Disorder-Driven Non-Fermi-Liquid Behavior in Kondo Alloys

E. Miranda and V. Dobrosavljević

National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32306

G. Kotliar
Serin Physics Laboratory, Rutgers University, P.O. Box 849, Piscataway, New Jersey 08855

(Received 18 September 1996)

We show how a model of disordered Anderson lattices can account for many non-Fermi-liquid features observed in some Kondo alloys. Because of the exponential nature of the Kondo temperature scale T_K, even moderate disorder leads to a rather broad distribution of Kondo temperatures, inducing strong effective disorder seen by the conduction electrons. Spins with very low T_K’s remain unquenched and dominate the low-temperature properties. This single underlying mechanism leads to logarithmic divergences in thermodynamic quantities and a linear temperature dependence of the resistivity. [S0031-9007(96)02090-X]

PACS numbers: 71.10.Hf, 71.27.+a, 72.15.Qm

Non-Fermi-liquid (NFL) behavior in metals represents one of the key unresolved issues in condensed matter physics. There exists by now a large class of nonmagnetic metallic f-electron materials which do not behave as Fermi liquids at low temperatures [1–8]. In some of them the proximity to a $T = 0$ quantum critical point appears to be the origin of the anomalous behavior [6,8,9]. However, in several other cases NFL behavior occurs only when the system has been sufficiently alloyed so that it is not close to any phase boundary. This is the case of the alloys UC$_{5-x}$Pd$_x$ [1,2], M$_{1-x}$U$_x$Pd$_3$ ($M = $ Sc, Y [3,7], La$_{1-x}$Ce$_x$Cu$_{2+}$Si$_2$ [4], Ce$_{1-x}$Th$_x$RhSb [5], and U$_{1-x}$Th$_x$Pd$_2$Al$_3$ [7]. In all of these systems the specific heat varies as $C(T)/T \sim a \ln(T_0/T)$ and the resistivity is linear with a large zero-temperature intercept $\rho(0) = \rho_0(1 - T/T_1)$. The magnetic susceptibility has been often fitted by a logarithm or a weak power law.

Some attempts have been made to explain the anomalous low-temperature properties based on exotic one-impurity mechanisms, such as the quadrupolar Kondo model [10]. Inconsistencies with the predictions of the model for the resistivity ($\sim \sqrt{T}$) and in an applied magnetic field in some of these systems, however, invite the consideration of other mechanisms for NFL behavior [11].

Quite generally, the large residual resistivity of these systems together with their alloy nature immediately suggests that disorder could be significant. In an important recent study [2], the strong broadening of the copper NMR line of UC$_{5-x}$Pd$_x$ ($x = 1$ and 1.5) has provided an independent indication of the essential role played by disorder in at least one of these compounds. These results suggested the presence of strong spatial fluctuations in the characteristic Kondo temperature T_K of the local moments [12]. Indeed, by using a model distribution function $P(T_K)$ and well-known single-impurity results, they were then able to quantitatively describe the low-temperature thermodynamic properties (specific heat and magnetic susceptibility) as well as the NMR linewidths. The proposed picture implicitly assumes independent local moments, which is usually sufficient for understanding the thermodynamics of most heavy fermion compounds. Of course, in the context of transport in concentrated Kondo systems, such an assumption appears to be unjustified, since it cannot be reconciled with the well-established coherence effects at low temperatures.

The central question addressed in this Letter is whether disorder effects can explain not only the thermodynamics, but also the anomalous transport in these systems. We will formulate a theory appropriate for concentrated magnetic impurities, which can describe the coherence effects in the clean limit. We will show that correlation effects strongly enhance any extrinsic disorder, generating an extremely broad distribution of Kondo temperatures. This leads to the destruction of coherence and, for sufficient disorder, to the breakdown of Fermi-liquid behavior. The low-temperature properties can be viewed as resulting from a dilute gas of localized elementary excitations: those Kondo spins that remain unquenched. This picture of dirty Kondo lattices, similar in spirit to the original Landau description of simple metals, provides a unified theoretical underpinning for one possible route to marginal Fermi-liquid behavior.

We start with a disordered nondegenerate infinite-U Anderson lattice model

$$H = \sum_{\sigma} e(k) c_{\alpha}^\dagger c_{\sigma} + \sum_{j,\sigma} E_j f_{j,\sigma}^\dagger f_{j,\sigma} + \sum_{j,\sigma} V_j (c_{j,\sigma} f_{j,\sigma} + H.c.),$$

where c_{σ} destroys a conduction electron with momentum k and spin σ from a broad uncorrelated band with dispersion $e(k)$ and half bandwidth D, and $f_{j,\sigma}$ destroys an f electron at site j with spin σ. The infinite-U constraint
at each f orbital is assumed ($n_f^l \leq 1$). The on-site energies E_j^f and the hybridization matrix elements V_j are assumed to be distributed according to some distribution functions $P_1(E_j^f)$ and $P_2(V)$. In the Kondo limit, the local Kondo temperature is given by $T_K = D \exp(E_j^f/2\rho_0 V_j^2)$ ($\rho_0 = \tfrac{1}{V}$) and will be correspondingly distributed. Because of the strong scattering off the f sites, disorder in f parameters is dominant, and we will thus neglect other types of disorder in the c band.

To analyze the properties of our model, we focus on the dynamical self-consistent theory of strong correlations and disorder [13,14]. The problem can then be reduced to an ensemble of one-impurity problems in a self-consistently generated self-averaging bath of conduction electrons. The equations simplify considerably in the case of a semicircular conduction electron density of states, where the ensemble of impurity problems is governed by the action

$$S_{imp} = \sum_{\sigma} \int \frac{d\omega}{\pi} \left[-i\omega n + E_j^f + \Delta_j(i\omega n) \right] f_{j\sigma},$$

where the infinite-U constraint is implied and

$$\Delta_j(\omega) = \frac{V_j^2}{\omega + \mu - i^2 G_c(\omega)}.$$ \hspace{1cm} (3)

Here t is the hopping parameter, μ is the chemical potential, and $G_c(\omega)$ is the disorder-averaged local conduction electron Green’s function. The latter is determined self-consistently by

$$G_c(\omega) = \left\langle \frac{1}{\omega + \mu - i^2 G_c(\omega) - \Phi(\omega)} \right\rangle_{av},$$

where

$$\Phi(\omega) = \frac{V_j^2}{\omega - E_j^f - \Sigma_{imp}(\omega)}.$$ \hspace{1cm} (4)

Here $\langle \cdots \rangle_{av}$ denotes the average over disorder and $\Sigma_{imp}(\omega)$ is the self-energy derived from the impurity model of Eq. (2). In the absence of disorder, these equations reduce to the dynamical mean-field theory of the Anderson lattice [14], while for $U = 0$ they are equivalent to the CPA treatment of disorder [15] for the conduction electrons [16]. In general, the theory is exact in the limit of large coordination. Once $G_c(\omega)$ has been determined, the conduction electron self-energy $\Sigma_c(\omega)$ can be obtained from

$$\Sigma_c(\omega) = \int d\epsilon \frac{\rho_0(\epsilon)}{\omega + \mu - \epsilon - \Sigma_c(\omega)},$$

where $\rho_0(\epsilon) = \sqrt{1 - (\epsilon/2\tau)^2}/\pi\tau$.

Let us analyze the qualitative behavior of $\Phi(\omega)$. From the Fermi-liquid analysis of the impurity problem, it is well known that $\Sigma_{imp}(\omega = 0)$ is a real quantity at $T = 0$ \cite{17}. Therefore, one can write

$$\Phi(\omega = 0) = -\frac{V_j^2}{E_j^f + \text{Re}[\Sigma_{imp}(0)]}.$$ \hspace{1cm} (7)

$\Phi(\omega)$ measures the scattering strength at site j at the Fermi level. In the clean limit, $\Phi(\omega)$ will be the same at every site and Eqs. (4) and (6) give $\Sigma_c(\omega) = \Phi(\omega)$. In this case $\Sigma_c(\omega = 0)$ is a real quantity, reflecting the coherent nature of the dc transport at zero temperature.

By contrast, when the system is disordered, a distribution of scattering strengths $\Phi(\omega)$ is generated, strongly affecting the transport properties. By applying the large-N mean field theory to the impurity problems at zero temperature, we have solved the self-consistent problem defined by Eqs. (2)–(5). The resulting scattering rates as a function of the width of the E_j distribution (for a fixed uniform value of V) are shown in Fig. 1. Similar results are obtained for a distribution of V values holding E_j fixed. For the residual resistivities reported for the NFL alloys, e.g., UCu$_{5-x}$Pd$_x$ [1], one can estimate $D_F = 3$–5. Because of the strong f-shell correlations, rather large scattering rates can be generated by a small disorder strength in f parameters [see Fig. 1 and Eq. (7)]. Comparable amounts of disorder, in the absence of correlations, cannot produce these large resistivities.

Thus with sufficient disorder, scattering off the f sites becomes incoherent and the resistivity assumes a monotonically decreasing temperature dependence, resembling the single-impurity result. The actual scattering rate, however, requires the solution of the full set of Eqs. (2)–(5). If $P(T_K)$ is broad enough, the low-temperature dependence can be nontrivial. To analyze that, it is useful to rewrite the above equations in terms of the impurity matrix $T_j^imp(\omega) = V_j^2 G_{j\sigma}(\omega)$, where $G_{j\sigma}(\omega)$ is the f–Green’s function computed from the action in Eq. (2). We find (for $\mu = 0$)

$$G_c(\omega) = \frac{1}{\omega - i^2 G_c(\omega)} + \langle T_j^{imp}(\omega) \rangle_{av},$$

\hspace{1cm} (8)

FIG. 1. Scattering rate as a function of the width of the E_j distribution. The parameters used are shown in the figure. The strong correlations in the f shell produce an enhanced effective disorder.
and, from Eq. (6),
\[\Sigma_s(\omega) = \frac{(T_j^{\text{imp}}(\omega))^{\text{av}}}{G_s(\omega)\omega - i^2G_s(\omega)}. \] (9)

We now raise the temperature slightly from 0 to \(T \) and denote corresponding variations by \(\delta_T \). Then

\[\delta_T \Sigma_s(\omega) = \left. \frac{1 - i^2G_s^2(\omega)}{G_s(\omega)} \right|_{T=0} \delta_T G_s(\omega); \] (10a)

\[A(\omega)\delta_T G_s(\omega) - \int d\omega' B(\omega, \omega') \delta_T G_s(\omega') \]

\[= \left. \frac{(\delta_T T_j^{\text{imp}}(\omega))^{\text{av}}}{G^0_s} \right|_{T=0}. \] (10b)

where

\[A(\omega) = \left[i^2 + [\omega - i^2G_s(\omega)][\omega - 3i^2G_s(\omega)] \right. \]

\[- \left. i^2\langle T_j^{\text{imp}}(\omega)\rangle^{\text{av}} \right|_{T=0}; \] (11a)

\[B(\omega, \omega') = \left. \frac{\delta \Sigma_j^{\text{imp}}(\omega)}{\delta G_s(\omega')} \right|_{T=0} \] (11b)

Here the temperature dependence of the self-energy is expressed in terms of the temperature dependence of the disorder-averaged \(T \) matrix. In general, the self-consistency condition couples different frequencies, as seen in the integral equation (10b). However, the leading low-temperature behavior is determined only by the \(\omega = 0 \) component of the averaged \(T \) matrix, so in the following we concentrate on this object.

Figure 2 shows the result of averaging the imaginary part of the single impurity \(T \) matrix over the distribution of Kondo temperatures deduced from the experiments of Ref. [2]. For the single impurity dependence, we used a simple scaling form with the correct asymptotic behavior at high and low temperatures. The dependence is linear at low temperatures.

It is easy to understand the origin of the linear behavior and why it does not depend on the detailed shape of \(P(T_K) \). We will focus on the imaginary part of the impurity \(T \) matrix since it gives the dominant contribution. It has the following scaling form:

\[T^{\text{imp}}_i(T) = \frac{\sin^2 \delta_0}{\pi \rho_0} t \left(\frac{T}{T_K} \right), \] (12)

where \(\delta_0 \) is the phase shift at \(T = 0 \). The function \(t(x) \) has the following asymptotics:

\[t(x) = \begin{cases} 1 - \alpha x^2, & x \ll 1, \\ \beta / [\ln(x)]^2, & x \gg 1, \end{cases} \] (13)

where \(\alpha \) and \(\beta \) are universal numbers. It follows that

\[\delta_T \Sigma_s = - \frac{i\alpha P(0)}{\pi \rho_0 A_0} T. \] (17)

Therefore, the low-temperature dependence probes only \(P(T_K) \) at low values of \(T_K \), as is clear from Fig. 3. In that region, \(P(T_K) \) can be taken to be a constant and the temperature can be scaled out of the average, yielding the negative linear term [18]. As long as the distribution of Kondo temperatures is wide enough so that \(P(0) \) is appreciable, there will be a sizable linear range. For sufficiently weak disorder, \(P(0) \) is zero or negligible and Fermi-liquid behavior is recovered.
Physically, it is clear what is happening. As the temperature is raised, a few diluted spins with $T_K < T$ are unquenched and cease to contribute to the resistivity. The linear term essentially counts the number of liberated spins. Since this number is small at low temperatures, these few diluted spins with very low moments could well condense into singlets, affecting the temperature dependence. However, if $T_K < 0.8$ K ($x = 1.5$) and $T_K \approx 2.4$ K ($x = 1.5$), which can hardly be distinguished on the scale of Fig. 3, has a very small weight, and does not affect our conclusions down to these low temperatures.

We acknowledge useful discussions with B. Andraka, N. Bonesteel, A. H. Castro Neto, and J. R. Schrieffer. E. M. and V. D. were supported by the National High Magnetic Field Laboratory at Florida State University. G. K. was supported by NSF DMR 95-29138.

16. The central approximation in the treatment of disorder is to ignore the spatial fluctuations of the conduction electrons, but not of the localized f electrons. In Kondo lattices, this is a good approximation, since the conduction electron bandwidth is the largest energy scale in the problem and so the conduction electrons are not close to Anderson localization, where we can expect our approach to break down. In contrast, the f-electron fluctuations are included and are, in fact, at the origin of most anomalies.
18. Actually, $P(T_K)$ from Ref. [2] diverges weakly as $[T_K \ln^2(T_K/D)]^{-1}$ as $T_K \rightarrow 0$. However, the upturn sets in only at $T_K = 0.8$ K ($x = 1.5$) and $T_K \approx 2.4$ K ($x = 1.5$), which can hardly be distinguished on the scale of Fig. 3, has a very small weight, and does not affect our conclusions down to these low temperatures.