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I. THE LINEAR APPROXIMATION

Our linear approximation approach consists of expanding the mean-�eld equations (2-5) of the main text to �rst
order in the site energies εi. Denoting linear deviations in the various �elds by δ we get

δχij = 2kT
∑
nl

(−gilglj +G1ilG1lj) (δλl + εl) + 2kTr
∑
nlm

(−gilgmj +G1ilG1mj) (δrlhlm + δrmhlm)

−2kT
∑
nlm

(−gilgmj +G1ilG1mj)
(
J̃δχlm

)
+ 2kT

∑
nlm

(gilG1mj + gmjG1il)
(
J̃δ∆lm

)
, (1)

δ∆ij = −2kT
∑
nl

(gilG1lj + gljG1il) (δλl + εl)− 2kTr
∑
nlm

(gilG1mj + gmjG1il) (δrlhlm + δrmhlm)

+2kT
∑
nlm

(gilG1mj + gmjG1il)
(
J̃δχlm

)
− 2kT

∑
nlm

(G1ilG2mj + gilgmj)
(
J̃δ∆lm

)
, (2)

−rδri = kT
∑
nl

(−gilgli +G1ilG1li) (δλl + εl) + kTr
∑
nlm

(−gilgmi +G1ilG1mi) (δrlhlm + δrmhlm)

−kT
∑
nlm

(−gilgmi +G1ilG1mi)
(
J̃δχlm

)
+ kT

∑
nlm

(gilG1mi + gmiG1il)
(
J̃δ∆lm

)
, (3)

λδri + rδλi +
∑
l

hilχilδrl + r
∑
l

hilδχil = 0, (4)

where G1ij ≡ [Gij ]11, G2ij ≡ [Gij ]22, gij ≡ [Gij ]12 = [Gij ]21 are the Green's functions of the clean system, n is the

fermionic Matsubara frequency index and J̃ = 3
8J . The latter choice is made, in the presence of correlations, so that

the multi-channel Hubbard-Stratonovich transformation we used reproduces, at the saddle-point level, the mean-�eld
results [1][2]. In general, the clean Green's functions in k-space are given by

G1(ωn,k) =
iωn + e(k)

(iωn)2 − e2(k)− J̃2∆2(k)
, (5)

G2(ωn,k) =
iωn − e(k)

(iωn)2 − e2(k)− J̃2∆2(k)
, (6)

g(ωn,k) =
J̃∆(k)

(iωn)2 − e2(k)− J̃2∆2(k)
, (7)

where the renormalized dispersion is
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e(k) = −2
(
xt+ χJ̃

)
[cos (kxa) + cos (kya)]− 4xt′ cos (kxa) cos (kya)− µ, (8)

we have absorbed the clean λ in the chemical potential, and

∆ (k) = 2∆0 [cos (kxa)− cos (kya)] . (9)

Notice that the dimensionful gap function is ∆phys (k) = J̃∆ (k). As we focus on the asymptotic long-range behavior
of the di�erent �elds, their variations are dominated by the corresponding clean-limit symmetry channel. We therefore
de�ne local order parameters as δχi ≡ 1

2d

∑
j δχijΓ(s)ij , δ∆i ≡ 1

2d

∑
j δ∆ijΓ(dx2−y2)ij . Thus, de�ning vectors and

matrices in the lattice site basis with bold-face letters, Eqs. (1-4) can be recast as(
A+ r2B

)
δΦ = r2C, (10)

where

A =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

0 0 λ1− λ
2dΓ(s) 0

 ,B =


0 0 0 0
0 0 0 0
0 0 0 0

−2dt1 0 0 1

 , δΦ =


δχ
δ∆
rδr

δλ

 ,C =


0
0
0
ε

 . (11)

Here, the elements of (the vector) ε are the disorder potential values εi, 1 is the identity matrix, δλi = δλi + εi, and

M11ij = −δij −
J̃kT

d

∑
nml

Γ(s)il (−gijgml +G1ijG1ml) Γ(s)jm (12)

M12ij =
J̃kT

d

∑
nml

Γ(s)il (gijG1ml + gmlG1ij) Γ(dx2−y2)jm (13)

M13ij =
kT

d

∑
nml

Γ(s)il (−gijgml +G1ijG1ml − gimgjl +G1imG1jl)hjm (14)

M14ij =
kT

d

∑
nl

Γ(s)il (−gijgjl +G1ijG1jl) (15)

M21ij = − J̃kT
d

∑
nml

Γ(dx2−y2)il (gijG1ml + gmlG1ij) Γ(s)jm (16)

M22ij = δij+
J̃kT

d

∑
nml

Γ(dx2−y2)il (G1ijG2ml + gijgml) Γ(dx2−y2)jm (17)

M23ij =
kT

d

∑
nml

Γ(dx2−y2)il (gijG1ml + gmlG1ij + gimG1jl + gjlG1im)hjm (18)

M24ij =
kT

d

∑
nl

Γ(dx2−y2)il (gijG1jl + gjlG1ij) (19)
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M31ij = −J̃kT
∑
nm

(−gijgmi +G1ijG1mi) Γ(s)jm (20)

M32ij = J̃kT
∑
nm

(gijG1mi + gmiG1ij) Γ(dx2−y2)jm (21)

M33ij = δij + kT
∑
nm

hjm (−gijgmi +G1ijG1mi − gimgji +G1imG1ji) (22)

M34ij = kT
∑
n

(−gijgji +G1ijG1ji) (23)

In writing Eqs. (10), we have made explicit the r dependence of Eqs. (1-4). We note, however, that there is also
an implicit dependence on r through the dispersion (8) (where x = r2), which enters the various Green's functions in
Eqs. (5-7).
Since the matrix elements in Eqs. (12-23) are all calculated in the translation-invariant clean system, Eqs. (10) can

be easily solved in k-space by matrix inversion. Normal state results are obtained by removing the second row and
column and setting ∆ (k) to zero. Non-correlated results correspond to the absence of slave bosons and constraints,
so we just remove the third and fourth rows and columns and set x = 1 and λi = 0. In every case, the clean limit is
�rst solved self-consistently for χ, ∆, λ and µ, and then the �uctuations in the presence of impurities are obtained.
In discussing the solution to Eqs. (10), we rely on the fact that all quantities in Eqs. (12-23) are non-singular and

�nite as x→ 0. Thus, we can write their formal solution as

δΦ = r2
(
A+ r2B

)−1
C = r2A−1C +O

(
r4
)
. (24)

It follows that δχi, δ∆i, rδri, and δλi = δλi + εi are all of order r2 = x.

II. THE GAP FLUCTUATIONS AND THE HEALING FACTOR

In order to characterize quantitatively the healing process in the SC state, we focused on the linear gap response
to the disorder potential

δ∆i = ∆0

∑
j

M∆ (ri − rj) εj , (25)

which is obtained directly from the second line of the solution to Eqs. (24). In order to gain further insight, we
separated the local and non-local parts of the gap response as follows. In Eqs. (10) as de�ned in real space, we
separate sums over sites into a local part, with sums up to next-to-nearest neighbors (denoted by rij ≤

√
2a), and a

non-local part, with sums over the remaining sites (denoted by rij >
√

2a). For example,∑
j

M11ijδχj =
∑

j,rij≤
√

2a

M11ijδχj +
∑

j,rij>
√

2a

M11ijδχj , etc. (26)

After solving the equations, this separation naturally de�nes local and non-local responses of the various �elds. In
k-space, we can write

M∆ (k) = M∆,loc (k) +M∆,nonloc (k) . (27)

This procedure is equivalent to projecting the full response in k-space onto some lattice symmetry channels with
di�erent ranges: Γs (k) = 2 [cos (kxa) + cos (kya)] for nearest neighbors, and so on. Then, the power spectrum of
spatial gap �uctuations follows naturally from this separation

S (k) = M2
∆ (k) , (28)

Sloc (k) = M2
∆,loc (k) , (29)

Snonloc (k) = [M∆ (k)−M∆,loc (k)]
2
. (30)
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Figure 1: Spatial variations of normalized local gap function δ∆i
∆0

for three impurities (�rst column) and the corresponding

power spectra S(k), S(k)loc and S(k)nonloc (second to fourth columns) for x = 0.15 (�rst row), x = 0.25 (second row), and
x = 0.3 (third row). The corresponding healing factors are (a) h = 0.23%, (b) h = 1.77%, and (c) h = 2.74%.

Finally, we de�ne the healing factor as the ratio of integrated non-local to local contributions to the power spectrum

h =

´
Snonloc (k) d2k´
Sloc (k) d2k

. (31)

The gap �uctuations δ∆i for three impurities and power spectra, for several dopings and in the presence of correlations,
are shown in Fig. 1. The strong healing in the presence of correlations is conspicuous. It is important to note that this
suppression of gap �uctuations is not restricted to small dopings and remains quite strong even at x = 0.3, where the
healing factor does not exceed 3%. As explained in the main text, the healing e�ect originates in the dominance of
the local spherically symmetric part (third column in Fig. 1) over the anisotropic non-local response (fourth column
in Fig. 1).

III. THE IRRELEVANCE OF SPINON FLUCTUATIONS AND THE �MINIMAL MODEL�

We can shed light on the strong healing e�ect by studying a simpli�ed case obtained by �turning o�� the δχi
�uctuations. In this case, we need to solve the smaller set of equationsM22 M23 M24

M32 M33 M34

0 λ1− λ
2dΓ(s) r21

 δ∆
rδr

δλ

 =

 0
0
r2ε

 . (32)
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Figure 2: Power spectra of gap �uctuations S(k), S(k)loc and S(k)nonloc (�rst to third columns) for x = 0.2 in the presence
of correlations. The top �gures were obtained from the full solution of the linearized Eqs. (10), whereas the bottom ones
correspond to the minimal model (Eqs. (34)). Note that the healing factors are h = 0.74% (top) and h = 0.69% (bottom).

The healing factor obtained in this simpli�ed model is almost identical to the full solution, as shown by the red and
green curves of the left panel of Fig. 2 of the main text. This shows that the spinon �eld �uctuations are utterly
irrelevant for the strong healing.
A further fruitful simpli�cation is obtained by setting M32 to zero in Eqs. (32). This de�nes what we called the

�minimal model� (MM). In this case, the �strong-correlation sub-block� of δri and δλi �uctuations decouples and
su�ers no feed-back from the gap �uctuations. In fact, the MM corresponds to breaking up the solution to the
problem into two parts: (i) the spatially �uctuating strong correlation �elds ri and λi are �rst calculated for �xed,

uniform ∆ and χ, and then (ii) the e�ects of their spatial readjustments are fed back into the gap equation to �nd
δ∆i.
Strikingly, the healing factor in this case is numerically indistinguishable from the one obtained from Eqs. (32) (green

curve of the left panel of Fig. 2 of the main text). Furthermore, the full, local and non-local PS of gap �uctuations are
also captured quite accurately by the MM, as seen in Fig. 2. We conclude that the MM, which incorporates only the
e�ects of strong correlations, is able to describe with very high accuracy the healing process in the d-wave SC state.
The MM also permits us to obtain simple and physically transparent expressions. In particular, it follows immedi-

ately that

rδr (k) =
r2

λa (k)− r2M33 (k) /M34 (k)
ε (k) , (33)

where a (k) = 1− Γs (k) /4, and we used the Fourier transform of Γ(s), Γs (k) = 2 [cos (kxa) + cos (kya)]. Moreover,

δ∆ (k) =
r2 [M24 (k)M33 (k)−M23 (k)M34 (k)]

M22 (k) [λa (k)M34 (k)− r2M33 (k)]
ε (k) , (34)

=

[
M24 (k) M33(k)

M34(k) −M23 (k)
]

M22 (k)
rδr (k) . (35)

= χMM
pc (k) δn (k) , (36)

where we used ni = 1− r2
i ⇒ δni = −2rδri, and

χMM
pc (k) = −

[
M24 (k) M33(k)

M34(k) −M23 (k)
]

2M22 (k)
. (37)
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Figure 3: Spatial variations of normalized local density δni
n0

in the normal state for three impurities (�rst column) and the

corresponding power spectra N(k), N(k)loc and N(k)nonloc (second to fourth columns), in the presence (top) and in the absence
(bottom) of strong correlations for x = 0.2. The strong suppression of density oscillations by correlations is accompanied by
the dominance of the spherically symmetric local power spectrum [Nloc (k)] over the anisotropic non-local one [Nnonloc (k)].

The local part of the response, which we have shown to be the dominant one, can be studied by looking at the long
wavelength limit. As k → 0, a (k) ∼ k2/4 and

δ∆loc (k) ≈ −χMM
pc (k = 0)

8r2/λ

k2 + ξ−2
S

ε (k) , (38)

where

1

ξS
=

√
−4r2

λ

M33 (k = 0)

M34 (k = 0)
. (39)

Eqs. (37) and (39) give us the expressions for the pair-charge correlation function and the healing length within the
MM.

IV. THE NORMAL STATE AND THE �MINIMAL MODEL�

It is instructive to analyze also the behavior of the charge �uctuations in the normal state. This can be achieved by
suppressing the second row and column of Eqs. (10) and setting ∆ (k), and thus g (iωn,k), to zero. Even after these
simpli�cations, the full solution is long and cumbersome. However, accurate insight can be gained from a MM of the
normal state, in which we also set the δχi to zero by hand. As before, the strong-correlation sub-block decouples
and Eq. (33) is still valid (albeit with matrix elements calculated in the normal state). The local part of the charge
response is given by an expression similar to Eq. (38)

δnloc (k) ≈ − 8r2/λ

k2 + ξ−2
N

ε (k) , (40)

where ξN is given by Eq. (39), again with matrix elements calculated in the normal state. The behavior of ξN as a
function of doping is shown by the green curve of the right panel of Fig. 2 of the main text.
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In addition, just like in the Coulomb gas, the density �uctuations also show Friedel-like oscillations coming from
the singularity in the response function at 2kF . Thus, expanding Eq. (33) in r2,

δnnonloc (|k| ≈ 2kF ) ≈ − 2r2

λa (|k| ≈ 2kF )

[
1 +

r2M33 (|k| ≈ 2kF ) /M34 (|k| ≈ 2kF )

λa (|k| ≈ 2kF )

]
ε (k) . (41)

Since

M34 (k) = Π (k) , (42)

M33 (k) = 1 + Πb (k) , (43)

Π (k) =
1

V

∑
q

f
[
h̃ (q + k)

]
− f

[
h̃ (q)

]
h̃ (q + k)− h̃ (q)

, (44)

Πb (k) =
1

V

∑
q

f
[
h̃ (q + k)

]
− f

[
h̃ (q)

]
h̃ (q + k)− h̃ (q)

[h (q + k) + h (q)] , (45)

h (k) = −tΓs (k)− 4t′ cos (kxa) cos (kya) , (46)

the leading divergent behavior is

M33 (|k| ≈ 2kF )

M34 (|k| ≈ 2kF )
≈ 1

Π (|k| ≈ 2kF )
. (47)

The two contributions from Eqs. (40) and (41) together give, in real space,

δni
n0

= x
∑
j

(
c1

e−rij/ξ

ξ(d−3)/2(rij)(d−1)/2
+ c2x

[
Π−1

]
ij

)
εj , (48)

where rij is the distance between sites i and j, and c1 and c2 are constants that depend on t, t′, J and x.
We stress that in the full solution of the linearized equations in which δχi 6= 0, the structure of Eq. (33) is still

preserved, with the factor M33/M34 being replaced by a long combination of several Mij elements, which, however,
has a �nite negative k → 0 limit and a singularity at 2kF . Therefore, the results of Eqs. (40), (41) and (48) remain
valid in the general case. The spatial charge �uctuations for three impurities and the PS in the normal state in the
full solution are shown in Fig. 3 both in the absence and in the presence of strong correlations. Note how the non-local
part is down by an additional factor of x as compared to the local part [see Eqs. (41) and (48)].

[1] P. Lee, N. Nagaosa, and X. Wen, Rev. Mod. Phys. 78, 17 (2006).

[2] The usual choice J̃ = 1
4
J does not change the analytical results and would give rise to hardly noticeable changes in the

numerical plots.


