
III hI' force F(t) is zero for t < to, then the solution (2.210) will give x(t) = 0 for
I I(I' This solution is therefore already adjusted to fit the initial condition that
IIIl" (lscillator be at rest before the application of the force. For any other initial
\(lllIlil ion, a transient given by Eq. (2.133), with appropriate values of A and e,
will have to be added. The solution (2.210) is useful in studying the transient
hehavior of a mechanical system or electrical circuit when subject to forces of
VIII iOllS kinds.

I'IU )III.I':MS
I. "I II certa in jet engine at its maximum rate of fuel intake develops a constant thrust

111111'1')111'1000 Ib-wl. Given that it is operated at maximum thrust during take-off, calculate
1111'I" .\wr (in horsepower) delivered to the airplane by the engine when the airplane's velocity
I~ }O nlph, 100 mph, and 300 mph (1 horsepower = 746 watts).
hI II Plstllil r;ngine at its maximum rate of fuel intake develops a constant power of 500

hili M'I" .wr;r. ( 'alculate the force it applies to the airplane during take-off at 20 mph, 100 mph,
Iltld HKllllph.

l, II pilrt ick of mass m is subject to a constant force F. At t = 0 it has zero velocity. Use the
"11'"11"111"111thr;orcm to find its velocity at any later time t. Calculate the energy of the particle
ill lillY lillI'r timr; from both Eqs. (2.7) and (2.8) and check that the results agree.

I, II J1l1rtick of mass m is subject to a force given by Eq. (2.192). (In Eq. (2.192), bt is a fixed
~1I11dltilil" intnval.) Find the total impulse delivered by the force during the time - 00 < t < 00.

II II'. 11111ill1vl'illcity (at t > - (0) is vo, what is its final velocity (as t -+ oo)? Use the momentum
I111'11lI'n I.

.a, II hip,h·spr;r;d proton of electric charge e moves with constant speed Vo in a straight line
plI~11111,'kct 1'011of mass m and charge - e, initially at rest. The electron is at a distance a from
till' J1l1thPI' thr; proton.
II) II~SIIlIll' Ihal the proton passes so quickly that the electron does not have time to move

'IPllIl'l'Il1hly frpm its initial position until the proton is far away. Show that the component of
111111'11111dir'~L'lion perpendicular to the line along which the proton moves is

e2a
I' =--2 2 23/2' (mks units)

4m:o (0 + vot )

WIIl'II' I 0 when Ihe proton passes closest to the electron.
hI ( '1I1r1l11l1l~Ihe impulse delivered by this force.
II W.lle Ihl' cllmponent of the force in a direction parallel to the proton velocity and show

Ihlll Iht' lid impulse ill that direction is zero.
dl I !NIIIIlIhl,SI' reslilts, calculate the (approximate) final momentum and linal kinetic energy

pllhl'l'h'cllllll,
1'1 Shpw thlll the wndilion for Ihe original IISSulIlplion ill Pllrt (Il) to he valid is

(I' J ;.1"1:,, I .• \11'''/,.

"', II pllrlll'll' PI' mllNN1/1111!'I'NIIII I - 0 iNNuhl"l'l to II l'OIl'" 1"(11 -- I,'" Nln! IIIf,

III SkI'll'll IhI' 1'111nl YIIUr xprl't I'm ,,(11111111\( II, 1'01.\lVI'I1l11"" II1l1~1I111~I'illlllillll Ill' IIIIIflll'l'l',
hI I'llltl"lll IIIHI \(1) IIl1d \'11111(11111'wllh VOlll .kl'ld,

F(t) t

o
Fig. 2.9 Force in Problem 6.

6. A particle of mass m, initial velocity Vo is subject beginning at t = 0 to a force F(t) as
sketched in Fig. 2.9.

a) Make a sketch showing F(t) and the expected form of v(t) and x(t).
b) Devise a simple function F(t) having this form, and find x(t) and v(t).

7, A particle which had originally a velocity Vo is subject to a force given by Eq. (2.191).
a) Find v(t) and x(t).
b) Show that as bt -+ 0, the motion approaches motion at constant velocity with an abrupt

change in velocity at t = to of amount polm. (Dt is a fixed time interval.)

8. A microphone contains a diaphragm of mass m and area A, suspended so that it can
move freely in a direction perpendicular to the diaphragm. A sound wave impinges on the
diaphragm so that the pressure on its front face is

P = Po+P' sin wt.

Assume that the pressure on its back face remains constant at the atmospheric pressure Po·
Neglecting all other forces except that due to the pressure difference across the diaphragm,
lind its motion. In an actual microphone there is a restoring force on the diaphragm which
keeps it from moving too far. Since this force is neglected here, nothing prevents the diaphragm
from drifting away with a constant velocity. Avoid this difficulty by choosing the initial
velocity so that the motion is purely oscillatory. If the output voltage of the microphone is to
he proportional to the sound pressure pi and independent of w, how must it depend upon the
IIlllplitude and frequency of the motion of the diaphragm?

I), A tug of war is held between two teams of five men each. Each man weighs 160 lb and
CIIIlinitially pull 011 the rope with a force of 200 lb-wt. At first the teams are evenly matched,
llitt~ the Illen tire, the force with which each man pulls decreases according to the formula

F (200 Ib-wt) ('-'It,

whlll'c Ihl1llll1l1l1til'ill~ tillle f il\ \0 see for one lelllll IIlld 20 see for the other. Find the motion.
IINNlIllIl'Ihl' 1111'11dll 1101dlllll~e Iheil' Jl,rip on the rOpl~.(rJ .n n·see 2.) Whllt is the linal

!



vI'IIInty of the two teams? Which of our assumptions is responsible for this unreasonable
11'",i1t'!

Ill, A particle initially at rest is subject, beginning at t = 0, to a force

F = Foe-yt cos (wt+8),

JlI 1:1I1dits motion,
h) Ilow does the final velocity depend on 8, and on w? [Hint: The algebra is simplified by

wlltinf!, cos ((1)t+8) in terms of complex exponential functions,]

II. A hoat with initial velocity Vo is slowed by a frictional force

F = -be~v,

II) hlld its motion,
hi hnd the time and the distance required to stop,

12. A hoat is slowed by a frictional force F(v). Its velocity decreases according to the formula

v = C(t-tlf,

U. A jd engine which develops a constant maximum thrust F 0 is used to power a plane
wllh II frictional drag proportional to the square of the velocity. If the plane starts at t = 0
With it lIegligible velocity and accelerates with maximum thrust, find its velocity v(t).

14, Assullle that the engines of a propeller-driven airplane of mass m deliver a constant
I'"Wl'r [' lit full throttle. Find the force F(v). Neglecting friction use the method of Section 2.4
III hnd lhc velocity and position of the plane as it accelerates down the runway, starting from
11,,,t III I 0, Check your result for the velocity using the energy theorem. In what ways are
IIII' IINsnlllptions in this problem physically unrealistic? In what ways would the answer be
dlllnl!\'d hy more realistic assumptions?

I lII, Thl' engine of a racing car of mass m delivers a constant power P at full throttle. Assuming
Ihlll Ih\' friction is proportional to the velocity, find an expression for v(t) if the car accelerates
hllll1 II NIlIllding start at full throttle. Does your solution behave correctly as t --+ oo?

Ifl. III A hody of mass m slide~ on a rough horizontal surface. The coefficient of static friction
1_/'" IIlid the coefficient of sliding friction is f-l. Devise an analytic function F(v) to represent
till' tnl'tiollill force which has the proper constant value at appreciahle velocities and reduces
to th\' Ntlltic villue lit very low velocities.

hI hnd the motioll under the force you havc devised if the hody NIIII'INwith IIn initial velocity

17. I'llld ,'(1) IIlld \(I) for II pllrtide of Illll"" III whll'h Nhllt- lit \/1 - 0 wilh vdoclly "0' suhject
'" II 11l1\'(' J,llvrll hy Fl(. (2.\ I) with /I I I. I:lmllhll IItUll to Nlol'. IIll1t Ihl' dINtlllll'\' rrl(uircd to
_t0l'. 111111vl'lifV thr IrllllHkN ill the IIINt1'11I1I1I11I1,h01 "",·Ihtll ) ••

18. A particle of mass m is subject to a force

F = -kx+kx3/a2

where k, a are constants.
a) Find V(x) and discuss the kinds of motion which can occur.
b) Show that if E = tka2 the integral in Eq. (2.46) can be evaluated by elementary methods.

Find x(t) for this case, choosing xo, to in any convenient way. Show that your result agrees
with the qualitative discussion in part (a) for this particular energy.

19. A p~rtic!e of mass m is rep~ll.ed from the origin by a force inversely proportional to the
ell.b.eof Its distance from the ongm. Set up and solve the equation of motion if the particle is
Il11tIallyat rest at a distance Xo from the origin.

20. A ~ass 'm is conr~ected to .the origin with a spring of constant k, whose length when
relaxed IS I. The restormg force ISvery nearly proportional to the amount the spring has been
stretched or compressed so long as it is not stretched or compressed very far. However when
the spring is compressed too far, the force increases very rapidly, so that it is impossible to
compress the spring to less than half its relaxed length. When the spring is stretched more
Ihan about twice its relaxed length, it begins to weaken, and the restoring force becomes zero
when it is stretched to very great lengths.

:,,) Devi~e a force function F(x) which represents this behavior. (Of course a real spring is
ddormed If stretched too far, so that F becomes a function of its previous history, but you
Jlre (0 assume here that F depends only on x.)

h) Find V(x) and describe the types of motion which may occur.

ll. A particle of mass m is acted on by a force whose potential energy is

V = ax2-bx3.

II) I:ind the force.
h) The particle starts at the origin x = 0 with velocity Vo. Show that, if Ivol < v" where Vc

h II certain critical velocity, the particle will remain confined to a region near the origin.
l'llld ''...

H. All alpha particle in a nucleus is held by a potential having the shape shown in Fig. 2.10.
III I>escribe the kinds of motion that are possible.
hi Devise a function V(x) having this general form and having the values - Vo and V I at

, 0 lInd x = I XI' and find the corresponding force.

l'(x)



a
F = -kx+3.x

It) I'ind the potential V(x), describe the nature of the solutions, and find the solution x(t).
hI ('lIn you give a simple interpretation of the motion when E2 » ka?

14. 1\ pa rt ide of mass m is subject to a force given by

F = B (a
2

_28a
5 + 27a

8
).

x2 x5 x8

IlIl' pllrlide moves only along the positive x-axis.
III hnd and sketch the potential energy. (B and a are positive.)
h I I )l~Nl:rihe the types of motion which may occur. Locate all equilibrium points and determine

IIIr fl'l~qllenl:Yof small oscillations about any which are stable.
d 1\ pllrt ide starts at x = 3a/2 with a velocity v = - vo, where Vo is positive. What is the

~1II1111l'stvalue of Vo for which the particle may eventually escape to a very large distance?
I h'Nl"I'ihethe motion in that case. What is the maximum velocity the particle will have? What
vl'lority will it have when it is very far from its starting point?

1~. The potential energy for the force between two atoms in a diatomic molecule has the
IIppl'llximlltc form:

wllrl'r \' is the distance between the atoms and a, b are positive constants.
III I:illd Ihe force,
hI ANNlIlllin~one of the atoms is very heavy and remains at rest while the other moves along

1\ NI1'II1llhtline, describe the possible motions.
C) 1:Imilhe equilihrium distance and the period of small oscillations about the equilibrium

pONlllon if thl: mass of the lighter atom is m.

1ft. 1:IIId Ihc solution for the motion of a body subject to a linear repelling force F = kx.
Show Ihll t this is thc type of motion to be expected in the neighborhood of a point of unstable
l'qnilihrinnl.

17, A pllrticle or mass In moves in a potential well given by

_ Voa2(a2 + x2)

V(x) = Hi;4 + x4

II) Sklllch V(x) IIlld 1"(x).
hI I>INI:IINNIhe l1IotionN which mllY occur, Loclltc llllllqulllhrlum l,olnlN IIml determine the

l'!'gtilloncy Ill' Nllllll1oscilllllions IIhout IIny Ihllt lIfll Nlnhlt,
c) A (llll'ticle NlllI'tNlit II lotrclltdislllncc rrum Ihll I'Ul,nllll1 woll wllh veloclly "II lowIIl'l1 the

WI'l1,AN It PIINNllNthr point x - /I, It NUrreI'MII \l1I1Il_lun with IIl1olhl''' 1',II'llclc, II\ll'inil which il
IONPNIllhlcllon IY of IINklnclh.: 1l1l1l1'llY, Ilow IlIfll' my.lltw In olll" thllllhl' (llll'llcic Ihl1l'cIIIilll'

remains trapped in the well? How large must (X be in order that the particle be trapped in one
side of the well? Find the turning points of the new motion if (X = 1.

29. Derive the solutions (2.74) and (2.75) for a falling body subject to a frictional force
proportional to the square of the velocity.

30. A body of mass m falls from rest through a medium which exerts a frictional drag (force)
/lea1vl.

a) Find its velocity v(t).
b) What is the terminal velocity?
c) Expand your solution in a power series in t, keeping termS up to t2

.

d) Why does the solution fail to agree with Eq. (1.28) even for short times t?

31. A projectile is fired vertically upward with an initial velocity Vo' Find its motion, assuming
a frictional drag proportional to the square of the velocity. (Constant g.)

.'2. Derive equations analogous to Eqs. (2.85) and (2.86) for the motion of a body whose
velocity is greater than the escape velocity. [Hint: Set sinh f3 = (Ex/mMG)1/2.]

.tl Find the motion of a body projected upward from the earth with a velocity equal to the
l~Sl:apevelocity. Neglect air resistance.

,'~. By writing cos 8 in the form (2.122) derive the formula
cos38 = t cos 38 +% cos 8.

,\(,. Find the general solutions of the equations:

a) mx+bx-kx = 0,

b) mx-bx+kx = O.

I )iscuss the physical interpretation of these equations and their solutions, assuming that they
Illl' thc equations of motion of a particle.

.\7. Show that when (06 _),2 is very small, the underdamped solution (2.133) is approximately
"quill to the critically damped solution (2.146), for a short time interval. What is the relation
hl'lwecll the constants C1, C2 and A, 8? This result suggests how one might discover the
lI11l1ilionlll solution (2.143) in the critical case.

.U fl'l:cly l'ol1ing freight car weighing 104 kg arrives at the end of its track with a speed
Ill' ) III/SCC, At thc cnd of the track is a snuhber consisting of a firmly anchored spring with
It - I.fl)( I ()o! k~/SCCl. The cllr comprcsscs the spring, If the friction is proportional to the
vI'lltl'lly, I1nd the dll~lpillll\ COllstnnt h•. 1'01' criticul dllmpin~. Sketch the motion x(/) and find
I"t' Ilulxlllllllll diNtllllce 7which Ihe sprillil 1McOlllpresNed (ror h - h,,), Show Ihllt ir h 'i'd)",



Ihe ellr wiIl come to a stop, but if b :-:;;be' the car will rebound and roll back down the track.
(Notc that the car is not fastened to the spring. As long as it pushes on the spring, it moves
IIccording to the harmonic oscillator equation, but instead of pulling on the spring, it will
Mhurlyroll back down the track.)

.W. A mass m subject to a linear restoring force - kx and damping - bx is displaced a distance
\11 from equilibrium and released with zero initial velocity. Find the motion in the under-
lIumped, critically damped, and overdamped cases.

.eel. Solve Problem 39 for the case when the mass starts from its equilibrium position with
IIn Inhiul velocity vo. Sketch the motion for the three cases.

4•• Solve Problem 39 for the case when the mass has an initial displacement Xo and an
Inlllill velocity Vo directed back toward the equilibrium point. Show that if !vol> 1'Y1xol, the
IIII\MNwill overshoot the equilibrium in the critically damped and overdamped cases so that
Ihe remurks at the end of Section 2.9 do not apply. Sketch the motion in these cases.

41. It is desired to design a bathroom scale with a platform deflection of one inch under a
2IM)·lbman. If the motion is to be critically damped, find the required spring constant k and
Ihe dumping constant b. Show that the motion will then be overdamped for a lighter person.
If II 200·lb man steps on the scale, what is the maximum upward force exerted by the scale
pllliform against his feet while the platform is coming to rest?

O. A muss of 1000 kg drops from a height of 10 m on a platform of negligible mass. It is
lIe.lred to design a spring and dashpot on which to mount the platform so that the platform
wlll.ellie to a new equilibrium position 0.2m below its original position as quickly as possible
IInor the impact without overshooting.

II) Find the spring constant k and the damping constant b of the dashpot. Be sure to examine
yuur proposed solution x(t) to make sure that it satisfies the correct initial conditions and
d(lO.not overshoot.

h) Find, to two significant figures, the time required for the platform to settle within 1 mm
of ItNfinal position.

••.•• A force Foe-d
' acts on a harmonic oscillator of mass m, spring constant k, and damping

Clun.llmtb. Find a particular solution of the equation of motion by starting from the guess
Ihlltthcrc should be a solution with the same time dependence as the applied force.

••• II) Find the motion of a damped harmonic oscillator subject to a constant applied
furue '0' by guessinga "steady-state" solution of the inhomogeneous equation (2.91)and adding
II lululiun of the homogeneous equation.

h) Solve the same problem by making the substitution x' • x - a, and choosing the constant
" In "I 10 reduce the equation in x' to the homoaeneoul oquillon (2.90).Hence show that the
.lTIol of the application of a constant force II merely to Ihlft th•• qulllbrium position without
af1'lctinalhe nature of the oscillations.

•••• An undlrdamped harmonic olelll.tor II IUb,IIo' '0 In .pplilld f(lfCO,. '0'..•.• (111+1).

-
Find a particular solution by expressing F as the real part of a complex exponential function
and looking for a solution for x having the same exponential time dependence.

47. An undamped harmonic oscillator (b = 0), initially at rest, is subject beginning at t = 0
to an applied force F 0 sin wt. Find the motion x(t) .

48. An undamped harmonic oscillator (b = 0) is subject to an· applied forGe F 0 cos wt.
Show that if w = wo, there is no steady-state solution. Find a particular solution by starting
with a solution for w = Wo+8, and passing to the limit 8 -+ O. [Hint: If you start with the
steady-state solution and let 8 -+ 0, it will blow up. Try starting with a solution which fits the
initial condition Xo = 0, so that it cannot blow up at t = 0.]

49. A critically damped harmonic oscillator with mass m and spring constant k, is subject
to an applied force F 0 cos wt. If, at t = 0, x = X'o and v = vo, what is x(t)?

50. A force F 0 cos (wt +(0) acts on a damped harmonic oscillator beginning at t = O.
a) What must be the initial values of x and v in order that there be no transient?
b) If instead Xo = Vo = oj find the amplitude A and phase °of the transient in terms ofF 0, °0,

~1. Amassmis attached to a spring with force constant k, relaxed length I,as shown in Fig. 2.11.
Thc left end of the spring is. not fixed, but is instead made to oscillate with amplitude a,
frcquency w, so that X = a sin wt, where X is measured from a fixed reference point O. Write
Ihc cquation of motion, and show that it is equivalent to Eq. (2.148) with an applied force ka
Nill/Ill, if the friction is given by Eq. (2.31). Show that, if the friction comes instead from a
IllINhpotconnected between the ends of the spring, so that the frictional force is - b(x - X),
Ihelllhc equation of motion has an additional applied force wba cos wt .

1'2. An uutomobile weighing one ton (2000 lb, including passengers but excluding wheels
111111 everything else below the springs) settles one inch closer to the road for ev¢ry 200 Ib of
l'IIMMel}l!lers.It is driven at 20 mph over a washboard road with sinusoidal undulations having
II illtt(lIneebetween bumps of 1 ft and an amplitude of 2 in (height of bumps ~nd depth of
hulaMfrom meun roud level). Find the amplitude of oscillation of the automobile, assuming
II lIIoveNverliclIlIy liSII simple hllrmonic oscll1ator without damping (no shock absorbers).
INolllacl the mllNIlof whce18IInd springs.) If shock IIb.orbors are added to provide damping,
I. Iho ride halter or wllr~ (liNethe result of Prnblem 51.)



!'.\. All undamped harmonic oscillator of mass m, natural frequency wo, is initially at rest
illld is subject at t = 0 to a blow so that it starts from Xo = 0 with initial velocity Vo and
IIsdllates freely until t = 3n/2wo. From this time on, a force F = B cos (wt+e) is applied.
hlld the motion.

!'4. ','ind the motion of a mass m subject to a restoring force - kx, and to a damping force
( I )/11111/ due to dry sliding friction. Show that the oscillations are isochronous (period in-
111'pl~lldentof amplitude) with the amplitude of oscillation decreasing by 2!J.g/w6 during each
hillf-l:yde until the mass comes to a stop. [Hint: Use the result of Problem 45. When the force
hils II dilferent algebraic form at different times during the motion, as here, where the sign of
IIIl' 1IIIIllping force must be chosen so that the force is always opposed to the velocity, it is
lH'I'(,SSllryto solve the equation of motion separately for each interval of time during which a
plIl'liclllar expression for the force is to be used, and to choose as initial conditions for each
Ililli' illterval the final position and velocity of the preceding time interval.]

!'!'. All IIl1damped harmonic oscillator (y = 0), initially at rest, is subject to a force given by

"q. 0.191),
II) I'ind x(t),
h} !"tH' a fixed Po, for what value of Ot is the final amplitude of oscillation greatest?
I'} Show that as Ot-+ 0, your solution approaches that given by Eq. (2.190).

!'b, I·illd the solution analogous to Eq. (2.190) for a critically damped harmonic oscillator
sllhiect to all impulse Po delivered at t = to'

!'7. II) hlld. using the principle of superposition, the motion of an underdamped oscillator
II' - 11/.1)111"I initially at rest and subject, after t = 0, to a force

F = A sin wot +B sin 3wot,

wlml'l' Ill" is the natural frequency of the oscillator.
hI Whllt I'IItio of IJ to A is required in order for the forced oscillation at frequency 3wo to

hllvlltl\l~ Sllllle amplitude as that at frequency wo?

!'It A fllrec F"ll I' "I) acts on a harmonic oscillator which is at rest at t = O. The mass is
/II, till' sptillfJ, wnstant k = 4ma2, and b = ma. Find the motion. Sketch x(t).

MI, 1,'lml, by the Fourier-series method, the steady-state solution for the damped harmonic
oNdllulor subject to a force

{
O,

F(t) = ,
T' ",

if nT < I :c:; (n+ i)7',

if (n+nr·. I < (II 11)'1',

Whlll'tl" is any intt:fJ,cr,and 'I' "'" 6n/IIJ", wht:rll (1)11 INIhe rllMlIl1IlIlcCfrcqllcm:y of Ihe osdlllltOl'.
Show that il' l' ~. III", tht: motion is ncal'ly .illll"lIldnl wllh fIOrloll 'I'll

• AIIIINllIl'INkINIINCll,UNtlxplulncd IlIlhe Prol'lIll1l,III huliUMl' ,ullhllllllN which IIIl1ybc pllrl Iculnl'ly

Illl1k"l"

61. Find, by the Fourier-series method, the steady-state solution for an undamped harmonic
oscillator subject to a force having the form of a rectified sine-wave:

F(t) = F 0 Isin wotl,

where Wo is the natural frequency of the oscillator.

(13. An underdamped oscillator initially at rest is acted upon, beginning at t = 0, by a force
given by Eq, (2.191). Find its motion by using Green's solution (2.210).

M. Using the result of Problem 56, find by Green's method the motion of a critically damped
IIscillator initially at rest and subject to a force F(t).



~. Prove the following inequalities. Give a geometric and an algebraic proof (in terms of
\'III1I1")IH.:nts)for each:

IA+BI ~ IAI+IBI·
IA'BI ~ IAIIBI·

IA x BI ~ IAIIBI·

f•. II) Ohtain a formula analogous to Eq. (3.40) for the magnitude of the sum of three forces
,,' I' "). ",\. in terms of F l' F 2, F 3' and the angles e12, e23, e31 between pairs offorces. [Use the
'''If/,P,\'Stions following Eq. (3.40).J

hI (lhtain a formula in the same terms for the angle ()(lo between the total force and the
1111111">lIent force Fl'

I). (;ive suitable definitions, analogous to Eqs. (3.52) and (3.53), for the integral of a vector
IlIlIclioll A(t) with respect to a scalar t:

f
t2

A(t) dt.
t,

Wrile II set of equations like Eqs. (3.54H3.57) expressing the algebraic properties you would
I'XplTt such an integral to have. Prove that on the basis of either definition

d ft- A(t) dt = A(t).
dt a

Ill. A ,,~' isosceles right triangle ABC has a hypotenuse AB of length 4a. A particle is acted
IIn hy II force Ill1racting it toward a point 0 on the hypotenuse a distance a from the point A.
I'hr flll'ce is equal in magnitude to k/r2, where r is the distance of the particle from the point
(I, ('lIkulllle the work done by this force when the particle moves from A to C to B along the
two Irlls of the triangle. Make the calculation by both methods, that based on Eq. (3.61) and
lhlll hllSI~don I~q. (3.63).

II. A pllrticle moves around a semicircle of radius R, from one end A of a diameter to the
othl'r 1/, It is Ill1raeted toward its starting point A by a force proportional to its distance from
..I. When Ihe particle is at B, the force toward A is Fa. Calculate the work done against thlM
fOll'l" when the pllrticle moves around the semicircle from A to B,

11. A pllJ'ticic is IIcted on hy a force whose components arc
F, '''"ax,l + ilxl +cz,

F" ay,l t Ilx2y.

1', - ('\',
( '1111'\111111'Ihr wlII'k lltlllt' hy Ihis flll'ce when Iho PlIl'tld(llnOV~'s II10nj,l1l sll'llillht Iilw 1'1'0111Iho
1I1ll/ln 10 Ihr polnl (\u. \'u. :'u),

13. a) A particle in the xy-plane is attracted toward the origin by a force F = k/y, inversely
proportional to its distance from the x-axis. Calculate the work done by the force when the
particle moves from the point x = 0, .I' = a to the point x = 2a, .I' = 0 along a path which
follows the sides of a rectangle consisting of a segment parallel to the x-axis from x = 0, .I' = a
to x = 2a, .I' = a, and a vertical segment from the latter point to the x-axis.

b) Calculate the work done by the same force when the particle moves along an ellipse of
semiaxes a, 2a. [Hint: Set x = 2a sin e, .I' = a cos e.]

14. Find the r- and e-components of du/dt in plane polar coordinates, where a is the ac-
n:leration of a particle.

IS. Find the components of d2 A/dt2 in cylindrical polar coordinates, where the vector A
ISa function of t and is located at a moving point.

.17. a) Plane parabolic coordinates/, h are defined in terms of cartesian coordinates x, .I' by
Ihl' equations

where f and h are never negative. Find f and h in terms of x and y. Let unit vectors J, 1i be de-
lilied in the directions of increasingf and h respectively. That is,Jis a unit vector in the 'direction
IIIwhich a point would move if its f-coordinate increases slightly while its h-coordinate remains
\'1Illstant. Show that J and 1i are perpendicular at every point. [Hint: J = (x dx + Y dy)[(dx)2 +
,dl,)l 1-1/2, when df> 0, dh = O. Why?]

h) Show that J and 1i are functions off, h, and find their derivatives with respect to f and h.
Show that r = f1/2(.f + h)1/2 J + h1/2(.f + h)1/21i. Find the components of velocity and ac-
l'\'lnlition in parabolic coordinates.

IH. A particle moves along the parabola

.1'2 = 4f5 -Afax,

1'111\'1'\: I;) is a constant. Its speed v is constant. Find its velocity and acceleration components
In rectangular and in polar coordinates. Show that the equation of the parabola in polar
l'III'rdinates is

2er cos 2: = fa .

WIiIII is the equation of this parabola in parabolic coordinates (Problem 17)?

.t. A pllrticle moves with varying speed along an arbitrary curve lying in the xy-plane.
IIII' po~il ion of the particle is to be specified by the distance s the particle has traveled along
Ih,,+tive from some fixed point on the curve. Let i(s) be a unit vector tangent to the curve at
IIII' point s in the direction of increasing s. Show Ihat



1"111'1['i'ls) is a unit vector normal to the curve at the point s, and r(s) is the radius of curvature
lit IIll' poi1l1 s, defined as the distance from the curve to the point of intersection of two nearby
110111111Is. llence derive the following formulas for the velocity and acceleration of the particle:

•• A §2 A

a=sr+-v.
r

lU. I 1,,11.', the properties of the vector symbol V, derive the vector identities:

curl (curl A) = grad (div A)- V2A,

u grad v = grad (uv)-v grad u.

11"'11wlile out the x-components of each side of these equations and prove by direct calculation
Iltllt tl,,'v ale equal in each case. (One must be very careful, in using the first identity in curvi-
1t1l1'11Il'Iloldinates, to take proper account of the dependence of the unit vectors on the

1""1 dj1l1lIes,)

lZ, II t I\(~particle in Problem 12 moves with a constant velocity v, what is the impulse delivered

10 II hy tlte gillen force?

H. II} (iiven that the particle in Problem 11 moves with a constant speed v around the
~1'lIl1ciICle,IInd the rectangular components FAt), Fit) of the additional force which must act
oil II h,'sides the force given in Problem 11. Take the x-axis along the diameter AB.

h) ('III('ulllte the impulse delivered by this additional force.

.w. A plIIlide of mass m moves with constant speed v around a circle of radius r, starting
III I 0 flOIll II point P on the circle. Find the angular momentum about the point P at any
IIIIH' I, 11Il'fol'C\\ and the torque about P, and verify that the angular momentum theorem
1\ 1-10) IS sillislied,

x = xo+at2,

y = ht3,

IllId 11Il'IIlIltulllllllOl1lelltlll1l I. at any time I. t:ind the force F and from it the torque N lIetillll
""lhe pllrlid~. Verify thlllthe lIngular momentum Iheorem (3.144) is satisfied.

ltl. (lIw II Nuilllhle definitioll of Ihe IInl'oullll'1Il0m~nlul1l of II plll'lide lIhoulllll INtis in splice,
lukillj!.lhr Npl1cifirdlIxis liS tlw ~"uxis. express Ihe lIIlIL1I11I1'Illolllenllllll Inlel'ms ofevlilldriclIl
loollllllllll'~, II' lilt' fOI','l' lI('lillll 011IIll. plIl'liclo III1Nrylilldlkllll'Ollllllllll'lIlS ,,',. ,,',,, "~',po pl'llVll
Ihlll Iht" 11I1It'Illit" of dlllllill' of IIIIIIUIIlI1II0llltmllllll IIhOll1 Ihr ~lIxiN INtl(\UIII10 Iht' 101'(\11\1

IIhOll1 lhlll IIxix,

27. A moving particle of mass m is located by spherical coordinates r(t), O(t), qJ(t). The force
acting on it has spherical components Fro Fe, F 'P' Calculate the spherical components of the
angular momentum vector and of the torque vector about the origin, and verify by direct
calculation that the equation

dL
-=N
dt

2H. The solutions plotted in Fig. 3.28 correspond to the first two of Eqs. (3.151). If Ox = 0,
estimate Oy for the case Wx = 2wy as drawn. Sketch the corresponding figure for the case
/I, = (Jy. Sketch a typical figure for the case 4wx = 3wy.

2t), Find a lowest order correction to Eq. (3.179) by putting Xm = (mvxo/b) (1- 8) and solving
Fq, (3.175) for 8, assuming 8 « 1 and bVzo/mg »1. [Hint: The algebra is not difficult,
hut you must think carefully about which are the most important terms in this limiting case.]

,\11. Find the maximum height Zm"x reached by a projectile whose equation of motion is
I',q. (3.169). Expand your result in a power series in b, keeping terms in Zm"x up to first order in
J" and check the lowest order term against Eq. (3.167).

.\!. A projectile is fired from the origin with initial velocity Vo = (vxo' vyO' vzo)' The wind
wloeity is Vw = wy. Solve the equations of motion (3.180) for x, y, Z as functions of t. Find the
pllilll Xl' Yl at which the projectile will return to the horizontal plane, keeping only first-order
It'IIllS in b. Show that if air resistance and wind velocity are neglected in aiming the gun, air
Il'sislance alone will cause the projectile to fall short of its target a fraction 4bvzo/3mg of the
IlIIgcl distance, and that the wind causes an additional miss in the y-coordinate of amount
.'I,",,,7j(mg2).

U. A projectile is to be fired from the origin in the xz-plane (z-axis vertical) with muzzle
l'I'lllcity Vo to hit a target at the point x = Xo, Z = O. (a) Neglecting air resistance, find the correct
III1f(kof elevation of the gun. Show that, in general, there are two such angles unless the target
I••III Ill' hey and the maximum range.
h) I,'illd the first-order correction to the-angle of elevation due to air resistance.

"'. Show that the forces in Problems 11 and 12 are conservative, find the potential energy,
11IidIISlO it to find the work done in each case.

,,,. Iklerllline whieh of the following forces are conservative, and find the potential energy
1111JL.6s,' wllieh arc:

(,a/J;:.ly 20/1 ,"'yl, 1"" -

1 Ha'l\,;~1 20/l"J')~--"" "'"
,H,(x) I ,N,',,(I')I 21",(;:),

(,ahx;;.1 IOhx4y,
1Hallx;:'! I Ohx" I'.

1", = IRahxz2y.
1", -~ 6ahxyz2.



I,.. Iktcrmine the potential energy for each of the following forces which is conservative:

,,) Ji,= 2ax(z3 + y3), F y = 2ay(z3 + y3) + 3al(x2 + y2), F z = 3az2(x2 + y2).
h) /',. = ap2 cos (fJ, F<p = ap2 sin (fJ, Fz = 2az2.
I) I', -2ar sin () cos (fJ, Fe = -ar cos () cos (fJ, F<p = ar sin () sin (fJ.

17. I ktcrmine the potential energy for each of the following forces which is conservative:

II) 1-'.
h) '0'
\I "

lI.\"('·-R, Fy = bye-R, Fz = cze-R, where R = ax2+bl+cz2.
Af(A . r), where A is a constant vector and f(s) is any suitable function of s = A' r.
(r)( A)f(A' r).

'H. A particle is attracted toward the z-axis by a force F proportional to the square of its
dp.llllIL·l~from the xy-plane and inversely proportional to its distance from the z-axis. Add an
IIddlt 10llal force perpendicular to F in such a way as to make the total force conservative, and
Iilld Ihe potential energy. Be sure to write expressions for the forces and potential energy
whll'h lire dimensionally consistent.

\II. Show Ihat F = rF(r) is a cOljlservative force by showing by direct calculation that the
IlIlt'fl.1iI1

1I10llfl.lilly path between 1'1 and Y2 depends only on 1'1 and 1'2' [Hint: Express F and dr in
~phl'ril'lIl coordinates.]

v = axy2z3.
V = ±kr2.
V = ±kxx2 +±kyy2 +±kzz2.

wlll'll' 1'1is Ihe dislance from the electron to the point y = z = 0, x = - a, and 1'2 is the distancll
Itllill II\(' dl~df'()11to the point y = z = 0, x = u.

.n. I lrViSl' II potential-energy function which vanishcs as I' • rfl, and which yields a forell
'0' -'.. Iir Whl~1I1" O. Find the force. Verify by doing the appropriate line integrals that thll
wlllk dom, hy this force on a particle going from r = 0 to r = ro is the same if the particlo
Illlvrl~ ill II strlli~ht line liS it is if it follows Ihe pllth shown in I!ig. 3.:n.

v - ~kI'J,

1'1111IIll' I'Ill1l'llv\' pI1lrlllllllllllrl'I/.y 1'111'Ihl' 1'-1111111011wl\l1fl1l pllrllel!' Ill' Ill/INN11/ IlII1VI'Nwilh thlM
11Itll'lItll\ll'1l~1'I/.YIItHlwith 1Illl/.llhllllllllll(lllllllll/.lIhlllll till' 1I111/.11l,I>jNl'Il~NIh" IYpI'Nol'llIl1llnn

Ihat are possible, giving as complete a description as is possible without carrying out the
solution. Find the frequency of revolution for circular motion and the frequency of small
radial oscillations about this circular motion. Hence describe the nature of the orbits which
differ slightly from circular orbits.

44. Find the frequency of small radial oscillations about steady circular motion for the
dTective potential given by Eq. (3.232) for an attractive inverse square law force, and show
Ihat it is equal to the frequency of revolution.

"S. Find r(t), ()(t) for the orbit of the particle in Problem 43. Compare with the orbits found
III Section 3.10 for the three-dimensional harmonic oscillator.

1'01'what energy and angular momentum will the orbit be a circle ofradius a about the origin?
What is the period of this circular motion? If the particle is slightly disturbed from this circular
liltItion, what will be the period of small radial oscillations about I' = a?

47. According to Yukawa's theory of nuclear forces, the attractive force between a neutron
1I11l1a proton has the potential

Ke-a,

V(r) =--,
I'

II) J!ind the force, and compare it with an inverse square law of force.
h) I)iscuss the types of motion which can occur if a particle of mass rn moves under such a

lOin',
!,) ')iscuss how the motions will be expected to differ from the corresponding types of motion

11111111inverse square law offorce.
d) '!illd Land E for motion in a circle of radius a..
I') I'ind the period of circular motion and the period of small radial oscillations,
II Show that the nearly circular orbits are almost closed when a is very sm,all.

••••. Solve the orbital equation (3.222) for the case F = 0. Show that your solution agrees with

N,'wllln's first law.

411. II will be shown in Chapter 6 (Problem 7) that the effect of a uniform distribution of
llll~l t If density p about the sun is to add to the gravitational attraction of the sun on a planet
"IIlIIlSS 11/ an additional attractive central force

Wh"II'
7 4n

k = 3 pG.

III II thl' IIII1HNof the Hun iNM;~d the IIII)tullIr volocity of revolution of the planet in a
HIHIIIII orhil Ill' rmUuN I'", 111111('jllll Ihe 11I11/oullIl'fro'luellcy of NllullIl'lldiuloNcilllltions. lienee



~how that if F' is much less than the attraction due to the sun, a nearly circular orbit will be
IIpproximately an ellipse whose major axis precesses slowly with angular velocity

_ (r~G)1/2
wp - 2np M .

hI Docs the axis precess in the same or in the opposite direction to the orbital angular
vdocity'/ Look up M and the radius of the orbit of Mercury, and calculate the density of dust
required to cause a precession of 41 seconds of arc per century.

52. Sputnik I had a perigee (point of closest approach to the earth) 227 km above the earth's
surface, at which point its speed was 28,710 kmMr. Find its apogee (maximum) distance
from the earth's surface and its period of revolution. (Assume the earth is a sphere, and neglect
air resistance. You need only look up g and the earth's radius to do this problem.)

53. Explorer I had a perigee 360 km and an apogee 2,549 km above the earth's surface. Find
its distance above the earth's surface when it passed over a point 90° around the earth from
its perigee.

K
F(r) = --,

r3

54. A comet is observed a distance of 1.00 x 108 km from the sun, traveling toward the sun
with a velocity of 51.6 km per second at an angle of 45° with the radius from the sun. Work
out an equation for the orbit of the comet in polar coordinates with origin at the sun and
x-axis through the observed position of the comet. (The mass of the sun is 2.00 x 1030 kg.)

~l. III Discuss by the method of the effective potential the types of motion to be expected
IIII' Ull uttractive central force inversely proportional to the cube of the radius:

h) hlld the ranges of energy and angular momentum for each type of motion.
c) Solve the orbital equation (3.222), and show that the solution is one of the forms:

55. It can be shown (Chapter 6, Problems 17 and 21) that the correction to the potential
energy of a mass m in the earth's gravitational field, due to the oblate shape of the earth, is
approximately, in spherical coordinates, relative to the polar axis of the earth,

1
- = A cos [j1(e-eo)],
r

1 .
- = A smh [j1(e- eo)],
r

'1mMGR2
V' = ----3-(1-3 cos2 e),

5r

where M is the mass of the earth and 2R, 2R(1-'1) are the equatorial and polar diameters of
Ihe earth. Calculate the rate of precession of the perigee (point of closest approach) of an
onrth satellite moving in a nearly circular orbit in the equatorial plane. Look up the
cq uatorial and polar diameters of the earth, and estimate the rate of precession in degrees
pCI' revolution for a satellite 400 miles above the earth.

1
~= A cosh [j1(e-eo)],
r

1
- = A(e-eo),
r '!16. Calculate the torque on an earth satellite due to the oblateness potential energy

correction given in Problem 55. A satellite moves in a circular orbit of radius r whose plane
I. inclined so that its normal makes an angle a. with the polar axis. Assume that the orbit is
very little affected in one revolution: and calculate the average torque during a revolution.
Show that the effect of such a torque is to make the normal to the orbit precess in a cone of
hilif angle a. about the polar axis, and find a formula for the rate of precession in degrees per
revolution. Calculate the rate-for a satellite 400 miles above the earth, using suitable values
ror M, '1, and R.

1 _ 1 ±P8---e .
r ro

dl Jior whal values of Land E does each of the above types of motion occur? Express the
ulln.lnnls A and /3 in terms of E and L for each case.
III Sketch u Iypical orbit of each type.

!U. (n) Discllss the types of motion that can occur for a central force

K K'
F(r) = -~+?

A•• llme thut K > 0, and consider both signs for K'.

h) Solve Ihe orbitul cquulion, and show thaI the bounded orbits have the form (if L2 > - mK')
,,(1_1:2)r - ..".~~"~ ... "

1+11 C08 ~O
u) l4huw Ihllt thl. I. U prece •• 1nll elllp.e, dotermlne the llllllullir velocity of prece •• lon, Ilnd

.1&110 whothol' tho proco •• lon I. In tho Il1me or In thl oppuille dlrectlun tu Ihe orbltll! &lnllul.r
vllnully,

n. 11can be shown that the orbit given by the special theory of relativity for a particle of
m"u m moving under a potential energy V(r) is the same as the orbit which the particle would
rollow according to Newtonian mechanics if the potential energy were

[E- V(r)]2
V(r) 2 2 'me

whtlc E is the energy (kinetic plus potential), and e is the speed of light. Discuss the nature of
chi orbits for an inverse square law of force accordins.. to the theory of relativity. Show by
uompllrlnll the orbital anaular velocity with the frequency of radial oscillations for nearly
,Iretll"r motion that the noai'lyCkcular orbita, when the relativistic correction is small, are
pl'filO11lnllelllplOl, and calculate the anaular velocity or precel.lon. [See Eq, (14..101),] .



"'H, MillS has a perihelion (closest) distance from the sun of 2.06 x 108 km, and an aphelion
11I111.X1l1l1lm)distance of 2.485 x 108 km. Assume that the earth moves in the same plane in a
, lI,k 01 radius 1.49 x 108 km with a period of one year. From this data alone, find the speed of
Mill S lit perihelion. Assume that a Mariner space probe is launched so that its perihelion is
III III•. "illt h's orbit and its aphelion at the perihelion of Mars. Find the velocity of the Mariner
1l'llItlVl' 10 Mars at the point where they meet. Which has the higher velocity? Which has the
IIIf/.II,'!:Iwragc angular velocity during the period of the flight?

"'1). Milliller 4 left the earth on an orbit whose perihelion distance from the sun was approxi-
11111",1y Ihe distance of the earth (1.49 x 108 km), and whose aphelion distance was approximately
IIII' dlslallce of Mars from the sun (2.2 x 108 km). With what velocity did it leave relative to the
"111111',1Wilh what velocity must it leave the earth (relative to the earth) in order to escape
Idlov,•.llIer from the sun's gravitational pull? (You need no further data to answer this problem
,. '"'pl tllc lellgth of the year, if you assume the earth moves in a circle.)

tlU, II) I\. salellite is to be launched from the surface of the earth. Assume the earth is a
.,plll'n' of radius R, and neglect friction with the atmosphere. The satellite is to be launched at
II1IIllIpk rx with the vertical, with a velocity vo, so as to coast without power until its velocity
\'1 1I01l/lllltai at an altitude hi above the earth's surface. A horizontal thrust is then applied
I,y III,' Illst stage rocket so as to add an additional velocity ~Vl to the velocity of the satellite,
II\(' 1111111orhit is to be an ellipse with perigee hi (point of closest approach) and apogee h2

IpollIl Illrthest away) measured from the earth's surface. Find the required initial velocity Vo
IIlId IIdditiollal velocity ~Vl' in terms of R, 0:, hi, h2, and g, the acceleration of gravity at the
"llItll's sllrraee.

hI Wlitc II formula for the change bhl in perigee height due to a small error bfJ in the final
IIIIIISI dil'l~ctioll, to order (bfJ)2.

tt1, Two plllllCtS move in the same plane in circles of radii rl' r2 about the sun. A space
1'11111('Is 10 hc Illullehed from planet 1 with velocity VI relative to the planet, so as to reach the
IIIItll III pllllll'l 2. (The velocity VI is the relative velocity after the probe has escaped from the
1l11IVlllltlollllll'icld of the planet.) Show that VI is a minimum for an elliptical orbit whose
pl'llIlI'lalllllllld aphdion are r1 and r2. In that case, find VI' and the relative velocity V2 between
tlH' HI"I",' prohe alld planet 2 if the probe arrives at radius r2 at the proper time to intercept
I'IIIIH'I }, Fxpress your results in terms of rl, r2, and the length of the year Y I of planet 1. Look
III' III\' IIppropriate values of r, and r2' and estimate VI for trips to Venus and Mars from the
{'lIltll

(11, A IIll'k"l is ill an elliptical orhit around the earth, perigee rl, apogee r2, measured from
IIH' l'(,IIII'1 III the earth. I\.t a eerlain point in its orhit, its engine is fired for a short time so II"
10 IIiVI'II vdocity inClement 1\." ill order to put the rockct on an orhit whicl\ escapes from Ihe
1'1111h wil h II finlll velocity "0 relalive to Ihecarth. (Neglect lIny effects due to Ihe sun and moon,)
Show Ihlll All iNII minilllulll if Ih~ thrust is applied lit perij.\~e, parnllelto the orhital velocity,
I'llld 1\." III Ihlll CIINI~III tCl'ms of the 1111iplicillIlI'hit PIII'IIIllCtl1I'NI:, II, Ihe accelernlioll II III n
Ithllillll'I' N from till' CIIl'Ih's celltCI', 111111the 1111111velocity "u' ('1111you l1Xplllin physlelllly why
A" iNHllIIIlItllrill 11I!'I,(t'1/:'/

at which it crosses each parallel of latitude is measured so that the function B(t) is known.
Show how to find the perigee, the semimajor axis, and the eccentricity of its orbit in terms of
O(t), and the value of g at the surface of the earth. Assume the earth is a sphere of radius R.

M. A particle of mass m moves in an elliptical orbit of major axis 2a, eccentricity e, in such,
a way that the radius to the particle from the center of the ellipse sweeps out area at a constant
rate

dS
di= C,

and with period t independent of a and e. (a) Write out the equation of the ellipse in polar
coordinates with origin at the center of the ellipse.
h) Show that the force on the particle is a central force, and find F(r) in terms of m, t.

lt~. Show that the Rutherford cross-section formula (3.276) holds also when one of the charges
ISnegative.

11(1. A particle is reflected from the surface of a hard sphere of radius R in such a way that
Ille incident and reflected lines of travel lie in a common plane with the radius to the point of
Iinpact and make equal angles with the radius. Find the cross-section da for scattering through
111\angle between E>and E>+ dE>. Integrate da over all angles and show that the total cross-
'il'ction has the expected value nR2.

tl7, Exploit the analogy u, B <-7 X, t between Eqs. (3.222) and (2.39) in order to develop a
,,,""l ion ofEq. (3.222) analogous to the solution (2.46) ofEq. (2.39). Use your solution to show
111111lhe scattering angle E>(Fig. 3.42) for a particle subject to a central force F(r) is given by

E> = In-2s J~o[1-s2u2_ V(u-I)/(tmvm-I/2 dul,

\\lInt: V(r = u-l) is the potential energy,

V(r) = r F(r) dr,

\ IS 11lL: impact parameter, and Uo is the value of u at which the quantity in square brackets
Villiisht:s. [This problem is not difficult if you keep clearly in mind the physical and geometrical
••1v,lIil'ieanceof the various quantities involved at each step in the solution.]

hH, Show that a hard sphere as defined in Problem 66 can be represented as a limiting case
tlill l'l~ntral force where

(
0, ifr > R,

Vr) =
oo,ifr<R,

Ihl\1 IS, show lhat such 11 potential gives the same law of reflection as specified in Problem 66.
"~ IISl~(he result of Prohlem 67 to solvc Problem 66.

ft!', I IHe"Ihe result of Problclll 67 to derive the Rutherford cross-section formula (3.276).

'711,A Itlrkl'I 1l10Vl'Swith il\ililtTv~odty I'u 10wIIl'li thl! 1ll00II or mllss M, rndills ru, Find the
.,1"••••""I'lhll\ fll'or Ntnkilll! tlll1l1ltlllll, Tllkr till' IIIlHll\ lolw lit H1sI,111111il(llore 1111other hod·il1S,



K
F(r) = 3'r

Iht' mhits are of the form (1) given in Problem 50, and express fJ in terms of K, E, L, and the
IIll1SS 11/ of the incident particle. Show that the cross-section for scattering through an angle
hi" Wl'ell (-) and 0 +d0 for a particle subject to this force is

2n3K n-0
dO"= -- -----d0.mV6 02(2n-0)2

72. A particle of charge q, mass m at rest in a constant, uniform magnetic field B = Boz is
s"hin'l. beginning at t = 0, to an oscillating electric field

E = Eox sin ())t.

74. A charged particle moves in a constant, uniform electric and magnetic field. Show that
II WI' illiroducc a new variable

, ExB
r = r-~-ct

B2 '

1111'I1I\Ullliol1of motion for r' is the same as that for r except that the component of E perpen-
llll'ulllr 10 II has hccn eliminated.

111111 1111 11lcl'lric ricld, directed radially outward or inward from a central wire along the
: II ~iH,

a
E =-p,

P
wlwl't' I' is the distance from the z-axis, and p is a unit vector directed radially outward from
lhl' .~II~is, The constants a and B may be either positive or negative,
III S\11up the equlltions of motion in cylindrical coordinates.
hI Show \hllt the quantity

I" II nJlI"llll1lof Ihe llIotiol1,
\,) 11"11111this l'osII11,lIive II qllulitulive discusNlon, hUNlldOil tho OllorllYintelJ,l'IIl,of tho IVI'lCIII

OllllOlloll \hlll CIlIIOCCIII'.( 'ollsill\11'1111CIINCN,Im:hullllll"ll vlIlIIIlSof a, II, K, IIl1d Ii,
,I) IIIUl111whlll COlllllllolINcnll cll'ClIllIl'11I0tloll IIhOll1 Ilia IlKiNOCCIlI"/
al Wllllt INIho I'nll\UIlncy of Nl1IlIlIl'IldlnlllNcllllllhlllN IIhOll1 thiN cll'cullll' 111011011'/

76. A velocity selector for a beam of charged particles of mass m, charge e, is to be designed
to select particles of a particular velocity Vo. The velocity selector utilizes a uniform electric
ric1d E in the x-direction and a uniform magnetic field B in the y-direction. The beam emerges
from a narrow slit along the y-axis and travels in the z-direction. After passing through the
crossed fields for a distance I, the beam passes through a second slit parallel to the first and
IItso in the yz-plane. The fields E and B are chosen so that particles with the proper velocity
lIloving parallel to the z-axis experience no net force.
a) If a particle leaves the origin with a velocity Vo at a small angle with the z-axis, find the

point at which it arrives at the plane z = l. Assume that the initial angle is small enough so
that second-order terms in the angle may be neglected.
hl What is the best choice of E, B in order that as large a fraction as possible of the particles

with velocity Vo arrive at the second slit, while particles of other velocities miss the slit as far

liS possible?
c) If the slit width is h, what is the maximum velocity deviation bv from Vo for which a

pllrticle moving initially along the z-axis can pass through the second slit? Assume that E, B
hllvc the values chosen in part (b).



Nlldes over the other, as in Fig. 4.15. We assume that the force of friction is pro-
pol'l ionnl to the relative velocity of the two masses. The equations of motion of
1111 und m2 are then

mlXl = -klxl -b(Xl +X2),

m2x2 = - k2X2 - b(X2 +Xl),

mlXl +bxl +klxl +bx2 = 0,

m2x2 + bX2 + k2X2 + bXl = O.

The coupling is expressed in Eqs. (4.186), (4.187) by a term in the equation of
lIIolion of each oscillator depending on the velocity of the other. The oscillators
lIIuy ulso be coupled by a mass, as in Fig. 4.16. It is left to the reader to set up the
IJqualions of motion. (See Problem 40 at the end of this chapter.)

Two oscillators may be coupled in such a way that the force acting on one
depends on the position, velocity, or acceleration ofthe other, or on any combination
of these. In general, all three types of coupling occur to some extent; a spring, for
exumplc, has always some mass, and is subject to some internal friction. Thus the
1I10Htgeneral pair of equations for two coupled harmonic oscillators is of the form

mlxl +blxl +klxl +mcx2 +bcx2 +kcX2 = 0,

m2x2+b2X2+k2x2+mcxl +bcXl +kcXl = O.
TheHe equations can be solved by the method described above, with similar
""MUltH,Two normal modes of vibration appear, if the frictional forces are not too
yrcltl.

Equutions of the form (4.188), (4.189), or the simpler special cases considered
In the preceding discussions, arise not only in the theory of coupled mechanical
u,u:llIlItorll, but also in the theory of coupled electrical circuits. Applying Kirchholl'.·
IIccond luw to the two meshes of the circuit shown in Fig. 4.17, with mesh current.

where ql and q2 are the charges built up on Cl and C2 by the mesh currents il and'2' These equations have the same form as Eqs. (4.188), (4.189), and can be solved
by similar methods. In electrical circuits, the damping is often fairly large, and
tinding the solution becomes a formidable task.

The discussion of this section can be extended to the case of any number of
coupled mechanical or electrical harmonic oscillators, with analogous results.
The algebraic details become almost prohibitive, however, unless we make use of
more advanced mathematical techniques. We therefore postpone further discussion
of this problem to Chapter 12.

All mechanical and electrical vibration problems reduce in the limiting case
of small amplitudes of vibration to problems involving one or several coupled
harmonic oscillators. Problems involving vibrations of strings, membranes,
clustic solids, and electrical and acoustical vibrations in transmission lines, pipes,
or cavities, can be reduced to problems of coupled oscillators, and exhibit similar
normal modes of vibration. The treatment of the behavior of an atom or molecule
IIccording to quantum mechanics results in a mathematical problem identical with
the problem of coupled harmonic oscillators, in which the energy levels play the
role of oscillators, and external perturbing influences play the role of the coupling
mechanism.

I. I"ormulate and prove a conservation law for the angular momentum about the origin of
II Mystcm of particles confined to a plane.

Z. Water is poured into a barrel at the rate of 120 lb per minute from a height of 16ft. The
hurl'cl weighs 251b, and rests on a scale. Find the scale reading after the water has been pouring
Inlo the barrel for one minute.

;\. A bnllistic pendulum to be used to measure the speed of a bullet is constructed by sus-
I"ndillil a block of wood of mass M by a cord oflength I.The pendulum initially hangs vertically
III rDNt. A bullet of mass m is fired into the block and becomes imbedded in it. The pendulum
tholl bollina to swing nnd rises until the cord makes a maximum angle () with the vertical. Find
tho l!llthtl "pced of the bUlleli~8 of M, m, /, and (}by applying appropriate conservation

IIIWIl,



,t A hox of mass m falls on a conveyor belt moving with constant speed Vo. The coefficient
III 'dldllll.~friction between the box and the belt is J1. How far does the box slide along the belt
Iwllll<" it is moving with the same speed as the belt? What force F must be applied to the belt
III ~1'I'P il moving at constant speed after the box falls on it, and for how long? Calculate the
1I111'"ls"delivered by this force and check that momentum is conserved between the time
I••.t, Ill' Ihe hox falls on the belt and the time when the box is moving with the belt. Calculate
IIII' wII,k done by the force F in pulling the belt. Calculate the work dissipated in friction
IlI'lwl"('1IIhe hox and the belt. Check that the energy delivered to the belt by the force F isjusl
",pllil III Ihe kinetic energy increase of the box plu~ the energy dissipated in friction.

'I. A Sl'll0P of mass ml is attached to an arm of length 1 and negligible weight. The arm is
I'lvllll'd so Ihal the scoop is free to swing in a vertical arc of radius I. At a distance 1 directly
\,,·I,.w Ihe pivot is a pile of sand. The scoop is lifted until the arm is ata45° angle with the vertical,
"lid Id,·ased. It swings down and scoops up a mass m2 of sand. To what angle with the verticul
d, ""j Ih,' a rm of the scoop rise after picking up the sand? This problem is to be solved by
I 1Il1'i1dnillg carefully which conservation laws are applicable to each part of the swing of the
'tllIlIl'. Jo'rietion is to be neglected, except that required to keep the sand in the scoop.

f" II) A spherical satellite of mass m, radius a, moves with speed v through a tenuous atmos-
I'lwll' of lknsity p. Find the frictional force on it, assuming that the speed of the air moleculcN
'1111Ill' III~glcded in comparison with v, and that each molecule which is struck becomeN
1'lIlhl'llded in thc skin of the satellite. Do you think these assumptions are valid?

hI II Ihe orhil is a circle 400 km above the earth (radius 6360 km), where p = lO-l1kg/m ''.
1111011111 I Ill, rIl = 100 kg, find the change in altitude and the change in period ofrevolulioll
III 1111"w"ek.

7, A Iuullr landing craft approaches the moon's surface. Assume that one-third of its weighl
1-. h,,'1, thlll the exhaust velocity from its rocket engine is 1500 m/sec, and that the acceleralioll
III Wllvlly III Ihe lunar surface is one-sixth of that at the earth's surface. How long can Ihe
,11111hllv,', liver Ihe moon's surface before it runs out of fuel?

N, A IlIv Ill"kd consists of a plastic bottle partly filled with water containing also air al II
hili." l"I'SSIII,' I'. The water is ejected through a small nozzle of area A. Calculate the exhuUMI
VI·I,1111v I' hv asslll11ing that frictional losses of energy are negligible, so that the kinetic encrllY
of thl' I'srllpiug water is equal to the work done by the gas pressure in pushing it out. Show
Ihlll IIII' Ihl'usl of this rocket engine is then 2 pA. (Assume that the water leaves the nozzle IIr
111"11 A with velocity fl.) Ifthc cmpty rocket weighs 500 g, ifit contains initially 500 g of water,
111,,1il ..t ~ I11llll, what pressure is required in order that the rocket can jusl support ilMolt
1II!II111S1I!l'lIvily'? If il is Ihen released so that it accelerates upward, whal maximum velocity
will II 1I'lIrh'l Approximately how high will il go? Whal effects arc neglected in the calculation.
111101how wllilid 1~lIchof them affecl the final rcsult'?

• ." A IWIISIIII-\I,mckct is 10 he huill capahlc of act:elcrnl ing a J(XI-kg payload 1011velocity IIr
(IIMKIIlI/SI'" in fl'cc tlil-\ht in elllply SPlIcC(no J.1,1'1Ivitll li01111I I1cld), (Ill II two·stllJ.1,eI'ol~kct, Ih,
IIINt sllllll' is dl'tlldwd III'ter cxhllllstillll its fUIlI.h"l'llI't' lht' sr!:olld stlll-\" j~ 1II'cd.) AS~lIll1clhlll
Ihl' 1'111'1IINl'd1~1I111t'II1'h1111c~hllu~t vl'\Ol'lly Ill' I~(Xl11I/NI'I',Illlli Ihlll slrlll'tlll'lIl I'llqllirlllllGnlll
1I11plvthllt 1I111'lIlpty'"I'kl'llwltholll 1'111'1III Pllyllllld) will wI'lllh 10"" II~IlIl1rh liS IIII' I'lIrlll mlll

carry. Find the optimum choice of masses for the two stages so that the total take-off weight
is a minimum. Show that it is impossible to build a single-stage rocket which will do the job.

10, A rocket is to be fired vertically upward, The initial mass is Mo, the exhaust velocity -u
is constant, and the rate of exhaust - (dM/dt) = A is constant. After a total mass AM is
exhausted, the rocket engine runs out of fuel.
a) Neglecting air resistance and assuming that the acceleration g of gravity is constant, set

IIr and solve the equation of motion.
·h} Show that if M 0, u, and AM are fixed, then the larger the rate of exhaust A, that is, the
fi\ster it uses up its fuel, the greater the maximum altitude reached by the rocket.

I t. Assume that essentially all of the mass M of the gyroscope in Fig. 4.1 is concentrated in
Iht: rim of the wheel of radius R, and that the center of mass lies on the axis at a distance 1from
Ihe pivot point Q, If the gyroscope rotates rapidly with angular velocity w, show that the
IIl1gular velocity of precession of its axis in a cone making an angle IX with the vertical is
ilpproximately

wp = gl/(R2w2).

12. A diver executing a 2-}flip doubles up with his knees in his arms in order to increase his
IIl1gular velocity. Estimate the ratio by which he thus increases his angular velocity relative
I" his angular velocity when stretched out straight with his arms over his head. Explain your
Il·ilsoning.

I.l A uniform spherical planet of radius a revolves about the sun in a circular orbit of radius
'II' :lnd rotates about its axis with angular velocity wo, normal to the plane of the orbit. Due
III lides raised on the planet by the sun, its angular velocity of rotation is decreasing. Find a
1"'lIlula expressing the orbit radius r as a function of angular velocity w of rotation at any
Iilll'l' 01' earlier time. [You will need formulas (5.9) and (5.91) from Chapter 5,] Apply your
1"llinda to the earth, neglecting the effect of the moon, and estimate how much farther the
1'llIlh will be from the sun when the day has become equal to the present year. If the effect
011he moon were taken into account, would the distance be greater or less?

'14, A Illass rIl of gas and debris surrounds a star of mass M. The radius of the star is negligible
III ,', Iinparison with the distances to the particles of gas and debris, The material surrounding
till' slilr has initially a total angular momentum L, and a total kinetic and potential energy E.
"'l~ullle that rIl « M, so that the gravitational fields due to the mass m are negligible in
I' '"lpllrison with that ofthe star. Due to internal friction, the surrounding material continually
I''''l's lIlet:hanical energy, Show that there is a maximum energy AE which can be lost in this
1",1v, IIlid Ihal when this energy has been lost, the material must all lie on a circular ring around
IIII' ',IIII' (hut not necessarily uniformly distributed). Find AE and the radius of the ring. (You
wIIIIII'I~dto use thc method of Lagrange multipliers.)

Ill, A part iele 01 mass rIl h energy T 11collides elastically with a particle of mass rIl2, at rest. If
th" IIII1S~lIIl leaves tht: collision al an angle ,92 with the original direction of motion of ml,
whlll Ilillw ellergy 'I'll,' delivered 10 particle rIl2? Show that T 2F is a maximum for a head-on
llllll~hlll, IIl1d thlll in Ihis case Ihe energy losl hy the incident particle in the collision is

411111111 "
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,'ltillillaled from Eq, (5.190) by means of Eq. (5.187). If we eliminate the density,
we have

Mg
--po

RT
A~,:ill example, if we assume that the atmosphere is uniform in temperature and
'"l1lp"silion, we can solve Eq. (5.192) for the atmospheric pressure as a function
III allitudc:

l'IU)l1I ,I(MS
I. (i!) 1'1"< lve that the total kinetic energy of the system of particles making up a rigid body, a~

Ill'IlIlI'd by Eq. (4.37), is correctly given by Eq. (5.16) when the body rotates about a fixed axis,
hi I'lllve that the potential energy given by Eq. (5.14) is the total work done against the ex-

11'1 IIi11forces when the body is rotated from es to e, if Nz is the sum of the torques about thll
11\IS of rotation due to the external forces.

2. I Isillg the scheme of analogy in Section 5.2, formulate a theorem analogous to that givlln
hv hi. (2.X)and prove it, starting from Eq. (5.13).

\, I'row, starting with the equation of motion (5.13) for rotation, that if Nz is a function of ()
1I11I1lI"Ihell T + V is constant.

.1. Till' balance wheel of a watch consists of a ring of mass M, radius a, with spokes or
IlqJ,i1fl,ihk mass. The hairspring exerts a restoring torque Nz = -ke. Find the motion if tho
hllllllll'l' whed is rotated through an angle eo and released.

", A wh",'1 III' mass M, radius of gyration k, spins smoothly on a fixed horizontal axle or
IlIdlll~ /I which passes through a hole of slightly larger radius at the hub of the wheel. Tho
1III,III,'II'lIt of friction between the bearing surfaces is /1. If the wheel is initially spinning with
lllllllllllr 1'I'1<1I'ily"'", !'ind the time and the number of turns that it takes to stop.

f,. A whl,,'1 of mass M, radius of gyration k is mounted on a horizontal axle. A coiled sprillll
lIttlldll'd to Ihe axle exerts a torque N = -KO tending to restore the wheel to its equilibl'ium
I'm IIIiIII 1/ O. A mass m is located on the rim of the wheel at distance 2k from the axle 11111
1'IIIIIt Vl'ltil'ally ahove the axle when Ii = n. Describe the kinds of motion which can occur,
IOlllII' till' Jlosit iOllsof st able or unstable equilibrium of the wheel if any, and !'ind the frcqucncletl
01 Nlllall oscillations about :he equilibrium points. Consider Iwo cases: (a) K > 211111~1
(h) /I. "1IIf/Ii/n. Whal if K <:" 4111f/k/5n:? Illilll: Solve the trigonometric equal ion graphically·l

7. All airplallc propel leI' of moment of inertia I is suhject to a driving torque
N N o(I I rx eos (/1,,1).

111111111a frietlollallol'l\lIC dill' 10 IIlr rl,sisIIlIlCl'
N / - /Ill,

8. A motor armature weighing 2 kg has a radius of gyration of 5 cm. Its no-load speed is
1500 rpm. It is wound so that its torque is independent of its speed. At full speed, it draws a
current of 2 amperes at 110 volts. Assume that the electrical efficiency is 80%, and that the
friction is proportional to the square of the angular velocity. Find the time required for it to
come up to a speed of 1200 rpm after being switched on without load.

10. Assume that a simple pendulum suffers a frictional torque - mb1 e due to friction at the
point of support, and a frictional force -b2v on the bob due to air resistance, where v is the
velocity of the bob. The bob has a mass m, and is suspended by a string of length l. Find the
Iime required for the amplitude to damp to lie of its initial (small) value. How should m, 1be
chosen if it is desired that the pendulum swing as long a time as possible? How should m, 1be
l'ilOsen if it is desired that the pendulum swing through as many cycles as possible?

II. A child of mass m sits in a swing of negligible mass suspended by a rope of length I.Assume
Ihi!t the dimensions of the child are negligible compared with I. His father pulls the child back
IlIltll the rope makes an angle of one radian with the vertical, then pushes with a force F = mg
along the arc of a circle until the rope is vertical and releases the swing. (a) How high up will
Ih,' swing go? (b) For what length of time did the father push on the swing? (Assume that it is
(ll'l'missible to write sin e == 0 for 0 < 1.) Compare with the time required for the swing to
1 l'ach the vertical if he simply releases the swing without pushing on it.

12, A baseball bat held horizontally at rest is struck at a point 0' by a ball which delivers a
litlIizontal impulse J' perpendicular to the bat. Let the bat be initially parallel to the x-axis,
Hlld kt the baseball be traveling in the negative direction parallel to the y-axis. The center of
IIIi1SSG of the bat is initially at the origin, and the point 0' is at a distance h' from G. Assuming
Ihill the bat is let go just as the ball strikes it, and neglecting the effect of gravity, calculate and
~kl'lch the motion x(t), y(t) of the center of mass, and also of the center of percussion, during
till' l'irst few moments after the blow, say until the bat has rotated a quarter turn. Comment on
IIIl' dirference between the initial motion of the center of mass and that of the center of
1ll'll'lIssion.

II. A compound pendulum is arranged to swing about either of two parallel axes through
tWII points 0, 0' located on a line through the center of mass. The distances h, h' from 0, 0' to
till' rl'lIter or mass, and the periods T, T' of small amplitude vibrations about the axes through
II Hlld (J' arc measured. 0 and 0' are arranged so that each is approximately the center of
t1~II1Ii1tion relative to the other. Given T = T', find a formula for 9 in terms of measured
ljlllllililies. Given that T' = T(l +(5), where 15 « 1, find a correction to be added to your
1''''VIIIIISformula so that it will be correct to terms of order 15.

•••.JYbw thill if a body is composed of two or more parts whose centers of mass are known,
IIII'll Ih,' n;nter or milss of the composite body can be computed by regarding its component
1',"1'. II~ ~illglc plII'tides loealed at their respeetivc eenlers of mass. Assume that each com-
1"1111'111Pilit Ii is dcsl'l'ihcd hy II--de~sity Ili(r) or IIlIlMS cOlllinuously distributed over the region
IIllllpll'd hy pllrt k.



I~. A ein.:ular disk of radius a lies in the xy-plane with its center at the origin. The half of the
dt~~ IIhove the x-axis has a density (J per unit area, and the half below the x-axis has a density
.'" hlld the center of mass G, and the moments of inertia about the x-, y-, and z-axes, and
IIhlllll pnrallel axes through G. Make as much use oflabor-saving theorems as possible.

1f" (II) Work out a formula for the moments of inertia of a cone of mass m, height h, and
l!I'Itl'I'lIlin!/, angle IX, about its axis of symmetry, and about an axis through the apex per-
1ll'lIdil'lIll1r 10 the axis of symmetry. Find the center of mass of the cone.

h) t JSI~these results to determine the center of mass of the frustum of a cone, shown in Fill, "
\.'K, IInd 10 calculate the moments of inertia about horizontal axes through each base and
IllIOllllh the center of mass. The mass of the frustum is M.

17. !"illd Ihe moments of inertia of the block shown in Fig. 5.8, about axes through its centcr
III'mllss pllrllllel to each of the three edges of the block.

IH. 'I'hl'OlIl,1I1II sphere of mass M, radius R, a plane saw cut is made at a distance tR from the
1'1'1111'1','I'hl' slllllller piece of the sphere is discarded. Find the center of mass of the remain!n"
1'11'1'1"1111.1Ihl~Illolllents of inertia about its axis of symmetry, and about a perpendicular 11,,1,
lillollllh Ill(' n~lIler of mass,

III, IllIw Illllny yllrds of thread 0.03 inch in diameter can be wound on the spool shown In
1'111' ",},I)'!

10, (liven 111111Ihe volume of n cone is one-third the area of the hase times the height. 100"1'
hy !'npplls' IhcllI'clll the eentroid of a right triangle whose legs are of lengths a and h.

11. I'I'OVC Ihlll PIlPPUS' second Iheorem holds even if the IIxis of revolution inlersect" thl
Nmlnl'l" provided lhnl we tllke liS volume the dillerenee III the volumes gencl'lIted by Ihe tWO,
11111IN11110whh.:h Ihe sut'lilce Is divided hy the IIxis. Whllt is Ihe eOI'l'espondinj.t j,lenerllli~tHI()"
of Ihl' I'Il'sl Ihcorcm'!

gyration about x-, y-, and z-axes through the center of mass, where z is perpendicular to the
plane of the semicircle and x bisects the semicircle. Use your ingenuity to reduce the number
"f ealculations required to a minimum.

l,t (a) Find a formula for the radius of gyration of a uniform rod of length I about an axis
Ihrough one end making an angle IX with the rod.
h) Using this result, find the moment of inertia of an equilateral triangular pyramid, con-

Nlllieted out of six uniform rods, about an axis through its centroid and one of its vertices.

Z-l, I,'ind the radii of gyration of a plane lamina in the shape of an ellipse of semimajor axis a,
,','centricity e, about its major and minor axes, and about a third axis through one focus
perpendicular to the plane.

Z~. I,'orces 1 kg-wt, 2 kg-wt, 3 kg-wt, and 4 kg-wt act in sequence clockwise along the four
Nllks of a square 0.5 x 0.5012. The forces are directed in a clockwise sense around the square.
I- Illd Ihe equilibrant.

1',. !'lm;es 2 lb, 3 lb, and 5 lb act in sequence in a clockwise sense along the three sides of an
1''1I1i1<1leraltriangle. The sides of the triangle have length 4 ft. Find the resultant.

n, In) Reduce the system of forces acting on the cube shown in Fig. 5.30 to an equivalent
_11I1!,il'foree acting at the center of the cube, plus a couple composed of two forces acting at two
IlIltlll'l~nlcorners.

h) RClhll.:ethis system to a system of two forces, and state where these forces act.
l'l Ih~dlll.:ethis system to a single force plus a torque parallel to it.

Il. A ,sphere weighing SIX) g is held between thumb and forefinger at the opposite ends of a
ho1J.tltnl1l1diameter. A strin!/. is al1aehed to a point on the surface of the sphere at the end ofa
I"" p\'11I1il'1IIIII' horil',ontlll dilll11eter. The string is pulled with a force of 300 g in a direction
11111'IIIl'l to lIw line from forcfinller 10 Ihllmb, Find lhe forces which musl be exerted by fore-
1111111'1IIl1d Ihllmb 10 hold the ~e sllltiollllry. Is thl~ III1SWI~1'ulliqlle'! Does il correspond to
~IIIII phy~il'liI 111111111011IIhOll1 Ihe prohlem'!


