Diffraction from one- and two-dimensional quasicrystalline gratings
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The diffraction from one- and two-dimensional aperiodic structures is studied by using Fibonacci
and other aperiodic gratings produced by several methods. By examining the laser diffraction
patterns obtained from these gratings, the effects of aperiodic order on the diffraction pattern was
observed and compared to the diffraction from real quasicrystalline surfaces. The correspondence
between diffraction patterns from two-dimensional gratings and from real surfaces is demonstrated.
© 2004 American Association of Physics Teachers.
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[. INTRODUCTION tural unit. The definition of a crystal included the require-
ment of periodicity until 19934 Aperiodicity and tradition-

In the past 5—-10 years, there has been considerable inteally forbidden rotational symmetries introduce features in
est in the structure of the surfaces of quasicrystal alloysdiffraction patterns that make interpretation by the traditional
which provide realizations of quasicrystalline order in two means more complex. Simulations can provide a means for
dimensions. The best-known examples of two-dimensional building intuition of the effects of quasicrystalline order on
(2D) quasicrystal structures might be the tilings generated byliffraction patterns without resorting to a complicated analy-
Penrosé such as the one shown in Fig. 1, although manysis.
examples of aperiodic order exist in natdréhe main dif- One of the most unexpected aspects of diffraction from
ferences between quasicrystal order and periodic crystal oguasicrystals is that they produce sharp, discrete diffraction
der are the absence of a periodically repeating structural unjieaks:> A disruption of periodicity often leads to a loss of
and the possibility of “forbidden” rotational symmetries, definition (broadening of peaks, increase in background in-
such as 5-fold or 10-fold rotations in the quasicrystal structensity in the diffraction pattern. However, aperiodicity by
tures. Quasicrystalline order in solids was discovered unexiself does not cause a broadening of diffraction peaks. This
pectedly about 20 years ago in Al-based alloys, and subsean be demonstrated in one dimension by looking at the
quent metallurgical studies on such alloys have found thaFourier transform of the well-ordered but aperiodic Fi-
quasicrystal phases are generally restricted to small ranges bbnacci array®
composition and temperature. A detailed understanding of A Fibonacci array is a one-dimensional sequence of short
the stability of these structures is beyond the scope of thigS) and long(L) elements generated by specific ruté#n the
paper, but the entropic factor in the free energy plays a siglimit of an infinite number of elements, the ratio of the num-
nificant role in many cases. ber of L segments td segments is given by the irrational

Recent scanning tunneling microscof§TM) studies of  numberr=(1+,5)/2, known as the golden mean. A Fourier
the surfaces of the quasicrystalline phases of the alloygansform of this array does not show the broad peaks that
i-Al-Pd—Mn andd-Al-Ni—Co have identified tiling pat- are normally associated with a disordered structure. Unlike
terns similar to Penrose-type tilindsFigure 2 shows such transforms from periodic arrays, the transform from a Fi-
tiling generated from the STM image of the 5-fold surface ofbonacci array forms a dense set of sharp peaks having dif-
icosahedral AIPdMA.This experimentally derived tiling has ferent intensities. The positions of the peaks are related to
been shown to be identical in character to one of the matheach other by powers of the golden mean.
ematically derived Penrose tilings. The most common diffraction technique for studying sur-

Additional interest in quasicrystal surfaces has been gerfaces is low-energy electron diffractidhEED). In LEED,
erated by their unusual surface properties, such as low coefhe electrons are backscattered from the surface in a geom-
ficients of friction, high hardness, good wear resistance, andtry such as that shown in Fig. 3. Figure 4 shows LEED
good corrosion resistanéeQuasicrystal coatings have been patterns from(a) the 5-fold surface of icosahedral AlPdifn
used as nonstick, wear-resistant surfaces in frying pams,  and (b) the 10-fold surface of decagonal AINiGBIn both
more recently polymeric composites of Al-Cu—Fe quasiccases, the distances between the diffraction spots are related
rystal and polyethylene have been successfully tested as pdsy . In the first case, the LEED pattern is clearly 5-fold
sible material candidates for acetabular cup prosth&tics.  symmetric(that is, it has 5-fold rotational symmetry about

It has been stated that the discovery of quasicrystals creéhe center of the patternand in the second, it is 10-fold
ated a revolution in crystallograpAy° which had previously symmetric. If these structures were periodic, it would be
treated order and periodicity as synonymdtBiffraction is  relatively simple to deduce the sizes and symmetries of the
the primary technique for examining the structures of solidunit cells from the diffraction patterns by applying Bragg's
materials, and the consequences of aperiodicity on diffrackaw. However, extracting information about aperiodic struc-
tion patterns provide a challenge and an opportunity to gainures is not so straightforward, particularly in the case of
a deeper understanding of both diffraction and of quasicryselectron diffraction for which the pattern is not a simple Fou-
tal structureg®*?3The most common procedures for ana- rier transform of the structure, due to the complexities inher-
lyzing diffraction measurements from crystalline solids wereent in electron scattering. The complete analysis of LEED
originally developed with the assumption of a periodic struc-patterns generally involves the calculation of scattering from
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detector

electron gun

Fig. 3. The geometry of a typical LEED experiment. The incoming beam of
electrons(from the lef) is normally incident on a crystal surface. The dif-
fracted beams are backscattered at various anglesshich depend on the
structure of the surface.

Fig. 1. Penrose tiling consisting of two sizes of rhombus.

8uality diffraction gratings. One-dimensional gratings can be
constructed by first using a graphics program such as Adobe
lllustratof® or CorelDraw to draw the gridlines that make
(%lp the grating. Aperiodic gratings were generated by setting

the diffraction from quasicrystal surfaces by studying the dif- he spacing between the gridlines to those of the Fibonacci
fraction of light from one-dimensional and two-dimensional sequence. In this study, a typical short distance between the

aperiodic gratings, and comparing these to diffraction fromg”dtl:'gﬁs ;;Igsn(sj g"lno i:]r?] tRen g";Il;nﬁzsoggtgﬁegé[ﬂ'gﬁs.aﬁz?
actual quasicrystal surfaces. Similar techniques were applietéfp' y u ) ) xamp dl S|

to aperiodic structures even before the discovery of@ing IS shc;]wn n Fr']g' 5. The dravr\]nng hwas therr]‘. laser
quasicrystalg€223 printed and photographed. Because the photographic nega-

tives were to be used as diffraction gratings, the drawings
were made in reverse polarifplack-white to the desired

Il. METHOD grating. The photographs were taken using a Contax 137 MA
gduartz camera and liford PAN F black and white, 50 ASA
film. This method is similar to one employed earlier by an-
other groug?* and we verified their finding that higher-
resolution film produces a clearer diffraction pattern. An al-
ternative and simpler way to produce high-resolution one-
dimensional (1D)-gratings is to print the gratings onto
overhead projector transparent sheets using a laser printer
(nominal resolution of 600 dpi This procedure produces
gratings with a lower resolution than the photographic film,
but is suitable for many diffraction investigations. To pro-
duce the diffraction pattern, a grating was placed ox-ap
translation stage in front of a 0.95 mW He—Ne laser. The
diffraction pattern was cast onto a white screen 100 cm in

model structures, but much can be learned by a kinemati
(single-scatteringapproach, which is sufficient to determine
the locations of diffraction peaks in two dimensigfg!

In this paper, we present a method that gives insight int

The first requirement for modeling quasicrystal surfac
diffraction is to establish a method for producing high-

Fig. 2. High-resolution STM imagé75 Ax75 A) of the 5-fold surface of

AIPdMn, with a tiling pattern superimposed. The tiling was generated byFig. 4. LEED patterns frontleft) the 5-foldi-AlPdMn (see Ref. 18at 80
identifying similar features in the STM image and connecting tite@e Ref. eV incident beam energfsee Ref. 35 and (right) the 10-foldd-AINiCo
6). (see Ref. 19at 72 eV incident beam energy.
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Fig. 5. (a) 1D diffraction grating comprising lines that are spaced according
to the Fibonacci sequencéb) Diffraction patterns obtained from such a
grating using the photographiteft) and the laser printeright) techniques.

front of the grating and photographed. Examples of the dif-

fraction patterns from both methods are shown in Fig. 5.
For comparison to the diffraction from surfaces, a two-rig. 7. Three 5-fold arrays of dots used to produce 2D aperiodic diffraction

dimensional grating is required. Various two-dimensionalgratings. The arrays represent proposed atomic position@fawo differ-

gratings were made by superimposing two or more rotate@nt planes of a model structure for AlPd\isee Ref. 2band (b) plane of a

1D Fibonacci gratings. Figure(® shows two grids rotated Mmodel structure for AINiCdsee Ref. 12

by 90°, and Fig. &) shows the Fibonacci pentagrid achieved

by superimposing five gratings rotated 72° from each 0therThe diffraction patterns obtained from these 2D grids also

are shown. To draw a stronger correspondence between ac-
tual quasicrystal surfaces and these diffraction patterns, a
grating can be made to consist of dots based on the locations
of the intersections of superimposed 1D grids, or based on
proposed atomistic models for quasicrystal planes. Figure 7
shows examples of such gratings that are based on models
for the 5-fold surface of AIPdMf? and the 10-fold surface of
AINiCo.%® The resulting laser diffraction patterns also are
shown. The gratings used in this study are available for
download?® Additional resources for experiments using laser
transforms and a broader range of gratings and images can be
found in a comprehensive book on optical transfornasd

at the related websit&.

Ill. RESULTS AND DISCUSSION
A. One-dimensional gratings

To gain insight into the diffraction patterns obtained with
aperiodic gratings, the laser diffraction patterns can be com-
pared with calculated diffraction patterns for both periodic
and aperiodic arrays. Figure 8 shows a comparison of the
laser diffraction and Fourier transforms of a Fibonacci array
and a periodic array having a spacing equal to the long
length in the Fibonnaci array.

Fig. 6. The superposition of multiple 1D Fibonacci gratings produces 2D A_S pointed out in Sec. |, diffraction from a p_erfect_perlodlc
aperiodic diffraction grids(@ The Fibonacci square and its laser diffraction grating produces beams that have non-zero intensity only for
pattern.(b) The Fibonacci pentagrid and its laser diffraction pattern. values ofk inversely proportional to the slit distandéhe
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0 12 15 patterns to those in the observed LEED patterns. A similar
k laser diffraction analysis to study the effects of defects could

] ) ) ) ) be performed by introducing defects into the original 1D
Fig. 8. The laser diffraction patterns from the Fibonacci sequénatom gratings

row of diffraction spots and a periodic sequendeop row) are compared
with the Fourier transforms of the same structures. The transform is per-
formed on a sequence of 2500 segments. The periodic grating has a slit
distance equal to the long segment of the Fibonacci sequence. The A/B rat, Two-dimensional gratings
corresponds exactly to the golden mean
By overlapping two 1D Fibonacci arrays, one rotated with

respect to the other by 90°, we can obtain the square Fi-
Bragg condition, as seen in both the laser diffraction and thebonacci tiling®? The properties of the diffraction patterns
calculated spectrum in Fig. 8. In the diffraction pattern pro-from 1D Fibonacci gratings, such as self-similarity and the
duced by the Fibonacci grating, the diffraction pattern com-densely-spaced peaks, are retained in this 2D case, as shown
prises a dense set of points. As a conseguence, the non-zeéroFig. 12. The square Fibonacci tiling provides an interme-
background intensity between the intense peaks in the Fidiate step between 1D Fibonacci gratings and more complex
bonacci diffraction pattern is due to low intensity diffraction 2D gratings exhibiting the traditionally forbidden 5-fold,
spots. This different behavior is caused by the self-simila8-fold, or 10-fold rotation symmetries. By using a similar
nature of quasicrystalline structures, as shown in Fig. 9. Aapproach, a trianguldB-fold) Fibonacci tiling could be pro-
different scales, patterns similar both in relative intensity andduced, by overlapping three sets of Fibonacci rows, each
distribution can be found. The presence of densely-spacewtated by 120°. The grating and its diffraction pattern can be
diffraction spots is a feature of quasicrystalline structures irperfectly aperiodic, regardless of the rotation symmttry.
general, and as shown later, also applies to 2D diffraction We can use the same method to produce a 5-fold grating
gratings and surfaces. by overlapping five different sets of Fibonacci rows, produc-

Real nanoscale structures exhibiting 1D aperiodic ordeing the Fibonacci pentagritf. A comparison of the diffrac-

have been observed in films of Ag on G4A%0), as shown tion patterns from gratings produced using the Fibonacci
in Fig. 10(a). The observed structure consists of rows spacegentagrid and using dots at the locations of the atomic coor-
according the Fibonacci sequerf@&® Aperiodic row struc-  dinates from a model structure is shown in Fig. 13. The
tures also have been observed in Cu films on an AlPdMmpatterns are qualitatively the same, with the only significant
quasicrystal surface, as shown in Fig(H)0** Segments of difference being the broader beam shape from the pentagrid
the diffraction patterns observed from these structures ardue to the imperfect diffraction slit shape. In fact, it can be
compared to the Fibonacci diffraction pattern in Fig. 11. Theshown that the actual atomic positions in a perfect quasicrys-
comparison of the laser diffraction pattern with the LEED tal structure coincide with the intersection of the five grids in
patterns from real 1D aperiodic structures provides a feasiblthe pentagrid? A comparison of the 2D laser diffraction pat-
way of checking the quality of the aperiodic order of the realterns with the LEED diffraction patterns from real quasicrys-
structures. Although defects may be present in real struc-
tures, the diffraction pattern provides a measure of the over-
all structure and symmetry, and in these cases, there is good
correspondence between the location of the peaks in the last
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Fig. 11. (&) The laser diffraction pattern from the Fibonacci sequence is

Fig. 9. Self-similarity is a key feature of the Fibonacci sequence. The seeompared with the LEED pattern from Ag on GaA$0) (see Ref. 29 and
guence can be recreated by scaling the sequence, redefining the long atil from Cu on AlIPdMn(see Ref. 3L (c) The arrows provide a guide to
short segment. some of the primary peaks.
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Fig. 12. The laser diffraction pattern of the square Fibonacci tillafy) is
compared with the Fourier transform of the same structesee Ref. 32
The intensity at each point is proportional to the radius of the circle.

talline surfaces illustrates this poiisee Fig. 4. In both

a b C

Fig. 14. The laser diffraction patterns obtained from grating fr@nthe
Fibonacci pentagrid antb) from atomic coordinates show similar features
to (c), the LEED diffraction pattern of the 10-fold AINiCo surfateee Ref.
19). In particular the ratio A/B is equal to the golden mean.

spaced array of weak spots. As for the 1D case, the diffrac-
tion pattern presents a dense set of discrete poirksspace,
with self-similar features. To illustrate the density and self-

cases the main beams are related to each other by powers@fhilarity of the pattern, laser diffraction patterns were ac-

the golden mean, as shown in Fig. 14.

quired using two exposure times are shown in Fig. 15. Al-

The background intensities also show similar behaviorthough the main order beams appear overexposed in the
what appears to be diffuse scattering in the LEED diffractionlonger exposure picture, it is possible to see additional dif-
pattern is actually the sum of the intensities from a denselyraction spots. If diffuse scattering predominated, we would

b C

see an overall homogeneous increase of the background in-
tensity.

A significant difference that emerges by comparing the
laser diffraction pattern to the LEED patterns from the real
structures is the presence in one case of 5-fold symnfitey
AlIPdMn quasicrystalline surface, see Figay. All of the
laser diffraction patterns and the Fourier transforms show
10-fold symmetry. This inversion symmetry is a general
property of the Fourier transform, and also of 2D diffraction,
and, in particular, a 5-fold 2D structure will produce a 10-
fold diffraction patternt®

So why does the AIPdMn surface display a 5-fold symme-
try in the LEED pattern? Electron diffraction from real sur-
faces differs from laser diffraction in several respects. First,
different chemical entities can be present in a real surface
(quasicrystals are usually allgygach having different scat-
tering properties. More importantly, electrons penetrate the
surface, scattering from more than one plane of atoms. In
addition, most of the scattered electrons undergo more than
one scattering event. The net result is that there is a decrease
in intensity of the scattering from each successive layer of
the material. Even if the scattering from just the top layer is
10-fold in nature, the scattering from the next layer, which
has a different path length, breaks this 10-fold symmetry. In
general, surfaces having 5-fold or 10-fold symmetry there-
fore give 5-fold LEED patterns, but under special circum-

Fig. 13. (a) Superposition of the AINiCo atomic coordinates with the Fi- Fig. 15. Photographs of two laser diffraction patterns taken at different

bonacci pentagridb) Diffraction pattern from the pentagri¢c) Diffraction
pattern from the grating obtained using the atomic coordinates.
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exposures. The diffraction pattern of a quasicrystalline structure has an in-
finite number of diffraction spots, in every point kaspace.
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