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Ground-state properties of the disordered spin-1 Bose-Hubbard model: A stochastic
mean-field theory study
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We study the ground state of the disordered Bose-Hubbard model for spin-1 particles by means of the stochastic
mean-field theory. This approach enables the determination of the probability distributions of various physical
quantities, such as the superfluid order parameter, the average site occupation number, the standard deviation of
the occupation per site and the square of the spin operator per site. We show how a stochastic method, previously
used in the study of localization, can be flexibly used to solve the relevant equations with great accuracy. We
have determined the phase diagram, which exhibits three phases: the polar superfluid, the Mott insulating, and
the Bose glass. A complete characterization of the physical properties of these phases has been established.
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I. INTRODUCTION

Systems of cold atoms have become an enormously rich
playground for the study of strongly correlated quantum
matter. This era was probably heralded by the observation
of the superfluid to Mott insulator phase transition is systems
of 87Rb loaded in optical lattices.1 Since then, the possibility of
a great amount of control over the parameters of these systems
has attracted the attention of both the atomic and the condensed
matter physics communities.2

More recently, the ability to introduce quenched disorder
into the system in a controlled manner has provided researchers
with yet another “knob” to be turned in these studies.2 Disorder
can be incorporated in several ways, namely, through the addi-
tion of laser speckle patterns to the optical lattice potential,3,4

through the creation of a quasirandom optical profile by means
of different laser fields with incommensurate frequencies,5–9

by means of randomly trapped atomic “impurities,”10,11 or even
random magnetic fields close to a Feshbach resonance, which
can modify locally the scattering length between the atoms.12

This great flexibility holds a great deal of promise in the study
of the interplay between interactions and disorder, a problem
of enormous importance in condensed matter physics.13

One other attractive feature of cold atomic systems is
the fact that they can often be very efficiently described by
the simple effective models of condensed matter physics,
with much better justification for the approximations made
in arriving at these models. Foremost among these is the
Bose-Hubbard model for spin-0 bosons, which forms the
paradigm for theoretical studies.14–16 Indeed, in the conven-
tional magnetic traps frequently used, the internal degrees
of freedom (spins) of the atoms are frozen and they can be
described as spinless bosons. However, in purely optical traps,
the spins are liberated and the condensates formed depend
crucially on the degeneracy of the atomic spinor.17–20 Again,
the usual approximation of retaining only low-energy s-wave
scattering between atoms justifies the description of these
systems by means of the Bose-Hubbard model generalized
for particles with spin greater than or equal to one.21

A fairly good yet simple treatment of the spin-0 Bose-
Hubbard model is afforded by the so-called “site-decoupled”
mean-field theory,14,15,22 which is able, in particular, to identify
the phases of the model and the topology of the phase diagram

at zero temperature. The latter exhibits (i) a superfluid (SF)
phase, characterized by a macroscopic occupation of the
lowest single-particle state (the k = 0 state in the case of
equilibrium)23 or, equivalently, by the spontaneous breaking
of gauge symmetry,24 and (ii) a series of Mott insulator (MI)
lobes, each characterized by an integer occupation per site
and a vanishing compressibility due to the presence of an
interaction-induced gap. This is in good qualitative agreement
with other more accurate methods (see, e.g., Ref. 25).

This mean-field theory was extended to the spin-1 case
and used not only for the analysis of the ground state
of the model21,26 but also for finite temperatures.27 In the
pioneering work of Ref. 21, the ground-state phase diagram
was determined for an antiferromagnetic intrasite interaction.
It was found that, although both superfluid (SF) and Mott
insulating (MI) phases are found, like in the spin-0 case, in
contrast to the latter, there are two qualitatively different MI
lobes: those with an odd number of bosons combined in a total
spin-1 composite per site, and even-numbered lobes with a
total spin singlet per site. Moreover, the SF phase was found
to have a so-called “polar” structure, corresponding to a spin-0
condensate. The presence of a nonzero spin per site can lead
to a nontrivial magnetic order. Indeed, it has been proposed
that the MI phases can show spin nematic order, a state with
broken spin rotational symmetry but unbroken time reversal
symmetry.28

Although the clean Bose-Hubbard models have by now
been fairly well studied, the introduction of quenched disorder
poses a much more complex problem. In the ground-breaking
work of Ref. 14, scaling arguments were used to address
the zero-temperature phase diagram, the associated quantum
phase transitions, and other physical properties of the disor-
dered spin-0 Bose-Hubbard model. Perhaps the most important
conclusion of that work was the prediction of a new Bose glass
(BG) phase, which is characterized by localized, insulating
behavior in the absence of an excitation gap and hence,
with a finite, nonzero compressibility. Although the unbiased
confirmation of the existence of this phase by numerical
methods is highly nontrivial, there is by now fairly good
evidence in favor of it (see, e.g., Refs. 29–31).

A theoretical study of the effects of disorder in the spin-1
Bose-Hubbard model was carried out in Ref. 32, in which
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the ground-state phase diagram was determined by using
the Gutzwiller variational method and a mean-field theory
based on the arithmetic average of the SF order parameter.
For the case of diagonal disorder (i.e., randomness in the
local energies), it was found that the odd-numbered MI
lobes are rapidly transformed into a BG regions, whereas
the even-numbered ones are much more robust with respect
to randomness, requiring a much larger strength of disorder
before they also turn into a BG.

The site-decoupled mean-field theory mentioned above can
be readily generalized to the disordered case, although its
full solution requires numerical work.15,33 A great deal of
insight into this approach can be gained, however, through
a simplification proposed in Refs. 34 and 35 (see also Ref. 36
for a similar idea applied earlier to non-frustrated disordered
magnets). It consists of directing the focus of attack towards the
determination of the probability density distribution function
of local SF order parameters, P (ψ). After ignoring correlations
among order parameters in nearby sites, the next step is to
establish a mean-field self-consistent condition to be satisfied
by P (ψ). This method was dubbed stochastic mean-field
theory (SMFT) because it has an immediate formulation as a
stochastic equation. The method offers some advantages over
alternative approaches in that it does not suffer from finite-size
effects and crucially, it allows a great deal of analytical control,
specially over the probability distribution of local quantities. It
does have the drawback of predicting a direct MI-SF transition
at weak disorder without an intervening BG phase, which
can be ruled out on firm theoretical grounds.37 Nevertheless,
despite this shortcoming, it provides a fairly powerful tool
for the analysis of these intricate disordered systems. Indeed,
qualitatively, the overall phase boundaries obtained within
SMFT for the zero-spin case agree well35 with quantum Monte
Carlo results in finite lattices.38

We should also mention the important analysis of the
disordered spin-0 boson problem afforded by the real space
renormalization group appropriate for strong disorder,39–42 a
powerful tool especially in low dimensions. It focused on a
quantum rotor representation believed to be equivalent to the
Bose-Hubbard Hamiltonian in the limit of a large number of
bosons per site. The system was thoroughly characterized in
one spatial dimension,39–41 which is special since there can
be only quasi-long-range (power-law) superfluid order in the
ground state. Like the clean case, the quantum superfluid-
insulator transition belongs to the Kosterlitz-Thouless univer-
sality class. In the disordered case, however, this transition
can occur at arbitrarily weak interactions, which sets it apart
for its higher-dimensional counterparts. The insulating phase
has the expected features (i.e., a finite compressibility) of
a Bose glass for generic disorder. Other types of disorder
with special particle-hole symmetry properties were also
considered in which case the insulator can have vanishing
(the so-called Mott glass) or infinite compressibility (dubbed
a random singlet glass). More recently, this approach has been
extended to two dimensions42 in which case the transition
is governed by a more conventional unstable fixed point at
finite interaction strength. However, this was confined to the
nongeneric particle-hole symmetric disorder that does not
give rise to a Bose glass phase. It should be mentioned that
all fixed points found show finite effective disorder, which

renders the method less conclusive than at other infinite
disorder fixed points for which the method is asymptotically
exact.

The aim of this paper is to analyze the disordered spin-1
Bose-Hubbard model with the tools of the SMFT.34,35 We will
focus our attention on the antiferromagnetic interaction case
only. We have found that the phase diagram of Ref. 32 is
well captured by this simplified approach. Furthermore, we
are also able to find a number of distribution functions of local
quantities that offer a great deal of insight into the nature of
the various phases, namely, the local spinor order parameters,
the average and the standard deviation of the site occupation,
and the total spin per site. Finally, by analyzing the behavior of
the system both as a function of interactions and as a function
of disorder strength, we track the hierarchical transformation
of the MI lobes into BG phases. It should be mentioned that,
unlike in the original application of the SMFT,34,35 we use an
alternative stochastic approach to solve the SMFT equations
that was first suggested in Ref. 43 and used extensively in
Ref. 44 and proves to be quite efficient and flexible.

The paper is organized as follows. In Sec. II, we present
the model and review the phase diagram both in the clean
and disordered cases. In Sec. III, we explain how the SMFT
is defined and also describe our strategy for solving the
corresponding equations. We then present our results in
Sec. IV. We wrap up with some conclusions in Sec. V.

II. THE MODEL

We will focus on a generalized disordered Hubbard model
for bosons with total spin F = 1:21

H = −t
∑
〈i,j〉

∑
α

a
†
iαajα +

∑
i

∑
α

(εi − μ)a†
iαaiα

+ U0

2

∑
i

∑
α,β

a
†
iαa

†
iβaiβaiα

+ U2

2

∑
i

∑
α,β,γ,δ

a
†
iαa

†
iγ Sαβ · Sγ δaiδaiβ, (1)

where a
†
iα creates a bosonic atom with spin projection α ∈

{−1,0,1} in an optical lattice Wannier function centered on
the site i, t is a nearest-neighbor hopping amplitude, μ is
the chemical potential (we will work in the grand-canonical
ensemble), U0 and U2 are local (intra-site) coupling constants
for spin-independent and spin-dependent interactions, respec-
tively, and S = Sx x̂ + Sy ŷ + Sz ẑ are the spin-1 matrices given
by

Sx = 1√
2

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠, Sy = i√

2

⎛
⎝

0 −1 0
1 0 −1
0 1 0

⎞
⎠,

(2)

Sz =
⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠.

The interaction coupling constants can be related to the s-wave
scattering lengths of two bosons in vacuum with total spin 0
(a0) and 2 (a2) (the symmetric nature of their wave function

214532-2



GROUND-STATE PROPERTIES OF THE DISORDERED . . . PHYSICAL REVIEW B 85, 214532 (2012)

forbidding s-wave processes with total spin 1):21

U0 = 4πh̄2

3M
(a0 + 2a2)I4, (3)

U2 = 4πh̄2

3M
(a2 − a0)I4, (4)

where M is the boson mass and I4 is the integral of the fourth
power of the Wannier wave function. As per the usual nomen-
clature, the spin-dependent interaction is called ferromagnetic,
when U2 < 0 (i.e., a2 < a0) and antiferromagnetic if U2 > 0
(i.e., a2 > a0).17 On-site disorder is introduced through the
parameters εi , which are taken to be random quantities with
no spatial correlations. Although several models of disorder
may be considered, for simplicity, we chose εi to be distributed
according to a uniform distribution of width 2	.

It is useful to introduce the single-site operators for the total
number of bosons ni and total spin Si ,

n̂i =
∑

α

a
†
iαaiα, (5)

Si =
∑
α,β

a
†
iα Sαβaiβ, (6)

in terms of which the Hamiltonian (1) can be rewritten as

H = −t
∑

α

∑
〈i,j〉

a
†
iαajα + U0

2

∑
i

n̂i(n̂i − 1)

+ U2

2

∑
i

(
S2

i − 2n̂i

) +
∑

i

(εi − μ)n̂i . (7)

In the clean limit, the model exhibits two phases: a
superfluid phase (SF) and several lobes of Mott insulating (MI)
behavior.21 The SF is the so-called polar state, characterized by
a spin-0 Bose-Einstein condensate (BEC). As any superfluid
state, it can be characterized by the appearance of a nonzero
value of 〈aiα〉 for some component α, and this situation
corresponds to the spontaneous breaking of gauge symmetry.24

A convenient, albeit not unique choice for the order parameter
structure of the polar state is ψ−1 = ψ1,ψ0 = 0. The MI lobes,
on the other hand, can be classified in two categories: those that
correspond to an odd number n = ∑

i〈n̂i〉/N of bosons per site
(here, N is the number of sites), which combine to form a spin-
1 object on each site, and lobes in which each site has a spin-0
even n combination. Generically, the even-numbered lobes are
more stable and tend to occupy a larger fraction of the μ versus
t phase diagram as compared to the nearby odd-numbered
lobes, which are smaller and disappear altogether for U2/U0 �
0.5. In addition, for U2/U0 < rc ≈ 0.2, the even-numbered
MI-SF quantum phase transition is first order in character, as
opposed to the odd-numbered one, which is always continuous.
For U2/U0 � rc, all MI-SF transitions are continuous.26,27,32

Finally, the MI is characterized by a vanishing compressibility
κ = ∂n/∂μ, which in contrast remains nonzero in the SF.

Once disorder is turned on, a new phase appears: the
Bose glass (BG).14,32 The latter is not a SF and therefore the
order parameter is zero for any value of α. More precisely,
since ψiα becomes a random quantity in the disordered
system, its distribution is given by Pα(ψα) = δ(ψα) for any α.
However, unlike the MI phase, the charge excitation spectrum
is gapless and the fluid is compressible: ∂n/∂μ �= 0. A full

specification of all phases thus requires the computation of
the order parameter distribution and the compressibility. It
should be noted that there was a long-standing controversy
over whether the topology of the phase diagram is such
as to allow a direct transition from a MI to a SF, without
passing through an intervening BG phase. Scaling arguments
suggested that such a direct MI-SF transition is unlikely in the
presence of disorder.14 However, numerical results proved to
be inconclusive (see, e.g., Refs. 29 and 31). More recently,
extreme-statistics arguments have been used to show that
there are necessarily extended Lifshitz regions of gapless
particle-hole excitations at the SF phase boundary.37 Therefore
it seems clear now that there is always a BG phase adjacent
to the SF and a direct MI-SF is not possible in the disordered
case.

III. THE STOCHASTIC MEAN FIELD THEORY

The superfluid-Mott insulator transition of lattice bosons
can be qualitatively captured by a standard mean-field ap-
proach which is based upon decoupling the hopping term of
the Hamiltonian [see Eq. (7)] as14,21,22

a
†
iαajα � ψ∗

iαajα + a
†
iαψjα − ψ∗

iαψjα, (8)

where ψiα = 〈aiα〉 and we are neglecting second-order fluctu-
ations, O(ajα − 〈ajα〉)2. The order parameters ψiα have to be
determined self-consistently. This is achieved by focusing on
the decoupled single-site Hamiltonians generated after Eq. (8)
is applied to Eq. (7):

hi = −
∑

α

(ηiαa
†
iα + η∗

iαaiα − ψiαη∗
iα) + (εi − μ)ni

+ U0

2
ni(ni − 1) + U2

2

(
S2

i − 2ni

)
, (9)

where

ηiα = t

Z∑
j=1

ψjα, (10)

where Z is the lattice coordination number. Once
〈aiα〉(εi,{ψjβ}) is determined from (9) (note the dependence
on the local site energy εi and adjacent order parameters ψjα),
self-consistency is assured if we impose that

ψiα = 〈aiα〉(εi,{ψjβ}). (11)

Complete lattice self-consistency requires solving the large
set of coupled equations defined by Eq. (11). A considerable
simplification can be achieved if we neglect spatial corre-
lations between sites. This defines the so-called SMFT of
Refs. 34 and 35, which was originally proposed for the spin-0
model, but which we will now describe in the generic spinful
case. For this, we note that 〈aiα〉 depends on the other order
parameters only through ηiα , see Eq. (9). We thus look for the
distributions of local order parameters Pα(ψα) by first finding
the distributions of ηiα , Qα(ηα), which are induced by Pα(ψα)
through Eq. (10), neglecting spatial correlations between
different nearest neighbors. Next, we use the fixed function
〈aiα〉(εi,ηiα), which usually has to be obtained numerically,
to generate the induced distributions Aα(〈aiα〉). Finally, self-
consistency is obtained by imposing that Aα(x) = Pα(x).
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Despite its approximate nature, this approach has been shown
to be able to capture all the phases of the spin-0 model.34,35

The procedure described above for the SMFT can be
implemented as a nonlinear integral equation for the sought
distributions Pα(ψα), which can then be solved numerically on
a discrete mesh. This was the approach used in Refs. 34 and 35.
We opted instead to use an importance sampling method,
akin to the Monte Carlo method, as originally proposed for
the self-consistent theory of localization.43,44 The method can
be described as follows. We start from a sample of random
values for ψ

(0)
iα (i = 1, . . . ,Ns) that are drawn from an initial

guess for the sought distributions, P (0)
α (ψα). The method is

very robust with respect to the choice of this initial guess,
so we can start with a uniform distribution. From this initial
sample, we generate a corresponding initial sample for ηiα (i =
1, . . . ,Ns/Z) using Eq. (10), which may be viewed as an initial
guess Q(0)

α (ηα). Using the latter and a corresponding sample
of Ns/Z values of εi drawn from its (given) distribution,
we can then find [numerically solving for 〈aiα〉 according
to Eq. (9)] a new sample of values of the order parameter
ψ

(1)
iα (i = 1, . . . ,Ns/Z), which can be viewed as drawn from

an improved distribution P (1)
α (ψα). The sample size will have

decreased by a factor of 1/Z from the previous iteration. For
further iterations, we can enlarge this smaller sample to the
original size by replicating it Z times and reshuffling it. For
a large enough value of Ns , this leads to negligible errors,
which can be checked by studying the dependence of the final
results on Ns . The procedure can then be iterated many times
until sample-to-sample variations are negligible, which can be
verified, for example, by computing sample features such as
its mean and variance. A numerical estimate of the converged
distribution is then obtained from a histogram of the last several
iterations. Furthermore, histograms of any local quantities can
also be easily generated.

We have compared the two different methods of solving
the SMFT equations, namely, the stochastic method proposed
in this paper and the direct solution of the integral equation
used in Refs. 34 and 35, in the spin-0 case. In Fig. 1, we
show a typical result for the order parameter distribution
P (ψ) obtained by these two methods, within the disordered
Bose-Einstein condensed phase of the spin-0 disordered
Hubbard model. The importance sampling approach used
Ns = 360 000 and it took 30 iterations for the convergence
to be achieved, after which, 70 more iterations were obtained
to generate the final statistics. The agreement is remarkable
and makes us confident that the method is reliable. In fact,
we achieved enough accuracy with Ns = 60 000, 40 iterations
before convergence and 60 more to gather enough statistics.

Finally, we should mention that the direct computation of
the compressibility within SMFT points to a direct transition
between the MI and the SF at weak disorder,34,35 which is
at odds with the rigorous results of Ref. 37. The SMFT is
thus incapable of capturing the rare regions of gapless charge
excitations close to the SF phase that preclude such a direct
transition. Arguments have been given in Ref. 35, showing
how to reinterpret the SMFT phase diagram in order to correct
for this failure. Nevertheless, it should be kept in mind that the
direct calculation of κ does not show the expected behavior.
In the next section, we will show the results of the SMFT as
applied to the disordered spin-1 model of Eq. (1).

FIG. 1. (Color online) Order parameter distribution for the spin-0
disordered Hubbard model inside the Bose-Einstein condensed phase
obtained within SMFT for μ/U0 = 1.1, t/U0 = 0.058, 	/U0 = 0.3,
and Z = 6. The full blue line was obtained with the importance
sampling method used in this paper and the symbols come from
solving directly the integral equation (extracted from Ref. 45).

IV. RESULTS

We now present the results of applying the SMFT to the
spin-1 model of Eq. (1) at T = 0. In all the following results,
we have fixed the spin-dependent interaction coupling to be
antiferromagnetic with U2/U0 = 0.3 and Z = 4. In Secs. IV A
to IV E, we fix the disorder strength at 	/U0 = 0.3. In
Sec. IV F, we study the behavior of the system at fixed μ

and t as a function of the disorder.

A. Order parameter

We focus first on the behavior of the order parameter. The
clean polar SF phase is characterized by an order parameter
structure in which, for a particularly convenient gauge choice,
ψ−1 = ψ1 and ψ0 = 0.21 This phase corresponds to a spin-zero
condensate, as can be easily checked. Figure 2(a) shows the
value of ψ1 as a color scale plot in the μ vs t phase diagram.
The Mott lobes can be clearly identified and also the fact that
the even-numbered ones occupy a much larger portion of the
phase diagram. The transition from SF to both types of MI is
continuous for this value of U2/U0.32

We then add disorder (	/U0 = 0.3) within a SMFT
treatment. We were able to find only converged solutions with
P1(x) = P−1(x) and P0(ψ0) = δ(ψ0). In other words, although
the order parameter is now a random quantity, it still preserves
the same component structure as in the clean case. We have
thus produced a color scale plot of the average value of ψ1

in the same μ versus t phase diagram, as can be seen in
Fig. 2(b). This can be viewed as an order parameter for the
SF phase in the disordered system. The transitions remain
continuous within our accuracy. The boundaries of the Mott
lobes of the clean case are shown as black dotted lines for
comparison. There is a clear suppression of the regions with a
vanishing order parameter (blue regions), except at the wedges
that separate the clean Mott lobes, where superfluid order is
suppressed. A definite characterization of the nonsuperfluid
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FIG. 2. (Color online) Average value of the ψ1 component of the
order parameter in the (t,μ) plane for the (a) clean and (b) disordered
(	/U0 = 0.3) cases. In (b), the boundaries of the clean Mott lobes
of (a) are shown as black dotted lines.

regions will be carried out later, when we show the results
for the compressibility in Section IV B. We anticipate that the
large even-numbered lobes will retain their Mott insulating
character. There is a clear suppression of these lobes by
disorder, which are seen to become narrower and to extend
up to smaller maximum values of the hopping amplitude as
compared to the clean case. In contrast, the odd-numbered
lobes will be shown to have transformed into the BG phase with
a finite compressibility. Their shape is completely deformed by
disorder. The conclusion is that the even-numbered MI lobes
are more resilient to the effects of disorder. Just like in the
clean case, the positive value of U2, which stabilizes the even
occupation, also acts to localize the bosons more strongly,
thus protecting the MI phase against weak disorder. Finally,
the small hopping SF wedges that exist between the MI lobes
in the clean system are also suppressed by disorder and go into
the BG phase.

FIG. 3. (Color online) Probability distributions for the compo-
nents of the order parameter P1(ψ1) for several values of the hopping
amplitude and two values of the chemical potential: (a) μ/U0 = 0.1
and (b) μ/U0 = 0.1. The disorder is set to 	/U0 = 0.3. As t

decreases, the system goes from a disordered polar SF to a BG in
(a) and to a MI in (b).

The full distribution functions P1(ψ1) are shown in Fig. 3
for two different values of the chemical potential and several
values of the hopping amplitude (again 	/U0 = 0.3). In
Fig. 3(a), the value of the chemical potential is μ/U0 = 0.1,
which corresponds to the n = 1 MI lobe in the clean case
at small t . As t is decreased, the disordered system goes
from a polar SF to a BG phase. It is interesting to note that
the distribution is fairly narrow deep in the SF and becomes
increasingly broader and distorted as t decreases, while at
the same time, its weight shifts towards small values of
ψ1. In particular, for values of t close to the BG (see, e.g.,
t/U0 = 0.015 and 0.01), the distribution shows a very skewed
shape with a peak at an increasingly smaller ψ1 and a long tail
for larger values of the order parameter. Eventually, it tends
towards a delta function at ψ1 = 0 inside the BG phase, barely
visible on the scale of the figure at t/U0 = 0.005. This generic
behavior is also observed in the SF to BG transition of the
spin-0 model.34

In Fig. 3(b), the chemical potential is set to μ/U0 = 1.0,
which in the clean system gives rise to the n = 2 MI lobe at
small t . As we add disorder, the system can be tuned from the
SF to a disordered MI phase. The order parameter distribution
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FIG. 4. (Color online) Compressibility in the (t,μ) phase di-
agram. (a) Clean and (b) disordered (	/U0 = 0.3) cases. The
dotted line delineates the regions characterized by a vanishing order
parameter ]see Fig. 2(b)].

shows a markedly different behavior when compared to the
μ/U0 = 0.1 case. Indeed, it retains a fairly narrow shape as t

is decreased, while shifting its weight to ever smaller values
of ψ1, eventually tending to a delta function at zero within the
MI lobe.

B. Compressibility

As was mentioned before, it is essential to analyze the
behavior of the compressibility κ = ∂n/∂μ in order to obtain
a complete characterization of the phases: this quantity is finite
in both the SF and the BG phases but vanishes in the MI.14

Figure 4 shows κ in the μ versus t plane using a color scale for
both the clean and disordered cases (	/U0 = 0.3). In the clean
case [see Fig. 4(a)], the compressibility is zero inside the MI
lobes and nonzero in the SF phase. Note that, as t → 0, the SF
phase disappears and the MI lobes are characterized by integer
site occupancies, the latter then giving rise to a series of steps of

FIG. 5. (Color online) The compressibility as a function of the
chemical potential for several values of the hopping amplitude:
(a) clean and (b) disordered (	/U0 = 0.3) cases .

increasing value as μ increases. As a result, the compressibility
diverges as one crosses from one lobe to the next at the t = 0
line, since there is a jump in n. Therefore large values of κ

cluster around these transitions in the small t region (red color
in the figure). In that figure, we have arbitrarily set κ = 4.22
to compressibilities equal to or greater than this value.

The compressibility of the disordered system is shown in
Fig. 4(b). The regions with zero order parameter from Fig. 2(b)
have been delineated as the dotted lines. As can be seen, the
compressibility remains zero in large portions of the phase dia-
gram. These regions thus have both vanishing compressibility
and order parameter and correspond to even-numbered MI
lobes, cf. Fig. 2. Thus, as in the case of the spin-0 model,34,35

the SMFT predicts a direct MI-SF transition at this value of
disorder, which is an artifact of the approximation used.37

In contrast, however, the small regions which were the odd-
numbered MI lobes in the clean case now exhibit a nonzero
κ once disorder is added. In other words, these clean MIs
are completely destroyed by this amount of randomness and
become BGs. It should be said that even within the SF phase
the compressibility can become very small (blueish regions),
even though it remains nonzero everywhere in the SF.
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FIG. 6. (Color online) The compressibility κ and the average
order parameter 〈ψ1〉 as functions of the chemical potential for (a)
t/U0 = 0.00125 and (b) t/U0 = 0.00625 (	/U0 = 0.3).

Figure 5 shows some compressibility scans as functions of
μ for fixed values of t ; in other words, they correspond to
vertical lines in Fig. 4. In the clean case [see Fig. 5(a)], the MI
regions are clearly demarcated by the vanishing compressibil-
ity. Note the large values of κ between MI lobes for t/U0 =
0.00625. Note also that the small odd-numbered MI lobes can
only be seen for this smallest value of hopping amplitude.

The addition of disorder with strength 	/U0 = 0.3 is
enough to completely wipe out the odd-numbered MI lobes,
as can be seen in Fig. 5(b). Indeed, it is clear that the com-
pressibility at t/U0 = 0.00625 (blue curves), which vanishes
in extended regions around μ/U0 = 0.2 and 2.2 in Fig. 5(a),
becomes nonzero in the same regions after disorder is added,
see Fig. 5(b). In fact, it becomes even greater than in the
adjacent regions! For the larger values of hopping shown
(t/U0 = 0.0375,0.075), the system is never in the BG phase
[cf. Fig. 2(b)] and wherever κ �= 0 the system is a SF. It is
also noteworthy that the MI lobes that survive have their sizes
reduced when compared with the disorder-free case.

In order to further illustrate the joint behavior of the order
parameter and the compressibility for fixed disorder (	/U0 =

FIG. 7. (Color online) The condensate fraction ρC for the (a)
clean and (b) disordered (with 	/U0 = 0.3) cases.

0.3), we have plotted both quantities together in Fig. 6 as
functions of the chemical potential for two different values of
the hopping amplitude: (a) t/U0 = 0.00125 and (b) t/U0 =
0.00625. In Fig. 6(a), the SF phase is never stable and the order
parameter vanishes for all values of the chemical potential.
However, the compressibility is nonzero in large portions of the
figure, signaling the BG phase. In Fig. 6(b), by contrast, the SF
phase emerges out of the regions of enhanced compressibility.
These correspond to the reddish yellow portions of Fig. 4(b).

C. Condensate fraction

The condensate fraction within SMFT is given by45

ρC =
∑

α |ψα|2
n

, (12)

which also serves as an order parameter for the MI-SF phase
transition. This quantity is shown for both the clean and the
disordered (with 	/U0 = 0.3) systems in Fig. 7. The behavior
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FIG. 8. (Color online) The average site occupation number n for
the (a) clean and (b) disordered (	/U0 = 0.3) cases in the μ vs t

plane.

in both cases is not qualitatively different from the average
order parameter of Fig. 2, as expected.

D. The statistics of the occupation

The site occupation number operator n̂i is a very useful tool
for the characterization of the zero-temperature phases of the
clean spin-zero Bose-Hubbard model. Indeed, in the extremely
localized MI limit t → 0, the wave function factorizes into
uncorrelated eigenfunctions of n̂i on each site. In this case,
the average occupation ni = 〈n̂i〉 equals one of the integer
eigenvalues and quantum fluctuations of the occupation, as
measured by the standard deviation

	ni =
√〈

n̂2
i

〉 − 〈n̂i〉2, (13)

are evidently zero. On the other hand, in the other extreme limit
of a weakly correlated SF U → 0, the site occupation number
operator is not a good quantum number and there are large
quantum fluctuations signaled by a nonzero 	ni . In the clean

FIG. 9. (Color online) The probability distribution functions of
the average site occupation number Pn(ni) for (a) μ/U0 = 0.1, and
(b) μ/U0 = 1 and various values of the hopping amplitude. In (a),
the system goes through the SF-BG transition and in (b) from SF
to MI, as the hopping amplitude decreases. The disorder is set to
	/U0 = 0.3.

case, lattice translation invariance guarantees that both ni and
	ni are uniform and do not depend on the site i. Once disorder
is added, however, spatial fluctuations of both quantities arise,
in addition to the quantum fluctuations already present in the
clean system.

A useful measure of these fluctuations is afforded by the
distribution functions Pn(ni) and P	n(	ni), which are both
very easily obtained within SMFT from the solutions of the
ensemble of single-site Hamiltonians of Eq. (9). We will thus
now show our results for these distributions for the disordered
spin-1 Bose-Hubbard model.

We start by looking at the spatial average of ni , which gives
the average number of bosons per site n (see Fig. 8). The two
figures can hardly be distinguished, although tiny distortions
can be seen. The value of n is useful if we want to assign an
integer to the MI lobe, but it is not very useful for a precise
demarkation of the phases. However, as we will see, in contrast
to the average n, the full statistics of ni imparts a great deal of
useful information.

In Fig. 9, Pn(ni) is shown for two values of chemical
potential, μ/U0 = 0.1 [see Fig. 9(a)] and μ/U0 = 1 [see
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FIG. 10. (Color online) Spatial average of the site occupation
standard deviation 	ni in the μ vs t plane: (a) clean and (b) disordered
(	/U0 = 0.3) cases.

Fig. 9(b)], and for various values of t/U0. In Fig. 9(a), the
system goes from a SF to a BG as the hopping decreases.
The spatial fluctuations of ni are large in both phases. As
the hopping decreases and the system approaches the BG
phase, the distribution function acquires a bimodal shape, with
increasingly sharper peaks around ni = 0 and 1 and decreasing
weight in the region between these two values. Inside the BG
phase (t/U0 = 0.005), the peaks become δ functions. This
spatial landscape in which different sites are Mott localized at
different occupations is characteristic of the BG phase14 and
is vividly illustrated by Pn(ni).

The behavior observed across the SF-MI phase transition
is markedly different, as can be seen in Fig. 9(b). In this case,
Pn(ni) starts as a mildly broad distribution around ni = 2 in
the SF, which becomes increasingly narrower as the hopping
is reduced and the system transitions into the MI phase.
Inside the MI lobe (t/U0 = 0.08 and 0.075), the distribution
becomes a delta function centered at ni = 2, showing that

FIG. 11. (Color online) Probability distributions of the site
occupation standard deviation 	ni for two values of the chemical
potential: (a) μ/U0 = 0.1 (corresponding to the SF to BG transition)
and (b) μ/U0 = 1.0 (which corresponds to the transition from SF
to MI), for various values of the hopping amplitude and for fixed
disorder strength 	/U0 = 0.3.

in the disordered MI the system is locked at a fixed unique
occupation.

We now turn to the spatial fluctuations of 	ni as measured
by P	n(	ni). We start by looking at the spatial average of
	ni in Fig. 10. Within SMFT, both MI and BG phases are
characterized by the vanishing of the order parameter ψiα and
thus of the ηiα field that acts on each site, see Eqs. (10) and (9).
If ηiα is zero, the ground state of every site is an eigenvector
of the number operator and, therefore, 	ni = 0 for all sites.
This is why the average 	ni is also zero within both the
MI and the BG phases. This is a feature of the mean field
character of the theory and is not expected to survive beyond
this approximation. In contrast, 	ni �= 0 everywhere in the
SF phase and so is its average, making it an alternative order
parameter for that phase in the clean as well as in the disordered
cases. Note that, although in the BG phase 	ni = 0 at every
site and there are no quantum fluctuations of the site occupation
(within SMFT), the average site occupation does exhibit large
spatial fluctuations, as was already seen in Fig. 9(a).

The full distributions P	n(	ni) are shown in Fig. 11 for
the two chemical potential values μ/U0 = 0.1 and 1.0 that
allow us to study the SF to BG and MI phase transitions. In
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FIG. 12. (Color online) The spatial average of the mean square of
the total spin per site 〈S2

i 〉: (a) clean and (b) disordered (	/U0 = 0.3)
cases.

the first case [see Fig. 11(a)], the distribution is mildly broad,
approximately bimodal and with support around 	ni ≈ 0.5 in
the SF. As t decreases and the system approaches the BG, the
distribution widens with a small and sharp peak at ≈0.5 and
a broader one centered at a lower value, which slowly shifts
towards zero while at the same time, gaining more weight.
Eventually, in the BG phase, the distribution degenerates into
a δ function at zero, consistent with the vanishing average
value found before.

Finally, the behavior of P	n(	ni) for the SF to MI transition
case in shown in Fig. 11(b). The behavior is now distinctively
different: the distributions are always confined to a small region
of support, whose center shifts towards zero and whose width
decreases as the system enters the MI phase. As discussed
before, the presence of local occupation number quantum
fluctuations is intimately tied to the nonzero value of ηiα .
Therefore it should not be viewed as too surprising that
the qualitative behavior of P	n(	ni) closely follows that of
P1(ψ1), cf. Figs. 3 and 11.

FIG. 13. (Color online) The probability distribution functions
PS2 (S2

i ) of the square of the total spin per site for various values of
the hopping amplitude and two values of the chemical potential: (a)
μ/U0 = 0.1 and (b) μ/U0 = 1.0. The disorder is set to 	/U0 = 0.3.

E. Spin

Another quantity of importance in the characterization of
the phases is the average square of the total spin of each
site 〈S2

i 〉 ≡ S2
i . In the clean limit, this quantity is zero in the

even-numbered MI lobes, since the bosons are able to combine
into a spin-0 composite at each site thus decreasing the
spin-dependent interaction contribution to the total energy. In
contrast, it is impossible to do so when there is an odd number
of bosons per site and the best compromise to lower the energy
is to form a spin-1 combination, in which case S2

i = 2. This
situation is depicted in Fig. 12(a). Interestingly, the polar SF is
characterized in general by intermediate values of this quantity,
with a tendency towards saturation to S2

i = 2 when the hopping
is large and the SF well formed. It should be noted that intersite
spin correlations, absent in the mean-field treatment used here,
are able to generate complex spin arrangements in the ground
state. In particular, spin nematic order is predicted to occur
throughout the odd-numbered MI lobes and in part of the
even-numbered ones.28 This type of order is characterized by
broken spin rotational invariance (〈(Sa

i )2〉 �= 0, a = x,y, or z)
accompanied by unbroken time reversal symmetry (〈Si〉 = 0).

The most dramatic effect of the introduction of disorder is
seen in the BG phase, see Fig. 12(b). In that case, the presence
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FIG. 14. (Color online) Probability distributions functions of:
(a) the order parameter and (b) the standard deviation of the
occupation for various values of disorder parameter 	/U0. The
chemical potential is fixed at μ/U0 = 1 and the hopping amplitude
at t/U0 = 0.075.

of sites with different average occupations, both even and odd
[see Fig. 9(a)], leads to the settling of the spatial average of
S2

i at a value intermediate between 0 and 2. There is actually
a very smooth dependence of this spatial average on t as we
move from the SF into the BG phase. In the MI phase, on the
other hand, the spatial average of S2

i still vanishes and in the
SF it also retains its generic intermediate values.

The probability distribution of the expectation value of the
square of the total spin per site PS2 (S2

i ) is shown in Fig. 13
for the two values of μ/U0 = 0.1 and 1.0 and several values
of the hopping amplitude. From the previous discussion, the
behavior of PS2 (S2

i ) is expected to track closely the distribution
of the average site occupation Pn(ni). Indeed, upon approach-
ing the BG from the SF as t decreases, as shown in Fig. 13(a),
the distribution of S2

i becomes increasingly broader with a
bimodal shape, indicating the gradual appearance of both
spin-0 and spin-1 sites, corresponding to the peaks at ni = 0
and ni = 1, respectively, of Fig. 9(a). Likewise, as t decreases
and the system transitions from the SF to the MI, as depicted
in Fig. 13(b), the S2

i distribution shifts weight from nonzero
values spread around ≈1 down to a δ function at zero, at
the same time as the average occupation distribution narrows
down to a delta function at occupation ni = 2.

FIG. 15. (Color online) Probability distribution functions of (a)
the expectation value of the square of the spin operator per site and
(b) the average site occupation number, for various values of disorder
parameter 	/U0. The chemical potential is fixed at μ/U0 = 1 and
the hopping amplitude at t/U0 = 0.075.

It was argued in Ref. 32 that the spatially-averaged value of
〈S2

i 〉 intermediate between 0 and 2 of the BG phase shown in
Fig. 12(b) is indicative of a spin nematic phase.28 In the clean
case discussed in Ref. 28, however, it is quantum intersite
spin correlations that are responsible for the appearance of
nematic order. This occurs even at perturbatively small t , in
which case each site has a fixed odd number of bosons. On the
other hand, no intersite spin correlations are incorporated in
the SMFT and the BG phase is characterized by the presence
of sites with different number occupations, see Fig. 9(a). It
is these sites, with an odd number of bosons and Si = 1 or
an even number and Si = 0, which are ultimately responsible

for the intermediate value of 〈S2
i 〉 that both the SMFT and the

Gutzwiller approach of Ref. 32 find. This situation is rather
different from the clean nematic and should not, in our view,
be confused with it.

F. The quantum phase transition as a function of disorder

In previous sections, we fixed the disordered strength and
analyzed the behavior of the system as a function of the
chemical potential and the hopping amplitude. For the value
of disorder we used (	/U0 = 0.3), the clean even-numbered
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FIG. 16. (Color online) The compressibility as a function of
disorder strength. The chemical potential is fixed at μ/U0 = 1 and
the hopping amplitude at t/U0 = 0.075.

MI lobes survived the introduction of randomness, whereas the
odd-numbered ones were completely destroyed. It would be in-
teresting to see how the former behave as the disorder strength
is further increased. We take up this task in this section.

We show in Fig. 14 the various distribution functions in
the strong disorder regime (	 � U0) for μ/U0 = 1.0 and
t/U0 = 0.075. We remind the reader that for 	 = 0, this
corresponds to a point well inside the ni = 2, Si = 0 MI
lobe. The order parameter distribution P1(ψ1) is shown in
Fig. 14(a). For 	/U0 = 1.0, the MI lobe has been suppressed
in favor of the disordered SF phase, characterized by finite SF
order parameters. As 	 is increased, this distribution broadens
with increasing weight at ψ1 = 0. Eventually, for large enough
randomness, the distribution collapses to a delta function
at ψ1 = 0, signaling the destruction of the SF phase. The
distribution of site occupation standard deviation P	n(	ni),
depicted in Fig. 14(b), shows a qualitatively similar behavior,
as expected. As discussed in Sec. IV D, this quantity largely
tracks the distribution of the order parameters. But is the
non-SF phase at large values of 	 a BG or a MI?

One possible diagnostics tool is afforded by the distribution
of the mean square of the total spin per site, as shown
in Fig. 15(a). It shows the typical broad, bimodal shape
characteristic of the BG distribution as 	 increases, indicating
the presence of both singlet (weight at 0) and spin-1 (weight
around 2) composites at each site. This should be compared
with the similar small t distributions of Fig. 13(a), character-
istic of the BG phase, and contrasted with the corresponding
curves of Fig. 13(b), which are associated with MI behavior.

Even more significant is the behavior of the distribution
of the average site occupation number Pn(ni), shown in
Fig. 15(b). As 	 increases, it is clearly seen that the distribution
gradually evolves into essentially isolated peaks centered
around the integer values (1 through 4 for 	/U0 = 16). The
presence of sites with different integer occupations in a non-SF
phase is the hallmark of the BG, cf. Fig. 9(a).

In order to dissipate any doubt that the large disorder phase
for this particular choice of parameters is indeed a BG, we show
in Fig. 16 the compressibility as a function of disorder strength.
Its value decreases with increasing disorder but remains finite

at the largest value analyzed (	/U0 = 16) at which point the
order parameter has already vanished, cf. Fig. 14(a).

This shows that, though more robust against randomness,
the even-numbered MI lobes can also be wiped out and
transformed into BG phases with sufficiently large disorder. It
follows that, for large enough values of 	, only the SF and
the BG phases survive, as had been previously observed in the
spin-0 case.34,35

V. CONCLUSIONS

We have analyzed the stochastic mean-field theory of the
disordered spin-1 Bose-Hubbard and discussed its physical
properties as a function of the hopping amplitude, the chemical
potential and the disorder strength. Although the model
exhibits strong similarities with its spin-0 counterpart, several
differences stand out. There is a clear difference in the behavior
of the odd- and the even-numbered MI lobes. The latter
are much more robust with respect to the introduction of
disorder. As a result, there is a sizable portion of the parameter
space in which only even-numbered MI lobes exist, the
odd-numbered ones having been transformed into a BG. The
BG insulator is characterized by a finite compressibility and
the presence of sites with different occupations, like the spin-0
case. However, unlike the spin-0 case, different occupations
give rise to different spins. Therefore the spin-1 BG is an
inhomogeneous mixture of spin-0 and spin-1 composites
within the SMFT. Very similar behavior was obtained within
the Gutzwiller approach of Ref. 32. We should stress that
Ref. 32 employs two different approaches in the study of
the disordered system. In one approach, which the authors
call a “probabilistic mean-field theory,” only an average order
parameter is considered in the description. This approach is
a much poorer description than the present SMFT, since it
incorporates no spatial fluctuations and, in particular, does
not exhibit a BG phase. Alternatively, they also show a direct
lattice calculation of the site-decoupled mean-field theory. This
does have spatial fluctuations and describes all three phases.
It includes spatial correlations of the local order parameter
that are absent in our SMFT treatment and should therefore be
considered a superior approach. However, direct comparison
shows that the phase diagram and some physical properties we
obtain are almost exactly the same as the lattice calculation of
Ref. 32, highlighting that the much simpler SMFT already
incorporates the most important correlations of the more
complete treatment.

The presence of local composites with different total spin
values raises the important question of the spin correlations
within the spin-1 BG phase. As discussed in Ref. 28 for the
clean system, spin correlations outside the scope of either the
site-decoupled mean-field theory or the Gutzwiller approach
give rise to nontrivial nematic ground states. It would be of
great interest to incorporate these into a description of the
disordered system in order to investigate the interplay between
disorder-induced number fluctuations and quantum inter-site
correlations. Besides the possibility of a spin nematic, the
introduction of randomness could also potentially give rise
to spin-glass order, a Bose-spin-glass or quantum Griffiths
phases.46–49

Another direction deserving of further scrutiny is the case
of ferromagnetic interactions, U2 < 0. In this case, we expect
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the MI lobes to be characterized by the bosons aligning to
form a maximum spin composite. In the presence of strong
enough disorder, spins of different sizes are expected to form,
rendering the problem of the ground-state spin structure even
richer.
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