
�
�Sy

�
=
~
2
my ;

[Sz] = Tr (�Sz) =
~
2
mz :

For the random ensemble, [Sx] = [Sy] = [Sz] = 0, that is m = 0 and

the density operator is written as:

�0 =
1

2
1
:
=
1

2

0BB@ 1 0

0 1

1CCA : (1.14)

We will discover that this case corresponds to the maximal mixing.

Suppose that we use the basis of states that diagonalize Sz. We call

them jẑ; + > and jẑ;� >, corresponding to the eigenvalues
~
2
and

�~
2
respectively. The density operator for the random case in (1.14)

can be represented in the form

�0 =
1

2
jẑ; + >< ẑ; +j +1

2
jẑ;� > < ẑ;� j =

= w+jẑ; + >< ẑ; +j +w�jẑ;� > < ẑ;� j ;
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with w+ = w� =
1

2
, i.e. �0 can be considered as a mixing of the

states jẑ; + > and jẑ;� > with equal weighs. One important issue

for the mixed ensemble, is that the decomposition in terms of pure

ensembles is not unique. In the example above, we can consider a

di¤erent basis of states, let�s say the states jx̂; + > and jx̂;� > that

diagonalize the component Sx of the spin operator. We have the

unitary transformation:

jẑ; + >=
1p
2
jx̂; + > +

1p
2
jx̂;� > ;

jẑ;� >=
1p
2
jx̂; + > � 1p

2
jx̂;� > ;

that leads to

�0 =
1

2
jx̂; + >< x̂; +j +1

2
jx̂;� > < x̂;� j ;

which means that the random ensemble (1.14) may be considered,

at the same time, as a mixing of states jx̂; + > and jx̂;� > with

equal weighs. Actually, there is an in�nite number of possibilities,

saying that the random mixed ensemble can be decomposed equally

in terms of black and white, or red and green, or blue and yellow,

and so on, at the same time. This fact is a manifestation of the

quantum nature of the state, in spite of the maximal mixture. The
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pure ensemble can be parameterized as:

�!m=(sin � cos'; sin � sin'; cos �) ;

with j ~mj2 = 1, with the angles (�; ') giving the direction of the

polarization. In matrix form, the density operator reads:

� =

0BB@ 1+cos �
2

e�i' sin �
2

ei' sin �
2

1�cos �
2

1CCA :

For many other examples, see the exercise section. �

A 1.3 Coupled systems and non-separability

Two quantum systems that interacted in the past, remain correlated forever and cannot

be represented separately by ket states. In plain words, a subsystem can not in general,

be described by a wave function. This feature is called the Non-separability Property.

This is a limitation of the wave function formalism, since in Statistical Mechanics,

one usually wants to refer to a part of the whole system, independently of the rest.

Important cases are those when the system is coupled to reservoirs, and we want

to eliminate the latter degrees of freedom from the physical description. Those are

instances where the density operator furnishes a superior view of the state of the system,

since the wave function representation has been ruled out. To fully understand the non-
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separable case, we will �rstly discuss the case of non-interacting systems, that is systems

that are separable.

A diluted system, as for example an ideal gas, can be well approximated as a

system of many non-interacting particles (molecules). Within this ideal limit, particles

are not correlated, and the Statistical Mechanics can be reduced to a one-particle

description. In a general way, let us consider two systems which span two di¤erent

Hilbert spaces of ket states, R and S, with basis fjN >g and fjn >g, respectively. The

combined space of the two systems, R � S, is spanned by the direct product states,

which in the Dirac�s notation, are written as:

jNn >� jN > jn > :

Direct products of operators are represented by direct products of the corresponding

matrices.

Example. Direct product of two matrices A and B, where:

A=

0BB@ a11 a12

a21 a22

1CCA ; B=

0BBBBBB@
b11 b12 b13

b21 b22 b23

b31 b32 b33

1CCCCCCA :

One de�nes A�B as the matrix:

A�B�

0BB@ a11B a12B

a21B a22B

1CCA :
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The direct product results in a (6� 6) matrix, since the terms aijB are understood as

(3� 3) submatrices.

The following properties are easily demonstrated:

1. Matrix elements are understood as:

< NnjA�BjN 0n0 >=< N jAjN 0 >< njBjn0 > :

In particular, scalar products are obtained as:

< NnjN 0n0 >=< N jN 0 >< njn0 >= �NN 0�nn0 :

2. From the point above, we get:

Tr (A�B) = Tr (A) Tr(B) :

3. Direct products of column (row) vectors are obtained using the same rule de�ned

for matrices. Take for example the case below:

0BBBBBB@
1

0

0

1CCCCCCA�
0BB@ 0

1

1CCA =

0BBBBBBBBBBBBBBBBBB@

1 �

0BB@ 0

1

1CCA
0 �

0BB@ 0

1

1CCA
0 �

0BB@ 0

1

1CCA

1CCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBB@

0

1

0

0

0

0

1CCCCCCCCCCCCCCCCCCA

:
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A general state of the system is written as:

j >=
X
N;n

C(N; n) jN > jn > ;

but since the systems are uncorrelated, one must have C(N; n) = C(N)c(n) and the

state is separable:

j >=
X
N;n

C(N; n) jN > jn >=
 X

N

C (N) jN >

! X
n

c (n) jn >
!
= j R > j S > :

The same is true for the density matrix, which in general is written as

� =
X

N;M;n;m

jNn >< Nnj�jMm >< Mmj ;

but for uncorrelated systems, one should have

< Nnj�jMm >= ANMBnm ;

factorizing the density operator as:

� =

 X
N

ANM jN >< M j
! X

n

Bnmjn >< mj
!
= �R � �S ; (1.15)

in the form of a direct product. Separability for the density operator has a broader sense

in Quantum Mechanics, but we shall not pursue this discussion here [4]. A situation

as the one depicted in (1.15), is called simple separability. In the case of an ideal gas,

in the absent of interactions, all the particles are uncorrelated. If we use the particle

coordinates as labels, separability leads to:

�(x1;x2; :::;xN) = �1(x1)� �2(x2)� :::� �N(xN) ;
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where N is the total number of particles and �i(xi) is the density operator for one-

particle states. If the particles are identical,

�j = �1;

for all j = 2; 3; :::; N , and the factorization is written as

�(x1;x2; :::;xN) =
NO
i=1

�1(xi) :

In particular, if �1 is normalized, we obtain:

Tr [�(x1;x2; :::;xN)] =
NY
i=1

Tr [�1(xi)] = 1 :

In this case, the calculation of the density operator is reduced to the calculation of the

one-particle operator �1(x).

In the interacting case, correlations among the particles appear, and the states

are not any more separable. Assume that at the initial time (t0 = 0), the two subsystem

are not interacting, and we prepare the initial state as separable:

j ; 0 >= jN > jn > :

After that, the interaction is turned on during a �nite interval of time, and �nally

turned o¤ again. The interaction made the systems to be correlated. The asymptotic

state (t!1) is of the type:

j ;1 >=
X
M;m

a1(M;m;N; n)jM > jm > ; (1.16)
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where the coe¢ cient a1(M;m;N; n) is the probability amplitude for the transition

jN > jn > ! jM > jm >. Since the systems are correlated, we have in general that

a1(M;m;N; n) 6= C(M;N)c(m;n) ;

for all pairs (M;m) and (N; n), and the state (1.16) is not separable. In this case, we

cannot assign a wave function to a subsystem (either R or S). This result is called

nonseparability principle.

A 1.4 Density matrix of a subsystem

We have seen in the previous subsection that the language of ket states does not allow

us, in general, to describe an isolated system from the remainder of the universe. But

this is possible when one describes the state of the system through the density operator.

Consider two interacting quantal systems, whose states span the spaces R and S. We

want to pay attention to subsystem S, leaving R undetected (R may be a reservoir,

and we want to eliminate its degrees of freedom). The states of the total system span

R� S, but in general, physical states are not separable in the presence of interactions.

Assume basis fjN >g and fjn >g for R and S, respectively, as in the subsection above.

We want to calculate an average of an observable that refers only to S, which is written

in the form


 = IR �
S ;
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where IR is the identity in R:

[
] = Tr [� (IR �
S)] =
X

N;M;n;m

< Nnj�jMm >< Mmj (IR �
S) jNn > : (1.17)

Note that < Mmj (IR �
S) jNn >= �MN < mj
Sjn >, and substituting in (1.17)

yields:

[
] =
X
n;m

< mj
Sjn >
 X

N

< Nnj�jNm >

!
:

The quantity
P

N < Nnj�jNm > is the partial trace of � in the R space. We then

make the following de�nition:

De�nition 5 Reduced density operator, ��S, relative to S.

Its matrix elements in S are given by:

< nj��Sjm >�
X
N

< Nnj�jNm > : (1.18)

We rewrite the above de�nition (1.18) in a formal fashion as:

��S = TrR (�) ;

meaning that ��S is obtained from � by taking the partial trace in R. The average value

(1.17) is now referred to space S only:

[
] = Tr [� (IR �
S)] = TrS [��S
S] :

By taking the partial trace, we lose the detailed information relative to subsystem R.

It remains to prove that ��S is a bona �de density operator. This is achieved, if we

assume that � is a density operator for the whole universe R� S:
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i) hermiticity,

< nj��Sjm >�
X
N

< Nnj�jNm >=
X
N

< Nmj�jNn >�=< mj��Sjn >�;

because � is Hermitian;

ii) normalization,

TrS (��S) =
X
n

< nj��Sjn >�
X
n

X
N

< Nnj�jNn >= TrS [TrR (�)] = Tr (�) = 1 ;

iii) positivity,

< nj��Sjn >�
X
N

< Nnj�jNn > > 0 ;

since it is a sum of positive terms.

To measure properties of the S subsystem we do not need the complete density

operator �, but only the reduced operator ��S relative to S. Detailed information of the

other subsystem is lost, but some �average properties�of R are still contained in ��S.

EXP Example 2

Consider two interacting particles of spin 1=2, which are

coupled in a singlet state of the total spin:

j 0 >=
1p
2
j+iR j�iS �

1p
2
j�iR j+iS ; (1.19a)

where we have used the labels R and S for the particles. The above

state is said to be entangled, and clearly there is no ket state to
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represent either subsystem R or S. The state (1.19a) is a pure state,

with density operator given by:

� = j 0 ><  0j =

=
1

2
fj+iR j�iS S h�jR h+j + j�iR j+iS S h+jR h�j �

� j+iR j�iS S h+jR h�j � j�iR j+iS S h�jR h+jg :

We now take the partial trace relative to R:

��S = TrR (�) = R h+j� j+iR + R h�j� j�iR =

=
1

2
j�iS S h�j +

1

2
j+iS S h+j

:
=
1

2

0BB@ 1 0

0 1

1CCA
S

: (1.20)

Note that ��S represents a mixed ensemble (maximum mixture),

while the original � was a pure state: by eliminating the degrees

of freedom of R, some information is lost in a way that cannot be re-

covered lately. Just to stress the irreversible character of the process,

we note that partially tracing the density matrix of the pure ensem-

ble of the triplet state

j 1 >=
1p
2
j+iR j�iS +

1p
2
j�iR j+iS

leads to the same reduced density matrix (1.20). �
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A 1.5 Representing the Density Operator: Density

Matrix

We discuss in �rst place the case of discreet spectrum, with a complete and orthonormal

basis fjnig. In many instances, fjnig is the basis that makes diagonal a complete set

of observables. We expand the density operator in terms of this basis :

� =
X
i

wi j (i) ><  (i)j =
X
n;m

X
i

wijn >< nj (i) ><  (i)jm >< mj =

=
X
n;m

jn >< nj�jm><mj =
X
n;m

jn >< mj
 X

i

wi < nj (i) ><  (i)jm >

!
:

De�ning the linear coe¢ cients as a(i)n �< nj (i) >, i.e. j (i) >=
P

n a
(i)
n jn >, the

matrix elements of � are written as:

< nj�jm>=
X
i

wi a
(i)
n a

(i)�
m � ana�m ;

where the bar means average over the mixed ensemble and a� is the complex conjugate of

a. We remember that a(i)n �< nj (i) > is the probability amplitude that the state jn >

is contained in j (i) >. The corresponding probability is P (i)n =
���a(i)n ���2 = ���< nj (i) >

���2,
which appears in the diagonal matrix elements of � :

< nj�jn>=
X
i

wi
��a(i)n ��2 =X

i

wi P
(i)
n = 0 ;

which in turn, can be interpreted as a probability, since:

X
n

< nj�jn>=
X
i

wi
X
n

P (i)n =
X
i

wi = 1 :
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In other words, the diagonal matrix element < nj�jn> yields the probability that the

state jn > is occupied in the ensemble represented by �. We can also refer the average

of a physical quantity A to the same basis:

[A] = Tr (�A) =
X
n;m

< nj�jm >< mjAjn >=
X
n;m

X
i

wi a
(i)
n a

(i)�
m Amn =

X
n;m

ana�m Amn :

If an operator B is diagonal in the given basis, i.e. < mjBjn >= Bn�mn, its average is

given by:

[B] =
X
i

wi
X
n

P (i)n Bn =
X
n

Bn janj2 :

For the continuous spectrum, we discuss the important cases of the coordinate

and momentum representations. The matrix elements of � now become two-point

functions. For the coordinate representation fj�!x>g, the linear coe¢ cients < �!x j (i) >

are called �wave functions�and usually, one writes

 (i)
��!x � =< �!x j (i) > ;

meaning that they vary continuously with ~x. Now, we represent the density operator:

< �!x j�j �!x 0 >= �
��!x ;�!x 0� =X

i

wi <
�!x j (i) ><  (i)j�!x 0 >=

=
X
i

wi  
(i)
��!x � (i)� ��!x 0� =  

��!x � � ��!x 0� : (1.21)

Diagonal elements are given by:

< �!x j�j �!x >= �
��!x ;�!x � =X

i

wi

��� (i) ��!x ����2 = �� ��!x ���2 = 0 : (1.22)
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In Quantum Mechanics,
��� (i) (~x)���2 is interpreted as a probability density, since normal-

ization requires Z
d�!x

��� (i) ��!x ����2 = 1 ;
where the integral is taken over all space. It follows that diagonal elements of �, given

by (1.22), are also probability densities, with

Tr (�)=

Z
d�!x < �!x j�j �!x >=

X
i

wi = 1 :

Average of an observable A is obtained integrating the two-point function �
��!x ;�!x 0� of

(1.21) with the matrix elements of A:

[A] = Tr (�A) =

Z
d�!x

Z
d�!x 0 < �!x j�j �!x 0 >< �!x 0 jAj �!x >=

=

Z
d�!x

Z
d�!x 0�

��!x ;�!x 0� A ��!x 0;�!x � : (1.23)

If the observable is local in the coordinate representation, A
��!x 0;�!x � = A

��!x � � ��!x 0��!x �,
where �

��!x 0��!x � is the Dirac delta function, the double integral (1.23) is reduced to
the single integration below:

[A] =

Z
d�!x �

��!x ;�!x � A ��!x � ;
i.e. the function A

��!x � is integrated with the probability density � ��!x ;�!x �. Note
that for a pure ensemble, �

��!x ;�!x � is simply given by  � ��!x � ��!x � = �� ��!x ���2, the
probability density associated with the wave function  

��!x �.
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We pass to the momentum representation replacing the wave function in real

space by the wave function in momentum space:

�(i)
��!p � =< �!p j (i) > :

All formulae can be translated to the new basis fj�!p>g. For instance, the probability

density associated with the diagonal matrix elements of � is obtained as:

< �!p j�j �!p >= �
��!p ;�!p � =X

i

wi

����(i) ��!p ����2 = ��� ��!p ���2 = 0 :
Due to the uncertainty principle, we are bound to use one basis only, but we can go

from one to the other, say from j�!x> to �!p>, with the transformation matrix [1], [2] :

< �!p j�!x>= 1

(2�~)3=2
exp

�
�i
�!p � �!x
~

�
: (1.24)

The classical density function that yields the density of points in phase space, is a

function of generalized coordinates and momenta, �(q; p). To make connection with

the classical case, one has to look for a mixed representation of the operator �. At

�rst sight, this may seem forbidden by the uncertainty principle, but one can follow a

procedure due to Wigner [5] to generate such a function.

Take for instance �
��!p ;�!p � and use the transformation (1.24) to pass to the

coordinate representation:

�
��!p ;�!p � = Z d�!x

Z
d�!x 0 1

(2�~)3
exp

i�!p �
��!x 0 � �!x �
~

�
��!x ;�!x 0� ;
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then make the change of variables with unit Jacobian:

�!r =�!x 0 � �!x ;

�!
R=1

2

��!x +�!x 0� :
We obtain

�
��!p ;�!p � = Z d

�!
R

Z
d�!r 1

(2�~)3
exp

�
i�!p � �!r
~

�
�

�
�!
R�

�!r
2
;
�!
R+

�!r
2

�
: (1.25)

The integrand in relation to
�!
R de�nes a function which depends on

�!
R and �!p , which

is of the mixed form and consistent with the uncertainty principle.

De�nition 6 Wigner function, �W

�W
��!x ;�!p � � 1

(2�~)3

Z
d�!r exp

�
i�!p � �!r
~

�
�

�
�!x�

�!r
2
;�!x+

�!r
2

�
(1.26)

In our deduction in (1.25), we have proved an important property of the Wigner func-

tion, which reads:

�
��!p ;�!p � = Z d�!x �W

��!x ;�!p � ; (1.27)

that is, the probability density �
��!p ;�!p � is obtained from theWigner function �W ��!x ;�!p �

integrating over the space variable �!x . The complementary relation is also true, and it

is left to the reader to prove its validity:

�
��!x ;�!x � = Z d�!p �W

��!x ;�!p � : (1.28)
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Relations (1.27) and (1.28) are desirable properties for a function to be candidate to

represent the classical density. But de�nition (1.26) is fully quantum mechanical, and

one has to take the limit in some non trivial way to get the classical case. In general,

one can show that the property

�W
��!x ;�!p � = 0

is not always satis�ed in the whole phase space
��!x ;�!p �. Regions where �W ��!x ;�!p � < 0

are said to contain coherent quantum e¤ects, the size of those regions shrinking with

~ ! 0. Formally, it was shown by Wigner [5] that �W satis�es the Liouville equation,

when ~ ! 0 (see next subsection). For a system consisting of N particles, de�nition

(1.26) can be generalized to the phase space � of a system of particles:

�
(N)
W

�
~x1; ~x2; :::; ~xN ; ~p1; ~p2; :::;

�!p N

�
� 1

(2�~)3
R R

:::
R
d3r1d

3r2:::d
3rN �

� exp
�
i
~p1 � ~r1 + :::+ ~pN � ~rN

~

� 

~x1�~r1

2
; :::; ~xN�~rN

2

��� ��~x1+~r1
2
; :::; ~xN+

~rN
2

�
:

(1.29)

B 1.5.1 Digression over the Gibbsian ensemble

We discuss here some key concepts concerning the classical density function �(q; p),

which was the goal of Wigner�s approach. In classical Statistical Mechanics, a mi-

crostate of a system of N particles is represented by a point in �phase space��. This is
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a 6N dimensional space spanned by the generalized coordinates and conjugate momenta

fqi; pig, that characterize the system. If we use cartesian coordinates,

fqig3N = (x1; y1; z1; :::; xN ; yN ; zN) :

From the macroscopic point of view, we operate with a reduced set of quantities that

are compatible with a great number of microstates, as for example the case of a gas

occupying a given volume, at standard conditions of temperature and pressure. In

Statistical Mechanics, we are not interested in the detailed motion of a system of

many particles, but we just want to calculate some average properties (thermodynamic

quantities) that we compute using an ensemble of ideal replicas of the same system.

The ensemble is then represented by a swarm of points in � space, being the points

interpreted as di¤erent microstates corresponding to di¤erent initial conditions of the

system, all satisfying the same macroscopic constraints. This idea was introduced

by Gibbs at the foundations of Statistical Mechanics, with the relevant quantity to

characterize the ensemble being the density of points in � space. Let �(qi; pi; t) be such

a distribution, with the notation meaning that � depends on all generalized coordinates

and momenta, and may also depend explicitly on time. In other words,

�(qi; pi; t)dq
3Ndp3N

is the number of representative system points (microstates) contained at time t in

the in�nitesimal volume d
 = dq3Ndp3N , with d
 centered about the point fqi; pig
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in phase space. Those representative points of the ensemble evolve in time, tracing a

trajectory in � space which is closed (periodic motion) or never autointersects itself.

Also, trajectories of di¤erent representative points never intersect, since they represent

motions with di¤erent initial conditions (if two trajectories intersect at a given point,

that common point may be chosen as a new initial condition, and the two trajectories

should coincide at all times). In Classical Mechanics, one can show that time evolution

is a canonical transformation [6], and volume of phase space is a canonical invariant (one

of Poincaré�s integral invariants). The number of representative points of the ensemble

contained in any in�nitesimal volume d
 is also constant in time. The form of the

in�nitesimal element changes, but its volume is constant. No representative point can

intersect the boundary of d
 at any time (same argument as given above). We then

can enunciate this result as a theorem:

Theorem 7 (Liouville) The density �(q; p; t) is constant in time, or

d�

dt
= 0 : (1.30)

We can rewrite the theorem (1.30) in a di¤erent form:

0 =
d�

dt
=
@�

@t
+
X
i

�
_qi
@�

@qi
+ _pi

@�

@pi

�
; (1.31)

showing that the explicit dependence on time is cancelled by the implicit dependence

through coordinates and momenta. For a Hamiltonian system, Hamilton equations of
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motion are satis�ed, with Hamiltonian H:

_qi =
@H

@pi
; _pi = �

@H

@qi
; (1.32)

which we substitute in (1.31), yielding:

0 =
d�

dt
=
@�

@t
+
X
i

�
@�

@qi

@H

@pi
� @�

@pi

@H

@qi

�
;

which is written in turn, in term of a Poisson bracket [6] as:

0 =
@�

@t
+ f�;Hg ; (1.33)

with the Poisson bracket de�ned as fA;Bg �
P

i

�
@A
@qi

@B
@pi
� @A

@pi

@B
@qi

�
. Relation (1.33)

is another way to state the Liouville theorem. It can be interpreted geometrically

[huang]: the motion of representative points in � space resembles closely the motion of

an incompressible �uid. In fact, relation (1.33) has the form of a continuity equation,

if one de�nes a current density for the �ux of points as:

�!
j � ��!v ;

with the velocity vector written as

�!v = ( _q1; _q2; :::; _q3N ; _p1; _p2:::; _p3N) :

Due to Hamilton equations of motion (1.32), we get

0 =
@�

@t
+ f�;Hg = @�

@t
+r��!j ;
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with the �nabla�operator de�ned in � space as:

r �
�
@

@q1
;
@

@q2
; :::;

@

@q3N
;
@

@p1
;
@

@p2
; :::;

@

@p3N

�
:

Then, local variations of � are caused by the �ux of the density current
�!
j , in any

neighborhood of representative points of the ensemble. Let A(q; p) be a dynamical

quantity of the system of particles. At the macroscopic level, the value of A that we

observed is supposed to be the average over the ensemble, calculated as

[A]C (t) =

R
dq3Ndp3N�(q; p; t) A(q; p)R

dq3Ndp3N�(q; p; t)
;

with the distribution �(q; p; t) satisfying Liouville theorem, and the symbol [:::]C stand-

ing for the classical average. In principle, the time dependence of [A]C (t) should ap-

proach its equilibrium value at the stationary situation:

@�

@t
= f�;Hg = 0 :

A stationary density distribution �(q; p) will only depend on time-independent integrals

of the equations of motion. The simplest assumption is to postulate that � is a function

of the total energyH = E, which is a conserved quantity. The equal a priori probability

distribution:

� = �(E) =

8>><>>:
constant; if E � 1

2
� < H < E + 1

2
� ;

0; otherwise

34



CHAPTER 1 � MANUSCRIPT

is called microcanonical ensemble, and represents an isolated system. The quantity �

is chosen, such that �� E, and is introduced for convenience in the counting of states.

In the thermodynamic limit, macroscopic quantities are independent of �.

The question of how the system approaches such equilibrium state, is at the

heart of Statistical Mechanics, being one of the central problem in Physics since the

time of Boltzmann. We will discuss those issues in the next chapter. �

35



CT Bibliography

[1] J. J. Sakurai, Modern Quantum Mechanics, revised ed. (Addison-Wesley,1994).

[2] L. E. Ballentine, Quantum Mechanics, A Modern Development (World Scienti�c,

1998).

[3] U. Fano, Description of States in Quantum Mechanics by Density Matrix and Op-

erator Techniques, Rev. Mod. Phys. 29, 74 (1957).

[4] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum

Information (Cambridge University Press, 2000).

[5] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys.

Rev. 40, 749 (1932).

[6] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd. ed. (Addison-Wesley,

2002).

36


	Untitled



