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The diffraction from one- and two-dimensional aperiodic structures is studied by using Fibonacci
and other aperiodic gratings produced by several methods. By examining the laser diffraction
patterns obtained from these gratings, the effects of aperiodic order on the diffraction pattern was
observed and compared to the diffraction from real quasicrystalline surfaces. The correspondence
between diffraction patterns from two-dimensional gratings and from real surfaces is demonstrated.
© 2004 American Association of Physics Teachers.
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I. INTRODUCTION

In the past 5–10 years, there has been considerable i
est in the structure of the surfaces of quasicrystal allo
which provide realizations of quasicrystalline order in tw
dimensions.1 The best-known examples of two-dimension
~2D! quasicrystal structures might be the tilings generated
Penrose2 such as the one shown in Fig. 1, although ma
examples of aperiodic order exist in nature.3 The main dif-
ferences between quasicrystal order and periodic crysta
der are the absence of a periodically repeating structural
and the possibility of ‘‘forbidden’’ rotational symmetries
such as 5-fold or 10-fold rotations in the quasicrystal str
tures. Quasicrystalline order in solids was discovered un
pectedly about 20 years ago in Al-based alloys, and su
quent metallurgical studies on such alloys have found
quasicrystal phases are generally restricted to small rang
composition and temperature. A detailed understanding
the stability of these structures is beyond the scope of
paper, but the entropic factor in the free energy plays a
nificant role in many cases.

Recent scanning tunneling microscopy~STM! studies of
the surfaces of the quasicrystalline phases of the al
i -Al–Pd–Mn andd-Al–Ni–Co have identified tiling pat-
terns similar to Penrose-type tilings.4 Figure 2 shows such
tiling generated from the STM image of the 5-fold surface
icosahedral AlPdMn.5 This experimentally derived tiling ha
been shown to be identical in character to one of the m
ematically derived Penrose tilings.6

Additional interest in quasicrystal surfaces has been g
erated by their unusual surface properties, such as low c
ficients of friction, high hardness, good wear resistance,
good corrosion resistance.7 Quasicrystal coatings have bee
used as nonstick, wear-resistant surfaces in frying pans,7 and
more recently polymeric composites of Al–Cu–Fe quas
rystal and polyethylene have been successfully tested as
sible material candidates for acetabular cup prosthetics.8

It has been stated that the discovery of quasicrystals
ated a revolution in crystallography,9,10 which had previously
treated order and periodicity as synonymous.11 Diffraction is
the primary technique for examining the structures of so
materials, and the consequences of aperiodicity on diffr
tion patterns provide a challenge and an opportunity to g
a deeper understanding of both diffraction and of quasic
tal structures.10,12,13The most common procedures for an
lyzing diffraction measurements from crystalline solids we
originally developed with the assumption of a periodic stru
1241 Am. J. Phys.72 ~9!, September 2004 http://aapt.org
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tural unit. The definition of a crystal included the requir
ment of periodicity until 1992.14 Aperiodicity and tradition-
ally forbidden rotational symmetries introduce features
diffraction patterns that make interpretation by the traditio
means more complex. Simulations can provide a means
building intuition of the effects of quasicrystalline order o
diffraction patterns without resorting to a complicated ana
sis.

One of the most unexpected aspects of diffraction fr
quasicrystals is that they produce sharp, discrete diffrac
peaks.15 A disruption of periodicity often leads to a loss o
definition ~broadening of peaks, increase in background
tensity! in the diffraction pattern. However, aperiodicity b
itself does not cause a broadening of diffraction peaks. T
can be demonstrated in one dimension by looking at
Fourier transform of the well-ordered but aperiodic F
bonacci array.16

A Fibonacci array is a one-dimensional sequence of sh
~S! and long~L! elements generated by specific rules.17 In the
limit of an infinite number of elements, the ratio of the num
ber of L segments toS segments is given by the irrationa
numbert5~11A5!/2, known as the golden mean. A Fouri
transform of this array does not show the broad peaks
are normally associated with a disordered structure. Un
transforms from periodic arrays, the transform from a
bonacci array forms a dense set of sharp peaks having
ferent intensities. The positions of the peaks are related
each other by powers of the golden mean.

The most common diffraction technique for studying su
faces is low-energy electron diffraction~LEED!. In LEED,
the electrons are backscattered from the surface in a ge
etry such as that shown in Fig. 3. Figure 4 shows LEE
patterns from~a! the 5-fold surface of icosahedral AlPdMn18

and ~b! the 10-fold surface of decagonal AlNiCo.19 In both
cases, the distances between the diffraction spots are re
by t. In the first case, the LEED pattern is clearly 5-fo
symmetric~that is, it has 5-fold rotational symmetry abo
the center of the pattern!, and in the second, it is 10-fold
symmetric. If these structures were periodic, it would
relatively simple to deduce the sizes and symmetries of
unit cells from the diffraction patterns by applying Bragg
law. However, extracting information about aperiodic stru
tures is not so straightforward, particularly in the case
electron diffraction for which the pattern is not a simple Fo
rier transform of the structure, due to the complexities inh
ent in electron scattering. The complete analysis of LE
patterns generally involves the calculation of scattering fr
1241/ajp © 2004 American Association of Physics Teachers
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model structures, but much can be learned by a kinem
~single-scattering! approach, which is sufficient to determin
the locations of diffraction peaks in two dimensions.20,21

In this paper, we present a method that gives insight i
the diffraction from quasicrystal surfaces by studying the d
fraction of light from one-dimensional and two-dimension
aperiodic gratings, and comparing these to diffraction fr
actual quasicrystal surfaces. Similar techniques were app
to aperiodic structures even before the discovery
quasicrystals.22,23

II. METHOD

The first requirement for modeling quasicrystal surfa
diffraction is to establish a method for producing hig

Fig. 1. Penrose tiling consisting of two sizes of rhombus.

Fig. 2. High-resolution STM image~75 Å375 Å! of the 5-fold surface of
AlPdMn, with a tiling pattern superimposed. The tiling was generated
identifying similar features in the STM image and connecting them~see Ref.
6!.
1242 Am. J. Phys., Vol. 72, No. 9, September 2004
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quality diffraction gratings. One-dimensional gratings can
constructed by first using a graphics program such as Ad
Illustrator® or CorelDraw® to draw the gridlines that make
up the grating. Aperiodic gratings were generated by set
the spacing between the gridlines to those of the Fibona
sequence. In this study, a typical short distance between
gridlines was 5 mm and the thickness of the gridlines w
typically around 0.10 mm. An example of a one-dimensio
grating is shown in Fig. 5. The drawing was then las
printed and photographed. Because the photographic n
tives were to be used as diffraction gratings, the drawin
were made in reverse polarity~black-white! to the desired
grating. The photographs were taken using a Contax 137
quartz camera and Ilford PAN F black and white, 50 AS
film. This method is similar to one employed earlier by a
other group,24 and we verified their finding that higher
resolution film produces a clearer diffraction pattern. An
ternative and simpler way to produce high-resolution o
dimensional ~1D!-gratings is to print the gratings ont
overhead projector transparent sheets using a laser pr
~nominal resolution of 600 dpi!. This procedure produce
gratings with a lower resolution than the photographic fil
but is suitable for many diffraction investigations. To pr
duce the diffraction pattern, a grating was placed on anx–y
translation stage in front of a 0.95 mW He–Ne laser. T
diffraction pattern was cast onto a white screen 100 cm

y

Fig. 3. The geometry of a typical LEED experiment. The incoming beam
electrons~from the left! is normally incident on a crystal surface. The di
fracted beams are backscattered at various angles,h, which depend on the
structure of the surface.

Fig. 4. LEED patterns from~left! the 5-fold i -AlPdMn ~see Ref. 18! at 80
eV incident beam energy~see Ref. 35!, and ~right! the 10-foldd-AlNiCo
~see Ref. 19! at 72 eV incident beam energy.
1242N. Ferralis, A. W. Szmodis, and R. D. Diehl
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front of the grating and photographed. Examples of the
fraction patterns from both methods are shown in Fig. 5.

For comparison to the diffraction from surfaces, a tw
dimensional grating is required. Various two-dimension
gratings were made by superimposing two or more rota
1D Fibonacci gratings. Figure 6~a! shows two grids rotated
by 90°, and Fig. 6~b! shows the Fibonacci pentagrid achiev
by superimposing five gratings rotated 72° from each oth

Fig. 5. ~a! 1D diffraction grating comprising lines that are spaced accord
to the Fibonacci sequence.~b! Diffraction patterns obtained from such
grating using the photographic~left! and the laser printer~right! techniques.

Fig. 6. The superposition of multiple 1D Fibonacci gratings produces
aperiodic diffraction grids.~a! The Fibonacci square and its laser diffractio
pattern.~b! The Fibonacci pentagrid and its laser diffraction pattern.
1243 Am. J. Phys., Vol. 72, No. 9, September 2004
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The diffraction patterns obtained from these 2D grids a
are shown. To draw a stronger correspondence between
tual quasicrystal surfaces and these diffraction pattern
grating can be made to consist of dots based on the locat
of the intersections of superimposed 1D grids, or based
proposed atomistic models for quasicrystal planes. Figur
shows examples of such gratings that are based on mo
for the 5-fold surface of AlPdMn25 and the 10-fold surface o
AlNiCo.19 The resulting laser diffraction patterns also a
shown. The gratings used in this study are available
download.26 Additional resources for experiments using las
transforms and a broader range of gratings and images ca
found in a comprehensive book on optical transforms27 and
at the related website.28

III. RESULTS AND DISCUSSION

A. One-dimensional gratings

To gain insight into the diffraction patterns obtained wi
aperiodic gratings, the laser diffraction patterns can be co
pared with calculated diffraction patterns for both period
and aperiodic arrays. Figure 8 shows a comparison of
laser diffraction and Fourier transforms of a Fibonacci ar
and a periodic array having a spacing equal to the lo
length in the Fibonnaci array.

As pointed out in Sec. I, diffraction from a perfect period
grating produces beams that have non-zero intensity only
values ofk inversely proportional to the slit distance~the

g

Fig. 7. Three 5-fold arrays of dots used to produce 2D aperiodic diffrac
gratings. The arrays represent proposed atomic positions for~a! two differ-
ent planes of a model structure for AlPdMn~see Ref. 25! and~b! plane of a
model structure for AlNiCo~see Ref. 19!.
1243N. Ferralis, A. W. Szmodis, and R. D. Diehl
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Bragg condition!, as seen in both the laser diffraction and t
calculated spectrum in Fig. 8. In the diffraction pattern p
duced by the Fibonacci grating, the diffraction pattern co
prises a dense set of points. As a consequence, the non
background intensity between the intense peaks in the
bonacci diffraction pattern is due to low intensity diffractio
spots. This different behavior is caused by the self-sim
nature of quasicrystalline structures, as shown in Fig. 9
different scales, patterns similar both in relative intensity a
distribution can be found. The presence of densely-spa
diffraction spots is a feature of quasicrystalline structures
general, and as shown later, also applies to 2D diffrac
gratings and surfaces.

Real nanoscale structures exhibiting 1D aperiodic or
have been observed in films of Ag on GaAs~110!, as shown
in Fig. 10~a!. The observed structure consists of rows spa
according the Fibonacci sequence.29,30 Aperiodic row struc-
tures also have been observed in Cu films on an AlPd
quasicrystal surface, as shown in Fig. 10~b!.31 Segments of
the diffraction patterns observed from these structures
compared to the Fibonacci diffraction pattern in Fig. 11. T
comparison of the laser diffraction pattern with the LEE
patterns from real 1D aperiodic structures provides a feas
way of checking the quality of the aperiodic order of the re
structures. Although defects may be present in real st
tures, the diffraction pattern provides a measure of the o
all structure and symmetry, and in these cases, there is g
correspondence between the location of the peaks in the

Fig. 8. The laser diffraction patterns from the Fibonacci sequence~bottom
row of diffraction spots! and a periodic sequence~top row! are compared
with the Fourier transforms of the same structures. The transform is
formed on a sequence of 2500 segments. The periodic grating has
distance equal to the long segment of the Fibonacci sequence. The A/B
corresponds exactly to the golden meant.

Fig. 9. Self-similarity is a key feature of the Fibonacci sequence. The
quence can be recreated by scaling the sequence, redefining the lon
short segment.
1244 Am. J. Phys., Vol. 72, No. 9, September 2004
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patterns to those in the observed LEED patterns. A sim
laser diffraction analysis to study the effects of defects co
be performed by introducing defects into the original 1
gratings.

B. Two-dimensional gratings

By overlapping two 1D Fibonacci arrays, one rotated w
respect to the other by 90°, we can obtain the square
bonacci tiling.32 The properties of the diffraction pattern
from 1D Fibonacci gratings, such as self-similarity and t
densely-spaced peaks, are retained in this 2D case, as s
in Fig. 12. The square Fibonacci tiling provides an interm
diate step between 1D Fibonacci gratings and more com
2D gratings exhibiting the traditionally forbidden 5-fold
8-fold, or 10-fold rotation symmetries. By using a simil
approach, a triangular~3-fold! Fibonacci tiling could be pro-
duced, by overlapping three sets of Fibonacci rows, e
rotated by 120°. The grating and its diffraction pattern can
perfectly aperiodic, regardless of the rotation symmetry.12

We can use the same method to produce a 5-fold gra
by overlapping five different sets of Fibonacci rows, produ
ing the Fibonacci pentagrid.33 A comparison of the diffrac-
tion patterns from gratings produced using the Fibona
pentagrid and using dots at the locations of the atomic co
dinates from a model structure is shown in Fig. 13. T
patterns are qualitatively the same, with the only signific
difference being the broader beam shape from the penta
due to the imperfect diffraction slit shape. In fact, it can
shown that the actual atomic positions in a perfect quasic
tal structure coincide with the intersection of the five grids
the pentagrid.34 A comparison of the 2D laser diffraction pa
terns with the LEED diffraction patterns from real quasicry

r-
slit
tio

e-
and

Fig. 10. ~a! STM image of Ag film on GaAs~110! showing nanoscale rows
that follow the Fibonacci sequence~see Ref. 30!. ~b! 10 nm310 nm STM
image of Cu deposited onto AlPdMn. The rows are spaced according to
Fibonacci sequence~see Ref. 36!.

Fig. 11. ~a! The laser diffraction pattern from the Fibonacci sequence
compared with the LEED pattern from Ag on GaAs~110! ~see Ref. 29!, and
~b! from Cu on AlPdMn~see Ref. 31!. ~c! The arrows provide a guide to
some of the primary peaks.
1244N. Ferralis, A. W. Szmodis, and R. D. Diehl
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talline surfaces illustrates this point~see Fig. 4!. In both
cases the main beams are related to each other by powe
the golden mean, as shown in Fig. 14.

The background intensities also show similar behav
what appears to be diffuse scattering in the LEED diffract
pattern is actually the sum of the intensities from a dens

Fig. 12. The laser diffraction pattern of the square Fibonacci tiling~left! is
compared with the Fourier transform of the same structure~see Ref. 32!.
The intensity at each point is proportional to the radius of the circle.

Fig. 13. ~a! Superposition of the AlNiCo atomic coordinates with the F
bonacci pentagrid.~b! Diffraction pattern from the pentagrid.~c! Diffraction
pattern from the grating obtained using the atomic coordinates.
1245 Am. J. Phys., Vol. 72, No. 9, September 2004
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spaced array of weak spots. As for the 1D case, the diffr
tion pattern presents a dense set of discrete points ink-space,
with self-similar features. To illustrate the density and se
similarity of the pattern, laser diffraction patterns were a
quired using two exposure times are shown in Fig. 15.
though the main order beams appear overexposed in
longer exposure picture, it is possible to see additional
fraction spots. If diffuse scattering predominated, we wo
see an overall homogeneous increase of the backgroun
tensity.

A significant difference that emerges by comparing t
laser diffraction pattern to the LEED patterns from the re
structures is the presence in one case of 5-fold symmetry@the
AlPdMn quasicrystalline surface, see Fig. 4~a!#. All of the
laser diffraction patterns and the Fourier transforms sh
10-fold symmetry. This inversion symmetry is a gene
property of the Fourier transform, and also of 2D diffractio
and, in particular, a 5-fold 2D structure will produce a 1
fold diffraction pattern.16

So why does the AlPdMn surface display a 5-fold symm
try in the LEED pattern? Electron diffraction from real su
faces differs from laser diffraction in several respects. Fi
different chemical entities can be present in a real surf
~quasicrystals are usually alloys!, each having different scat
tering properties. More importantly, electrons penetrate
surface, scattering from more than one plane of atoms
addition, most of the scattered electrons undergo more t
one scattering event. The net result is that there is a decr
in intensity of the scattering from each successive layer
the material. Even if the scattering from just the top layer
10-fold in nature, the scattering from the next layer, whi
has a different path length, breaks this 10-fold symmetry
general, surfaces having 5-fold or 10-fold symmetry the
fore give 5-fold LEED patterns, but under special circum

Fig. 14. The laser diffraction patterns obtained from grating from~a! the
Fibonacci pentagrid and~b! from atomic coordinates show similar feature
to ~c!, the LEED diffraction pattern of the 10-fold AlNiCo surface~see Ref.
19!. In particular the ratio A/B is equal to the golden mean.

Fig. 15. Photographs of two laser diffraction patterns taken at differ
exposures. The diffraction pattern of a quasicrystalline structure has a
finite number of diffraction spots, in every point ink-space.
1245N. Ferralis, A. W. Szmodis, and R. D. Diehl
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stances 10-fold patterns are observed.16 Nevertheless, the
correspondence between the positions of the peaks in
laser diffraction patterns with those in the LEED patter
does provide insight into the nature of the order in the r
quasicrystal.

IV. CONCLUSIONS

Interpreting diffraction patterns generated by quasicry
surfaces has been challenging because the traditional a
sis methods were based on periodic structures. We have
sented an approach that involves the production of high q
ity 1D and 2D diffraction gratings using both tradition
chemical photography and laser printing. These gratings
be modified to reproduce different types of aperiodic str
tures and observe the effects on the diffraction patterns.
investigating the intermediate steps between the simple
of the Fibonacci sequence and the more sophisticated
bonacci pentagrid, we can trace the origins of the diffract
features~self-similarity and inversion symmetry! from the
simple 1D case to the 2D cases. Employing different me
odologies in the identification of the grating matrix~for ex-
ample, the use of the pentagrid compared to atomic coo
nates! provides a correspondence of these models to the
structures.

Although diffraction from real structures presents so
technical differences from the laser diffraction from ape
odic gratings, common features can be easily observed
understood. A deviation from the expected behavior can
used to determine the presence of defects or imperfection
the quasicrystal. Finally, laser diffraction allows an inducti
approach for understanding complex aperiodic structu
and can provide educators with an innovative tool for int
ducing and extending the traditional concept of diffractio
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