0. MOTION OF A PARTICLE IN ONE DIMENSION

Il the force F(t) is zero for ¢ < to, then the solution (2.210) will give x(t) = 0 for
t - 1,. This solution is therefore already adjusted to fit the initial condition that
the oscillator be at rest before the application of the force. For any other initial
condition, a transient given by Eq. (2.133), with appropriate values of 4 and 0,
will have to be added. The solution (2.210) is useful in studying the transient
hehavior of a mechanical system or electrical circuit when subject to forces of
virrious kinds.

IPROBLEMS

I. &) A certain jet engine at its maximum rate of fuel intake develops a constant thrust
{foree) of 3000 Ib-wt. Given that it is operated at maximum thrust during take-off, calculate
the power (in horsepower) delivered to the airplane by the engine when the airplane’s velocity
s M0 mph, 100 mph, and 300 mph (1 horsepower = 746 watts).

I A piston engine at its maximum rate of fuel intake develops a constant power of 500
hornepower, Caleulate the force it applies to the airplane during take-off at 20 mph, 100 mph,
ated WK mph,

1. A parlicle of mass m is subject to a constant force F. At t = 0 it has zero velocity. Use the
monwentum theorem to find its velocity at any later time ¢. Calculate the energy of the particle
sl any later time from both Egs. (2.7) and (2.8) and check that the results agree.

V. A particle of mass m is subject to a force given by Eq. (2.192). (In Eq. (2.192), ot is a fixed
anall time interval.) Find the total impulse delivered by the force during thetime —o0 <t < 0.
1t mitind velocity (at ¢ » — oo) is v, what is its final velocity (as t — o0)? Use the momentum
theorem,

4, A high-speed proton of electric charge e moves with constant speed v, in a straight line
punt i electron of mass m and charge —e, initially at rest. The electron is at a distance a from
the pitli of the proton.
) Anstimie that the proton passes so quickly that the electron does not have time to move
~ wpprecinbly from its initial position until the proton is far away. Show that the component of
foree in o direetion perpendicular to the line along which the proton moves is
e’a
T Ane, (0 + 0323
whete 1 - 0 when the proton passes closest to the electron.
Iy Caleulute the impulse delivered by this force.
) Wrile the component of the force in a direction parallel to the proton velocity and show
that the net impulse in that direction is zero.
i) Uning these results, caleulate the (approximate) final momentum and final kinetic energy
of the electron,

I (mks units)

#) Show that the condition for the original assumption in purt (W) to be valid s
e ey o b,

&, A pusticle of nuss ot rest at £ — O dy subject to n force K - I, win? et
i) Sketeh the form you expect for off) nod ¥(), Tor severst pediodn of oscillition of the foree,
By Fined e(0) nned v nnd compare with your sketeh
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6. A particle of mass m, initial velocity v, is subject beginning at t = 0 to a force F(t) as
sketched in Fig. 2.9.

a) Make a sketch showing F(t) and the expected form of v(t) and x(r).

b) Devise a simple function F(f) having this form, and find x(¢) and v(t).

7. A particle which had originally a velocity v, is subject to a force given by Eq. (2.191).

a) Find v(t) and x(¢).

b) Show that as &t — 0, the motion approaches motion at constant velocity with an abrupt
change in velocity at t = t, of amount po/m. (6t is a fixed time interval)

8. A microphone contains a diaphragm of mass m and area 4, suspended so that it can
move freely in a direction perpendicular to the diaphragm. A sound wave impinges on the
diaphragm so that the pressure on its front face is

p = po+p’ sin wt.

Assume that the pressure on its back face remains constant at the atmospheric pressure py.
Neglecting all other forces except that due to the pressure difference across the diaphragm,
find its motion. In an actual microphone there is a restoring force on the diaphragm which
kceps it from moving too far. Since this force is neglected here, nothing prevents the diaphragm
from drifting away with a constant velocity. Avoid this difficulty by choosing the initial
velocity so that the motion is purely oscillatory. If the output voltage of the microphone is to
be proportional to the sound pressure p’ and independent of o, how must it depend upon the
amplitude and frequency of the motion of the diaphragm?

9. A tug of war is held between two teams of five men each. Each man weighs 160 1b and
can initially pull on the rope with a force of 200 Ib-wt. At first the teams are evenly matched,
hitt-its the men tire, the foree with which each man pulls decreases according to the formula

F = (200 lb-wt) ¢,

whore the menn tiring time 1 iy 10 sec for one team and 20 see for the other. Find the motion.
Axsume the men do not chnng‘c their grip on the rope. (i — 32 fl-see 2) What is the final
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velocity of the two teams? Which of our assumptions is responsible for this unreasonable
1ennlt?

1. A particle initially at rest is subject, beginning at t = 0, to a force
F = Fqe " cos (wt+0).

W) Find its motion. )
i) How does the final velocity depend on 6, and on w? [Hint: The algebra is simplified by
witting, cos (¢4 0) in terms of complex exponential functions. ]

11. A boat with initial velocity v, is slowed by a frictional force
F = —be™.

n) Find its motion.
1) Iind the time and the distance required to stop.

12. A boat is slowed by a frictional force F(v). Its velocity decreases according to the formula

v=Clt—t,)
where (s a constant and ¢, is the time at which it stops. Find the force Fi (v).

1\ A jct cngine which develops a constant maximum thrust F, is used to power a plane
with i frictional drag proportional to the square of the velocity. If the plane starts at t = 0
with 1 negligible velocity and accelerates with maximum thrust, find its velocity v(t).

14. Assumc that the engines of a propeller-driven airplane of mass m deliver a constant
power I at full throttle. Find the force F(v). Neglecting friction use the method of Section 2.4
1o lind the velocity and position of the plane as it accelerates down the runway, starting from
rewt wl £ 0. Check your result for the velocity using the energy theorem. In what ways are
the nasumptions in this problem physically unrealistic? In what ways would the answer be
changed by more realistic assumptions?

{8, The engine of a racing car of mass m delivers a constant power P at full throttle. Assuming
thit the friction is proportional to the velocity, find an expression for u(t) if the car accelerates
from o standing start at full throttle. Does your solution behave correctly as t — co0?

16. 1) A body of mass m slides on a rough horizontal surface. The coefficient of static friction
i i, nnd the cocfficient of sliding friction is p. Devise an analytic function F(v) to represent
the frictionnl foree which has the proper constant value at appreciable velocitics and reduces
10 the static value at very low velocities.

I Find the motion under the force you have devised if the body surts with un initial velocity

'y

17, Find o) and st for o particle of muss m which starte it v, = 0 with velocity o, subject
fov i loree given by By, (230 with no# 1 Find the time o siop, ntud the distance roguired 1o
atop, it verify the reminrks in the lust pengraph of Nevtion 24
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18. A particle of mass m is subject to a force
F = —kx+kx3/a®

where k, a are constants.

a) Find V(x) and discuss the kinds of motion which can occur.

b) Show that if E = 1ka? the integral in Eq. (2.46) can be evaluated by elementary methods.
Find x(z) for this case, choosing x,, t, in any convenient way. Show that your result agrees
with the qualitative discussion in part (a) for this particular energy.

19. A pz'lrticle of mass m is repelled from the origin by a force inversely proportional to the
cube of its distance from the origin. Set up and solve the equation of motion if the particle is
initially at rest at a distance x, from the origin.

20. A mass'm is connected to the origin with a spring of constant k, whose length when
rclaxed is I The restoring force is very nearly proportional to the amount the spring has been
stretched or compressed so long as it is not stretched or compressed very far. However, when
the spring is compressed too far, the force increases very rapidly, so that it is impossible to
compress the spring to less than half its relaxed length. When the spring is stretched more
than about twice its relaxed length, it begins to weaken, and the restoring force becomes zero
when it is stretched to very great lengths.

a) Devise a force function F(x) which represents this behavior. (Of course a real spring is
deformed if stretched too far, so that F becomes a function of its previous history, but you
are 1o assume here that F depends only on x.)

b) Find V(x) and describe the types of motion which may occur.

21. A particle of mass m is acted on by a force whose potential energy is
V = ax?—bx>.
i) Find the force.

b) The particle starts at the origin x = 0 with velocity v,. Show that, if |v0| < v, where v,

i i certain critical velocity, the particle will remain confined to a region near the origin.
Find o,

12 An alpha particle in a nucleus is held by a potential having the shape shown in Fig. 2.10.
i) Describe the kinds of motion that are possible. ‘
h) Devise a function V(x) having this general form and having the values —V and V', at

v - Oand x = | xy, and find the corresponding force.

Viz)

/ Fig. 2.10
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2\ A particle is subject to a force
a
F = —kx+43 .
X

1) Vind the potential V(x), describe the nature of the solutions, and find the solution x(f).
1) Can you give a simple interpretation of the motion when E? > ka?

4. A particle of mass m is subject to a force given by

a® 28qa° 27a®
F=Bla— % )

1w particle moves only along the positive x-axis.

1) Find and sketch the potential energy. (B and a are positive.)

b} Describe the types of motion which may occur. Locate all equilibrium points and determine
the lrequency of small oscillations about any which are stable.

¢) A particle starts at x = 3a/2 with a velocity v = —vo, where v, is positive. What is the
smallest value of v, for which the particle may eventually escape to a very large distance?
Describe the motion in that case. What is the maximum velocity the particle will have? What
velocity will it have when it is very far from its starting point?

2% ‘I'he potential energy for the force between two atoms in a diatomic molecule has the
npproximate form: '
v a b
0= —gt =2

where v is the distance between the atoms and a, b are positive constants.

n) Find the force.

I) Assuming onc of the atoms is very heavy and remains at rest while the other moves along
n stradght line, describe the possible motions. ’

¢) Find the equilibrium distance and the period of small oscillations about the equilibrium
position if the mass of the lighter atom is m.

20 Vind the solution for the motion of a body subject to a linear repelling force F = kx.
Show that this is the type of motion to be expected in the neighborhood of a point of unstable
equilibrium,

17, A particle of mass m moves in a potential well given by
— Voa?(a? + x?
V(x) = ,o,_4.( . )
8a* 4+ x

i) Sketeh F(x) and F(x).

1) Discuss the motions which may oceur, Locate ull squilibrium points and determine the
frovquency of small oscillations about any that ure stuble,

¢) A particle starts ut o great distunco from the potentinl well with velocity vy toward the
well. An it puswos the point x — «, it sullers a vollision with snother particle, during which i
fowew 1 frnetfon a of fix kinotic onorgy, Tow large must & be in order thut the particle therenfter
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remains trapped in the well? How large must o be in order that the particle be trapped in one
side of the well? Find the turning points of the new motion if o = 1.

28. Solve Eq. (2.65) by each of the three methods discussed in Sections 2.3,24,and 2.5. '

29. Derive the solutions (2.74) and (2.75) for a falling body subject to a frictional force
proportional to the square of the velocity.

30. A body of mass m falls from rest through a medium which exerts a frictional drag (force)
heolvl,

a) Find its velocity u(t).

b) What is the terminal velocity?

¢) Expand your solution in a power series in ¢, keeping terms up to 2.

d) Why does the solution fail to agree with Eq. (1.28) even for short times ¢?

31. A projectile is fired vertically upward with an initial velocity v,. Find its motion, assuming
a frictional drag proportional to the square of the velocity. (Constant g.)

32. Derive equations analogous to Egs. (2.85) and (2.86) for the motion of a body whose
velocity is greater than the escape velocity. [Hint: Set sinh § = (Ex/mMG)'/%.]

33. Find the motion of a body projected upward from the earth with a velocity equal to the
escape velocity. Neglect air resistance.

M. Starting with 2 = (¢!%)?, obtain formulas for sin 26, cos 26 in terms of sin 6, cos 6.

M5, By writing cos 6 in the form (2.122) derive the formula
c0s°0 = 4 cos 30+3 cos 6.

M. I'ind the general solutions of the equations:
a) mx+bx—kx =0,
b) mx—bx+kx = 0.

Discuss the physical interpretation of these equations and their solutions, assuming that they
ure the equations of motion of a particle.

V7, Show that when % —y? is very smali, the underdamped solution (2.133) is approximately
wjual (o the critically damped solution (2.146), for a short time interval. What is the relation
helween the constants C,, C, and A, 6? This result suggests how one might discover the
additional solution (2.143) in the critical case.

WA freely rolling freight car weighing 10* kg arrives at the end of its track with a speed
wf 2 m/see. At the end of the track is a snubber consisting of a firmly anchored spring with
b= 1o 10 kg/nccf. The car compresses the spring. If the friction is proportional to the
velocity, find the dumping constant b, for critical damping, Sketeh the motion x(t) and find
the mnximum distiance jy/’which the spring is compressed (for b = b,). Show that il b 2-h,,
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the car will come to a stop, but if b < b,, the car will rebound and roll back down the track.
{Notc that the car is not fastened to the spring. As long as it pushes on the spring, it moves
necording to the harmonic oscillator equation, but instead of pulling on the spring, it will
simply roll back down the track.)

W. A mass m subject to a linear restoring force — kx and damping — bx is displaced a distance
vy from equilibrium and released with zero initial velocity. Find the motion in the under-
damped, critically damped, and overdamped cases.

40. Solve Problem 39 for the case when the mass starts from its equilibrium position with
un initial velocity v,. Sketch the motion for the three cases.

41, Solve Problem 39 for the case when the mass has an initial displacement x, and an
initlnl velocity v, directed back toward the equilibrium point. Show that if |vo|>|V1x0[, the
minn will overshoot the equilibrium in the critically damped and overdamped cases so that
the remarks at the end of Section 2.9 do not apply. Sketch the motion in these cases.

42 11 is desired to design a bathroom scale with a platform deflection of one inch under a
200-1b man. If the motion is to be critically damped, find the required spring constant k and
tho damping constant b. Show that the motion will then be overdamped for a lighter person.
If & 200-1b man steps on the scale, what is the maximum upward force exerted by the scale
platform against his feet while the platform is coming to rest?

43. A mass of 1000 kg drops from a height of 10 m on a platform of negligible mass. It is
tonlred to design a spring and dashpot on which to mount the platform so that the platform
will sottle to a new equilibrium position 0.2 m below its original position as quickly as possible
after the impact without overshooting.

1) Find the spring constant k and the damping constant b of the dashpot. Be sure to examine
your proposed solution x(t) to make sure that it satisfies the correct initial conditions and
does not overshoot.

b) Find, to two significant figures, the time required for the platform to settle within 1 mm
of ita final position.

44, A force Fye™™ acts on a harmonic oscillator of mass m, spring constant k, and damping
vonstant b, Find a particular solution of the equation of motion by starting from the guess

that there should be a solution with the same time dependerice as the applied force.

48 1) Find the motion of a damped harmonic oscillator subject to a constant applied
{oree F,), by guessing a “steady-state” solution of the inhomogeneous equation (2.91) and adding
# solution of the homogeneous equation.

b) Solve the same problem by making the substitution x' = x — g, and choosing the constant
 no an 10 reduce the equation in x' to the homogeneous equation (2.90). Hence show that the
effect of the application of & constant force is merely to shift the equilibrium position without
affecting the nature of the oscillations.

46, An underdamped harmonic oscillator is subject (e an applied force
F w Foe~% go8 (wi +8),
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Find a particular solution by expressing F as the real part of a complex exponential function
and looking for a solution for x having the same exponential time dependence.

47. An undamped harmonic oscillator (b = 0), initially at rest, is subject beginning at t = 0
to an applied force F, sin wt. Find the motion x(t).

48. An undamped harmonic oscillator (b = 0) is subject to an applied force F, cos wt.
Show that if w = w,, there is no steady-state solution. Find a particular solution by starting
with a solution for w = wy+¢, and passing to the limit ¢ — 0. [Hint: If you start with the
steady-state solution and let ¢ — 0, it will blow up. Try starting with a solution which fits the
initial condition x, = 0, so that it cannot blow up at ¢t = 0.}

49, A critically damped harmonic oscillator with mass m and spring constant k, is subject
to an applied force F cos wt. If, at t = 0, x = xy and v = v,, what is x(z)?

50. A force F, cos (wt+0,) acts on a damped harmonic oscillator beginning at ¢ = 0.
a) What must be the initial values of x and v in order that there be no transient?
b) Winstead x, = vy = 0/find the amplitude A and phase 0 of the transient in terms of F, ,,.

Fig. 2.11

&1. A massmisattached to a spring with force constant k, relaxed length [, as shown in Fig. 2.11.
‘The left end of the spring is. not fixed, but is instead made to oscillate with amplitude g,
frequency , so that X = a sin wt, where X is measured from a fixed reference point 0. Write
the equation of motion, and show that it is equivalent to Eq. (2.148) with an applied force ka
sin o, if the friction is given by Eq. (2.31). Show that, if the friction comes instead from a
dushpot connected between the ends of the spring, so that the frictional force is —b(x— X),
then the equation of motion has an additional applied force wba cos wt.

#2. An automobile weighing one ton (2000 Ib, including passengers but excluding wheels
und everything else below the springs) settles one inch closer to the road for every 200 Ib of
puanengers. 1t is driven at 20 mph over a washboard road with sinusoidal undulations having
# unce between bumps of 1 ft and an amplitude of 2 in (height of bumps and depth of
holes from mean roud level). Find the amplitude of oscillation of the automobile, assuming
it moves vertically as a simple harmonic oscillator without damping (no shock absorbers).
(Negloet the mass of wheels and springs.) If shock nbsorbers are added to provide damping,
in the ride botter or worae! (Usoe the result of Problem §1.) .
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83. An undamped harmonic oscillator of mass m, natural frequency @y, is initially at rest
and is subject at ¢ = O to a blow so that it starts from x, = 0 with initial velocity v, and
oncillates freely until ¢ = 37/2w,. From this time on, a force F = B cos (wt+6) is applied.
'indd the motion.

&4, I'ind the motion of a mass m subject to a restoring force —kx, and to a damping force
{ | yimy due to dry sliding friction. Show that the oscillations are isochronous (period in-
dependent of amplitude) with the amplitude of oscillation decreasing by 2ug/w3 during each
fhinlf-cycle until the mass comes to a stop. [Hint: Use the result of Problem 45. When the force
haw b different algebraic form at different times during the motion, as here, where the sign of
the dumping force must be chosen so that the force is always opposed to the velocity, it is
necessaty 1o solve the equation of motion separately for each interval of time during which a
particular expression for the force is to be used, and to choose as initial conditions for each
time interval the final position and velocity of the preceding time interval.]

&8, An undamped harmonic oscillator (y = 0), initially at rest, is subject to a force given by
Fq. (2. 191),

n) Find x(1).

by For u fixed po, for what value of 8t is the final amplitude of oscillation greatest?

¢) Show that as 8t — 0, your solution approaches that given by Eq. (2.190).

. I'ind the solution analogous to Eq. (2.190) for a critically damped harmonic oscillator
wishjeet to an impulse p, delivered at t = to.

&7, u) Find, using the principle of superposition, the motion of an underdamped oscillator
[y — 1/ ] initially at rest and subject, after ¢ = 0, to a force
F = A sin wyt+ B sin 3wyt

whare ,, is (he natural frequency of the oscillator.
1) What ratio of B to A is required in order for the forced oscillation at frequency 3w, to
have the snme amplitude as that at frequency wo?

&N, A force Fo(1--¢ ) acts on a harmonic oscillator which is at rest at ¢ = 0. The mass is
m. the spring constant k = 4ma?, and b = ma. Find the motion. Sketch x(¢).

+49, Solve Problem 58 for the case k = ma?, b = 2ma.
o), Find, by the Fourier-series method, the steady-state solution for the damped harmonic

oncillator subject to a force

Fi) = 0, il nT <ts(n+dT,
T F, i DT =k DT
where # is any integer, and T = 67/t where ay in the resonnnce frequency of the oscillator,
Show thit iy <= my, the motion is nearly sinusoldal with periad 1'/3,

* A intorink in used, an expliined in the Profuce, to indlvile probienin which may be particularly
diMeudt,
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61. Find, by the Fourier-series method, the steady-state solution for an undamped harmonic
oscillator subject to a force having the form of a rectified sine-wave:
F(t) = F, |sin ],

where w,, is the natural frequency of the oscillator.
62. Solve Problem 58 by using Green’s solution (2.210).

63. An underdamped oscillator initially at rest is acted upon, beginning at ¢ = 0, by a force
given by Eq. (2.191). Find its motion by using Green’s solution (2.210).

64. Using the result of Problem 56, find by Green’s method the motion of a critically damped
oscillator initially at rest and subject to a force F(¢).
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8. Prove the following inequalities. Give a geometric and an algebraic proof (in terms of
components) for each:

") |4+B| < |4|+|B|.
b) |4-B| < |A| |B|.
) |4 % B| < || |B|.

6. 1) Obtain a formula analogous to Eq. (3.40) for the magnitude of the sum of three forces
¥, F, F, interms of Fy, F5, F3, and the angles 0, ,, 0,3, 03, between pairs of forces. [ Use the
suppestions following Eq. (3.40).]

i) Obtain a formula in the same terms for the angle «;, between the total force and the
component force F.

7. Prove Egs. (3.54) and (3.55) from the definition (3.52) of vector differentiation.

. Prove Egs. (3.56) and (3.57) from the algebraic definition (3.53) of vector differentiation.

9. Give suitable definitions, analogous to Egs. (3.52) and (3.53), for the integral of a vector
luniction A(1) with respect to a scalar t:
t2
J A(z) dt.

t

Wiite 1t set of equations like Egs. (3.54)(3.57) expressing the algebraic properties you would
expect such an integral to have. Prove that on the basis of either definition

d T

— | A(t)dt = A@1).

i jo ) (®

10. A 45" isosceles right triangle ABC has a hypotenuse AB of length 4a. A particle is acted
o by u foree altracting it toward a point O on the hypotenuse a distance a from the point A,
I'he force is equal in magnitude to k/r?, where r is the distance of the particle from the point
). Caleulute the work done by this force when the particle moves from A to C to B along the
twur legs of the triangle. Make the calculation by both methods, that based on Eq. (3.61) and
thint based on Eq. (3.63).

11, A particle moves around a semicircle of radius R, from one end A of a diameter to the
other . 1t is atiracted toward its starting point A by a force proportional to its distance from

A, When the particle is at B, the force toward A is F,. Calculate the work done against thin

foree when the particle moves around the semicircle from A4 to B.

12, A particle is acted on by a force whose components are
Fooe= axt 4 bxy? ez,

P ayt 4 bxty,
¥ i )

I, = ex.

Caleinte the work done by this force when the particle moves along o stradght line from the "

origin Lo the point (v, v o),
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13. a) A particle in the xy-plane is attracted toward the origin by a force F = k/y, inversely
proportional to its distance from the x-axis. Calculate the work done by the force when the
particle moves from the point x = 0, y = a to the point x = 24, y =0 along a path which
follows the sides of a rectangle consisting of a segment parallel to the x-axis fromx = 0,y = a
to x = 2a, y = a, and a vertical segment from the latter point to the x-axis.

b) Calculate the work done by the same force when the particle moves along an ellipse of
scmiaxes a, 2a. [Hint: Set x = 2a sin §, y = a cos 6.]

14. Find the r- and 6-components of da/dt in plane polar coordinates, where a is the ac-
celeration of a particle.

I5. Find the components of d>4/dt* in cylindrical polar coordinates, where the vector 4
1% a function of ¢ and is located at a moving point.

16. Find the components of d>r/d¢® in spherical coordinates.

*17. a) Plane parabolic coordinates f, h are defined in terms of cartesian coordinates x, y by
the equations

x=f=h  y=2fW"

where f and h are never negative. Find f and h in terms of x and y. Let unit vectors f? h be de-
fined in the directions of increasing f and h respectively. That is, fis a unit vector in the direction
in which a point would move if its f-coordinate increases slightly while its h-coordinate remains
constant. Show that 7 and k are perpendicular at every point. [Hint: f = (& dx+§ dy)[(dx)*+
)t~ 12, when df > 0, dh = 0. Why?]

1) Show that f and h are functions of f, h, and find their derivatives with respect to f and h.
Show that r = fY2(f+R)2f +hY2(f+k)V2h. Find the components of velocity and ac-
veleration in parabolic coordinates.

M. A particle moves along the parabola

y* = 4f 5 —4fox,
where f, is a constant. Its speed v is constant. Find its velocity and acceleration components

in rectangular and in polar coordinates. Show that the equation of the parabola in polar
vonrdinates is

r cos> 3= fo.
What is the equation of this parabola in parabolic coordinates (Problem 17)?

19, A particle moves with varying speed along an arbitrary curve lying in the xy-plane.
I'he position of the particle is to be specified by the distance s the particle has traveled along
I'wﬁzvc from some fixed point on the curve. Let £(s) be a unit vector tangent to the curve at
the point s in the direction of increasing s. Show that

de 9

/ / dv "




150 MOTION OF A PARTICLE IN TWO OR THREE DIMENSIONS

whete §i(s) is a unit vector normal to the curve at the point s, and r(s) is the radius of curvature
At the point s, defined as the distance from the curve to the point of intersection of two nearby
normals, Henee derive the following formulas for the velocity and acceleration of the particle:

v = §t, a=5+—".

. Vlsit-y the properties of the vector symbol V, derive the vector identities:
curl (curl 4) = grad (div 4)—V?4,
u grad v = grad (uv)—o grad u.

| ien wrile oul the x-components of each side of these equations and prove by direct calculation
yhint they are cqual in each case. (One must be very careful, in using the first identity in curvi-
finent coordinates, to take proper account of the dependence of the unit vectors on the
voordinates.)

11, Caleulate curl A in cylindrical coordinates.

12. 1the particle in Problem 12 moves with a constant velocity v, what is the impulse delivered
tor it by the given force?

1V, u) Given that the particle in Problem 11 moves with a constant speed v around the
wemicirele, find the rectangular components F(t), F(t) of the additional force which must act
o it besides the force given in Problem 11. Take the x-axis along the diameter AB.

) Caleulate the impulse delivered by this additional force.

24. A purticle of mass m moves with constant speed v around a circle of radius r, starting
at 1t O from a point P on the circle. Find the angular momentum about the point P at any
e £, the foree, and the torque about P, and verify that the angular momentum theorem
{4 EAD) s sntishied.

18, A patticle of mass m moves according to the equations

x = Xo+at?,
y = bt?,
o=l

Fined the angular momentum Lat any time . Vind the foree F and from it the torque N acting
un the particle. Verify that the angular momentum theorem (3.144) is satisfied.

26. Clive n suitable definition of the angulnr momentum of & particle about an mxis in space,
Puking the specificd axis as the z-uxis, express the angular momentom in terms of cylindrien
coordinites. 1 the foree neting on the particle fuw eylindrical components I, F,, F,. prove
it the time rinte of chnnge of nngulsr momentan whout the axis v equal 1o the torgue
whout it s,
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27. A moving particle of mass m is located by spherical coordihates r(t), 8(t), o(t). The force
acting on it has spherical components F,, Fy, F,. Calculate the spherical components of the
angular momentum vector and of the torque vector about the origin, and verify by direct
calculation that the equation

dL
dr

follows from Newton’s equation of motion.

28. The solutions plotted in Fig. 3.28 correspond to the first two of Eqgs. (3.151). If 6, = 0,
cstimate 6, for the case w, = 2w, as drawn. Sketch the corresponding figure for the case
0, = 6,. Sketch a typical figure for the case 4w, = 3.

9. Find a lowest order correction to Eq. (3.179) by putting x,, = (mv,/b) (1 — 8) and solving
lq. (3.175) for 8, assuming 6 << 1 and bu,o/mg > 1. [Hint: The algebra is not difficult,
but you must think carefully about which are the most important terms in this limiting case.]

0. Find the maximum height z,,, reached by a projectile whose equation of motion is
1q. (3.169). Expand your result in a power series in b, keeping terms in z,,,, up to first order in
1. and check the lowest order term against Eq. (3.167).

M. A projectile is fired from the origin with initial velocity vy = (Vy,, Uy, Us,)- The wind
velocity is v, = wj. Solve the equations of motion (3.180) for x, y, z as functions of ¢. Find the
point x4, y; at which the projectile will return to the horizontal plane, keeping only first-order
retms in b. Show that if air resistance and wind velocity are neglected in aiming the gun, air
resistance alone will cause the projectile to fall short of its target a fraction 4bv, /3mg of the
furget distance, and that the wind causes an additional miss in the y-coordinate of amount
el fimg?).

V2. Solve for the next term beyond those given in Egs. (3.176) and (3.178).

W\, A projectile is to be fired from the origin in the xz-plane (z-axis vertical) with muzzle
velocity v, to hit a target at the point x = X,z = 0.(a) Neglecting air resistance, find the correct
anple of clevation of the gun. Show that, in general, there are two such angles unless the target
in il or beyond the maximum range.

1 Iind the first-order correction to the-angle of elevation due to air resistance.

M. Show that the forces in Problems 11 and 12 are conservative, find the potential energy,
wnd use it to find the work done in each case.

8. Determine which of the following forces are conservative, and find the potential energy
fist _Uise which are:

W KL Gabxty 206Xy F, - Gabxz? 10bx*y,  F, = 18abxz?y.
b b, - [Rabyst 200 Rabyz'  10hxYy, P, = Gabxyz®.
Vo F RPN PE ) 1 RE L)
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. Determine the potential energy for each of the following forces which is conservative:

Wb =2ax(z3+y),  F,=2ay(2+y*)+3ay*(x*+y?),  F.=3az’(x*+y%).
by ¥, =ap?cosp, F,=ap’sing, F,=2az.
V) I, = —2arsin 0 cos ¢, F, = —ar cos 0 cos ¢, F, = ar sin 0 sin ¢.

V7. Determine the potential energy for each of the following forces which is conservative:

w k. ave™®  F, =bye™®,  F =cze ®, where R = ax*+ by? +cz%.
I ¥ Af(A-r), where 4 is a constant vector and f{s) is any suitable function ofs=A-r.
G F (rxA)f(A-r).

M. A particle is attracted toward the z-axis by a force F proportional to the square of its
dmtunice from the xy-plane and inversely proportional to its distance from the z-axis. Add an
additional force perpendicular to F in such a way as to make the total force conservative, and
il the potential energy. Be sure to write expressions for the forces and potential energy
which are dimensionally consistent.

W. Show that F = #F(r) is a conservative force by showing by direct calculation that the
intepral

[ F-ar

ri
along any path between v, and r, depends only on r; and r,. [Hint: Express F and dr in

npherical coordinates.]

40, Find the components of force for the following potential-energy functions:

n V = axy?*z>.
b) V = k2.
) V = 3k +3k,y? +3k,2%

41, 1 the foree on the electron in the hydrogen molecule ion for which the potential is

2 2
e e
V= -,
r 12
where r, is the distance from the electron to the point y = z = 0,x = —a,and r, is the distance

fromn the clectron to the point y = z = 0, x = «.

42, Devise n potential-energy function which vanishes as r - <o, and which yields a force
P oo krwhenr -0, Find the force. Verify by doing the appropriate line integrals that the
work done by this force on a particle going from r = 0 to r = ry is the same if the purticle
Hivvels inon straight line as it is if it follows the path shown in Fig, 3.32,

40, The potentinl energy for nn isotropic hurmonic oscillator is
R R LT

Pt the effoctive potentinl onergy for the r-motion when w pirticle of muss mmovex with this
potentiinl energy mnd with wngulae momentum Loaboul the origin. Diseuss the types ol motlon
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that are possible, giving as complete a description as is possible without carrying out the
solution. Find the frequency of revolution for circular motion and the frequency of small
radial oscillations about this circular motion. Hence describe the nature of the orbits which
differ slightly from circular orbits.

44. Find the frequency of smail radial oscillations about steady circular motion for the
effective potential given by Eq. (3.232) for an attractive inverse square law force, and show
that it is equal to the frequency of revolution.

45, Find r(2), 6(t) for the orbit of the particle in Problem 43. Compare with the orbits found
i Section 3.10 for the three-dimensional harmonic oscillator.

46. A particle of mass m moves under the action of a central force whose potential is
V)= Kr*, K=>0.

J“or what energy and angular momentum will the orbit be a circle of radius a about the origin?
What is the period of this circular motion? If the particle is slightly disturbed from this circular
motion, what will be the period of small radial oscillations about r = a?

47. According to Yukawa’s theory of nuclear forces, the attractive force between a neutron
andd a proton has the potential

K —ar
Vi) =5 -,  K<O.
r

W) Iind the force, and compare it with an inverse square law of force.

1) Discuss the types of motion which can occur if a particle of mass m moves under such a
loree.

v) Discuss how the motions will be expected to differ from the corresponding types of motion

for un inverse square law of force.
) Find L and E for motion in a circle of radius a. .
v} lind the period of circular motion and the period of small radial oscillations.

1) Show that the nearly circular orbits are almost closed when a is very small.

48, Solve the orbital equation (3.222) for the case F = 0. Show that your solution agrees with
Newton's first law.

49, 1t will be shown in Chapter 6 (Problem 7) that the effect of a uniform distribution of
st of density p about the sun is to add to the gravitational attraction of the sun on a planet
wl muss m an additional attractive central force

F = —mkr,

wheie
-/

k=G
K = x[)l.

w1 the mans of the sun v M fiad the angulsr velocity of revolution of the planct in a
eitvahie orbit of sndius ey, nnd Tind the angulnr frequoney of sl radin! oscillations, Henee
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show that if F' is much less than the attraction due to the sun, a nearly circular orbit will be
approximately an ellipse whose major axis precesses slowly with angular velocity

RG\2
w, = 2np )

b) Docs the axis precess in the same or in the opposite direction to the orbital angular

velocity? Look up M and the radius of the orbit of Mercury, and calculate the density of dust {

required to cause a precession of 41 seconds of arc per century.

80, 1) Discuss by the method of the effective potential the types of motion to be expected
for an attractive central force inversely proportional to the cube of the radius:

K
F(r)= _ﬁa K >0.

h) Find the ranges of energy and angular momentum for each type of motion.
¢) Solve the orbital equation (3.222), and show that the solution is one of the forms:

= 4 cos [0 00)], |
% = A cosh [0 —6,)], @
% — Asinh [B6—6,)], 3]
% = A(0—6,), | @)
- rloew. ®)

d) For what values of L and E does each of the above types of motion occur? Express the ]

vonntants A and 8 in terms of E and L for each case.
o) Sketeh a typical orbit of each type.

&1, (1) Discuss the types of motion that can occur for a central force

K K
Fir) = -5+

Assume that K > 0, and consider both signs for K.

h) Solve the orbital equation, and show that the bounded orbits have the form (if L*> -mK") |

R Sl
1+ & cos alf

¢) Show that this is u precossing ollipso, determine the angular velocity of procession, and
state whother the preconsion Is in the wame or in the apposite direction to the orbital angular

velooity,
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52. Sputnik I had a perigee (point of closest approach to the earth) 227 km above the earth’s
surface, at which point its speed was 28,710 km/h'r. Find its apogee (maximum) distance
from the earth’s surface and its period of revolution. (Assume the earth is a sphere, and neglect
air resistance. You need only look up ¢ and the earth’s radius to do this problem.)

53. Explorer I had a perigee 360 km and an apogee 2,549 km above the earth’s surface. Find
its distance above the earth’s surface when it passed over a point 90° around the earth from
its perigee.

54. A comet is observed a distance of 1.00 x 10® km from the sun, traveling toward the sun
with a velocity of 51.6 km per second at an angle of 45° with the radius from the sun. Work
out an equation for the orbit of the comet in polar coordinates with origin at the sun and
x-axis through the observed position of the comet. (The mass of the sun is 2.00 x 10%° kg)

85, It can be shown (Chapter 6, Problems 17 and 21) that the correction to the potential
energy of a mass m in the earth’s gravitational field, due to the oblate shape of the earth, is
approximately, in spherical coordinates, relative to the polar axis of the earth,

nmMGR?

=3 (1—3 cos? 0),

V' =
where M is the mass of the earth and 2R, 2R(1 —n) are the equatorial and polar diameters of
the earth. Calculate the rate of precession of the perigee (point of closest approach) of an
earth satellite moving in a nearly circular orbit in the equatorial plane. Look up the
cquatorial and polar diameters of the earth, and estimate the rate of precession in degrees
per revolution for a satellite 400 miles above the earth.

86, Calculate the torque on an earth satellite due to the oblateness potential energy
correction given in Problem 55. A satellite moves in a circular orbit of radius r whose plane
In inclined so that its normal makes an angle a with the polar axis. Assume that the orbit is
very little affected in one revolution, and calculate the average torque during a revolution.
Show that the effect of such a torque is to make the normal to the orbit pyecess in a cone of
half angle « about the polar axis, and find a formula for the rate of precession in degrees per
revolution. Calculate the rate-for a satellite 400 miles above the earth, using suitable values
for M, n,and R.

7. 1t can be shown that the orbit given by the special theory of relativity for a particle of
mass m moving under a potential energy V(r) is the same as the orbit which the particle would
follow according to Newtonian mechanics if the potential energy were

E-V({r)?
ot

whelé E is the energy (kinetic plus potential), and c is the speed of light. Discuss the nature of
the orbits for an inverse square law of force according to the theory of relativity. Show by
vomparing the orbital angular velocity with the frequency of radial oscillations for nearly
eircular motion that the nearly circular orbits, when the relativistic correction is small, are
prevensing ellipses, and caloulate the angular velocity of precession. [ See Eq. (14.101).]
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8H. Miurs has a perihelion (closest) distance from the sun of 2.06 x 108 km, and an aphelion
{nuxinium) distance of 2.485 x 10® km. Assume that the earth moves in the same plane in a
ciele of radius 1.49 x 10® km with a period of one year. From this data alone, find the speed of
Mius at perihélion. Assume that a Mariner space probe is launched so that its perihelion is
Wl the carth'’s orbit and its aphelion at the perihelion of Mars. Find the velocity of the Mariner
redative to Mars at the point where they meet. Which has the higher velocity? Which has the
lipher average angular velocity during the period of the flight?

89, Muariner 4 left the earth on an orbit whose perihelion distance from the sun was approxi-
mitely the distance of the earth (1.49 x 108 km), and whose aphelion distance was approximately
the distance of Mars from the sun (2.2 x 108 km). With what velocity did it leave relative to the
carth? With what velocity must it leave the earth (relative to the earth) in order to escape
ahopether from the sun’s gravitational pull? (You need no further data to answer this problem
exvept the length of the year, if you assume the earth moves in a circle.)

o, 1) A satellite is to be launched from the surface of the earth. Assume the earth is a
aphiere of radius R, and neglect friction with the atmosphere. The satellite is to be launched at
wn unple o with the vertical, with a velocity v, so as to coast without power until its velocity
i hotizontal at an altitude h; above the earth’s surface. A horizontal thrust is then applied
by the last stage rocket so as to add an additional velocity Av, to the velocity of the satellite.
the flinnl orbit is to be an ellipse with perigee h; (point of closest approach) and apogee h,
tpoint furthest away) measured from the earth’s surface. Find the required initial velocity v,
wnd wdditional velocity Avy, in terms of R, o, k4, h,, and g, the acceleration of gravity at the
citth's surface,

b) Write a formula for the change 6k, in perigee height due to a small error 4§ in the final
thrust direction, to order (88)2.

61, Two plinets move in the same plane in circles of radii r,, r, about the sun. A space
probe s to be lnunched from planet 1 with velocity v, relative to the planet, so as to reach the
mhit of planet 2. (The velocity v, is the relative velocity after the probe has escaped from the
pravitntional ficld of the planet.) Show that v, is 2 minimum for an elliptical orbit whose
perihelion und aphelion are ry and r,. In that case, find vy, and the relative velocity v, between
the wpace probe and planet 2 if the probe arrives at radius r, at the proper time to intercept
pliviet 2. Express your results in terms of ry, r,, and the length of the year Y, of planet 1. Look
up the appropriate values of ry and r,, and estimate v, for trips to Venus and Mars from the
corth.

62. A rocket iy in an clliptical orbit around the carth, perigee r, apogee r,, measured from
the center of the carth., At i certain point in its orbit, its engine is fired for a short time so as
to give i velocity inerement Ar in order to put the rocket on an orbit which escapes from the
wnth with a final velocity v, relative o the carth, (Neglect any effects duc to the sun and moon,)
Show thit Ar is o minimum if the thrust is applied at perigee, paraliel to the orbital velocity,
P Apin that case in termy of the elliptical orbit parameters ¢, o, the accelerntion ¢ ot
distnnce R from the eurth's conter, and the final velocity p,. Cin you explain physically why
Ariw amirllor tor fneger o

0 A sntollite maves around the curth in an orbl wideh pisses ueross the poles. The time
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at which it crosses each parallel of latitude is measured so that the function 6(t) is known.
Show how to find the perigee, the semimajor axis, and the eccentricity of its orbit in terms of
((t), and the value of g at the surface of the earth. Assume the earth is a sphere of radius R.

64. A particle of mass m moves in an elliptical orbit of major axis 2a, eccentricity &, in such.
a way that the radius to the particle from the center of the ellipse sweeps out area at a constant
rate
das C
a7
and with period r independent of a and &. (a) Write out the equation of the ellipse in polar
coordinates with origin at the center of the ellipse.
1) Show that the force on the particle is a central force, and find F(r) in terms of m, 1.

65. Show that the Rutherford cross-section formula (3.276) holds also when one of the charges
is negative.

06. A particle is reflected from the surface of a hard sphere of radius R in such a way that
the incident and reflected lines of travel lie in a common plane with the radius to the point of
unpact and make equal angles with the radius. Find the cross-section do for scattering through
an angle between © and ® +dO. Integrate do over all angles and show that the total cross-
section has the expected value 7R2.

67. Exploit the analogy u, 0 <> x, t between Eqgs. (3.222) and (2.39) in order to develop a
solution of Eq. (3.222) analogous to the solution (2.46) of Eq. (2.39). Use your solution to show
thal the scattering angle © (Fig. 3.42) for a particle subject to a central force F(r) is given by

O = |n—2s ) [1—s"u>~V(u~")/Gmv3)] "2 dul,
where V(r = u™!) is the potential energy,
V(r) = [* F(r)dr,

v 15 the impact parameter, and u, is the value of u at which the quantity in square brackets
visnishes, [ This problem is not difficult if you keep clearly in mind the physical and geometrical
significance of the various quantities involved at each step in the solution. ]

ON. Show that a hard sphere as defined in Problem 66 can be represented as a limiting case
vl w central force where

Hhntis, show that such a potential gives the same law of reflection as specified in Problem 66.
llmj use the result of Problem 67 to solve Problem 66.

M. Une the result of Problem 67 to derive the Rutherford cross-section formula (3.276).

A rocket moves with initind velocity v, townrd the moon of mass M, radius ro. Find the
viomn section o for striking the moon, Take the moon 1o beat rest, nnd ignore nll other bodies.
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71. Show that for a repulsive central force inversely proportional to the cube of the radius,
K
Fr)=—, K=>0,
r

the orbits are of the form (1) given in Problem 50, and express f§ in terms of K, E, L, and the
s i of the incident particle. Show that the cross-section for scattering through an angle
between @ and @+ 4O for a particle subject to this force is

2K n—0

do=22_T"7 e
7= i @Qn—0)

72, A pasticle of charge g, mass m at rest in a constant, uniform magnetic field B = ByZ is
subject, beginning at t = 0, to an oscillating electric field
E = E % sin wt.

Find its motion.
71, Solve Problem 72 for the case w = gB,/me.

74, A charged particle moves in a constant, uniform electric and magnetic field. Show that
il we introduce a new variable

, ExB
¥ =r—————c,
B

2
the equation of motion for ¢ is the same as that for r except that the component of E perpen-
divulur to B has been eliminated.

78, A purticle of charge g in a cylindrical magnetron moves in a uniform magnetic field
B = B%,

and an electric ficld, directed radially outward or inward from a central wire along the
£ nxin,

E=2p,
P
where p is the distance from the z-axis, and  is a unit vector directed radially outward from
the z-uxis. The constants « and B may be either positive or negative.
W) Set up the equations of motion in cylindrical coordinates.
b) Show that the quantity

B
mpzq')+q =K
2¢

in i constunt of the motion,

) Ulsing thin result, give w qualitative discussion, busad on the energy integral, of the (ypew
of motion thil ean ovear, Consider all cnvon, including nll values of o, 8, K, und b,

) Undor what conditions enn cireulur motion abowt the nxix oeeur?

@) What ix the froquency of amall radinl oxcilliations ubout this cireulur motion?
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76. A velocity selector for a beam of charged particles of mass m, charge e, is to be designed
{o select particles of a particular velocity v,. The velocity selector utilizes a uniform electric
field E in the x-direction and a uniform magnetic field B in the y-direction. The beam emerges
{rom a narrow slit along the y-axis and travels in the z-direction. After passing through the
crossed fields for a distance I, the beam passes through a second slit parallel to the first and
ulso in the yz-plane. The fields E and B are chosen so that particles with the proper velocity
moving parallel to the z-axis experience no net force. '

a) If a particle leaves the origin with a velocity v, at a small angle with the z-axis, find the
point at which it arrives at the plane z = I. Assume that the initial angle is small enough so
that second-order terms in the angle may be neglected.

b) What is the best choice of E, B in order that as large a fraction as possible of the particles
with velocity v, arrive at the second slit, while particles of other velocities miss the slit as far
ns possible?

o) If the slit width is h, what is the maximum velocity deviation v from v, for which a
particle moving initially along the z-axis can pass through the second slit? Assume that E, B
have the values chosen in part (b).
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slides over the other, as in Fig. 4.15. We assume that the force of friction is pro- |

portional to the relative velocity of the two masses. The equations of motion of
m, and m, are then

my%; = —kyx; —b(X, + %), (4.184)

Mm%, = —kyXy —b(X2 +%4), (4.185)
or

my¥,+bx,+kyxg+bx, =0, (4.186)

MRy + b+ kyxy+bXy = 0. (4.187)

The coupling is expressed in Egs. (4.186), (4.187) by a term in the equation of |
motion of each oscillator depending on the velocity of the other. The oscillators

may also be coupled by a mass, as in Fig. 4.16. It is left to the reader to set up the ]

equations of motion. (See Problem 40 at the end of this chapter.)
"Two oscillators may be coupled in such a way that the force acting on one
depends on the position, velocity, or acceleration of the other, or on any combination

of these. In general, all three types of coupling occur to some extent; a spring, for |

exumple, has always some mass, and is subject to some internal friction. Thus the

most general pair of equations for two coupled harmonic oscillators is of the form }

m1551+b1x1+k1x1 +mc552+bc3.€2+kcx2 == 0, (4188) ]
m2552+b2562+k2>€2+mc551 +bc)'61+kcx1 = 0 (4.189) ‘

‘T'hese cquations can be solved by the method described above, with similar 1
results. Two normal modes of vibration appear, if the frictional forces are not too ]
great, '
Equations of the form (4.188), (4.189), or the simpler special cases considered
in the preceding discussions, arise not only in the theory of coupled mechanical §
oncillators, but also in the theory of coupled electrical circuits. Applying Kirchhoff's
socond law to the two meshes of the circuit shown in Fig. 4.17, with mesh currents §

Iy Ry
R
I
1 1P
i i
II
Il Il
i 1
' 'y

Fig. 4.17 Coupled oncillating cirouits,
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iy, i, around the two meshes as shown, we obtain

w . 1 . o1
(L+Ly)d, +(R+R;)q, +<E+E_> q1 +LQ2+RQ2+E g, =0, (4.190)
1

and

. . 1 1 . 1
(L+L2)612+(R+R2)‘12+<E+C—> q,+Lg, +Rq1+—c— q; =0, (4.191)
2

where g, and g, are the charges built up on C, and C, by the mesh currents i; and
i,. These equations have the same form as Eqgs. (4.188), (4.189), and can be solved
by similar methods. In electrical circuits, the damping is often fairly large, and
finding the solution becomes a formidable task.

The discussion of this section can be extended to the case of any number of
coupled mechanical or electrical harmonic oscillators, with analogous results.
The algebraic details become almost prohibitive, however, unless we make use of
more advanced mathematical techniques. We therefore postpone further discussion
of this problem to Chapter 12.

All mechanical and electrical vibration problems reduce in the limiting case
of small amplitudes of vibration to problems involving one or several coupled
harmonic oscillators. Problems involving vibrations of strings, membranes,
clastic solids, and electrical and acoustical vibrations in transmission lines, pipes,
or cavities, can be reduced to problems of coupled oscillators, and exhibit similar
normal modes of vibration. The treatment of the behavior of an atom or molecule
weeording to quantum mechanics results in a mathematical problem identical with
the problem of coupled harmonic oscillators, in which the energy levels play the
role of oscillators, and external perturbing influences play the role of the coupling
mechanism.

PROBLEMS

I, Formulate and prove a conservation law for the angular momentum about the origin of
# system of particles confined to a plane.

2. Water is poured into a barrel at the rate of 120 Ib per minute from a height of 16 ft. The
turrel weighs 25 Ib, and rests on a scale. Find the scale reading after the water has been pouring
into the barrel for one minute.

. A ballistic pendulum to be used to measure the speed of a bullet is constructed by sus-
pnudi}ﬁg a block of wood of mass M by a cord of length I. The pendulum initially hangs vertically
#t ront, A bullet of mass m is fired into the block and becomes imbedded in it. The pendulum
then bogins to swing and rises until the cord makes a maximum angle 6 with the vertical. Find
the Initinl speed of the bullet-in-terms of M, m, I, and @ by applying appropriate conservation
laww,
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4. A box of mass m falls on a conveyor belt moving with constant speed v,. The coefficient
ol shiding friction between the box and the belt is u. How far does the box slide along the belt
helore it is moving with the same speed as the belt? What force F must be applied to the belt
10 heep it moving at constant speed after the box falls on it, and for how long? Calculate the
mpulse delivered by this force and check that momentum is conserved between the time
helore the box falls on the belt and the time when the box is moving with the belt. Calculate
the work done by the force F in pulling the belt. Calculate the work dissipated in friction
hetween the box and the belt. Check that the energy delivered to the belt by the force F is just
vqual to the kinetic energy increase of the box plus the energy dissipated in friction.

&. A scoop of mass m, is attached to an arm of length [ and negligible weight. The arm is
prvoted so that the scoop is free to swing in a vertical arc of radius I At a distance [ directly
helow the pivot is a pile of sand. The scoop is lifted until the arm is at a 45° angle with the vertical,
aned relensed. It swings down and scoops up a mass m, of sand. To what angle with the vertical
duoes the arm of the scoop rise after picking up the sand? This problem is to be solved by
vonsidering carefully which conservation laws are applicable to each part of the swing of the
wweoop, Friction is to be neglected, except that required to keep the sand in the scoop.

6. 1) A spherical satellite of mass m, radius a, moves with speed v through a tenuous atmos-
phere of density p. Find the frictional force on it, assuming that the speed of the air molecules
vin be neglected in comparison with v, and that each molecule which is struck becomes
eimbedded in the skin of the satellite. Do you think these assumptions are valid?

1) 11 the orbit is a circle 400 km above the earth (radius 6360 km), where p = 10~ 'kg/m *,
und a1 m,m = 100 kg, find the change in altitude and the change in period of revolution
in one week,

7. A lunur landing craft approaches the moon’s surface. Assume that one-third of its weight
i huel, tha the exhaust velocity from its rocket engine is 1500 m/sec, and that the acceleration
ol pravity at the lunar surface is one-sixth of that at the earth’s surface. How long can the
conlt hover over the moon’s surface before it runs out of fuel?

K. A toy rocket consists of a plastic bottle partly filled with water containing also air at #
high pressure p. The water is ejected through a small nozzle of area A. Calculate the cxhuaust
velovity p by assuming that frictional losses of energy are negligible, so that the kinetic cnergy
of the excnping water is equal to the work done by the gas pressure in pushing it out. Show
that the thrust of this rocket engine is then 2 pA. (Assume that the water leaves the nozzio of
atei o with velocity n) If the empty rocket weighs 500 g, if it contains initially 500 g of water,
and it A4 - 5 mm?, what pressure is required in order that the rocket can just support itwelf
apvinst gravity? 13 is then released so that it accelerates upward, what maximum velocity
will it rench? Approximately how high will it go? What effects are neglected in the caleulation,
uid how would each of them affect the final result?

*0, A two-stige rocket is to be built capable of aceelerating n 100-kg payload to a velocity of
00 m/wee in free Night in empty space (no gravitntionad field). {In a two-stage rocket, the
fient stige is detnched after exhausting its fuel, before the second stige i fired.) Assume that
the fuel wved can rench nn oxhoust velocity of §500 m/kee, nnd that stractueal requiremenis
inply that s empty rocket (without fuel or prylond) will weigh 10° ax much s the fuel it ean
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carry. Find the optimum choice of masses for the two stages so that the total take-off weight
is a minimum. Show that it is impossible to build a single-stage rocket which will do the job.

10. A rocket is to be fired vertically upward. The initial mass is M, the exhaust velocity —u
is constant, and the rate of exhaust —(dM/dt) = A is constant. After a total mass AM is
cxhausted, the rocket engine runs out of fuel.

a) Neglecting air resistance and assuming that the acceleration g of gravity is constant, set
up and solve the equation of motion.
*b) Show that if M, u, and AM are fixed, then the larger the rate of exhaust A, that is, the
fuster it uses up its fuel, the greater the maximum altitude reached by the rocket.

1. Assume that essentially all of the mass M of the gyroscope in Fig. 4.1 is concentrated in
the rim of the wheel of radius R, and that the center of mass lies on the axis at a distance [ from
the pivot point Q. If the gyroscope rotates rapidly with angular velocity w, show that the
nngular velocity of precession of its axis in a cone making an angle o with the vertical is
approximately
o, = gl/(R*w?).

12. A diver executing a 23 flip doubles up with his knees in his arms in order to increase his
unpular velocity. Estimate the ratio by which he thus increases his angular velocity relative
I his angular velocity when stretched out straight with his arms over his head. Explain your
eisoning.

1), A uniform spherical planet of radius a revolves about the sun in a circular orbit of radius
I ind rotates about its axis with angular velocity @, normal to the plane of the orbit. Due
to tides raised on the planet by the sun, its angular velocity of rotation is decreasing. Find a
lormula expressing the orbit radius r as a function of angular velocity w of rotation at any
lnter or earlier time. [ You will need formulas (5.9) and (5.91) from Chapter 5.] Apply your
lonmula to the earth, neglecting the effect of the moon, and estimate how much farther the
vurth will be from the sun when the day has become equal to the present year. If the effect
of the moon were taken into account, would the distance be greater or less?

*t4, A mass m of gas and debris surrounds a star of mass M. The radius of the star is negligible
i vomparison with the distances to the particles of gas and debris. The material surrounding
the star has initially a total angular momentum L, and a total kinetic and potential energy E.
Awsumie that m << M, so that the gravitational fields due to the mass m are negligible in
vomparison with that of the star. Due to internal friction, the surrounding material continually
lomes mechanical energy. Show that there is a maximum energy AE which can be lost in this
wiy, and that when this energy has been lost, the material must all lie on a circular ring around
e stinr (but not necessarily uniformly distributed). Find AE and the radius of the ring. (You
will need to use the method of Lagrange multipliers.)

I8, A particle of mass m,, energy T, collides elastically with a particle of mass m,, at rest. If
the mnss m, leaves the collision at an angle 9, with the original direction of motion of m,,
whint ®ihe energy T, delivered to particle m,? Show that T, is a maximum for a head-on
vidlision, und that in this case the energy lost by the incident particle in the collision is

P 4nim,
N (m, “”))) e
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climinated from Eq. (5.190) by means of Eq. (5.187). If we eliminate the density,
we have

dp Mg

— = ——=p. 5.192

dz rT? ( )
A i example, if we assume that the atmosphere is uniform in temperature and

conposition, we can solve Eq. (5.192) for the atmospheric pressure as a function

ol allitude:
Mg
= ——=z|. 5.193
b poexp< RTZ> (5193)

IROBILIEMS
1. (1) Prove that the total kinetic energy of the system of particles making up a rigid body, as
dehined by Eq. (4.37), is correctly given by Eq. (5.16) when the body rotates about a fixed axis,
1)) Prove that the potential energy given by Eq. (5.14) is the total work done against the ¢x-
ternal forces when the body is rotated from 6 to 6, if N, is the sum of the torques about the
nvs of rotation due to the external forces.

2, Using the scheme of analogy in Section 5.2, formulate a theorem analogous to that given
by Fq. (2.8) and prove it, starting from Eq. (5.13).

V. PProve, starting with the equa{ion of motion (5.13) for rotation, that if N, is a function of (I
alome, then T4V is constant.

4, The balance wheel of a watch consists of a ring of mass M, radius a, with spokes of
neghigible mass. The hairspring exerts a restoring torque N, = —kf. Find the motion if the
Pilunee wheet is rotated through an angle 6, and released.

8, A wheel of mass M, radius of gyration k, spins smoothly on a fixed horizontal axle of
rnddins o which passes through a hole of slightly larger radius at the hub of the wheel. The

voelfivient of friction between the bearing surfaces is p. If the wheel is initially spinning with

angule velocity ay, find the time and the number of turns that it takes to stop.

6. A wheel of mass M, radius of gyration k is mounted on a horizontal axle. A coiled spring
attnehed to the axle exerts a torque N = — K6 tending to restore the wheel to its equilibrium
position 1 0. A mass m is located on the rim of the wheel at distance 2k from the axle ut 4
point verticnlly above the axle when 0 = 0. Describe the kinds of motion which can oceus,

Iowute the positions of stable or unstable equilibrium of the wheel ifany, and find the frequencies

of sl oscillations about the cquilibrium points. Consider two cases: (a) K = 2myk,
K~ dmgk/n. What if K < dmgk/5n7 [ Hint : Solve the trigonometric equation graphicully.]

7. An airplane propeller of moment of inertia [ is subject to n driving torque
N Ny(E 1 acos myl),
sl 1o frictionnd torgue due (o nir resistunee
N, - 1),

Find i stendy sinte motion
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8. A motor armature weighing 2 kg has a radius of gyration of 5 cm. Its no-load speed is
1500 rpm. It is wound so that its torque is independent of its speed. At full speed, it draws a
current of 2 amperes at 110 volts. Assume that the electrical efficiency is 80%, and that the
friction is proportional to the square of the angular velocity. Find the time required for it to
come up to a speed of 1200 rpm after being switched on without load.

9. Derive Egs. (5.35) and (5.36).

10. Assume that a simple pendulum suffers a frictional torque —mb,6 due to friction at the
point of support, and a frictional force —b,v on the bob due to air resistance, where v is the
velocity of the bob. The bob has a mass m, and is suspended by a string of length [. Find the
lime required for the amplitude to damp to 1/e of its initial (small) value. How should m, | be
chosen if it is desired that the pendulum swing as long a time as possible? How should m, I be
chosen if it is desired that the pendulum swing through as many cycles as possible?

11. A child of mass m sits in a swing of negligible mass suspended by a rope of length I. Assume
that the dimensions of the child are negligible compared with /. His father pulls the child back
until the rope makes an angle of one radian with the vertical, then pushes with a force F = mg
along the arc of a circle until the rope is vertical and releases the swing. (a) How high up will
the swing go? (b) For what length of time did the father push on the swing? (Assume that it is
permissible to write sin 8 = 6 for 8 < 1.) Compare with the time required for the swing to
reich the vertical if he simply releases the swing without pushing on it.

12. A baseball bat held horizontally at rest is struck at a point O’ by a ball which delivers a
horizontal impulse J' perpendicular to the bat. Let the bat be initially parallel to the x-axis,
and let the baseball be traveling in the negative direction parallel to the y-axis. The center of
miss G of the bat is initially at the origin, and the point O’ is at a distance #’ from G. Assuming
it the bat is let go just as the ball strikes it, and neglecting the effect of gravity, calculate and
sheteh the motion x(¢), y(f) of the center of mass, and also of the center of percussion, during
the [irst few moments after the blow, say until the bat has rotated a quarter turn. Comment on
the diffcrence between the initial motion of the center of mass and that of the center of
prereussion.

1. A compound pendulum is arranged to swing about either of two parallel axes through
two points 0, 0 located on a line through the center of mass. The distances k, i’ from O, O’ to
the center of mass, and the periods 1, ¢’ of small amplitude vibrations about the axes through
(+ und (0 arc measured. O and O are arranged so that each is approximately the center of
vncillation relative to the other. Given 7 = 7/, find a formula for g in terms of measured
spnntities. Given that t' = t(1+3), where § << 1, find a correction to be added to your
previous formula so that it will be correct to terms of order 6.

4. Prive that il a body is composed of two or more parts whose centers of mass are known,
then (he center of mass of the composite body can be computed by regarding its component
vt o single particles located at their respective centers of mass. Assume that each com-
ponent purt k is described by ardensity py(r) of muss continuously distributed over the region
weetipled by part k.
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C D

Fig. 528 Frustum of a cone.

I8, A circular disk of radius a lies in the xy-plane with its center at the origin. The half of the
disk itbove the x-axis has a density ¢ per unit area, and the half below the x-axis has a density
Yo Find the center of mass G, and the moments of inertia about the x-, y-, and z-axes, and
about parallel axes through G. Make as much use of labor-saving theorems as possible.

16. (1) Work out a formula for the moments of inertia of a cone of mass m, height h, and
peneraling angle o, about its axis of symmetry, and about an axis through the apex per-
pendicular to the axis of symmetry. Find the center of mass of the cone.

1) Use these results to determine the center of mass of the frustum of a cone, shown in Fig,
AN, i to caleulate the moments of inertia about horizontal axes through each base and
through the center of mass. The mass of the frustum is M.

17, Find the moments of inertia of the block shown in Fig. 5.8, about axes through its center
of muss parallel to cach of the three edges of the block.

I8, ‘Through u sphere of mass M, radius R, a plane saw cut is made at a distance 1R from the }
venter. ‘The smaller picce of the sphere is discarded. Find the center of mass of the remaining

piece, und the moments of inertia about its axis of symmetry, and about a perpendicular uxin
through the center of mass.

19, How muny yards of thread 0.03 inch in diameter can be wound on the spool shown n §

Vig. 829

20, Ciiven that the volume of a cone is one-third the arca of the basc times the height, locatd 3

iy Puppus’ theorem the centroid of a right triangle whose legs are of lengths ¢ and b,
A |

21, Prove that Pappus’ second theorem holds even if the axis of revolution intersecty the
strliee, provided (that we take as volume the dilference 10 the volumes pencrated by the (we
pirtn into which the surface is divided by the axis. What is the corresponding generulizntion

of the first theorem?

22, Flnel the center ol misn ol i wire bont into s semicirele of radiuw g, Find the three rndih of
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Fig. 5.29 How much thread can be wound on this spool?

pyration about x-, y-, and z-axes through the center of mass, where z is perpendicular to the
plane of the semicircle and x bisects the semicircle. Use your ingenuity to reduce the number
of calculations required to a minimum.

1\ (a) Find a formula for the radius of gyration of a uniform rod of length [ about an axis
through one end making an angle o with the rod.

b) Using this result, find the moment of inertia of an equilateral triangular pyramid, con-
xtructed out of six uniform rods, about an axis through its centroid and one of its vertices.

. Find the radii of gyration of a plane lamina in the shape of an ellipse of semimajor axis a,

eveentricity e, about its major and minor axes, and about a third axis through one focus
perpendicular to the plane.

25, Forces 1 kg-wt, 2 kg-wt, 3 kg-wt, and 4 kg-wt act in sequence clockwise along the four
siles of a square 0.5 x 0.5 m?2. The forces are directed in a clockwise sense around the square.
I'ind the equilibrant.

0. l'orces 2 1b, 3 1b, and 5 1b act in sequence in a clockwise sense along the three sides of an
wuilateral triangle. The sides of the triangle have length 4 ft. Find the resultant.

27. (1) Reduce the system of forces acting on the cube shown in Fig. 5.30 to an equivalent
sinple foree acting at the center of the cube, plus a couple composed of two forces acting at two
miljacent corners.

b Reduce this system to a system of two forces, and state where these forces act.

v} Reduce this system to a single force plus a torque parallel to it.

. A sphere weighing 500 g is held between thumb and forefinger at the opposite ends of a
hnizontal diameter. A string is attached to a point on the surface of the sphere at the end of a
perpendicular horizontal dinmeter. The string is pulled with a force of 300 g in a direction
panliel 1o the line from forefinger to thumb, Find the forces which must be exerted by fore-
finger and thumb o hold the sphege stationary. Iv the answer unique? Doces it correspond to
youit physienl intuition nbowt the problem?




