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Low-energy elastic scattering of positrons by N,O
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We present a theoretical investigation on positron scattering by N,O. Elastic differential and integral cross
sections at both the static and static plus correlation-polarization levels of approximation are calculated and
reported in the 0.1-100 eV. Calculations were performed using two theoretical methods, namely, the
Schwinger multichannel method and the method of continued fractions. Also, two different schemes were used
to treat correlation-polarization effects. The comparison between our calculated results and the existing experi-

mental data is encouraging.
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I. INTRODUCTION

During the past two decades, investigations on physics
and chemistry of matter-antimatter interactions have consti-
tuted subjects of increasing interest in the scientific commu-
nity. Today, many sophisticated experimental studies includ-
ing the production, storage, and manipulation of antimatter
such as positrons [1], antineutrons [2], antiprotons [3], and
antihydrogen atoms [4] are routinely performed in laborato-
ries. Particularly, concerning the interaction of positrons with
atoms and molecules, there is a set of interesting problems
which are expected for further investigations such as the
mechanisms of annihilation of thermal positrons [5,6] and
the existence of positron-molecule bound states [7]. Special
attention is focused on the dynamics of inelastic positron-
molecule scattering channels, i.e., positronium formation, di-
rect ionization, electronic excitation, and others. A more
complete and comprehensive review on this matter is given
by Surko et al. [8].

From the theoretical point of view, even elastic positron-
molecule interactions are interesting. In contrast to electron-
atom (molecule) interaction, exchange effects are absent for
positrons, as the projectile and the target particles are distin-
guishable. Even though theoretical investigation of positron-
molecule scattering remains a hard task, since the calculated
cross sections would reflect a suitable balance between re-
pulsive static and attractive correlation-polarization contribu-
tions of the interaction potential. Specifically, there are basi-
cally two ways to deal with the polarization effects. In the
so-called ab initio methods, the many-body aspects of the
interaction are taken explicitly into account. On the other
hand, in ad hoc phenomenological methods, an one-particle
parameter-free model correlation-polarization potential is
used to represent the many-body aspects of the positron-
molecule interaction. In this work both methodologies are
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employed in order to extract useful information of the dy-
namics in elastic positron scattering.

In particular, the present study reports a theoretical inves-
tigation on elastic positron scattering by the N,O molecule.
More specifically, differential cross sections (DCS’s) in the
0.1-100 eV energy range and integral cross sections (ICS’s)
in the 0.1-10 eV range for elastic positron-N,O scattering
are calculated and reported. Two different theoretical meth-
ods, namely, the Schwinger multichannel (SMC) method [9]
and the method of continued fractions (MCF’s) [10-12] are
used to solve the Lippmann-Schwinger scattering equations.
In SMC’s, the polarization effects are treated using a full ab
initio method whereas in MCF’s such effects are accounted
for by using a parameter-free model potential. Also, the in-
fluence of the formation of positronium is not considered in
both calculations. As far as we know, the only existing the-
oretical study for positron scattering by this system was car-
ried out by Baluja and Jain [13]. They reported total
(elastic+inelastic) cross sections (TCS’s) for incident ener-
gies above 10 eV. Therefore, collisions at lower energies
were not accounted for. On the experimental side, relative
DCS’s for quasielastic (including rotational and vibrational
excitations) positron-N,O scattering in the 4—100 eV range
were measured and reported by Przybyla er al. [14]. Also,
TCS in the 1-500 eV incident energy range were reported
by Kwan et al. [15]. These experimental results are com-
pared to our calculated data. This comparison can provide an
interesting insight of the elastic positron-N,O interaction dy-
namic and can indicate the degree of reliability of the used
methods.

This article is organized as follows. In Sec. II, we give an
outline of the methods and procedures of computation. In
Sec. III, we present our results and discussions and finally, in
Sec. IV, we present our conclusions.

II. THEORY

In this section, we present the two theoretical methods
used in our calculations. In both cases, the fixed-nuclei
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framework is used. The calculated DCS’s are vibrationally
and rotationally unresolved and therefore, can be compared
directly with the experimental data of Przybyla er al. [14].

A. Schwinger multichannel method

We start with the Schwinger multichannel method. The
application of SMC for positron-molecule scattering has al-
ready been discussed by Germano and Lima [9] and here, we
just outline some expressions for the sake of completeness of
this article. Atomic units are used throughout this work ex-
cept when explicitly stated.

The backbone of the method is the computation of the
variational expression for the scattering amplitude, which is
given by

MC 1 N -1 -
= 5 SV DalViSg) (1)

with

dmn = <Xm|PVP + QI:IQ - VGE:—)V|Xn>’ (2)

where S; is a solution of the unperturbed Hamiltonian (mo-
lecular Hamiltonian plus the kinetic energy operator of the
incident positron), P and Q are projection operators, onto
energetically open and closed states of the target, respec-

tively, V is the interaction potential, H is the total energy
minus the scattering Hamiltonian, Gsf) is the projected
Green’s function onto the P subspace, and {y,,} are the (N
+1)-particle trial scattering functions.

In low-energy positron-molecule scattering, it is necessary
to take into account polarization effects. SMC describes the
target polarization through virtual single-particle excitations
of the target, explicitly considered in the expansion of the
scattering wave function

T =3 D(1, ... ,Ng,(p) + 2 D,(1, ... ,N)g,(p),

3)

where ®y(1,...,N) is the target ground state Hartree-Fock
(HF) wave function, ¢, are positron scattering orbitals and
®,, are singly excited target wave functions belonging to the
closed channel Q subspace and are written as Slater determi-
nants. The Q subspace (polarization space) is constructed
considering all hole-particle excitations from occupied to the
polarized orbitals [16], given as

_ <¢|lua|¢t>
=2y Ty 4)

where the sum runs over all virtual orbitals and E; and E; are
orbital energies. u,, is the ath component (a=x,y,z) of the
dipole moment operator. The use of polarized orbitals turns
the size of the polarization space suitable for computational
purposes.

Because SMC is a variational method, the quality of the
calculated results would depend on the quality of the trial
scattering basis set {x,,}. The lack of an upper-bound or a
lower-bound limit for continuum scattering functions makes
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particularly the choice of basis functions critical. Recently,
Chaudhuri et al. [17] developed a methodology to treat nu-
merical instabilities in the matrix elements of SMC along N,
electronic excitation calculations. Later, Arretche and Lima
[18] applied this procedure, called the basis set Born ap-
proximation technique (BSBAT), to model electronic excita-
tion of H, by positron impact obtaining convergence of cal-
culated cross sections from different sets of scattering basis.
Here, we apply the BSBAT to treat elastic positron-N,O scat-
tering.

B. Method of continued fractions

In the method of continued fractions, the positron-
molecule collision problem is formulated in the body-fixed
(BF) framework. The dynamics of the scattering can be ap-
propriately represented by the BF Lippmann-Schwinger in-
tegral equation

¥ =5+G,UV, (5)

where W is the wave function of the positron, S is a set of
solutions of the unperturbed Schrodinger equation, and U is
the interaction potential. The Lippmann-Schwinger equation
is solved by iteration using the method of continued fractions
(MCFs) [10,11]. The application of MCFs consists of defin-
ing the nth-order weakened potential operator U™ as

U(n) — U(n—l) _ U(n—l)|S(n—1)>(A(n—l))—l<S(n—1)|U(n—l) (6)

and the nth-order correction of D" matrix is defined through
the relation

DW= pgw +A(")[A(") _ D(n+l)]—lA(n)_ (7)
Here,
AU = (s |5ty (8)
B = (st=D|yn=D| sty 9)
and
s =Gy, (10)

The superindex p in the Green’s function refers to the
principal-value component.
The reactance matrix K is related to the D matrix through

K=-D. (11)

The operator U™ is expected to become weaker with in-
creasing n. Generally, five steps are sufficient to reach the
desirable convergence. When the convergence of the itera-
tive procedure is achieved, the calculated reactance matrix K
corresponds to the exact solution of the Lippmann-
Schwinger equation. The transition matrix 7 is related to the
K matrix through the expression

2K
T (1-iK)

(12)

and the BF differential cross section (DCS) is given by
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% (13)

e
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where f is the BF elastic scattering amplitude related to the T
matrix by the usual expression

f=-2mT. (14)

In order to compare the calculated cross sections with experi-
mental data, a frame transformation on scattering amplitude
is done in a conventional way [19]. The resulting laboratory-
frame (LF) DCS, expanded in the j, basis representation,
after average of molecular orientations is

1], (ko k PP, (15)

Qo <= 2j,+1

where Z:f’—; is the transferred angular momentum along

the collision and m, and m, are the projections of j, along the

laboratory and molecular axis, respectively. The B]”’l Q)
ot

coefficient is given by

B ()= 3 (= 1) ay,(1'0mjm)

U'lm

X(UWmm'|j0)Y,, (Q), (16)

where the dynamical coefficients a;., can be written in
terms of fixed-nuclei partial-wave components of the elec-
tronic portion of the transition matrix elements as

1 ,
ayrmko) = — Eﬂ-[477(21' + D]V D ko Im| Tkl m).

(17)

Finally, in order to compare our data with the rotationally
unresolved DCS for quasi-elastic e*-N,O scattering, we cal-
culate rotationally summed DCS’s [20] as

d d
_0-:2 _0-(]<_.]O)s

(18)
a0 5 d0

where j (j,) are final (initial) rotational quantum numbers of
the target. This procedure was employed for both methods
(SMC and MCF).

The positron-molecule interaction potential in the body-
frame fixed-nuclei approximation is formed by two compo-
nents

U() = U() + US(7).

The static potential U™, is the electrostatic term arising from
Coulomb interactions between the projectile and the nuclei
and electrons of target. The UP term is the correlation-
polarization potential arising at short range from bound-free
many-body effects and at long range from the induced polar-
ization effects. In our calculation we use in the short range a
parameter-free correlation potential UP proposed by Ar-
ponen and Pajane [21] and applied in positron-molecule scat-
tering by Jain [22] and Jain and Gianturco [23]. The short-
range part of the potential is related to the correlation and the
long-range part is responsible for the polarization

(19)
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UCP(;) = Vcorr(;) for r=r, (20)

and
U(F =V, (7) for r=r,,

where V. is the correlation potential, V), is the polarization
potential given by

21

ay a

p= 54 2r4P2(cos(67))

(22)
and r, is the radius where V,, and V, terms cross each other
for the first time. This is the procedure to establish the cutoff
and give the physically reasonable form at short and large r.
Specifically, the cutoff parameter used in this calculation was
3.31 a.u. for L=0 and 2.49 a.u. for L=2. It is interesting to
observe that with these cutoff parameters, we found that 92.7
and 71.6 % of the electronic charge were enclosed inside the
correlation portion of the potential for L=0 and L=2, respec-
tively. For L=2 there is a second point of intersection be-
tween the correlation potential and the polarization one. This
point is located at 4.59 a.u. and evidently it incorporates
practically all the electronic charge of the molecule. In fact,
the choice of the matching point between the correlation and
polarization components is rather arbitrary. In some test runs,
we have learned that the influence of the L=2 component of
the U? on the calculated cross sections is not relevant. Also,
the use of different matching points does not affect signifi-
cantly the calculated DCS’s. Thus, the first crossing point
between the correlation and polarization potentials was used
in the present study. Moreover, partial-wave components
with L larger than 2 are expected to be small and are ne-
glected in this work.

C. Computational details

Following Lee et al. [20], the experimental equilibrium
geometry of the ground state (Ry.y=2.127a, and Ry
=2.242q,) is used in the computation of the ground-state
target wave function. The standard [9s5p/4s3p] basis sets of
Dunning [24] augmented by one s (a=0.028), one p («
=0.025), and one d (a=0.8) uncontracted function at the
nitrogen centers and three s (@=0.025, 0.02, and 0.005), one
p (@=0.04), and three d (a=1.7, 0.85, and 0.34) functions at
the oxygen center are employed in the HF self-consistent-
field (SCF) calculations. This basis set gives a SCF energy of
—183.726 991 a.u. and a dipole moment of 0.6532D com-
puted using the GAMESS code [25]. These values can be com-
pared to the results —183.736 716 a.u. and 0.6318D from the
near-Hartree-Fock calculation of Winstead and McKoy [26].
This target wave function is used to generate interaction po-
tential in both the SMC and MCEF calculations. In order to
generate the long-range polarization potential according to
Eq. (20), we use the experimental values of the symmetric
(@p=20.22 a.u.) and asymmetric (a,=13.17 a.u.) polariz-
abilities [27].

In the MCF calculations, the partial-wave expansion of
both bound and continuum orbitals, as well as all the matrix
elements required in the calculation, were retained at [,
=47 and m,,,,=17 for all incident positron energies. Some
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truncation tests were carried out using the MCF. The tests
showed that at large scattering angles the convergence of
DCS was reached approximately for /=10 and m=4. For
completeness, the single-center expansion was developed
from the central nitrogen atom, which is located in the origin
of the coordinate system. We used a radial grid of 900 points
for integration, where the maximum value of the radial co-
ordinate used R,,,, was equal to 92 a.u. The use of this value
guarantees the normalization of the outmost valence orbital
to be better than 0.999 and also satisfy the scattering bound-
ary condition.

In SMC, the positron scattering orbitals are taken from the
set of Hartree-Fock orbitals, which are linear combinations
of Gaussian functions of s, p, and d type. Because of that, the
higher partial wave component that can be obtained from the
scattering basis set is relatively small. Due to this fact, the
DCS’s converged, in general, for /,,,,~5. So, we think the
choice for [,,,=9 in SMC calculations is fairly satisfactory.
Moreover, due to N,O is a polar molecule, it is expected that
the DCS near the forward direction is dominated by the di-
pole interactions. Such interactions are of very long range
and must be corrected via a Born-closure procedure. Indeed,
such procedure were performed in both the SMC and MCF
calculations.

III. RESULTS AND DISCUSSION

In Fig. 1 we compare the DCS’s calculated using the
SMC and the MCEF, respectively, at incident energies of 0.25,
0.5, 1, 1.5, 2, and 3 eV. The results calculated at both the
static and the static plus correlation-polarization (SCP) levels
are presented. In the absence of experimental data and other
similar calculations, we expect that these data would be use-
ful for further investigations in this energy region. For such
low energies, it is expected that the correlation-polarization
effects would play an important role in the dynamics of elas-
tic ¢™-N,O collisions. In fact, it is seen from this figure that
there is a significant difference between the calculated static
and SCP DCS’s using both the SMC and MCF methods,
particularly for energies above 1 eV. Moreover, although
there is a general good qualitative and quantitative agree-
ment between the static results of the two calculations, some
discrepancies are seen particularly in an angular range be-
tween 10° and 70°. This difference may be attributed to the
lower partial wave component that can be reached in SMC
calculations. The DCS’s calculated at the SCP level of ap-
proximation by the two methods are also in general good
agreement. In this case, the discrepancy seen between them,
cannot be totally attributed to the different ways of account-
ing for the correlation-polarization effects.

In Fig. 2, we present the static and SCP DCS’s calculated
by both the SMC and the MCF at incident energies of 4,
6.75, and 10 eV. The relative quasielastic data of Przybyla et
al. [14], normalized to our MCF SCP data at 60° is also
shown for comparison. Again, the significant discrepancy be-
tween the corresponding SCP and static results evidences the
importance of the correlation-polarization effects in this en-
ergy range. The good quantitative agreement between the
SCP DCS’s of the two methods shows the correlation polar-
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FIG. 1. Elastic differential cross sections for e*+N,O for 0.25,
0.5, 1, 1.5, 2, and 3 eV. Dashed-dotted line, static MCF results;
dotted line, static SMC calculation; dashed line and full line, MCF
and SMC calculations in static plus correlation-polarization ap-
proximations, respectively.

ization can be handled, for polar molecules, using both the
ab initio treatment or model potentials. The comparison with
the experimental data has shown that, in general, the angular
dependence of the experimental DCS’s at 4 and 10 eV is well
described by both the SMC and MCF calculations at the SCP
level of approximation. However, at 6.75 eV, the maximum
seen in the experimental data at around 90° is shifted to
small scattering angles in the calculated DCS. The proximity
of this energy to the thresholds of the real positronium for-
mation (6.02 eV) and electronic excitation of 'A (6.75 eV)
[28], suggests that the observed discrepancy is due to the
neglect of these effects in the present calculation, which is a
single-channel one. We believe that further studies that in-
clude these specific inelastic channels can solve this ques-
tion. For 4 and 6.75 eV, we observe that the experimental
DCS’s are larger than their theoretical counterparts at small
scattering angles. This feature is not seen at higher incident
energies. It is interesting to point out that a similar behavior
was observed by de Carvalho et al. [29] for elastic e*+N,
scattering and by Jain and Gianturco [30] for e*+CH, scat-
tering. Apparently, more theoretical efforts, particularly for
better description of the correlation-polarization effects, are
needed in order to improved the calculated DCS near the
forward direction. Also, more experimental attempts for
positron-molecule scattering, particularly those performed by
independent groups, are welcome.

042708-4



LOW-ENERGY ELASTIC SCATTERING OF POSITRONS BY ...

DCS (10 "* cm?)

DCS (10" cm’)

DCS (10" cm’)

0 3 6 9 120 150 180
Angle(degrees)

FIG. 2. Elastic differential cross sections for e*+N,O for 4.0,
6.75, and 10.0 eV. Theoretical legends are the same as in Fig. 1.
Diamonds are the quasielastic measurements of Przybyla er al. [14].

In Fig. 3, we show the DCS’s calculated at the static and
SCP levels for 20, 50, and 100 eV incident energies. Only the
results of the MCF theory are presented. For these energies,
the comparison of our SCP data with the experimental data
shows an excellent qualitative agreement, which is very en-
couraging. It is quite surprising to see that the role played by
the correlation-polarization effects is still relevant for such
energies. The influence of these effects in the calculated
DCS’s can be clearly seen at angles less than 30°. Particu-
larly, a minimum feature is seen in the SCP data in this
angular range. A previous study of electron-N,O scattering
[20] has shown that the correlation-polarization effects are
significantly less important than for positrons, at incident en-
ergies above 20 eV. However, for positron scattering, the
static and correlation-polarization components of the interac-
tion potential present opposite signal. Therefore, probably
the balance of the repulsive static and attractive correlation-
polarization potentials has produced the observed minimum.

The reason for the omission of SMC results at these en-
ergies is due to the fact that our scattering basis sets are not
“complete” for energies above 10 eV, as suggested by the
BSBAT analysis. However, as the first application to a polar
target, we are happy for its satisfactory description on the
dynamics of the low-energy positron-molecule scattering.
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FIG. 3. Elastic differential cross sections for e*+N,O for 20.0,
50.0, and 100.0 eV. Dashed-dotted lines are static MCF calcula-
tions; dashed lines are static plus correlation-polarization MCF re-
sults; diamonds are the experimental data of Przybyla et al. [14].

Finally, the static and SCP ICSs in the 0.25—10 eV energy
range, calculated using the SMC and MCF methods are pre-
sented in Fig. 4. The experimental TCS of Kwan er al. [15] is
also shown for comparison. At such low incident energies,
the elastic scattering channel dominates the interaction be-
tween the positron and target. Therefore, the comparison of
our calculated ICS with the experimental TCS is meaningful.
As expected from the analysis of the DCS’s, the SCP ICS
provided by the SMC and MCF methods agree quite well.
Again, the small discrepancies seen between them can be
attributed to the different manners to account for the
correlation-polarization effects as well as different expansion
parameters used in the calculations. The two sets of SCP
results also agree quite well with the experimental TCS of
Kwan et al. [15]. The similarity with our elastic results and
the experimental TCS above 6.02 eV, which is the positro-
nium formation threshold, suggests that this scattering chan-
nel has a small contribution to the total cross section. As
expected, the static results calculated by the two methods
deviate significantly from the SCP ICS and also from the
experimental TCS, indicating again the importance of the
role played by correlation-polarization effects in positron-
molecule collision.
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FIG. 4. Elastic integral cross sections for e*+N,0. Dotted line
and dot-dashed line are SMC and MCF calculations in the static
approximation. Full line and dashed line are SMC and MCEF results,
respectively, in the static plus (correlation-)polarization approxima-
tion. Diamonds are the total cross section measurements of Kwan et
al. [15]. The arrow indicates the positronium formation threshold.

IV. CONCLUSIONS

In this work, we report an application of the SMC and
MCF methods to study e*+N,O scattering in the low- and
intermediate-energy range. The calculations were performed
in both the static and SCP levels of approximation. Two dif-
ferent calculation schemes, namely, the full ab initio method
and a model potential method, were used to handle the
correlation-polarization effects. As far as we know, this is the
first time that different approaches to take into account po-
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larization and correlation effects in low-energy positron elas-
tic scattering are directly compared and mainly computed
with the most similar initial conditions, this is, basis sets,
molecular geometry, etc. We learned that both approaches
can produce similar descriptions for the elastic cross sections
for polar molecules. Also, the calculated cross sections using
the SCP approximation agree fairly well with the experimen-
tal data available in the literature. On the other hand, the
discrepancy between the theoretical and experimental DCS’s
at small scattering angles still remains as a problem to be
better understood.

Another point is the important role played by the
correlation-polarization effects at incident energies as high as
100 eV. This is probably due to the balance of the repulsive
static potential and the attractive correlation-polarization po-
tential.

Finally, it would be interesting to the positron-molecule
research field if further DCS measurements, mainly in the
low angle region, could be carried out by different experi-
mental groups. The appearance of more experimental data
would certainly stimulate theoreticians to look for improve-
ments in the description of the positron-molecule scattering.
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