Evolução temporal do valor médio de uma observável

Aprendemos que o valor médio de A para um sistema preparado em $|\psi\rangle$ é

$$\langle A \rangle = \langle \psi | A | \psi \rangle$$

Mas isso em que instante? Talvez fosse melhor colocar a dependência temporal $\langle A\rangle(t)=\langle \psi(t)|A|\psi(t)\rangle$

Para ser rigoroso a dependência temporal pode ser em $\begin{cases} |\psi(t)\rangle \\ \langle \psi(t)| \\ \text{ou até em } A(t) \end{cases}$

• Fórmula Geral

$$\frac{d}{dt}\langle A\rangle(t) = \frac{d}{dt}\langle \psi(t)|A|\psi(t)\rangle = \left[\frac{d}{dt}\langle \psi(t)|\right]A|\psi(t)\rangle + \langle \psi(t)|A\left[\frac{d}{dt}|\psi(t)\rangle\right] + \langle \psi(t)|\frac{\partial A}{\partial t}|\psi(t)\rangle$$

Fazendo uso da equação de Schrödinger $i\hbar \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle$, a equação fica:

$$\frac{d}{dt}\langle A\rangle(t) = \langle \psi(t)|\frac{H}{-i\hbar}A|\psi(t)\rangle + \langle \psi(t)|A\frac{H}{i\hbar}|\psi\rangle + \langle \psi(t)|\frac{\partial A}{\partial t}|\psi(t)\rangle$$

ou ainda, $\frac{d}{dt}\langle A\rangle(t) = \frac{1}{i\hbar}\langle \psi(t)|AH - HA|\psi(t)\rangle + \langle \psi(t)|\frac{\partial A}{\partial t}|\psi(t)\rangle$

para finalmente obter $\frac{d}{dt}\langle A \rangle = \frac{1}{i\hbar}\langle [A, H] \rangle + \langle \frac{\partial A}{\partial t} \rangle$

 $O\ valor\ m\'edio\ de\ A\ \'e\ um\ n\'umero\ que\ depende\ apenas\ de\ t.$

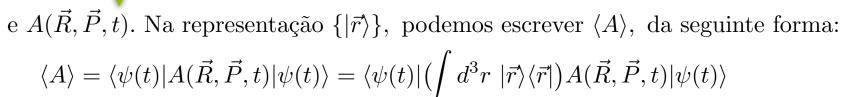
 $Se [A, H] = 0 \ e \ \partial A/\partial t = 0 \ \forall t, \ \langle A \rangle \ n\~{a}o \ depende \ do \ tempo.$

Evolução temporal do valor médio de uma observável

Na mecânica clássica \mathcal{A} é uma quantidade física que depende explicitamente e implicitamente de t através de $\vec{r}(t)$ e $\vec{p}(t)$. Segundo as regras de quantização, temos

$$\mathcal{A}(\vec{r}, \vec{p}, t) \implies A(\vec{R}, \vec{P}, t)$$
no \mathcal{A} clássico
$$\begin{cases} \vec{r}(t) \in \vec{p}(t) \\ \text{dependem de t,} \\ \text{assim como } \mathcal{A}. \end{cases}$$
 no A quântico
$$\begin{cases} \vec{R} \in \vec{P} \text{ não} \\ \text{dependem de } t. \\ \text{A dependência} \\ \text{está em } |\psi(t)\rangle. \end{cases}$$

- o Os operadores quânticos \vec{R} e \vec{P} são tais que $\frac{\partial \vec{R}}{\partial t} = 0$ e $\frac{\partial \vec{P}}{\partial t} = 0$.
- \circ A dependência explícita no tempo é tratada da mesma maneira para $\mathcal{A}(\vec{r}, \vec{p}, t)$



que com cuidado pode ser escrito por $\langle A \rangle = \int d^3r \ \psi^{\star}(\vec{r},t) A(\vec{r},\frac{\hbar}{i}\vec{\nabla},t) \psi(\vec{r},t).$

Após integração $\langle A \rangle = \langle A \rangle(t) \rightarrow$ depende só de t.

Evolução temporal do valor médio de uma observável

Casos especiais: observáveis \vec{R} e \vec{P} \Rightarrow **Teorema de Ehrenfest.**

Suponha um partícula sem spin sujeita à um potencial escalar. A Hamiltoniana clássica é dada por: $\mathcal{H} = \frac{p^2}{2m} + V(\vec{r}) \Rightarrow \text{ a quântica é } H = \frac{P^2}{2m} + V(\vec{R})$

Quanto vale $\langle \vec{R} \rangle(t)$ sabendo que o sistema evolui de acordo com $|\psi(t)\rangle$?

Aplicação direta da fórmula geral (caixa azul do slide 1) nos leva à:

seguintes equações $\begin{cases} \frac{d}{dt} \langle \vec{R} \rangle = \frac{1}{i\hbar} \langle [\vec{R}, H] \rangle = \frac{1}{i\hbar} \langle [\vec{R}, \frac{P^2}{2m}] \rangle \\ \\ \frac{d}{dt} \langle \vec{P} \rangle = \frac{1}{i\hbar} \langle [\vec{P}, H] \rangle = \frac{1}{i\hbar} \langle [\vec{P}, V(\vec{R})] \rangle \end{cases}$ Os comutadores dão $\begin{cases} [\vec{R}, \frac{P^2}{2m}] = \frac{1}{2m} \left\{ P_x \underbrace{[\vec{R}, P_x]}_{i\hbar \hat{i}} \dots + \underbrace{[\vec{R}, P_x]}_{i\hbar \hat{i}} P_x \dots \right\} = \frac{i\hbar}{m} P_x \hat{i} + \dots \\ [\vec{P}, V(\vec{R})] = \frac{h}{i} \vec{\nabla} V(\vec{R}) \rightarrow \text{aplique } \frac{h}{i} \vec{\nabla} \text{ em } \langle \vec{r} | V(\vec{R}) | \psi(t) \rangle \end{cases}$

resultando em $\begin{cases} \frac{d}{dt} \langle \vec{R} \rangle = \frac{\langle \vec{P} \rangle}{m} \\ \Rightarrow \text{muito parecidas com as equações clássicas!} \\ \frac{d}{dt} \langle \vec{P} \rangle = -\langle \vec{\nabla} V(\vec{R}) \rangle \end{cases}$

lei de Newton?

Precisamos entender melhor o que significa isso.

Teorema de Ehrenfest e o limite clássico

Suponha que $\psi(\vec{r},t)$ seja um pacote de ondas, como por exemplo, uma mistura de ondas planas, conforme discutimos nas primeiras aulas.

$$(1) \langle \vec{R} \rangle \text{ tem 3 components } \langle X \rangle, \langle Y \rangle \in \langle Z \rangle.$$

 $\text{Note que} \begin{cases} (1) \ \langle \vec{R} \rangle \text{ tem 3 componentes } \langle X \rangle, \langle Y \rangle \text{ e } \langle Z \rangle. \\ \\ (2) \ \langle \vec{R} \rangle(t) \text{ \'e o centro do pacote de ondas no instante } t. \\ \\ (3) \text{ o conjunto de todos os pontos } \langle \vec{R} \rangle(t) \text{ descrevem a trajet\'oria seguida pelo centro do pacote de ondas.} \end{cases}$

Se a extensão do pacote for muito menor que as outras distâncias do problema, podemos aproximar o pacote pelo seu centro. Neste caso, a mecânica quântica se aproxima da mecânica clássica

Será que o movimento do centro do pacote de ondas obedece as leis da mecânica clássica? O teorema de Ehrenfest responderá isso.

 $\text{Vimos que} \begin{cases} \frac{d}{dt} \langle \vec{R} \rangle = \frac{\langle \vec{P} \rangle}{m} \Rightarrow \begin{cases} \text{velocidade do centro do pacote \'e a m\'edia} \\ \text{do momento linear dividido pela massa.} \end{cases}$ $\begin{cases} \frac{d}{dt} \langle \vec{P} \rangle = -\langle \vec{\nabla} V(\vec{R}) \rangle \begin{cases} \text{o lado esquerdo \'e } \frac{d}{dt} m \frac{d}{dt} \langle \vec{R} \rangle = m \frac{d^2}{dt^2} \langle \vec{R} \rangle \\ \text{e o lado direito?} = F_{\text{cl\'assica}} = -\vec{\nabla} V(\vec{R})|_{\vec{R} = \langle \vec{R} \rangle} \end{cases}$ $\begin{cases} Infelizmente, \ em \ geral \ -\langle \vec{\nabla} V(\vec{R}) \rangle \neq -\vec{\nabla} V(\vec{R})|_{\vec{R} = \langle \vec{R} \rangle} \end{cases}$

Teorema de Ehrenfest e o limite clássico

- Comentários sobre esse último resultado

e compare as expressões
$$\begin{cases} -\langle \vec{\nabla} V(\vec{R}) \rangle \to -\langle \frac{dV}{dX} \rangle = n\lambda \langle X^{n-1} \rangle \\ \\ -\vec{\nabla} V(\vec{R})|_{\vec{R} = \langle \vec{R} \rangle} \to \frac{dV}{dX}|_{X = \langle X \rangle} = n\lambda \langle X \rangle^{n-1} \end{cases}$$

- o Em geral $\langle X^{n-1} \rangle \neq \langle X \rangle^{n-1}$. Veja, por exemplo, caso n=3. Quando calculamos o desvio quadrático da média, vimos que $\langle X^2 \rangle \neq \langle X \rangle^2$.
 - o Tem situações interessantes, onde vale a igualdade.

$$n = 0 \to \text{particula livre } -\frac{dV}{dX} = 0, \text{ pois } \langle 0 \rangle = 0.$$

$$n = 1 \to \text{campo uniforme } -\frac{dV}{dX} = -\lambda, \text{ pois } \langle X^0 \rangle = \langle X \rangle^0$$

$$n = 2 \to \text{campo do oscilador } -\frac{dV}{dX} = -\lambda X, \text{ pois } \langle X^1 \rangle = \langle X \rangle^1$$

Embora, em geral $-\langle \vec{\nabla} V(\vec{R}) \rangle \neq -\vec{\nabla} V(\vec{R})|_{\vec{R}=\langle \vec{R} \rangle}$, quando um pacote de ondas for suficientemente localizado, as diferenças são desprezíveis (região semi-clássica).

Para adquirir um pouco de intuição sobre o assunto, calcularemos essa diferença na representação das coordenadas.

Teorema de Ehrenfest e o limite clássico

• Quanto vale $-\langle \vec{\nabla} V(\vec{R}) \rangle \neq -\vec{\nabla} V(\vec{R})|_{\vec{R}=\langle \vec{R} \rangle}$ na representação das coordenadas?

Tome
$$\langle \vec{\nabla} V(\vec{R}) \rangle = \langle \psi | \vec{\nabla} V(\vec{R}) | \psi \rangle = \langle \psi | \mathbb{1} \vec{\nabla} V(\vec{R}) | \psi \rangle \text{ com } \mathbb{1} = \int d^3r \ |\vec{r}\rangle \langle \vec{r}|$$

e obtenha $\langle \vec{\nabla} V(\vec{R}) \rangle = \int d^3r \ \psi^*(\vec{r},t) [\vec{\nabla} V(\vec{r})] \psi(\vec{r},t) = \int d^3r \ |\psi(\vec{r},t)|^2 \vec{\nabla} V(\vec{r}).$

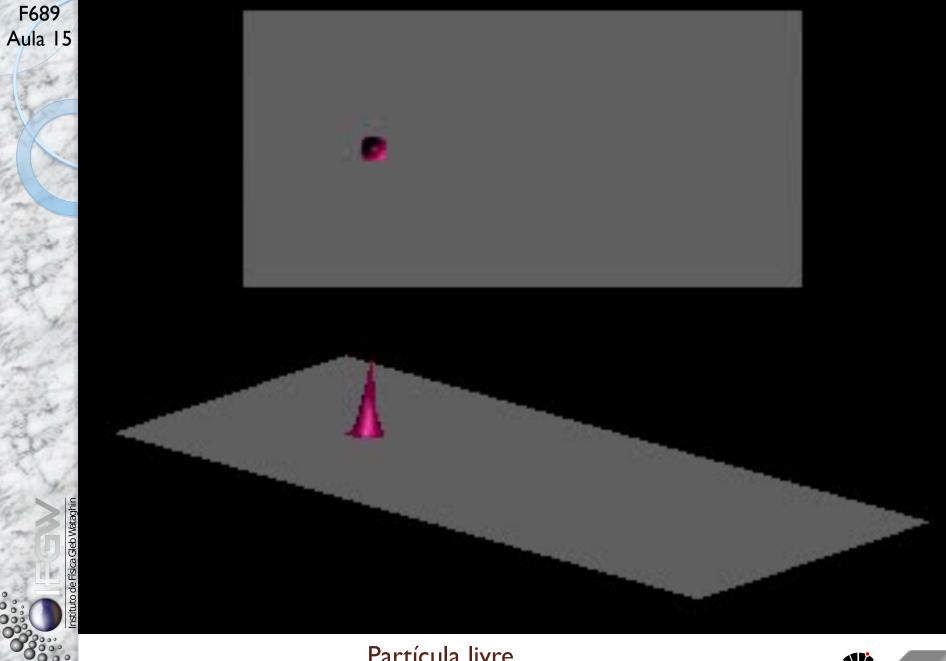
Se $|\psi(\vec{r},t)|^2$ for suficientemente localizado $\nabla V(\vec{r})$ não varia muito na região em que $|\psi(\vec{r},t)|^2$ contribui e pode ser tratado por $\nabla V(\vec{R})|_{\vec{R}=\langle\vec{R}\rangle}$ e retirado da integral. Assim

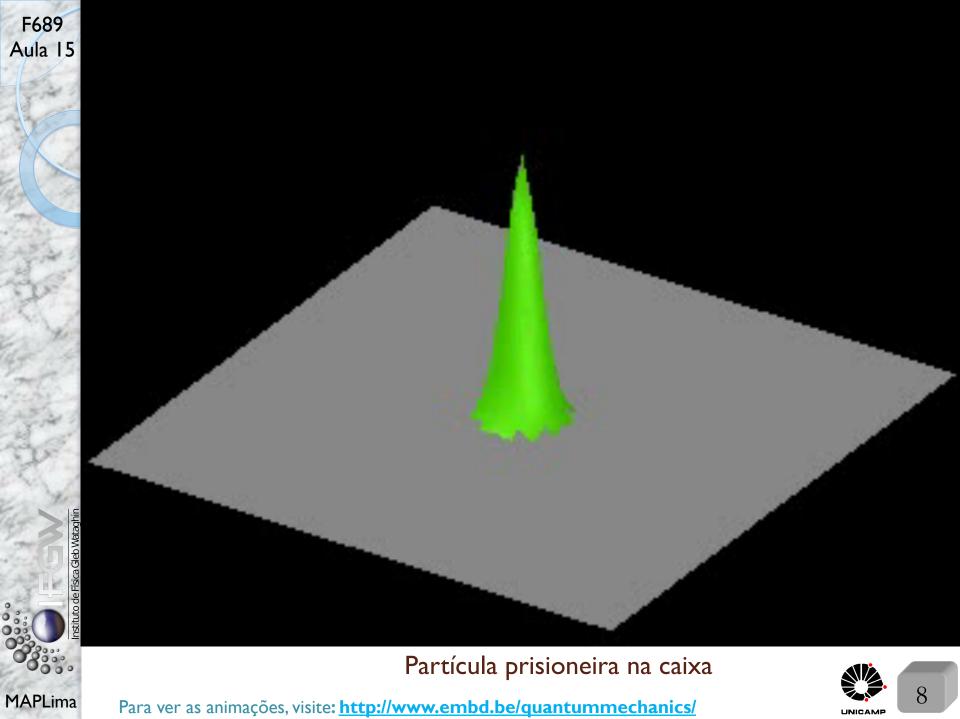
$$\int d^3r \ |\psi(\vec{r},t)|^2 \vec{\nabla} V(\vec{r}) = \int d^3r \ |\psi(\vec{r},t)|^2 \vec{\nabla} V(\vec{r})|_{\vec{R} = \langle \vec{R} \rangle} = \vec{\nabla} V(\vec{r})|_{\vec{R} = \langle \vec{R} \rangle} \int d^3r \ |\psi(\vec{r},t)|^2,$$
ou seja, se o pacote de ondas for pequeno e ao redor do valor médio de X ,

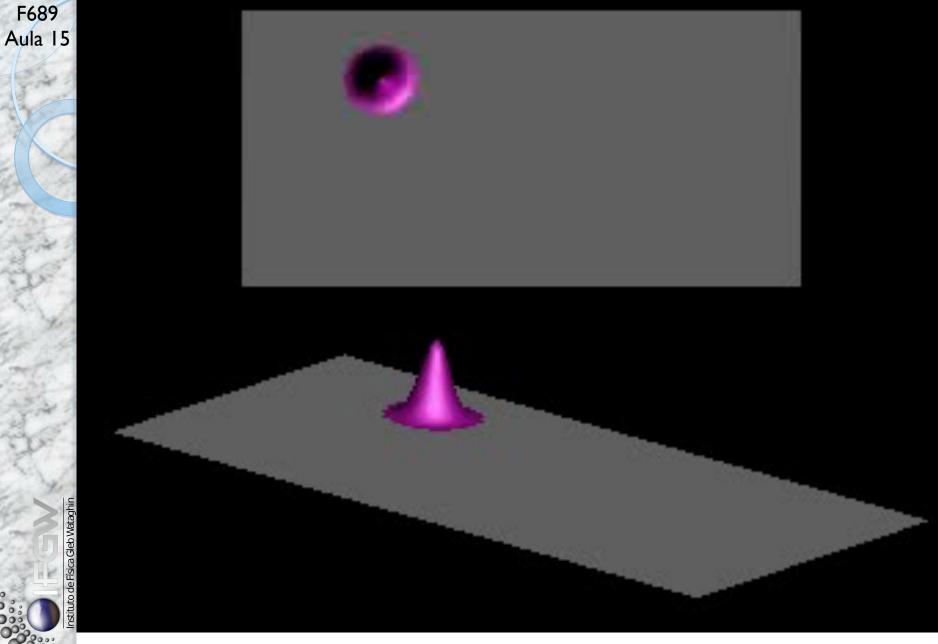
$$\langle \vec{\nabla} V(\vec{R}) \rangle = \vec{\nabla} V(\vec{R})|_{\vec{R} = \langle \vec{R} \rangle}$$

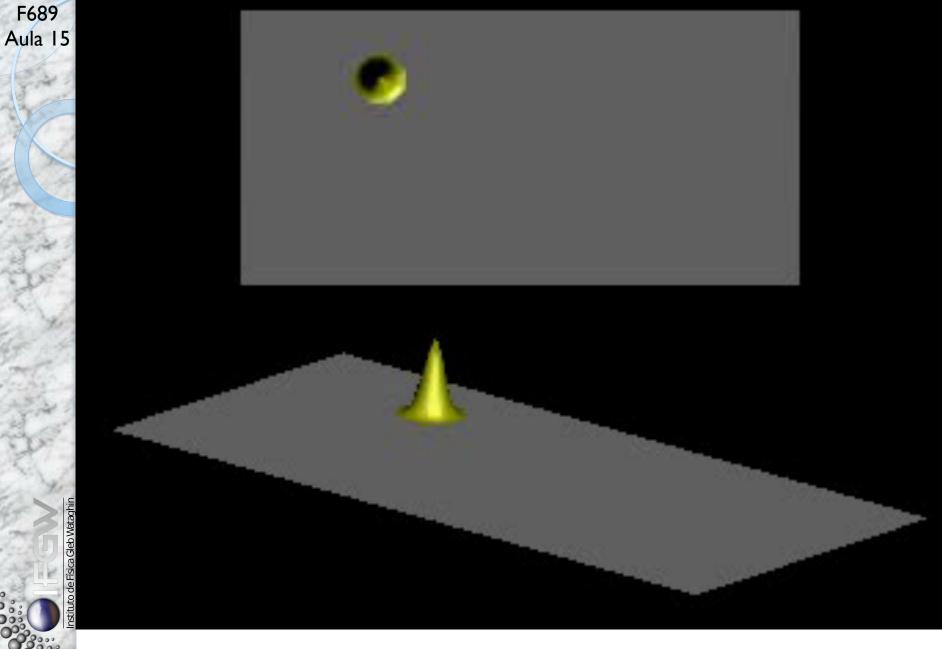
No limite macroscópico ($\lambda_{\text{de Broglie}} \ll 1$), ou seja quando $\lambda_{\text{de Broglie}}$ é menor que outras dimensões, tais como as distâncias onde o potencial varia, os pacotes são suficientemente localizados e a equação acima é satisfeita.

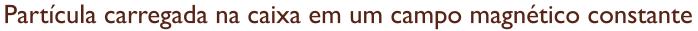
Nestas condições (maioria dos sistemas macroscópicos), a equação de Schrödinger fornece os mesmos resultados que as equações clássicas.





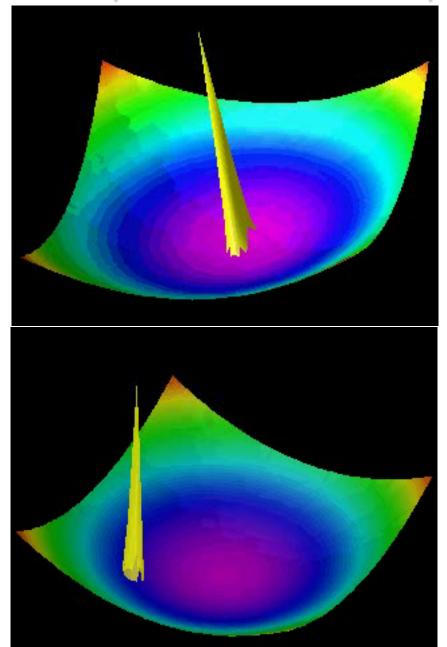






MAPLima

Cuidados especiais com nossas interpretações



Sistemas conservativos

Os sistemas cujas Hamiltonianas podem ser descritas com potenciais e não dependem explicitamente do tempo, isto é, $H(\vec{R}, \vec{P}, t) = H(\vec{R}, \vec{P})$, são ditos conservativos. Na mecânica clássica a situação é descrita de forma semelhante por $\mathcal{H}(\vec{r}, \vec{p}, t) = \mathcal{H}(\vec{r}, \vec{p})$ e significa que a energia do sistema se conserva ao longo do tempo e é uma constante de movimento.

Solução da equação de Schrödinger. Considere

$$H|\varphi_{n,\tau}\rangle = E_n|\varphi_{n,\tau}\rangle$$

Por simplicidade, considere um espectro discreto e τ representando os índices necessários para que $|\varphi_{n,\tau}\rangle$ seja um único vetor (de um CCOC).

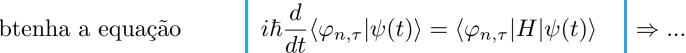
H é uma observável (o conjunto $\{|\varphi_{n,\tau}\rangle\}$ forma uma base) e se H não depende do tempo E_n e $|\varphi_{n,\tau}\rangle$ também não dependem do tempo.

$$|\psi(t)\rangle = \sum_{n,\tau} c_{n,\tau}(t) |\varphi_{n,\tau}\rangle.$$

A base não muda com o tempo e a dependência temporal está em $c_{n,\tau}(t)$, onde, $c_{n,\tau}(t) = \langle \varphi_{n,\tau} | \psi(t) \rangle$.

Sabemos que $i\hbar \frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle$. Multiplique pela esquerda por $\langle \varphi_{n,\tau}|$ e

obtenha a equação



Sistemas conservativos

• A equação da caixa azul do slide anterior pode virar uma equação para $c_{n,\tau}(t)$.

Para tanto use as relações
$$\begin{cases} c_{n,\tau}(t) = \langle \varphi_{n,\tau} | \psi(t) \rangle \\ \langle \varphi_{n,\tau} | H | \psi(t) \rangle = \langle \varphi_{n,\tau} | E_n | \psi(t) \rangle = E_n \langle \varphi_{n,\tau} | \psi(t) \rangle = E_n c_{n,\tau} \end{cases}$$
e obtenha $i\hbar \frac{d}{dt} c_{n,\tau}(t) = E_n c_{n,\tau}(t) \Longrightarrow c_{n,\tau}(t) = c_{n,\tau}(t_0) e^{-iE_n(t-t_0)/\hbar}$

• Esse resultado pode ser usado em todos os $c_{n,\tau}(t)$ da expressão da caixa lilás do slide anterior e, com isso, obter uma fórmula geral de evolução temporal de $|\psi(t)\rangle$, dada por

$$|\psi(t)\rangle = \sum_{n,\tau} c_{n,\tau}(t_0) e^{-iE_n(t-t_0)/\hbar} |\varphi_{n,\tau}\rangle,$$

que informa que em
$$t = t_0 \Rightarrow |\psi(t_0)\rangle = \sum_{n,\tau} c_{n,\tau}(t_0) |\varphi_{n,\tau}\rangle$$

• Esse resultado pode ser obtido para o caso contínuo. Neste situação

$$|\psi(t)\rangle = \sum \int dE \ c_{\tau}(E, t_0) e^{-iE(t-t_0)/\hbar} |\varphi_{E,\tau}\rangle,$$

Como evolui no tempo um autoestado de H? Para pegar um caso geral, podemos supor que $|\psi(t_0)\rangle = \sum c_{n,\tau}(t_0)|\varphi_{n,\tau}\rangle \in \mathcal{E}_n$ subespaço de E_n .

Sistemas conservativos

- Aplicação direta do resultado da caixa laranja do slide anterior, fornece $|\psi(t)\rangle = \sum_{\tau} c_{n,\tau}(t_0) e^{-iE_n(t-t_0)/\hbar} |\varphi_{n,\tau}\rangle = e^{-iE_n(t-t_0)/\hbar} \sum_{\tau} c_{n,\tau}(t_0) |\varphi_{n,\tau}\rangle.$ ou seja $|\psi(t)\rangle = e^{-iE_n(t-t_0)/\hbar} |\psi(t_0)\rangle$. Isso significa que $|\psi(t)\rangle$ e $|\psi(t_0)\rangle$ diferem por um fator de fase global. Eles contém a mesma informação física. Esses estados são fisicamente indistinguíveis $\begin{cases} \text{As propriedades de um sistema em estados de } H \text{ não variam com o tempo } \to \text{ estados estacionários.} \end{cases}$
- Se houvesse uma soma em n na descrição de $|\psi(t)\rangle$ em $t=t_0$, isso não seria verdade. A fase não seria global. Teríamos fases parciais multiplicando seus estados estacionários correspondentes.
- Neste último caso, não saberíamos dizer qual é a energia do sistema. Pode ser qualquer uma das energias E_n da mistura de n's. Entretanto, após a primeira medida, o sistema colapsa para o estado estacionário correspondente. A partir de então, a energia se conserva.

Estamos prontos para discutir "constantes de movimento" da mecânica quântica

Constantes de Movimento

- Uma observável A, é uma constante de movimento se $\begin{cases} \frac{\partial A}{\partial t} = 0 \\ [A, H] = 0 \end{cases}$
- Para um sistema conservativo, H é uma constante de movimento, $\text{pois} \begin{cases} \frac{\partial H}{\partial t} = 0 \to \text{por definição de sistema conservativo.} \\ [H, H] = 0 \to \text{ todo operador comuta com ele mesmo.} \end{cases}$
- A constante de movimento respeita a seguinte relação

$$\frac{d}{dt}\langle A\rangle = \frac{d}{dt}\langle \psi(t)|A|\psi(t)\rangle = \frac{1}{i\hbar}\langle \psi(t)|\underbrace{[A,H]}_{}|\psi(t)\rangle + \langle \psi(t)|\underbrace{\frac{\partial A}{\partial t}}_{}|\psi(t)\rangle = 0$$

O valor médio de uma constante de movimento não muda com o tempo.

- Sejam A e H, tais que [A,H]=0, observáveis com espectros discretos (por simplicidade) e respeitando as equações $\begin{cases} H|\varphi_{n,p,\tau}\rangle = E_n|\varphi_{n,p,\tau}\rangle \\ A|\varphi_{n,p,\tau}\rangle = a_p|\varphi_{n,p,\tau}\rangle \end{cases}$
 - $\tau \to \text{autovalores de operadores que junto com } A \in H \to \text{um CCOC}.$

F689

• [A, H] = 0 (continuação) Constantes de Movimento

- Já vimos que $|\varphi_{n,p,\tau}\rangle$ são estados estacionários (H(t)=H).
 - Se, inicialmente $|\psi\rangle$ for um deles, permanecerá neste estado para sempre.
- Quando A é uma constante de movimento, se $|\psi\rangle$ for um dos $\{|\varphi_{n,p,\tau}\rangle\}$, que também é autoestado de A, esse permanecerá o mesmo (a menos de uma fase global) indefinidamente e com o mesmo autovalor a_p . Por esta razão os autovalores de A são ditos "bons números quânticos".
 - Se, entretanto, $|\psi(t)\rangle$ for uma mistura arbitrária dos estados $\{|\varphi_{n,p,\tau}\rangle\}$, o que é possível dizer sobre a probabilidade de encontrar a_p em uma medida de A? Para ver isso, considere, inicialmente

$$|\psi(t_0)\rangle = \sum_{n} \sum_{n} \sum_{\tau} c_{n,p,\tau}(t_0) |\varphi_{n,p,\tau}\rangle$$

Qual a chance de medir \mathcal{A} e obter a_p ? $\mathcal{P}(a_p, t_0) = \sum \sum |c_{n,p,\tau}(t_0)|^2$

E em t? Quanto vale $|\psi(t)\rangle$?

$$|\psi(t)\rangle = \sum \sum \sum c_{n,p,\tau}(t_0)e^{iE_n(t-t_0)/\hbar}|\varphi_{n,p,\tau}\rangle$$

Qual a chance de obter a_p ? $\mathcal{P}(a_p,t) = \sum \sum |c_{n,p,\tau}(t_0)e^{iE_n(t-t_0)/\hbar}|^2$

 $\mathcal{P}(a_p,t) = \mathcal{P}(a_p,t_0) \to \text{a probabilidade não muda com o tempo!}$

Frequências de Bohr de um sistema e regras de seleção Seja B uma observável que pode não comutar com H, isto é $[B, H] \neq 0$.

Sabemos que:

$$\frac{d}{dt}\langle B\rangle = \frac{d}{dt}\langle \psi(t)|B|\psi(t)\rangle = \frac{1}{i\hbar}\langle \psi(t)|\underbrace{[B,H]}|\psi(t)\rangle + \langle \psi(t)|\underbrace{\frac{\partial B}{\partial t}}|\psi(t)\rangle$$

$$\neq 0$$

Para um sistema conservativo, vimos que:

$$|\psi(t)\rangle = \sum \sum c_{n,\tau}(t_0)e^{-iE_n(t-t_0)/\hbar}|\varphi_{n,\tau}\rangle$$

Substituição direta permite calcular explicitamente $\langle B \rangle$, isto é

$$\langle \psi(t)|B|\psi(t)\rangle = \sum_{n',\tau'} \sum_{n,\tau} \langle \varphi_{n',\tau'}|c_{n',\tau'}^{\star}e^{iE_{n'}(t-t_0)/\hbar}Bc_{n,\tau}e^{iE_{n}(t-t_0)/\hbar}|\varphi_{n,\tau}\rangle$$

$$\langle \psi(t)|B|\psi(t)\rangle = \sum_{n',\tau'} \sum_{n,\tau} c_{n',\tau'}^{\star} c_{n,\tau} \langle \varphi_{n',\tau'}|B|\varphi_{n,\tau}\rangle e^{iE_{n'}(t-t_0)/\hbar} e^{-iE_n(t-t_0)/\hbar}$$

- Como assumimos B(t) = B, $\langle \varphi_{n',\tau'} | B | \varphi_{n,\tau} \rangle$ são constantes.
- Assim, o valor médio de B pode ser escrito da seguinte forma:

$$\langle B \rangle(t) = \sum_{n',\tau'} \sum_{n,\tau} c_{n',\tau'}^{\star} c_{n,\tau} \langle \varphi_{n',\tau'} | B | \varphi_{n,\tau} \rangle e^{i(E_{n'} - E_n)(t - t_0)/\hbar}$$

O futuro de $\langle B \rangle(t)$ é governado pela combinação de termos

já havíamos visto.

F689

Aula 15

- o Note que podemos definir $\nu_{n'n} = \frac{\omega}{2\pi} = \frac{|E_{n'} E_n|}{2\pi\hbar} = \frac{|E_{n'} E_n|}{h}$, como frequências de oscilação das fases. Estas frequências são conhecidas por frequências de Bohr. As frequências independem de B e do estado inicial.
- Embora $\nu_{n'n}$ independa da observável B, os coeficientes que multiplicam as exponenciais dependem.
- \circ O termo $\langle \varphi_{n',\tau'}|B|\varphi_{n,\tau}\rangle$ diz quanto importante será $\nu_{n'n}$. Em particular, se por alguma razão $\langle \varphi_{n',\tau'}|B|\varphi_{n,\tau}\rangle$ for zero, a frequência $\nu_{n'n}$ ficará ausente. Isso é a origem das chamadas Regras de Seleção.
- \circ Se $|\psi(t_0)\rangle$ for um estado estacionário (um único n, suponha igual à k), temos que $\nu_{kk} = 0$ e $\langle B \rangle$ não depende de t.
 - Se B é uma constante de movimento $\begin{cases} [B, H] = 0 \\ \frac{\partial B}{\partial t} = 0 \end{cases} \Rightarrow \langle \varphi_{n', \tau'} | B | \varphi_{n, \tau} \rangle = 0$ para $n \neq n'$ e como $\nu_{nn} = 0$, temos que $\langle B \rangle(t) = \langle B \rangle(t_0)$, conforme